高中数学必修一教学目标与教学重难点(全)

合集下载

高中数学必修一教案(全套)(word档)

高中数学必修一教案(全套)(word档)

第一章集合与函数概念课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8 月 15 日 8 点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本 P2-P3 内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(se t),也简称集。

——————————————第 1 页(共70页)——————————————3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4.关于集合的元素的特征(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

新人教版高中数学必修一全套教案

新人教版高中数学必修一全套教案

b. {(x,y) ∣ x+y=6 ,x、 y∈ N}用列举法表示为
.
c. 用列举法表示下列集合 , 并说明是有限集还是无限集 ?
(1){x ∣ x 为不大于 20 的质数 }; (2){100
以下的 ,9 与 12 的公倍数 };
(3){(x,y)
∣ x+y=5,xy=6};
d. 用描述法表示下列集合 , 并说明是有限集还是无限集 ?
1. 1. 2 集 合间的基 本关系 (1 课时 )
教学目标: 1. 理解子集、真子集概念;
2. 会判断和证明两个集合包含关系;
3. 理解“ ”、“ ”的含义; 4. 会判断简单集合的相等关系;
5. 渗透问题相对的观点。
教学重点: 子集的概念、真子集的概念
教学难点: 元素与子集、属于与包含间区别、描述法给定集合的运算
, 以提供某种规律 ,
例 1.用列举法表示下列集合: (1) 小于 5 的正奇数组成的集合; (2) 能被 3 整除而且大于 4 小于 15 的自然数组成的集合; (3) 从 51 到 100 的所有整数的集合; (4) 小于 10 的所有自然数组成的集合;
(5) 方程 x 2 x 的所有实数根组成的集合;
②若 a Ν ,b Ν , 则 a+b 的最小值是 2 ④ x 2+4=4x 的解集可表示为 {2,2}
其中正确命题的个数是 ( )
A .0
B
.1
C
.2
D
.3
( IV )课时小 结
1. 集 合的含 义;
2. 集合元素的三个特征中,确定性可用于判定某些对象是否是给定集合的元素,互异性可用于简化集
合的表示,无序性可用于判定集合的关系。

人教版高中数学必修1教案

人教版高中数学必修1教案

人教版高中数学必修1教案课程名称:高中数学必修1课时:第一课时教学内容:集合与逻辑教学目标:1. 掌握集合与元素的概念,能正确描述给定集合的特征;2. 理解集合的相等与包含关系,并能运用相关概念进行简单的集合运算;3. 熟练掌握逻辑联结词的含义,能正确运用逻辑联结词构建简单的命题;4. 能够根据已知信息推出结论,培养逻辑思维能力。

