图论习题及答案
图论期末考试试题和答案
图论期末考试试题和答案****一、单项选择题(每题2分,共20分)1. 图论中,图的基本元素不包括以下哪一项?A. 顶点B. 边C. 权重D. 节点答案:D2. 在图论中,一个图的路径是指什么?A. 一系列顶点B. 一系列边C. 一系列顶点和边的序列D. 一系列权重答案:C3. 有向图和无向图的主要区别是什么?A. 边的方向B. 顶点的数量C. 边的数量D. 图的颜色答案:A4. 在图论中,一个完全图是指什么?A. 所有顶点都相连的图B. 所有边都相连的图C. 所有顶点和边都相连的图D. 所有权重都相同的图答案:A5. 图论中的欧拉路径是指什么?A. 经过每条边恰好一次的路径B. 经过每个顶点恰好一次的路径C. 经过每条边恰好一次的回路D. 经过每个顶点恰好一次的回路答案:C6. 图论中的哈密顿路径是指什么?A. 经过每条边恰好一次的路径B. 经过每个顶点恰好一次的路径C. 经过每条边恰好一次的回路D. 经过每个顶点恰好一次的回路答案:B7. 在图论中,二分图是指什么?A. 图的顶点可以被分成两个不相交的集合B. 图的边可以被分成两个不相交的集合C. 图的顶点和边可以被分成两个不相交的集合D. 图的权重可以被分成两个不相交的集合答案:A8. 图论中的最短路径问题是指什么?A. 寻找从一个顶点到另一个顶点的最短路径B. 寻找从一个顶点到所有其他顶点的最短路径C. 寻找所有顶点之间的最短路径D. 寻找所有边之间的最短路径答案:A9. 图论中的最小生成树问题是指什么?A. 寻找一个图中所有顶点的最小生成树B. 寻找一个图中所有边的最小生成树C. 寻找一个连通图中所有顶点的最小生成树D. 寻找一个连通图中所有边的最小生成树答案:C10. 图论中的网络流问题是指什么?A. 在图中寻找最大流量B. 在图中寻找最小流量C. 在图中寻找最大流和最小割D. 在图中寻找最小流和最大割答案:C二、填空题(每题2分,共20分)1. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为______图。
图论课后习题答案
图论课后习题答案图论是数学中的一个分支,主要研究图的结构和性质。
图论的课后习题通常包括证明题、计算题和应用题。
下面给出一些典型的图论课后习题答案:1. 证明题:证明一个图是连通的当且仅当它的任意两个顶点都存在一条路径相连。
答案:首先定义连通图的概念:一个图是连通的,如果对于任意两个顶点,都存在一条路径将它们连接起来。
接下来,我们证明两个方向:- 如果一个图是连通的,那么对于任意两个顶点\( u \)和\( v \),根据定义,必然存在一条路径\( P \)将它们连接起来。
- 反之,如果对于任意两个顶点\( u \)和\( v \),都存在一条路径将它们连接起来,那么我们可以构造一个从任意顶点\( u \)出发,访问图中所有顶点的路径,这表明图是连通的。
2. 计算题:给定一个有\( n \)个顶点的完全图,计算它的边数。
答案:在完全图中,每个顶点都与其他所有顶点相连。
因此,对于一个顶点,它将与\( n-1 \)个其他顶点相连。
但是,每条边被计算了两次(因为它连接了两个顶点),所以边数应该是\( \frac{n(n-1)}{2} \)。
3. 应用题:在一个社交网络中,每个用户可以与其他人建立联系。
如果一个用户与至少一半的用户建立了联系,那么这个社交网络是连通的吗?答案:是的,这个社交网络是连通的。
假设社交网络中有\( n \)个用户,如果一个用户与至少\( \lceil \frac{n}{2} \rceil \)个用户建立了联系,那么我们可以构造一条从任意用户\( u \)到这个中心用户的路径。
由于中心用户与至少一半的用户建立了联系,我们可以继续通过这些联系到达其他用户,从而证明社交网络是连通的。
4. 证明题:证明在任何图中,边数至少是顶点数减一。
答案:考虑一个图的生成树,它是一个最小的连通子图,包含图中的所有顶点,并且没有环。
在生成树中,边数等于顶点数减一。
由于任何图都至少包含一个生成树,因此原图的边数至少与生成树的边数相同,即至少是顶点数减一。
图论习题答案
图论习题答案
《图论习题答案》
图论作为数学中的一个重要分支,研究的是图的性质和图之间的关系。
在学习
图论的过程中,我们常常会遇到各种各样的习题,通过解答这些习题可以帮助
我们更好地理解图论的知识。
下面就让我们来看一些图论习题的答案吧。
1. 问:一个图中有多少条边?
答:一个图中的边数可以通过计算每个顶点的度数之和再除以2来得到。
2. 问:一个图中有多少个连通分量?
答:一个图中的连通分量可以通过使用深度优先搜索或广度优先搜索来求得。
3. 问:一个图中是否存在欧拉回路?
答:一个图中存在欧拉回路的充分必要条件是每个顶点的度数都是偶数。
4. 问:一个图中是否存在哈密顿回路?
答:一个图中存在哈密顿回路的判定是一个NP难题,目前还没有有效的多项式时间算法。
5. 问:一个图中的最小生成树有多少条边?
