高考数学易错题精选
二项式定理、复数(5大易错点分析+解题模板+举一反三+易错题通关)24年高考数学考试易错题(原卷版)
专题14二项式定理、复数易错点一:忽略了二项式中的负号而致错((a-b )n 化解问题)Ⅰ:二项式定理一般地,对于任意正整数n ,都有:011()()n n n r n r r n nnn n n a b C a C a b C a b C b n N --*+=+++++∈ ,这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做n b a )(+的二项展开式.式中的r n r r nC a b -做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr n T C a b -+=,其中的系数rn C (r =0,1,2,…,n )叫做二项式系数,Ⅱ:二项式()n a b +的展开式的特点:①项数:共有1n +项,比二项式的次数大1;②二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中;③次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;④项的系数:二项式系数依次是012r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅,,,,,,,项的系数是a 与b 的系数(包括二项式系数).Ⅲ:两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅ (*N n ∈)②122(1)1n r r nn n n x C x C x C x x+=++++++Ⅳ:二项展开式的通项公式二项展开式的通项:1r n r rr nT C a b -+=()0,1,2,3,,r n =⋯公式特点:①它表示二项展开式的第1r +项,该项的二项式系数是rn C ;②字母b 的次数和组合数的上标相同;③a 与b 的次数之和为n .注意:①二项式()n a b +的二项展开式的第r +1项rn rr n C ab -和()n b a +的二项展开式的第r +1项r n r r n C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.②通项是针对在()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项是1(1)r r n r rr n T C a b -+=-(只需把b -看成b 代入二项式定理).易错提醒:在二项式定理()n a b -的问题要注意b 的系数为1-,在展开求解时不要忽略.例、已知5的展开式中含32x 的项的系数为30,则=a ()AB .C .6D .6-变式1:在5223x x ⎛⎫- ⎪⎝⎭的展开式中,x 的系数是.变式2:621x x ⎛⎫- ⎪⎝⎭展开式的常数项为.变式3:612x x ⎛⎫- ⎪⎝⎭的展开式中4x 的系数为.1.712x x ⎛⎫- ⎪⎝⎭的二项式展开式中x 的系数为()易错点二:三项式转化不合理导致计算麻烦失误(三项展开式的问题)求三项展开式式中某些特定项的系数的方法第一步:通过变形先把三项式转化为二项式,再用二项式定理求解第二步:两次利用二项式定理的通项公式求解第三步:由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量易错提醒:对于三项式的展开问题,一般采取转化为二项式再展开的办法进行求解,但在转化为二项式的时候,又有不同的处理策略:一是如果三项式能够化为完全平方的形式,或者能够进行因式分解,则可通过对分解出来的两个二项展开式分别进行分析,进而解决问题(如本例中的解法二);二是不能化为完全平方的形式,也不能进行因式分解时,可直接将三项式加括号变为二项式,套用通项公式展开后对其中的二项式再利用通项展开并进行分析求解,但要结合要求解的问题进行合理的变形,以利于求解.例、()5232x x ++的展开式中,x 的一次项的系数为()A .120B .240C .320D .480变式1:在()523a b c ++的展开式中,含22a b c 的系数为.变式2:()521x y --展开式中24x y 的系数为(用数字作答).变式3:在5(2)x y z ++的展开式中,形如3(,)m n x y z m n ∈N 的所有项系数之和是.1.811x ⎫+⎪⎭的展开式中的常数项为()易错点三:混淆项的系数与二项式系数致误(系数与二项式系数问题)Ⅰ:二项式展开式中的最值问题1.二项式系数的性质①每一行两端都是1,即0n n n C C =;其余每个数都等于它“肩上”两个数的和,即11m m m n n n C C C -+=+.②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即m n mn n C C -=.③二项式系数和令1a b ==,则二项式系数的和为0122r nn n n n n n C C C C C ++++++= ,变形式1221r nn n n n n C C C C +++++=- .④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令11a b ==-,,则0123(1)(11)0n nn nn n n n C C C C C -+-++-=-= ,从而得到:0242132111222r r nn n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⋅= .⑤最大值:如果二项式的幂指数n 是偶数,则中间一项12nT 的二项式系数2nnC 最大;如果二项式的幂指数n 是奇数,则中间两项12n T +,112n T+的二项式系数12n nC-,12n nC+相等且最大.2.系数的最大项求()n a bx +展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为121n A A A +⋅⋅⋅,,,,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来.Ⅱ:二项式展开式中系数和有关问题常用赋值举例:(1)设()011222nn n n r n r r n n n nn n n a b C a C a b C a b C a b C b ---+=++++++ ,二项式定理是一个恒等式,即对a ,b 的一切值都成立,我们可以根据具体问题的需要灵活选取a ,b 的值.