中考专题动点问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动点问题 题型方法归纳

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)

动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点

1、(2009年齐齐哈尔市)直线3

64

y x =-

+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48

5

S =

时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.

提示:第(2)问按点P 到拐点B 所有时间

分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形

时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。

图(3)

B

图(1)

B

图(2)

2、(2009年衡阳市)

如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.

(1)求⊙O 的直径;

(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;

(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

注意:第(3)问按直角位置分类讨论

3、(2009重庆綦江)

如图,已知抛物线

(1)20)

y a x a

=-+≠经过点(2)

A-,0,抛物线的顶点为D,过O作射线OM AD

∥.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.

(1)求该抛物线的解析式;

(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()

t s.问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?

(3)若OC OB

=,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.

注意:发现并充分运用特殊角∠DAB=60°当△OPQ面积最大时,四边形BCPQ 的面积最小。

二、 特殊四边形边上动点

4、(2009年吉林省)如图所示,菱形ABCD

的边长为6厘米,60B ∠=°.从初始时刻

开始,点P 、Q 同时从A 点出发,点P 以

1厘米/秒的速度沿A C B →→的方向运

动,点Q 以2厘米/秒的速度沿

A B C D →→→的方向运动,当点Q 运

动到D 点时,P 、Q 两点同时停止运动,

设P 、Q 运动的时间为x 秒时,APQ △与

ABC △重叠部分....

的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),

解答下列问题:

(1)点P 、Q 从出发到相遇所用时间是

秒;

(2)点P 、Q 从开始运动到停止的过程中,

当APQ △是等边三角形时x 的值是

秒;

(3)求y 与x 之间的函数关系式.

提示:第(3)问按点Q 到拐点时间B 、C 所有

时间分段分类 ; 提醒----- 高相等的两

个三角形面积比等于底边的比 。

图(1) 图(2) 5、(2009年哈尔滨)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3-,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H .

(1)求直线AC 的解析式; (2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (0S ≠),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围); (3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.

注意:第(2)问按点P 到拐点B 所用时间

分段分类;

第(3)问发现∠MBC=90°,∠BCO 与

∠ABM 互余,画出点P 运动过程中, ∠MPB=∠ABM 的两种情况,求出t 值。 利用OB ⊥AC,再求OP 与AC 夹角正切值.

6、(2009年温州)如图,在平面直角坐标系中,点A(3,0),B(33,2),C(0,2).动

点D以每秒1个单位的速度从点0出发沿OC 向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连结DA、DF.设运动时间为t秒.

(1)求∠ABC的度数;

(2)当t为何值时,AB∥DF;

(3)设四边形AEFD的面积为S.

①求S关于t的函数关系式;

②若一抛物线y=x2+mx经过动点E,当S<23时,求m的取值范围(写出答案即

注意:

发现特殊性,DE∥OA

相关文档
最新文档