答:一个图中的最小生成树的边数恰好等于顶点数减一。
通过解答这些图论习题,我们可以更好地掌握图论的基本概念和算法。
图论不
仅在数学领域有着重要的应用,而且在计算机科学、电信网络等领域也有着广
泛的应用。
因此,熟练掌握图论知识对我们的学习和工作都有着重要的意义。
希望通过本文的分享,能够帮助大家更好地理解图论知识,提高解决问题的能力。
同时也希望大家在学习图论的过程中能够多多练习,勇于挑战各种各样的
图论习题,不断提升自己的图论水平。
祝大家在图论的学习道路上取得更大的
进步!。
图论考试题及答案
图论考试题及答案1. 给定一个无向图G,其顶点集为V={v1, v2, ..., vn},边集为E={e1, e2, ..., em},请解释什么是图的连通性,并说明如何判断一个图是否是连通的。
答案:图的连通性指的是图中任意两个顶点之间都存在一条路径。
判断一个图是否连通,可以采用深度优先搜索(DFS)或广度优先搜索(BFS)算法。
从任一顶点开始,对图进行遍历,如果能访问到所有顶点,则图是连通的;否则,图不是连通的。
2. 描述图的生成树,并解释如何使用Kruskal算法来构建一个图的最小生成树。
答案:图的生成树是指包含图中所有顶点的子图,且该子图是一个树。
使用Kruskal算法构建最小生成树的步骤如下:首先,将所有边按照权重从小到大排序;然后,从权重最小的边开始,如果加入这条边不会形成环,则将其加入生成树中,直到生成树包含所有顶点。
3. 什么是图的色数?请举例说明如何给一个图着色以使其色数最小。
答案:图的色数是指给图的顶点着色时,使得相邻顶点颜色不同所需的最小颜色数。
给图着色以使其色数最小的方法可以采用贪心算法,即按照某种顺序给顶点着色,对于每个顶点,选择一个与已着色的相邻顶点不同的最小颜色。
4. 在一个有向图中,定义了两个顶点u和v之间的路径长度为从u到v的最短路径上的边数。
请解释什么是有向图的强连通分量,并说明如何找到它们。
答案:有向图的强连通分量是指图中的一个最大子图,其中每一对顶点都是相互可达的。
找到有向图的强连通分量可以通过Kosaraju算法或Tarjan算法。
这些算法的基本思想是先对图进行深度优先搜索,然后对图的逆图进行深度优先搜索,以识别强连通分量。
5. 描述Dijkstra算法,并说明其在解决最短路径问题时的应用场景。
答案:Dijkstra算法是一种用于在带权图中找到单个源点到所有其他顶点的最短路径的算法。
其基本思想是维护一个未访问顶点集合,并不断选择距离源点最近的顶点,更新其相邻顶点的距离。
图论习题参考答案
二、应用题题0:(1996年全国数学联赛)有n(n≥6)个人聚会,已知每个人至少认识其中的[n/2]个人,而对任意的[n/2]个人,或者其中有两个人相互认识,或者余下的n-[n/2]个人中有两个人相互认识。
证明这n个人中必有3个人互相认识。
注:[n/2]表示不超过n/2的最大整数。
证明将n个人用n个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G。
由条件可知,G是具有n个顶点的简单图,并且有(1)对每个顶点x,)(xN G≥[n/2];(2)对V的任一个子集S,只要S=[n/2],S中有两个顶点相邻或V-S中有两个顶点相邻。
需要证明G中有三个顶点两两相邻。
反证,若G中不存在三个两两相邻的顶点。
在G中取两个相邻的顶点x1和y1,记N G(x1)={y1,y2,……,y t}和N G(y1)={x1,x2,……,x k},则N G(x1)和N G(y1)不相交,并且N G(x1)(N G(y1))中没有相邻的顶点对。
情况一;n=2r:此时[n/2]=r,由(1)和上述假设,t=k=r且N G(y1)=V-N G(x1),但N G(x1)中没有相邻的顶点对,由(2),N G(y1)中有相邻的顶点对,矛盾。
情况二;n=2r+1: 此时[n /2]=r ,由于N G (x 1)和N G (y 1)不相交,t ≥r,k ≥r,所以r+1≥t,r+1≥k 。
若t=r+1,则k=r ,即N G (y 1)=r ,N G (x 1)=V-N G (y 1),由(2),N G (x 1)或N G (y 1)中有相邻的顶点对,矛盾。
故k ≠r+1,同理t ≠r+1。
所以t=r,k=r 。
记w ∈V- N G (x 1) ∪N G (y 1),由(2),w 分别与N G (x 1)和N G (y 1)中一个顶点相邻,设wx i0∈E, wy j0∈E 。
若x i0y j0∈E ,则w ,x i0, y j0两两相邻,矛盾。
图论测试题及答案
图论测试题及答案一、选择题1. 在图论中,如果一个图的每个顶点的度数都是偶数,那么这个图一定存在欧拉路径吗?A. 是的B. 不一定C. 没有欧拉路径D. 无法确定答案:B2. 图论中的哈密顿路径是指什么?A. 经过图中所有顶点的路径B. 经过图中所有顶点的回路C. 经过图中某些顶点的路径D. 经过图中某些顶点的回路答案:A3. 如果一个图是完全图,那么它的边数是多少?A. 顶点数的一半B. 顶点数的平方C. 顶点数的两倍D. 顶点数减一答案:B二、填空题4. 在无向图中,如果存在一条路径,使得每个顶点只被经过一次,并且起点和终点相同,这样的路径被称为________。
答案:欧拉回路5. 图论中的二分图是指图中的顶点可以被分成两个不相交的集合,使得同一个集合内的顶点之间没有边,而不同集合之间的顶点之间有边,这种图也被称为________。
答案:二部图三、简答题6. 请简述图论中的最短路径问题,并给出解决该问题的一种算法。
答案:最短路径问题是在图中找到两个顶点之间的最短路径的问题。
解决该问题的一种算法是迪杰斯特拉算法(Dijkstra's algorithm),该算法通过维护一个顶点集合来记录已经找到最短路径的顶点,并迭代更新距离,直到找到从起点到所有顶点的最短路径。
7. 描述图论中的图着色问题,并说明其在实际生活中的应用。
答案:图着色问题是将图的顶点着色,使得任何两个相邻的顶点颜色不同。
在实际生活中,图着色问题可以应用于时间表的安排、频率分配、电路设计等领域,其中每个顶点代表一个任务或频道,而颜色则代表不同的时间段或频率。
结束语:以上是图论测试题及答案,希望能够帮助大家更好地理解和掌握图论的基本概念和算法。
图论试题及答案解析图片