教学重点与难点:1. 集合的概念与运算规则;2. 逻辑联结词的含义与运用。

教学准备:1. 教材《高中数学必修1》;2. 课件;3. 讲义。

教学过程:一、导入(5分钟)教师引入集合与逻辑的概念,通过一个实际生活中的例子来引发学生对集合与逻辑的思考。

二、学习内容讲解(15分钟)1. 集合的概念与表示方法;2. 集合的分类与相等关系;3. 集合的运算规则;4. 逻辑联结词的含义与运用。

三、案例分析与讨论(15分钟)教师给出一些集合与逻辑的案例题目,让学生分组讨论并解答,引导学生通过实例加深对集合与逻辑知识的理解。

四、练习与巩固(10分钟)教师布置相关练习题,让学生独立完成并交流答案,巩固所学知识。

五、课堂总结(5分钟)教师对本节课的内容进行总结,强调要复习巩固所学知识,培养逻辑思维能力。

六、作业布置(5分钟)布置相关作业,要求学生认真复习本节课所学内容,做好相关题目。

教师反思:通过这节课的教学,我发现学生对于集合与逻辑的概念不够清晰,需要加强实例引导与案例分析,以提高学生的学习效果。

下节课我将更加注重实例的应用和练习题的设计,帮助学生更好地掌握相关知识。

高中数学必修一:对数运算的基本概念教案

高中数学必修一:对数运算的基本概念教案

高中数学必修一:对数运算的基本概念教案一、教学目标1、掌握对数的概念、基本性质和运算法则。

2、理解对数与指数的关系及其在实际问题中的应用。

二、教学重点和难点1、重点:对数的概念、基本性质和运算法则。

2、难点:对数的应用及与指数的关系。

三、教学过程1、引入“电子计算机”,这是一种重要的现代科技,我们在日常生活中经常使用。

但是,在没有电子计算机之前,我们是如何进行大规模的计算的呢?(引导学生回忆人类历史上一些重大的计算事件,如“圆周率”计算等。

)我们知道,在没有电子计算机这样的工具的时代,人们需要依靠一些数学工具来进行大规模的计算。

其中,对数就是一种非常重要的工具。

2、讲解1)对数的概念:在数学中,对数是一种数学工具,用来表示一数的乘方。

例如,底数为2,指数为3的乘方表示为2³,意为2的3次方,即2乘以2乘以2,结果为8。

在对数中,8表示为3(记作log₂8)。

2)对数的定义:对数定义是:如果b的x次幂等于a,a以b为底的对数为x,记作logb(a)=x(其中b>0,且b≠1)。

3)对数的特性:①若 a>1 ,则logb(a)> 0②若a=1,则logb(a)= 0③若0< a< 1 ,则logb(a)< 0④若a=b,logb(a)= 1⑤a以b为底的对数函数f(x)= logb(x)的函数图形如下所示:(请在黑板上画出函数图形并帮助学生理解)4)对数的运算法则:对数运算法则包括:①对数的乘法法则(即loga(m*n)=loga(m)+loga(n))②对数的除法法则(即loga(m/n)=loga(m)-loga(n))③对数的幂运算法则(即loga(m^n)=nloga(m))我们可以通过简单的例子来帮助学生更好地掌握这些运算法则。

3、应用对数与指数的关系具有非常密切的联系,常见的将对数转化成指数的方法有两种:一是通过对数法则化简式子,二是通过对数换底公式将对数转化为指数。

高中数学必修一教案全套优秀6篇

高中数学必修一教案全套优秀6篇

高中数学必修一教案全套优秀6篇高一上册数学教案篇一一、教材《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。

从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。

从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

二、学情学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

三、教学目标(一)知识与技能目标能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

(二)过程与方法目标经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

(三)情感态度价值观目标激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

四、教学重难点(一)重点用解析法研究直线与圆的位置关系。

(二)难点体会用解析法解决问题的数学思想。

五、教学方法根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持。

在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

高中数学必修1教案篇二一、教材分析本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1函数的概念》共3课时,本节课是第1课时。

