中考数学专题训练---反比例函数的综合题分类及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题训练---反比例函数的综合题分类及答案

一、反比例函数

1.一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.

(1)求一次函数和反比例函数的解析式;

(2)求△ABH面积.

【答案】(1)解:∵点D的坐标为(﹣1,0),tan∠CDO=2,

∴CO=2,即C(0,2),

把C(0,2),D(﹣1,0)代入y=ax+b可得,

,解得,

∴一次函数解析式为y=2x+2,

∵点A的横坐标是1,

∴当x=1时,y=4,即A(1,4),

把A(1,4)代入反比例函数y= ,可得k=4,

∴反比例函数解析式为y=

(2)解:解方程组,可得或,

∴B(﹣2,﹣2),

又∵A(1,4),BH⊥y轴,

∴△ABH面积= ×2×(4+2)=6.

【解析】【分析】(1)先由tan∠CDO=2可求出C坐标,再把D点坐标代入直线解析式,可求出一次函数解析式,再由直线解析式求出A坐标,代入双曲线解析式,可求出双曲线解析式;(2)△ABH面积可以BH为底,高=y A-y B=4-(-2)=6.

2.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点

(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.

(1)若点P(2,b)是反比例函数 (n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;

(2)⊙O的半径是,

①求出⊙O上的所有梦之点的坐标;

②已知点M(m,3),点Q是(1)中反比例函数图象上异于点P的梦之点,过点Q的直线l与y轴交于点A,∠OAQ=45°.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.

【答案】(1)解:∵P(2,b)是梦之点,∴b=2

∴P(2,2)

将P(2,2)代入中得n=4

∴反比例函数解析式是

(2)解:①设⊙O上梦之点坐标是(,)∴∴

=1或 =-1

∴⊙O上所有梦之点坐标是(1,1)或(-1,-1)

②由(1)知,异于点P的梦之点Q的坐标为(-2,-2)

由已知MN∥l或MN⊥l

∴直线MN为y=-x+b或y=x+b

当MN为y=-x+b时,m=b-3

由图可知,当直线MN平移至与⊙O相切时,

且切点在第四象限时,b取得最小值,

此时MN记为,

其中为切点,为直线与y轴的交点

∵△O 为等要直角三角形,

∴O =

∴O =2

∴b的最小值是-2,

∴m的最小值是-5

当直线MN平移至与⊙O相切时,且切点在第二象限时,

b取得最大值,此时MN记为,

其中为切点,为直线与y轴的交点。

同理可得,b的最大值为2,m的最大值为-1.

∴m的取值范围为-5≤m≤-1.

当直线MN为y=x+b时,

同理可得,m的取值范围为1≤m≤5,

综上所述,m的取值范围为-5≤m≤-1或1≤m≤5

【解析】【分析】(1)由“ 梦之点”的定义可得出b的值,就可得出点P的坐标,再将点P的坐标代入函数解析式,求出n的值,即可得出反比例函数的解析式。

(2)①设⊙O上梦之点坐标是(a,a )根据已知圆的半径,利用勾股定理建立关于a的方程,求出方程的解,就可得出⊙O上的所有梦之点的坐标;② 由(1)知,异于点P 的梦之点Q的坐标为(-2,-2),由已知直线MN∥l或MN⊥l,就可得出直线MN的解析式为y=-x+b或y=x+b。分两种情况讨论:当MN为y=-x+b时,m=b-3,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,当直线MN平移至与⊙O相切时,且切点在第二象限时,b的最大值为2,m的最大值为-1,就可得出m的取值范围,当直线MN为y=x+b时,同理可得出m的取值范围。

3.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。对于任意正实数a、b,可作如下变形a+b= = - + = + ,

又∵≥0,∴ + ≥0+ ,即≥ .

(1)根据上述内容,回答下列问题:在≥ (a、b均为正实数)中,若ab为定值p,则a+b≥ ,当且仅当a、b满足________时,a+b有最小值.

(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a, DB=2b, 试根据图形验证≥ 成立,并指出等号成立时的条件.

(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

【答案】(1)a=b

(2)解:有已知得CO=a+b,CD=2 ,CO≥CD,即≥2 .

当D与O重合时或a=b时,等式成立.

(3)解: ,

当DE最小时S四边形ADFE最小.

过A作AH⊥x轴,由(2)知:当DH=EH时,DE最小,

所以DE最小值为8,此时S四边形ADFE= (4+3)=28.

【解析】【分析】(1)根据题中的例子即可直接得出结论。

(2)根据直角三角形的性质得出CO=a+b,CD=,再由(1)中的结论即可得出等号成立时的条件。

(3)过点A作AH⊥x轴于点H,根据S四边形ADFE=S△ADE+S△FDE,可知当DH=EH时DE最小,由此可证得结论。

相关文档
最新文档