图论试题及答案解析图片一、选择题1. 图论中,图的基本元素是什么?A. 点和线B. 点和面C. 线和面D. 点和边答案:A2. 在无向图中,如果两个顶点之间存在一条边,则称这两个顶点是:A. 相邻的B. 相连的C. 相等的D. 相异的答案:A3. 在有向图中,如果从顶点A到顶点B有一条有向边,则称顶点A是顶点B的:A. 父顶点B. 子顶点C. 邻接顶点D. 非邻接顶点答案:B4. 一个图的度是指:A. 图中顶点的总数B. 图中边的总数C. 一个顶点的边数D. 图的连通性答案:C5. 一个图是连通的,当且仅当:A. 图中任意两个顶点都是相邻的B. 图中任意两个顶点都可以通过边相连C. 图中任意两个顶点都可以通过路径相连D. 图中任意两个顶点都可以通过子顶点相连答案:C二、填空题1. 在图论中,一个顶点的度数是该顶点的________。
答案:边数2. 如果一个图的任意两个顶点都可以通过边相连,则称该图为________。
答案:完全图3. 一个图中,如果存在一个顶点到其他所有顶点都有边相连,则称该顶点为________。
答案:中心顶点4. 图论中,最短路径问题是指在图中找到两个顶点之间的________。
答案:最短路径5. 如果一个图的任意两个顶点都可以通过有向路径相连,则称该图为________。
答案:强连通图三、简答题1. 请简述图论中的欧拉路径和哈密顿路径的定义。
答案:欧拉路径是指在图中经过每条边恰好一次的路径,而哈密顿路径是指在图中经过每个顶点恰好一次的路径。
2. 什么是图的着色问题?答案:图的着色问题是指将图中的顶点用不同的颜色进行标记,使得相邻的两个顶点颜色不同。
四、计算题1. 给定一个无向图G,顶点集为{A, B, C, D, E},边集为{AB, BC, CD, DE, EA},请画出该图,并计算其最小生成树的权重。
答案:首先画出图G的示意图,然后使用克鲁斯卡尔算法或普里姆算法计算最小生成树的权重。
图论习题+答案
1 设图G有12条边,G中有1度结点2个,2度结点2个,4度结点3个,其余结点度数不超过3.求G中至少有多少个结点?2 设有向简单图G的度数序列为(2,2,3,3), 入度序列为(0,0,2,3),求G得出度序列 .3 设D是n阶有向简单完全图,则图D的边数为 .4设G是n阶无向简单完全图K n,则图G的边数为 .5 仅有一个孤立结点组成的图称为( )(A)零图(B)平凡图(C)补图(D)子图6设n阶图G中有m条边,每个结点的度数不是k的是k+1,若G中有N k个k度顶点,N k+1个k+1度顶点,则N k = .7设图G如右图.已知路径(1) P1=(v1e5 v5e7 v2e2 v3 )(2) P2=(v5e6 v2e2 v3e3 v4e8 v2e7 v5)(3) P3=(v2e7 v5e6 v2)(4) P4=(v1e1 v2e2 v3e3 v4e8 v2e6 v5)判断路径类型,并求其长度.81)判断下图G1中的路径类型, 并求其长度. P1=(v3e5v4e7v1e4v3e3v2e1v1e4v3)P2=(v3e3v2e2v2e1v1e4v3)P3=(v3e3v2e1v1e4v3).2)判断下图G2中的路径类型, 并求其长度. P1=(v1e1v2e6v5e7v3e2v2e6v5e8v4)P2=(v1e5v5e7v3e2v2e6v5e8v4)P3=(v1e1v2e6v5e7v3e3v4).v1e1e5v2e65e7e4 e2e8v3 4e3v e v1 设图G 有12条边,G 中有1度结点2个,2度结点2个,4度结点3个,其余结点度数不超过3.求G 中至少有多少个结点? 至少9个2 设有向简单图G 的度数序列为(2,2,3,3), 入度序列为(0,0,2,3),求G 得出度序列 (2,2,5,6) .3 设D 是n 阶有向简单完全图,则图D 的边数为 )1(−n n .4 设G 是n 阶无向简单完全图K n ,则图G 的边数为 m =n (n -1)/2 .5 仅有一个孤立结点组成的图称为( B ) (A) 零图 (B)平凡图 (C)补图 (D)子图6设n 阶图G 中有m 条边,每个结点的度数不是k 的是k+1,若G 中有N k 个k 度顶点,N k+1个k+1度顶点,则N k = N k =(k+1)n-2m . 7设图G 如右图.已知路径 (1) P 1=(v 1e 5 v 5e 7 v 2e 2 v 3 ) (2) P 2=(v 5e 6 v 2e 2 v 3e 3 v 4e 8 v 2e 7 v 5) (3) P 3=(v 2e 7 v 5e 6 v 2)(4) P 4=(v 1e 1 v 2e 2 v 3e 3 v 4e 8 v 2e 6 v 5)判断路径类型,并求其长度. (1) 初级通路;3 (2) 简单回路;5 (3) 初级回路;2 (4) 简单通路. 5 81)判断下图G1中的路径类型, 并求其长度. P 1=(v 3e 5v 4e 7v 1e 4v 3e 3v 2e 1v 1e 4v 3) P 2=(v 3e 3v 2e 2v 2e 1v 1e 4v 3) P 3=(v 3e 3v 2e 1v 1e 4v 3).2)判断下图G2中的路径类型, 并求其长度. P 1=(v 1e 1v 2e 6v 5e 7v 3e 2v 2e 6v 5e 8v 4) P 2=(v 1e 5v 5e 7v 3e 2v 2e 6v 5e 8v 4) P 3=(v 1e 1v 2e 6v 5e 7v 3e 3v 4).解:在图G 1中,v 3e 5v 4e 7v 1e 4v 3e 3v 2e 1v 1e 4v 3是一条长度为6的回路,但既不是简单回路,也不是初级回路; v 3e 3v 2e 2v 2e 1v 1e 4v 3是一条长度为4的简单回路,但不是初级回路; v 3e 3v 2e 1v 1e 4v 3是一条长度为3的初级回路。
《图论》期末考试模拟题(答案)
《图论》期末考试模拟题(答案) ⼀、选择题 1、给定⽆向图如图所⽰,下⾯给出的顶点集⼦集中,是点割集的为(A,B,C,D)。
A. {b, d} B. {d} C. {a, c} D. {g, e} bf 内容需要下载⽂档才能查看 2、设V={a,b,c,d},与V能构成强连通图的边集E=( A )。
A. {,,,,} B. {,,,,} C. {,,,,} {,,,,} 3、⼀个连通的⽆向图G,如果它的所有结点的度数都是偶数,那么它具有⼀条( B )。
A. 哈密尔顿回路 B. 欧拉回路 C. 哈密尔顿通路 D. 欧拉通路 4、如图所⽰各图,其中存在哈密顿回路的图是( A, C )。
内容需要下载⽂档才能查看 第 1 页共 5 页 图论期末考试题⽬参考 《图论》 5. 下图中既是欧拉图,⼜是哈密尔顿图的有(D)。
5、设G是有5个顶点的完全图,则G( B )。
D. ⽆哈密尔顿路 E. 可以⼀笔画出 F. 不能⼀笔画出 G. 是平⾯图 6、设G是连通简单平⾯图,G中有11个顶点5个⾯,则G中的边是( D )。