高中必修一数学教案模板

高中必修一数学教案模板

高中必修一数学教案模板
教学课题:XXXXX
一、教学目标
1. 知识与技能目标:
(1)掌握重点知识点;
(2)能够灵活运用所学知识解决相关问题。

2. 过程与方法目标:
(1)培养学生的逻辑思维和分析问题的能力;
(2)注重启发式教学,引导学生主动探究。

3. 情感、态度与价值观目标:
(1)培养学生的数学学习兴趣;
(2)增强学生的合作意识和沟通能力。

二、教学重点与难点
1. 重点:XXXXX
2. 难点:XXXXX
三、教学过程
1. 导入:引导学生了解本节课的主题,并激发学生对数学的兴趣。

2. 学习重点:介绍本节课的重点知识点,进行教学讲解和示范。

3. 练习与巩固:设计一些相关练习题,让学生进行独立练习,并进行讲解和答疑。

4. 拓展延伸:设计一些拓展性问题,提高学生的思维能力和解决问题的能力。

5. 课堂总结:对本节课的重点内容进行总结,并强调学习要点。

四、教学资源准备
1. 课件或教学板书
2. 教学辅助工具
3. 相关练习题等
五、作业布置
布置相关练习题目,要求学生认真完成,并提前预习下一节课内容。

六、教学反思
对本节课的教学效果进行总结和反思,针对学生的学习情况进行调整教学策略。

最全 高中数学必修一全册教案精排版(可直接打印).docx

最全 高中数学必修一全册教案精排版(可直接打印).docx

必修一教案第一章集合与函数概念一.课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1.了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2.理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集,培养学生从具体到抽象的思维能力.6.理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8.学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9.了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10.通过具体实例,了解简单的分段函数,并能简单应用.11.结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12.学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13.通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二.编写意图与教学建议1.教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力.教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2.教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念.教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。

人教A版高中数学必修1教案完整版

人教A版高中数学必修1教案完整版

第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。

人教版高中数学必修一教案(完整版)

人教版高中数学必修一教案(完整版)