A. 10 B. 12 C. 16 D. 14 ⼆、填空题 1、完全图K8具有( 28 )条边。
2、图G如图所⽰, ab fc 那么图G的割点是( a, f )。
e d 3、⽆向图G为欧拉图,当且仅当G是连通的,且G中⽆(奇数度)结点。
第 2 页共 5 页 图论期末考试题⽬参考 《图论》 4、连通有向图D含有欧拉回路的充分必要条件是( D中每个结点的⼊度=出度)。
5、 n个结点、m条边的⽆向连通图是树当且仅当m=__(3)___。
(1) n+1 (2) n (3) n-1 (4)2n-1 三、 1、设图G=(P,E) 中有12条边,6个度数为3的顶点,其余顶点的度数均⼩于3,求G⾄少有多少个顶点。
解答:设G有n个顶点,由定理1, ∑d i=1nG(vi)=2m=24 (|E|=m) 由题设 24<3×6+3(n?6) ∴ 3n>24 即 n>8 因此,G中⾄少有9个顶点。
图论及应用习题答案
图论及应用习题答案图论及应用习题答案图论是数学中的一个分支,研究的是图的性质和图之间的关系。
图论在现实生活中有着广泛的应用,涵盖了许多领域,如计算机科学、通信网络、社交网络等。
本文将为读者提供一些关于图论及应用的习题答案,帮助读者更好地理解和应用图论知识。
1. 图的基本概念题目:下面哪个不是图的基本概念?A. 顶点B. 边C. 路径D. 线段答案:D. 线段。
图的基本概念包括顶点、边和路径。
线段是指两个点之间的连线,而在图论中,我们使用边来表示两个顶点之间的关系。
2. 图的表示方法题目:以下哪个不是图的表示方法?A. 邻接矩阵B. 邻接表C. 边列表D. 二叉树答案:D. 二叉树。
图的表示方法包括邻接矩阵、邻接表和边列表。
二叉树是一种特殊的树结构,与图的表示方法无关。
3. 图的遍历算法题目:以下哪个不是图的遍历算法?A. 深度优先搜索B. 广度优先搜索C. 迪杰斯特拉算法D. 克鲁斯卡尔算法答案:D. 克鲁斯卡尔算法。
图的遍历算法包括深度优先搜索和广度优先搜索,用于遍历图中的所有顶点。
迪杰斯特拉算法是用于求解最短路径的算法,与图的遍历算法有所不同。
4. 最小生成树题目:以下哪个算法不是用于求解最小生成树?A. 克鲁斯卡尔算法B. 普里姆算法C. 弗洛伊德算法D. 公交车换乘算法答案:D. 公交车换乘算法。
最小生成树是指包含图中所有顶点的一棵树,使得树的边的权重之和最小。
克鲁斯卡尔算法和普里姆算法是常用的求解最小生成树的算法,而弗洛伊德算法是用于求解最短路径的算法,与最小生成树问题有所不同。
5. 图的应用题目:以下哪个不是图的应用?A. 社交网络分析B. 路径规划C. 图像处理D. 数字逻辑电路设计答案:D. 数字逻辑电路设计。
图的应用广泛存在于社交网络分析、路径规划和图像处理等领域。
数字逻辑电路设计虽然也涉及到图的概念,但与图的应用有所不同。
总结:图论是一门重要的数学分支,具有广泛的应用价值。
通过本文提供的习题答案,读者可以更好地理解和应用图论知识。
图论(张先迪-李正良)课后习题答案(第一章)
图论(张先迪-李正良)课后习题答案(第⼀章)习题⼀作者---寒江独钓1.证明:在n 阶连通图中(1) ⾄少有n-1条边;(2) 如果边数⼤于n-1,则⾄少有⼀条闭迹;(3) 如果恰有n-1条边,则⾄少有⼀个奇度点。
证明: (1) 若G 中没有1度顶点,由握⼿定理:()2()21v V G m d v n m n m n ∈=≥?≥?>-∑若G 中有1度顶点u ,对G 的顶点数作数学归纳。
当n=2时,结论显然;设结论对n=k 时成⽴。
当n=k+1时,考虑G-u,它仍然为连通图,所以,边数≥k-1.于是G 的边数≥k.(2) 考虑G 中途径:121:n n W v v v v -→→→→L若W 是路,则长为n-1;但由于G 的边数⼤于n-1,因此,存在v i 与v j ,它们相异,但邻接。
于是:1i i j i v v v v +→→→→L 为G 中⼀闭途径,于是也就存在闭迹。
(3) 若不然,G 中顶点度数⾄少为2,于是由握⼿定理:()2()21v V G m d v n m n m n ∈=≥?≥?>-∑这与G 中恰有n-1条边⽭盾! 2.(1)2n ?12n 2?12n ?1 (2)2n?2?1(3) 2n?2。
证明:u 1的两个邻接点与v 1的两个邻接点状况不同。
所以,两图不同构。
4.证明下⾯两图同构。
u 1 v 1证明:作映射f : v i ? u i (i=1,2….10)容易证明,对?v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 )由图的同构定义知,图(a)与(b)是同构的。
5.指出4个顶点的⾮同构的所有简单图。
分析:四个顶点的简单图最少边数为0,最多边数为6,所以可按边数进⾏枚举。
(a)v 2 v 3u 4u(b)6.证明:1)充分性:当G 是完全图时,每个顶点的度数都是n ?1,共有n 个顶点,总的度数为n(n ?1),因此总的边数是n(n?1)2=(n 2). 2)必要性:因为G 是简单图,所以当G 是完全图的时候每个顶点的度数才达到最⼤:n ?1.若G 不是完全图,则⾄少有⼀个顶点的度数⼩于n ?1,这样的话,总的度数就要⼩于n (n ?1),因此总的边数⼩于(n 2),⽭盾。
图论习题及答案
图论习题及答案(总24页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--作业解答练习题2 利用matlab编程FFD算法完成下题:设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。
解答一:function [num,s] = BinPackingFFD(w,capacity)%一维装箱问题的FFD(降序首次适应)算法求解:先将物体按长度从大到小排序, %然后按FF算法对物体装箱%输入参数w为物品体积,capacity为箱子容量%输出参数num为所用箱子个数,s为元胞数组,表示装箱方案,s{i}为第i个箱子所装%物品体积数组%例w = [60,45,35,20,20,20]; capacity = 100;% num=3,s={[1,3],[2,4,5],6};w = sort(w,'descend');n = length(w);s = cell(1,n);bin = capacity * ones(1,n);num = 1;for i = 1:nfor j = 1:num + 1if w(i) < bin(j)bin(j) = bin(j) - w(i);s{j} = [s{j},i];if j == num + 1num = num + 