第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。

数学教案推荐初高中必修一

数学教案推荐初高中必修一

数学教案推荐初高中必修一
教案目标:帮助学生掌握初高中必修一数学知识,培养学生的数学思维能力和解决问题的能力。

教学重点和难点:加减乘除、代数表达式、方程与不等式、函数与方程、平面直角坐标系等内容。

教学准备:教材《数学必修一》、教学课件、教学辅助工具等。

教学步骤:
1.复习加减乘除的基本运算规则,引导学生掌握运算技巧并灵活运用。

2.学习代数表达式的概念,并让学生通过实际问题进行练习,提高代数表达式的独立处理能力。

3.讲解方程与不等式的性质和解法,引导学生熟练运用各种解题方法。

4.介绍函数与方程的关系,让学生了解函数的定义和图像,并通过练习掌握函数的运算技巧。

5.学习平面直角坐标系的基本概念和性质,引导学生掌握坐标系的画法和坐标点的表示方法。

6.设计练习题,巩固学生所学知识,提高解题能力和应用能力。

教学反思:通过本次教学,学生可以全面掌握初高中必修一数学知识,提高数学思维能力和解决问题的能力,为学生未来的学习打下坚实的基础。

高中数学必修一全套教程

高中数学必修一全套教程

高中数学必修一全套教程一、教学任务及对象1、教学任务本教学设计旨在针对高中一年级学生,全面、系统地开展《高中数学必修一》的教学。

教学内容主要包括集合、函数、指数与对数、三角函数四个部分。

通过本教程的学习,使学生掌握集合的基本概念,理解函数的基本性质,熟悉指数与对数的关系,了解三角函数的图像与性质,为后续数学学习打下坚实基础。

2、教学对象本教学设计的教学对象为高中一年级学生。

这一阶段的学生已具备一定的数学基础,但个体差异较大。

在教学过程中,需关注学生的基础知识掌握情况、思维能力、学习兴趣等方面的差异,因材施教,激发学生的学习兴趣,提高他们的数学素养。

同时,注重培养学生的自主学习能力、合作能力和创新意识,使他们能够适应未来社会的发展需求。

二、教学目标1、知识与技能(1)理解集合的基本概念,掌握集合的表示方法,能够运用集合进行简单的逻辑推理。

(2)掌握函数的定义、性质、图像,了解函数的分类,能够解决实际问题中的函数问题。

(3)理解指数与对数的概念,掌握指数与对数的运算规律,能够解决涉及指数与对数的实际问题。

(4)了解三角函数的定义、图像、性质,掌握三角函数的诱导公式、倍角公式、和差公式等,能够解决简单的三角函数问题。

(5)培养学生运用数学知识解决实际问题的能力,提高数学建模、数学推理、数学计算等方面的技能。

2、过程与方法(1)通过自主探究、小组合作、课堂讨论等方式,培养学生主动学习、合作学习、探究学习的能力。

(2)运用数学方法,如数形结合、分类讨论、类比迁移等,引导学生解决数学问题,提高数学思维能力。

(3)借助信息技术手段,如数学软件、网络资源等,辅助教学,丰富学习方式,提高学习效率。

(4)设计多样化的教学活动,如课堂讲解、练习巩固、拓展提高等,使学生在不同环节中掌握知识,形成体系。

3、情感,态度与价值观(1)激发学生对数学学科的兴趣,培养他们勇于探索、积极进取的精神风貌。

(2)引导学生认识数学在自然科学、社会科学等领域的重要性,提高数学学习的自觉性和责任感。

新高中数学必修一教案

新高中数学必修一教案

新高中数学必修一教案
教学内容:线性代数的基本概念:线性方程组、矩阵、向量、线性相关性和线性无关性;线性代数的基本性质:线性组合、行列式、矩阵的运算、矩阵的逆、矩阵的转置和对角化等。

教学目标:通过本节课的学习,学生能够掌握线性代数的基本概念和性质,能够运用所学知识解决相关问题。

教学重点:线性方程组的解法、矩阵的运算、矩阵的逆的求法。

教学难点:矩阵的转置和对角化的概念及应用。

教学准备:教师准备PPT课件、黑板、彩色粉笔、教材、习题集等教学资源。

教学过程:
一、导入(5分钟)
教师通过提问引入线性代数的基本概念,引发学生思考,并激发他们的学习兴趣。

二、讲解与示例(20分钟)
1. 讲解线性方程组的基本概念和解法;
2. 讲解矩阵的基本概念和运算法则;
3. 讲解矩阵的逆的求法;
4. 通过例题演示以上知识点的应用。

三、练习与讨论(15分钟)
1. 学生自主练习相关习题,巩固所学知识;
2. 学生之间相互讨论,解决问题,并分享解题思路。

四、总结(5分钟)
教师总结本节课的重点内容,强调学生需要掌握的知识点,并鼓励学生在课后多加练习,巩固所学知识。

五、作业布置(5分钟)
布置相关作业,督促学生课后复习,并加强练习。

教学反思:
本节课主要介绍了线性代数的基本概念和性质,通过例题演示,加深了学生对相关知识点的理解。

在以后的教学中,可以适当增加实际应用案例的讲解,激发学生学习兴趣,提高他们对数学的学习热情。

新课标人教A版高中数学必修一课程标准细化

新课标人教A版高中数学必修一课程标准细化

新课标人教A版高中数学必修一课程标准细化1、了解映射的概念及其与函数的关系;2、掌握映射的表示方法;3、能够判断给定的映射是单射、满射还是双射;4、了解反函数的概念及其应用。

二.教学重点和难点1、映射的概念及其与函数的关系;2、映射的表示方法,包括箭头图、矩阵、集合等;3、单射、满射、双射的判断方法及其应用;4、反函数的概念及其应用。

难点在于单射、满射、双射的判断方法。

教学目标:1.通过实例让学生了解映射的概念和表示方法。

2.结合简单的对应图表,让学生理解一一映射的概念。

3.让学生理解函数概念与映射概念的区别与联系。

教学重点:映射的概念教学难点:映射的概念教学内容:1.3.1 函数的单调性教学目标:1.通过已学过的函数,特别是二次函数,让学生理解函数的单调性及其几何意义,形成增(减)函数的直观认识。

2.通过具体函数值的大小比较,让学生认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义,并掌握用定义证明函数单调性的步骤。

3.让学生树立数形结合的思想,学会运用函数图像理解和研究函数的性质。

教学重点与难点:1.函数的单调性及其几何意义。

2.利用函数的单调性定义判断、证明函数的单调性。

1.3.2 函数的奇偶性教学目标:1.通过具体函数的图像,让学生理解函数的奇偶性及其几何意义,学会运用函数图像理解和研究函数的性质,并学会判断函数的奇偶性。

2.通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想。

教学重点与难点:1.函数的奇偶性及其几何意义。

2.判断函数的奇偶性的方法与格式。

第二章:基本初等函数2.1.1 指数与指数幂的运算研究目标:1.通过平方根、立方根等式,让学生理解n次方根的意义,能进行简单的n次方根的运算。

2.通过n次方根和数的运算,让学生理解有理数指数幂的含义,掌握根式与有理数指数幂的互化。

3.通过数学逼近过程,让学生理解无理数指数幂的意义。

高中数学必修一《集合间的基本关系》优秀教学设计

高中数学必修一《集合间的基本关系》优秀教学设计

高中数学必修一《集合间的基本关系》优秀教学设计1.1.2 集合间的基本关系教学设计一、教学目标1.知识与技能1) 了解集合之间包含与相等的含义,能够识别给定集合的子集。

2) 理解子集和真子集的概念。

3) 能够使用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用。

2.过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义。

3.情感、态度与价值观1) 树立数形结合的思想。

2) 体会类比对发现新结论的作用。

二、教学重点与难点重点:集合间的包含与相等关系,子集与其子集的概念。

难点:关系与包含关系的区别。

三、学法让学生通过观察、类比、思考、交流、讨论,发现集合间的基本关系。

四、教学过程一)复回顾:1.元素与集合之间的关系。

2.集合的三性:确定性、互异性、无序性。

3.集合的常用表示方法:列举法、描述法。

4.常见的数集表示。

二)创设情景,新课引入:问题1:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?让学生自由发言,教师不要急于做出判断,而是继续引导学生;欲知谁正确,让我们一起来观察、研探。

三)师生互动,新课讲解:问题1:观察下面几个例子,你能发现两个集合间有什么关系了吗?1) A={1,2,3}。

B={1,2,3,4,5};2) 设A为我班第一组男生的全体组成的集合,B为我班班第一组的全体组成的集合;3) 设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};4) E={2,4,6},F={6,4,2}。

组织学生充分讨论、交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系:归纳:①一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集。

记作:A⊆B(或B⊇A)读作:A包含于B(或B包含A)。

②如果两个集合所含的元素完全相同,那么我们称这两个集合相等。

高中数学必修1教案手写版

高中数学必修1教案手写版

高中数学必修1教案手写版课题:一元二次函数教学目标:1. 能够掌握一元二次函数的基本概念和性质;2. 能够利用一元二次函数解决实际问题;3. 能够绘制一元二次函数的图像,并分析其特点。

教学重点与难点:重点:一元二次函数的定义和性质;难点:解一元二次函数的实际问题。

教学方法:讲授结合实例分析法教学准备:1. 教材《高中数学必修1》;2. 教具:黑板、粉笔、教学PPT;3. 教学资源:一元二次函数相关的练习题和问题。

教学过程:一、导入(5分钟)1. 引入话题:请同学们回顾一下一元一次函数的知识,思考一元二次函数和一元一次函数有什么不同之处?二、讲解一元二次函数的定义和性质(15分钟)1. 引入一元二次函数的定义;2. 讲解一元二次函数的图像及性质;3. 分析一元二次函数的最值和零点。

三、练习与讨论(20分钟)1. 让学生完成若干一元二次函数的练习题,并进行讨论;2. 引导学生分析一元二次函数的图像和特点。

四、解决实际问题(15分钟)1. 提出一个实际问题,让学生运用一元二次函数解决;2. 引导学生分析问题的解题思路,并与同学们分享解题过程。

五、总结与拓展(5分钟)1. 总结一元二次函数的知识点;2. 提出拓展问题,鼓励学生进一步思考与探究。

六、作业布置(5分钟)1. 布置相关的一元二次函数练习题;2. 鼓励学生自主复习与拓展相关知识。

教学反思:通过本节课的教学,学生掌握了一元二次函数的基本概念和性质,能够灵活运用一元二次函数解决实际问题。

在教学中,通过讲解结合实例分析法,激发了学生的兴趣,提高了学生的学习效果。

在今后的教学中,我将更加注重引导学生自主学习和思考,培养他们的数学思维和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章集合与函数§1.1.1集合的含义与表示一. 教学目标1.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性、互异性、无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2.过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3.情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点、难点重点:集合的含义与表示方法.难点:表示法的恰当选择.§1.1.2集合间的基本关系一. 教学目标1.知识与技能(1)了解集合之间包含与相等的含义,能识别给定集合的子集。