1;endbreak;endendends = s(1:num);解答二:clear;clc;V=100;v=[60 45 35 20 20 20];n=length(v);v=fliplr(sort(v));box_count=1;x=zeros(n,n);V_Left=100;for i=1:nif v(i)>=max(V_Left)box_count=box_count+1;x(i,box_count)=1;V_Left=[V_Left V-v(i)];elsej=1;while(v(i)>V_Left(j))j=j+1;endx(i,j)=1;V_Left(j)=V_Left(j)-v(i);endtemp=find(x(i,:)==1);fprintf('第%d个物品放在第%d个容器\n',i,temp) endoutput:第1个物品放在第1个容器第2个物品放在第2个容器第3个物品放在第1个容器第4个物品放在第2个容器第5个物品放在第2个容器第6个物品放在第3个容器解答三:function box_count=FFD(x)%降序首次适应算法v=100;x=fliplr(sort(x));%v=input('请输入箱子的容积:');n=length(x);I=ones(n);E=zeros(1,n);box=v*I;box_count=0;for i=1:nj=1;while(j<=box_count)if x(i)>box(j)j=j+1;continue;elsebox(j)=box(j)-x(i);E(i)=j;break;endendif j>box_countbox_count=box_count+1;box(box_count)=box(box_count)-x(i);E(i)=j;endenddisp(E);在命令窗口输入:>> x=[60,45,35,20,20,20];>> FFD(x)1 2 1 2 2 3ans =3练习题5 “超市大赢家”提供了50种商品作为奖品供中奖顾客选择,车的容量为1000dm3, 奖品i占用的空间为w i dm3,价值为v i元, 具体的数据如下:v= { 220, 208, 198, 192, 180, 180, 165, 162, 160, 158,155, 130, 125, i122, 120, 118, 115, 110, 105, 101, 100, 100, 98,96, 95, 90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 66, 65, 63, 60, 58,56, 50, 30, 20, 15, 10, 8, 5, 3, 1}w= {80, 82, 85, 70, 72, 70, 66, 50, 55, 25, 50, 55, 40, 48,50, 32,i22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 50, 30, 45,30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25, 15, 10, 10, 10, 4, 4, 2,1}。
图论期末考试题库及答案
图论期末考试题库及答案一、单项选择题1. 图论的创始人是()。
A. 欧拉B. 莱布尼茨C. 牛顿D. 高斯答案:A2. 在图论中,一个图的顶点集合为空,但边集合不为空的图称为()。
A. 空图B. 完全图C. 树D. 多重图答案:A3. 如果一个图的任意两个顶点之间都存在一条路径,则称该图为()。
A. 连通图B. 强连通图C. 弱连通图D. 无环图答案:A4. 在图论中,一个图的边的集合可以划分为若干个不相交的路径,使得图中的每个顶点恰好属于其中一条路径,这样的图称为()。
A. 欧拉图B. 哈密顿图C. 树答案:C5. 图论中,一个图的边的集合可以划分为若干个不相交的回路,使得图中的每个顶点恰好属于其中一条回路,这样的图称为()。
A. 欧拉图B. 哈密顿图C. 树D. 环答案:A二、多项选择题1. 下列哪些是图论中的基本术语()。
A. 顶点B. 边D. 权重答案:ABCD2. 在图论中,以下哪些图是无向图()。
A. 完全图B. 树C. 多重图D. 有向图答案:ABC3. 图论中,以下哪些图是连通图()。
A. 完全图B. 树C. 多重图D. 空图答案:ABC三、填空题1. 图论中,一个图的顶点集合为V,边集合为E,那么图可以表示为G=()。
答案:(V, E)2. 如果一个图的任意两个顶点之间都存在一条路径,则称该图为()。
答案:连通图3. 在图论中,一个图的边的集合可以划分为若干个不相交的路径,使得图中的每个顶点恰好属于其中一条路径,这样的图称为()。
答案:树四、简答题1. 请解释什么是图论中的“完全图”?答案:完全图是指图中每一对不同的顶点之间都恰好有一条边相连的图。
在完全图Kn中,n个顶点两两相连,共有n(n-1)/2条边。
2. 请解释什么是图论中的“欧拉路径”和“欧拉回路”?答案:欧拉路径是指图中存在一条路径,该路径恰好经过每条边一次。
欧拉回路是指图中存在一条回路,该回路恰好经过每条边一次。
五、计算题1. 给定一个图G=(V, E),其中V={A, B, C, D, E},E={(A, B), (B, C), (C, D), (D, E), (E, A), (A, C)},请判断该图是否为连通图,并说明理由。
图论试题及答案解析图片
图论试题及答案解析图片一、选择题1. 在图论中,一个图的顶点数为n,那么这个图最多有多少条边?A. nB. n(n-1)/2C. n^2D. 2n答案:B解析:在一个无向图中,每个顶点最多与其他n-1个顶点相连,因此最多有n(n-1)/2条边。
2. 什么是连通图?A. 至少有一个环的图B. 任意两个顶点都可以通过路径相连的图C. 没有孤立顶点的图D. 所有顶点度数都大于0的图答案:B解析:连通图是指图中任意两个顶点都可以通过路径相连的图。
3. 在图论中,什么是哈密顿路径?A. 经过图中所有顶点的路径B. 经过图中所有边的路径C. 经过图中所有顶点的回路D. 经过图中所有边的回路答案:A解析:哈密顿路径是指经过图中所有顶点的路径。
4. 什么是二分图?A. 图的顶点可以被分成两个不相交的集合,使得同一集合内的顶点不相邻B. 图的顶点可以被分成两个不相交的集合,使得同一集合内的顶点相邻C. 图的边可以被分成两个不相交的集合,使得同一集合内的边不相邻D. 图的边可以被分成两个不相交的集合,使得同一集合内的边相邻答案:A解析:二分图是指图的顶点可以被分成两个不相交的集合,使得同一集合内的顶点不相邻。