(2)理解子集.真子集的概念。

(3)能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用.2.过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.3.情感.态度与价值观(1)树立数形结合的思想.(2)体会类比对发现新结论的作用.二. 教学重点、难点重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.§1.1.3集合的基本运算一. 教学目标1.知识与技能(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用. 2.过程与方法学生通过观察和类比,借助Venn图理解集合的基本运算.3.情感、态度与价值观(1)进一步树立数形结合的思想.(2)进一步体会类比的作用.(3)感受集合作为一种语言,在表示数学内容时的简洁和准确.二. 教学重点、难点重点:交集与并集,全集与补集的概念.难点:理解交集与并集的概念.符号之间的区别与联系.§1.2.1函数的概念一. 教学目标1.知识与技能函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.2.过程与方法(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;3.情感、态度与价值观使学生感受到学习函数的必要性的重要性,激发学习的积极性。

二. 教学重点与难点重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;§1.2.2函数的表示法一. 教学目标1.知识与技能(1)明确函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数;(3)通过具体实例,了解简单的分段函数及应用.2.过程与方法学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.3.情感、态度与价值观让学生感受到学习函数表示的必要性,渗透数形结合思想方法。

二. 教学重点和难点重点:函数的三种表示方法,分段函数的概念.难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.§1.2.2映射一. 教学目标1.知识与技能(1)了解映射的概念及表示方法;(2)结合简单的对应图表,理解一一映射的概念.2.过程与方法(1)函数推广为映射,只是把函数中的两个数集推广为两个任意的集合;(2)通过实例进一步理解映射的概念;(2)会利用映射的概念来判断“对应关系”是否是映射,一一映射.3.情感、态度与价值观映射在近代数学中是一个极其重要的概念,是进一步学习各类映射的基础.二. 教学重点和难点教学重点:映射的概念教学难点:映射的概念§1.3.1函数的最大(小)值一. 教学目标1.知识与技能理解函数的最大(小)值及其几何意义.学会运用函数图象理解和研究函数的性质.2.过程与方法通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的纵坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识.3.情感、态度与价值观利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性.二. 教学重点和难点教学重点:函数的最大(小)值及其几何意义教学难点:利用函数的单调性求函数的最大(小)值.§1.3.1函数的单调性一. 教学目标1.知识与技能(1)建立增(减)函数的概念通过观察一些函数图象的特征,形成增(减)函数的直观认识.再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义.掌握用定义证明函数单调性的步骤。