5. 在图论中,什么是最小生成树?A. 包含图中所有顶点的最小边数的生成树B. 包含图中所有顶点的最小权重的生成树C. 包含图中所有边的最小权重的生成树D. 包含图中所有边的最小边数的生成树答案:B解析:最小生成树是指包含图中所有顶点的最小权重的生成树。
二、填空题1. 在无向图中,如果一个顶点的度数为n,则该顶点至少有______条边。
答案:n解析:一个顶点的度数是指与该顶点相连的边的数量。
2. 如果一个图是连通的,那么该图至少有______个连通分量。
答案:1解析:连通图的定义是图中任意两个顶点都可以通过路径相连,因此至少有一个连通分量。
3. 在图论中,一个图的色数是指给图的顶点着色,使得相邻顶点颜色不同,所需的最小颜色数。
图论
图论复习题1、 (D)。
将有向图D 各有向边的箭头都去掉,所得图G 为无向图,称为D 的 ( )。
A 、图 B 、零图 C 、补图 D 、基图2、 (C)。
简单图为 。
A 、不含平行边B 、不含环C 、即不含平行边也不含环D 、没有要求3、 (D)。
无向图的回路包括 。
A 、简单回路B 、初级回路C 、复杂回路D 、简单回路、初级回路和复杂回路4、 (D)。
E ,V D =为无环有向图,[]m n ij m ⨯为D 的关联矩阵,1m ij =则 。
A 、i v 是j e 的终点 B 、i v 与j e 不关联 C 、i v 与j e 关联 D 、i v 是j e 的始点5、 (A)。
图的同构关系是 。
A 、等价关系B 、偏序关系C 、空关系D 、良序关系6、 (C)。
4K 的所有非同构的子图中,有 个生成子图。
A 、8 B 、10 C 、11 D 、127、 (A)。
下列能成为图的度数序列的为 。
A 、(5,2,3,1,4)B 、(3,3,2,3)C 、(3,1,2,1)D 、(1,1,1,1,1)本体错误8、 (D)。
3个顶点2条边的所有可能非同构的有向简单图共有 个图。
A 、1B 、2C 、3D 、49、 (C)。
G 为无向图,V '称为G 的一个点割集,若V '含有 个顶点,则v 叫割点。
A 、0B 、2C 、1D 、310、 (A)。
多重图为 。
A 、含平行边B 、不含环C 、即不含平行边也不含环D 、没有要求11、 (D)。
无向图的通路包括 。
A 、简单通路B 、初级通路C 、复杂通路D 、简单通路、初级通路和复杂通路12、 (B)。
一连通的平面图,8个顶点4个面,则边数为 。
A 、9B 、10C 、11D 、1213、(C)。
G 为无向图,E '称为G 的一个边割集,若E '含有 条边,则e 叫桥。
A 、0 B 、2 C 、1 D 、314、 (D)。
图论考试题及答案
图论考试题及答案一、单项选择题(每题2分,共10分)1. 在图论中,如果一个图的任意两个顶点之间都存在路径,则称该图为连通图。
以下哪个图不是连通图?A. 树B. 完全图C. 环图D. 一个孤立的顶点答案:D2. 无向图中,如果存在一条边连接顶点u和顶点v,则称u和v为相邻顶点。
以下哪个选项描述了两个相邻顶点?A. 顶点u和顶点v之间有一条边B. 顶点u和顶点v之间没有边C. 顶点u和顶点v之间有两条边D. 顶点u和顶点v之间有三条边答案:A3. 在图论中,图的遍历是指访问图中的每个顶点恰好一次。
以下哪种遍历算法不能保证访问每个顶点恰好一次?A. 深度优先搜索B. 广度优先搜索C. 欧拉路径D. 迪杰斯特拉算法答案:D4. 图的着色问题是指将图中的顶点着色,使得相邻的两个顶点颜色不同。
以下哪个图的顶点着色数最少?A. 完全图K3B. 环图C4C. 完全二分图K2,2D. 树答案:D5. 图论中的哈密顿路径是一条经过图中每个顶点恰好一次的路径。
以下哪个图一定存在哈密顿路径?A. 完全图K5B. 环图C5C. 完全二分图K3,3D. 树答案:A二、填空题(每题2分,共10分)1. 在无向图中,如果存在一条边连接顶点u和顶点v,则称u和v为________顶点。
答案:相邻2. 图的遍历算法中,________算法使用栈来存储待访问的顶点。
答案:深度优先搜索3. 图的顶点着色数是指给图的顶点着色时,使得相邻顶点颜色不同所需的最少颜色数。
在图论中,一个图的顶点着色数不会超过其________数。
答案:最大度数4. 图论中的欧拉路径是指一条经过图中每条边恰好一次的路径,而________路径是指一条经过图中每个顶点恰好一次的路径。
答案:哈密顿5. 在图论中,如果一个图的任意两个顶点之间都存在路径,则称该图为________图。
答案:连通三、简答题(每题10分,共20分)1. 描述图论中的最短路径问题,并给出解决该问题的算法。
数学竞赛图论试题及答案
数学竞赛图论试题及答案一、选择题(每题5分,共20分)1. 在一个无向图中,如果有5个顶点,每个顶点至少与另外两个顶点相连,那么这个图至少有多少条边?A. 5B. 6C. 7D. 82. 一个图是二分图当且仅当它没有奇环。
这个说法是正确的吗?A. 是B. 否3. 给定一个有n个顶点的完全图,求出该图的边数。
A. n(n-1)/2B. n(n+1)/2C. n^2D. 2n4. 在一个图中,如果存在一条从顶点u到顶点v的简单路径,则称u 可达v。
如果图中任意两个顶点都是相互可达的,那么这个图是:A. 连通图B. 强连通图C. 有向无环图D. 欧拉图二、填空题(每空5分,共30分)5. 一个图的度序列是指图中所有顶点的度按照______排列的序列。
6. 如果一个图的边数等于顶点数的两倍,那么这个图一定是______。
7. 在图论中,一个图的最小生成树是指连接所有顶点的______的树。
8. 一个图的着色数是指对图中的顶点进行着色,使得任何两个相邻的顶点颜色都不同,使用的最小颜色数。
三、简答题(每题25分,共50分)9. 描述什么是图的平面性,并给出判断一个图是否为平面图的方法。
10. 解释什么是图的哈密顿回路,并给出一个例子。
答案一、选择题1. C(根据边数的最小值公式,边数至少为顶点数减一的两倍)2. B(二分图没有奇环,但不是所有没有奇环的图都是二分图)3. A(完全图的边数公式)4. A(连通图的定义)二、填空题5. 非增6. 完全二部图7. 边数最少8. 最小三、简答题9. 图的平面性指的是图可以画在平面上,使得图中的边除了端点外不相交。
判断一个图是否为平面图的方法有库拉托夫斯基定理,即如果一个图包含一个子图同构于K5(完全五顶点图)或K3,3(完全二部图),则该图是非平面的。
10. 哈密顿回路是一条通过图中每个顶点恰好一次的闭合回路。
例如,一个正方形的四个顶点可以形成一个哈密顿回路,因为可以按照顺时针或逆时针方向依次访问每个顶点一次。
张清华 图论课后题答案
第1章 图论预备知识1.1解:(1) p={φ,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}(2) p={,{a},{{b,c}},{a,{b,c}}} (3) p={,{}}(4) p={,{},{{}},{,{}}}(5)p={,{{a,b}},{{a,a,b}},{{a,b,a,b}},{{a,b},{a,a,b}},{{a,b},{a,b,a,b}},{{a,b},{a,a,b},{a,b,a,b}}} 1.2 解:(1) 真 (2) 假 (3)假 (4)假 1.3 解:(1) 不成立,A={1} B={1,2} C={2} (2) 不成立,A={1} B={1,2} C={1,3}1.4 证明:设(x,y)∈(A ∩B)X(C ∩D) 说明x ∈A ∩B,y ∈C ∩D 由于 x ∈A,y ∈C 所以 (x,y) ∈A X C 由于x ∈B,y ∈D 所以 (x,y) ∈B X D 所以 (x,y) ∈(A X C )∩(B X D ) 反过来,如果(x,y )∈(A X C) ∩(B X D ) 由于 (x,y) ∈(A X C )所以 x ∈A,y ∈C 由于 (x,y) ∈(B X D )所以x ∈B,y ∈D 所以x ∈(A ∩B) y ∈(C ∩D) 所以 (x,y) ∈(A ∩B)X(C ∩D)所以(A ∩B)X(C ∩D)= (A X C) ∩(B X D ) 1.5 解:Hasse 图φφφφφφφφφ极大元{9,24,10,7} 极小元{3,2,5,7} 最大元{24} 最小元{2}1.6 解(2)关系图为:(3)不存在最大元,最小元为{2}1.7 解:(1)R={<1,1>,<2,2>,<3,3>,<4,4>,<1,2>,<2,1>,<2,3>,<3,2>} (2)略(3)I A ⊆R 故R 是自反的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业解答练习题2 利用matlab编程FFD算法完成下题:设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。
解答一:function [num,s] = BinPackingFFD(w,capacity)%一维装箱问题的FFD(降序首次适应)算法求解:先将物体按长度从大到小排序,%然后按FF算法对物体装箱%输入参数w为物品体积,capacity为箱子容量%输出参数num为所用箱子个数,s为元胞数组,表示装箱方案,s{i}为第i个箱子所装%物品体积数组%例w = [60,45,35,20,20,20]; capacity = 100;% num=3,s={[1,3],[2,4,5],6};w = sort(w,'descend');n = length(w);s = cell(1,n);bin = capacity * ones(1,n);num = 1;for i = 1:nfor j = 1:num + 1if w(i) < bin(j)bin(j) = bin(j) - w(i);s{j} = [s{j},i];if j == num + 1num = num + 1;endbreak;endendends = s(1:num);解答二:clear;clc;V=100;v=[60 45 35 20 20 20];n=length(v);v=fliplr(sort(v));box_count=1;x=zeros(n,n);V_Left=100;for i=1:nif v(i)>=max(V_Left)box_count=box_count+1;x(i,box_count)=1;V_Left=[V_Left V-v(i)];elsej=1;while(v(i)>V_Left(j))j=j+1;endx(i,j)=1;V_Left(j)=V_Left(j)-v(i);endtemp=find(x(i,:)==1);fprintf('第%d个物品放在第%d个容器\n',i,temp) endoutput:第1个物品放在第1个容器第2个物品放在第2个容器第3个物品放在第1个容器第4个物品放在第2个容器第5个物品放在第2个容器第6个物品放在第3个容器解答三:function box_count=FFD(x)%降序首次适应算法v=100;x=fliplr(sort(x));%v=input('请输入箱子的容积:');n=length(x);I=ones(n);E=zeros(1,n);box=v*I;box_count=0;for i=1:nj=1;while(j<=box_count)if x(i)>box(j)j=j+1;continue;elsebox(j)=box(j)-x(i);E(i)=j;break;endendif j>box_countbox_count=box_count+1;box(box_count)=box(box_count)-x(i);E(i)=j;endenddisp(E);在命令窗口输入:>> x=[60,45,35,20,20,20];>> FFD(x)1 2 1 2 2 3ans =3练习题5 “超市大赢家”提供了50种商品作为奖品供中奖顾客选择,车的容量为1000dm3, 奖品i占用的空间为w i dm3,价值为v i元, 具体的数据如下:v i= { 220, 208, 198, 192, 180, 180, 165, 162, 160, 158,155, 130, 125, 122, 120, 118, 115, 110, 105, 101, 100, 100, 98,96, 95, 90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 66, 65, 63, 60, 58,56, 50, 30, 20, 15, 10, 8, 5, 3, 1}w i = {80, 82, 85, 70, 72, 70, 66, 50, 55, 25, 50, 55, 40, 48,50, 32, 22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 50, 30, 45,30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25, 15, 10, 10, 10, 4, 4, 2,1}。
问如何装车才能总价值最大。