(2)函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。

2.过程与方法(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断与证明函数在某区间上的单调性.3.情感、态度与价值观使学生感到学习函数单调性的必要性与重要性,增强学习函数的紧迫感.二. 教学重点与难点重点:函数的单调性及其几何意义.难点:利用函数的单调性定义判断、证明函数的单调性.§1.3.2函数的奇偶性一. 教学目标1.知识与技能理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性;2.过程与方法通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想.3.情感、态度与价值观通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力.二. 教学重点和难点:教学重点:函数的奇偶性及其几何意义教学难点:判断函数的奇偶性的方法与格式第2章基本初等函数(Ⅰ)§2.1.1指数(第1—2课时)一. 教学目标:1.知识与技能:(1)理解分数指数幂和根式的概念;(2)掌握分数指数幂和根式之间的互化;(3)掌握分数指数幂的运算性质;(4)培养学生观察分析、抽象等的能力.2.过程与方法:通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质.3.情感、态度与价值观(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(3)让学生体验数学的简洁美和统一美.二. 教学重点与难点教学重点:(1)分数指数幂和根式概念的理解;(2)掌握并运用分数指数幂的运算性质;教学难点:分数指数幂及根式概念的理解§2.1.1第三课时一. 教学目标1.知识与技能:(1)掌握根式与分数指数幂互化;(2)能熟练地运用有理指数幂运算性质进行化简,求值.2.过程与方法:通过训练点评,让学生更能熟练指数幂运算性质.3.情感、态度、价值观(1)培养学生观察、分析问题的能力;(2)培养学生严谨的思维和科学正确的计算能力.二. 教学重点与难点重点:运用有理指数幂性质进行化简,求值.难点:有理指数幂性质的灵活应用.§2.1.2指数函数及其性质(2个课时)一.教学目标1.知识与技能①通过实际问题了解指数函数的实际背景;②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质.③体会具体到一般数学讨论方式及数形结合的思想;2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理.②培养学生观察问题,分析问题的能力.3.过程与方法展示函数图象,让学生通过观察,进而研究指数函数的性质.二.教学重点、难点重点:指数函数的概念和性质及其应用.难点:指数函数性质的归纳,概括及其应用.§2.2.1对数(第一课时)一.教学目标:1.知识技能:(1)理解对数的概念,了解对数与指数的关系;(2)理解和掌握对数的性质;(3)掌握对数式与指数式的关系.2.过程与方法通过与指数式的比较,引出对数定义与性质.3.情感态度与价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.(2)通过对数的运算法则的学习,培养学生的严谨的思维品质.(3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力.二.教学重点与难点重点:对数式与指数式的互化及对数的性质难点:推导对数性质的§2.2.1对数(第二课时)一.教学目标1.知识与技能①通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能.②运用对数运算性质解决有关问题.③培养学生分析、综合解决问题的能力.培养学生数学应用的意识和科学分析问题的精神和态度.2.过程与方法①让学生经历并推理出对数的运算性质.②让学生归纳整理本节所学的知识.3.情感、态度、和价值观让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性.二.教学重点、难点重点:对数运算的性质与对数知识的应用难点:正确使用对数的运算性质§2.2.2对数函数及其性质(第一、二课时)一.教学目标1.知识技能①对数函数的概念,熟悉对数函数的图象与性质规律.②掌握对数函数的性质,能初步运用性质解决问题.2.过程与方法让学生通过观察对数函数的图象,发现并归纳对数函数的性质.3.情感、态度与价值观①培养学生数形结合的思想以及分析推理的能力;②培养学生严谨的科学态度.二.教学重点、难点重点:理解对数函数的定义,掌握对数函数的图象和性质.难点:底数a对图象的影响及对数函数性质的作用.§2.2.2对数函数(第三课时)一.教学目标:1.知识与技能了解反函数的概念,加深对函数思想的理解.2.过程与方法学生通过观察和类比函数图象,体会两种函数的单调性差异.3.情感、态度、价值观(1)体会指数函数与指数;(2)进一步领悟数形结合的思想.二.重点、难点:重点:指数函数与对数函数内在联系难点:反函数概念的理解§2.3幂函数一.教学目标1.知识技能(1)理解幂函数的概念;(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用.2.过程与方法类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质.3.情感、态度、价值观(1)进一步渗透数形结合与类比的思想方法;(2)体会幂函数的变化规律及蕴含其中的对称性.二.教学重点、难点重点:从五个具体的幂函数中认识的概念和性质难点:从幂函数的图象中概括其性质第3章函数的应用§3.1函数与方程§3.1.1方程的根与函数的零点一、教学目标1.知识与技能①理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.②培养学生的观察能力.③培养学生的抽象概括能力.2.过程与方法①通过观察二次函数图象,并计算函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法.②让学生归纳整理本节所学知识.3.情感、态度与价值观在函数与方程的联系中体验数学中的转化思想的意义和价值.二、教学重点、难点重点零点的概念及存在性的判定.难点零点的确定.§3.1.2用二分法求方程的近似解一、教学目标1.知识与技能(1)用二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;(2)体会程序化解决问题的思想,为算法的学习作准备。

相关文档
最新文档