解答:clear;clc;v=[220, 208, 198, 192, 180, 180, 165, 162, 160, 158,155, 130, 125, 122, 120, 118, 115, 110, 105, 101, 100, 100, 98,96, 95, 90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 66, 65, 63, 60, 58,56, 50, 30, 20, 15, 10, 8, 5, 3, 1];w=[80, 82, 85, 70, 72, 70, 66, 50, 55, 25, 50, 55, 40, 48,50, 32, 22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 50, 30, 45,30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25, 15, 10, 10, 10, 4, 4, 2,1];totalw=1000;limitw=1000;n=length(w);for i=1:nf(1,i)=v(i)/w(i);f(2,i)=w(i);f(3,i)=i;endfor i=1:(n-1)for j=(i+1):nif f(1,i)<f(1,j)t=f(1,i);f(1,i)=f(1,j);f(1,j)=t;t=f(2,i);f(2,i)=f(2,j);f(2,j)=t;t=f(3,i);f(3,i)=f(3,j);f(3,j)=t;endendendtotalv=0;a=[];for i=1:nif f(2,i)<=limitwa=[a,f(3,i)]; %disp(f(3,i));limitw=limitw-f(2,i);totalv=totalv+f(1,i)*f(2,i);endendatotalvtotalw=totalw-limitw结果a =Columns 1 through 2110 40 17 25 28 16 19 35 37 8 26 20 13 11 24 27 9 23 41 1 4Columns 22 through 2722 6 30 14 2 47totalv =3103totalw =1000练习题8 对最后一个求有向圈的示例用matlab程序实现。
解答:H= [0 1 0 0 0;0 0 0 1 1;1 1 1 0 0;0 0 1 0 1;0 1 0 0 0];n=size(H,1);%顶点个数p=zeros(1,n);%存储搜索过的顶点X=zeros(n,n);%用来设置禁止矩阵,往回返的时候设置此路已被搜索k=1;p(1)=1;%第一个点作为初始点开始搜索while p(1)<=n %每个顶点都作为初始点搜索包含p(1)的有向圈,i=p(1)+1;%当前点k往后搜索时都是从p(1)+1开始,从而也可以搜索下标小于k的点while i<=n %还有后续点没有搜索(这些点有可能比当前点k小)if (H(p(k),i)==1)&(X(p(k),i)==0)&isempty(find(p==i))%满足三个条件k=k+1;%搜索路径上增加一个点p(k)=i;%搜索路径向前延伸一个点elsei=i+1;%当前被搜索点不满足条件,换下一个点endendif i>n %k点往后的所有点都被搜索if H(p(k),p(1))==1%有圈,每次搜索的都是包含初始点的圈disp(p(1:k));%输出圈end%不管有没有圈,此时k点要往回返if k>1%路径上不止出发点for j=1:nX(p(k),j)=0;%取消以前的限制通行endX(p(k-1),p(k))=1;%增加此路已搜索p(k)=0;%撤销路径上的k点k=k-1;%返回上一个点作为当前点 else %返回到出发点了p(1)=p(1)+1; %换下一个出发点(初始点) end end end运行结果:1 2 4 32 4 52 4 32 5 3练习题9 选址问题 现准备在7个居民点中设置一银行,路线与距离如下图,问设在哪个点,可使最大服务距离最小?若设两个点呢?1v 4v 3v 2v 5v 6v 7v 3265.15.2435.18.1解答: 第一步:function [D,R]=floyd(A)%用floyd 算法实现求任意两点之间的最短路程。
可以有负权 %参数D 为连通图的权矩阵A=[0 3 inf inf inf inf inf 3 0 2 inf inf 1.5 inf inf 2 0 6 inf 2.5 4 inf inf 6 0 inf inf 3 inf inf inf inf 0 1.5 inf inf 1.5 2.5 inf 1.5 0 1.8 inf inf 4 3 inf 1.8 0 ];D=A;n=length(D); for i=1:nfor j=1:nR(i,j)=i;%赋路径初值 end endfor k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);%更新D(i,j),说明通过k的路程更短R(i,j)=R(k,j);%更新R(i,j),需要通过kendendendhl=0;for i=1:nif D(i,i)<0hl=1;break;%跳出内层的for循环endendif(hl==1)fprintf('有负回路')break;%跳出最外层循环endendD运行结果:D=0 3.0000 5.0000 9.3000 6.0000 4.5000 6.30003.0000 0 2.0000 6.3000 3.0000 1.5000 3.30005.0000 2.0000 06.0000 4.0000 2.5000 4.00009.3000 6.3000 6.0000 0 6.3000 4.8000 3.00006.0000 3.0000 4.0000 6.3000 0 1.5000 3.30004.5000 1.5000 2.5000 4.8000 1.5000 0 1.80006.3000 3.3000 4.0000 3.0000 3.3000 1.8000 0 第二步:对于第一问在矩阵D中每一个取大得到一列数,再在这列数中取小,[m,n]=size(D);p=[];for i=1:mp(i)=max(D(i,:));endfor i=1:mif p(i)==min(p)disp(i);endendmin(p)在顶点6建立银行,最大服务距离最小,最小是4.8.第三步:对于第二问任取两个点做集合,计算每个点到这个集合的最小值,再在这个最小值中取大,即在矩阵D 中任取两行,对应比较取小得一向量,将所有这样的向量写成行向量构成一矩阵,然后用问题一的算法程序即可。