①令1a b ==,可得:012n nn n nC C C =+++ ②令11a b ==,,可得:()012301nn n n n n n C C C C C =-+-+- ,即:02131n n n n n n n n C C C C C C -+++=+++ (假设n 为偶数),再结合①可得:0213112n n n n n n n n n C C C C C C --+++=+++= .(2)若121210()n n n n n n f x a x a x a x a x a ----=+++++ ,则①常数项:令0x =,得0(0)a f =.②各项系数和:令1x =,得0121(1)n n f a a a a a -=+++++ .注意:常见的赋值为令0x =,1x =或1x =-,然后通过加减运算即可得到相应的结果.易错提醒:二项式定理()n a b +的问题要注意:项的系数与二项式系数的区别与联系(求所有项的系数只要令字母值为1).例、设(n x 的展开式中,第三项的系数为36,试求含2x 的项.变式1:求5的展开式中第3项的系数和二项式系数.变式2:计算()92x y +的展开式中第5项的系数和二项式系数.变式3:求6⎛⎝的展开式中常数项的值和对应的二项式系数.1.在二项式612x ⎫⎪⎭的展开式中,二项式系数最大的是()Ⅰ:复数的概念①复数的概念:形如a +b i(a ,b ∈R )的数叫做复数,a ,b 分别是它的实部和虚部,i 叫虚数单位,满足21i =-(1)当且仅当b =0时,a +b i为实数;(2)当b ≠0时,a +b i 为虚数;(3)当a =0且b ≠0时,a +b i 为纯虚数.其中,两个实部相等,虚部互为相反数的复数互为共轭复数.②两个复数,(,,,)a bi c di a b c d R ++∈相等a c b d=⎧⇔⎨=⎩(两复数对应同一点)③复数的模:复数(,)a bi a b R +∈的模,其计算公式||||z a bi =+=Ⅱ:复数的加、减、乘、除的运算法则1、复数运算(1)()()()()i a bi c di a c b d +±+=±+±(2)()()()()a bi c di ac bd ad bc i +⋅+=-++22222()()z z ||||)2a bi a bi a b z z z z z a⎧+⋅-=⋅=+=⎪⎪=⎨⎪+=⎪⎩(注意其中||z =z 的模;z a bi =-是z a bi =+的共轭复数(,)a b R ∈.(3)2222()()()()(0)()()a bi a bi c di ac bd bc ad i c d c di c di c di c d++⋅-++-==+≠++⋅-+.实数的全部运算律(加法和乘法的交换律、结合律、分配律及整数指数幂运算法则)都适用于复数.2、复数的几何意义(1)复数(,)z a bi a b R =+∈对应平面内的点(,)z a b ;(2)复数(,)z a bi a b R =+∈对应平面向量OZ;(3)复平面内实轴上的点表示实数,除原点外虚轴上的点表示虚数,各象限内的点都表示复数.(4)复数(,)z a bi a b R =+∈的模||z 表示复平面内的点(,)z a b 到原点的距离.易错提醒:1、求一个复数的实部与虚部,只需将已知的复数化为代数形式z =a +b i(a ,b ∈R ),则该复数的实部为a ,虚部为b .2、复数是实数的条件:①z =a +b i ∈R ⇔b =0(a ,b ∈R );②z例、复数113i-的虚部是()A.110i -B.110-C.310D.310i 变式1:已知复数1i2i z -=+(i 为虚数单位),则z 的虚部为()A .35-B .3i5-C .35D .35i变式2:已知i 是虚数单位,则复数12i1i--的虚部是()A .12-B .12C .32-D .32变式3:已知复数()()2i 1i z =-+,则复数z 的虚部为,z =.1.5(2i)(12i)i-++的虚部为()易错点五:复数的几何意义应用错误(复数有关模长的求算)复数的模:复数(,)a bi a b R +∈的模,其计算公式||||z a bi =+=易错提醒:复数与复平面内的点、平面向量存在一一对应关系,两个复数差的模可以理解为两点之间的距离.例、若z C ∈,且22i 1z +-=,则22i z --的最小值为()A .2B .3C .4D .5变式1:已知复数z 满足1i z -+=,z 为z 的共轭复数,则z z ⋅的最大值为.变式2:已知i 为虚数单位,且2i 1z -=,则z 的最大值是.变式3:已知复数z 满足|2|2|2i |z z -=-,则||z 的最大值为.1.设复数z 满足|2i |z -=z 在复平面内对应的点为(,)x y ,则()。
最新高考数学复习 易错题精选
高考数学复习易做易错题精选平面向量一、选择题:1.在ABC ∆中,︒===60,8,5C b a ,则⋅的值为 ( )A 20B 20-C 320D 320-错误认为,60BC CA C =︒∴选,从而出错.略解: ︒=120,故⋅202185-=⎪⎭⎫⎝⎛-⨯⨯=. 2.关于非零向量a 和b,有下列四个命题:(1)“b a b a +=+”的充要条件是“a 和b的方向相同”;(2)“b a b a -=+” 的充要条件是“a 和b 的方向相反”; (3)“b a b a -=+” 的充要条件是“a 和b 有相等的模”; (4)“b a b a -=-” 的充要条件是“a 和b 的方向相同”;其中真命题的个数是 ( )A 1B 2C 3D 4错误分析:对不等式b a b a b a+≤±≤-取等号的条件认识不清.答案: B.3.已知O 、A 、B 三点的坐标分别为O(0,0),A(3,0),B(0,3),点P 在线段AB 上且 AP =t AB (0≤t≤1)则² 的最大值为( )A .3B .6C .9D .12正确答案:C 错因:学生不能借助数形结合直观得到当|OP |cos α最大时,OA ²OP 即为最大。
4.若向量 a =(cos α,sin α) , b =()ββsin ,cos , a 与b 不共线,则a 与b 一定满足( )A . 与的夹角等于α-βB .∥C .(+)⊥(-)D . ⊥正确答案:C 错因:学生不能把a 、b 的终点看成是上单位圆上的点,用四边形法则来处理问题。
5.已知向量 =(2cos ϕ,2sin ϕ),ϕ∈(ππ,2), =(0,-1),则 与 的夹角为( )A .π32-ϕB .2π+ϕ C .ϕ-2π D .ϕ正确答案:A 错因:学生忽略考虑与夹角的取值范围在[0,π]。
6.o 为平面上的定点,A 、B 、C 是平面上不共线的三点,若( -)²(+-2)=0,则∆ABC 是( )A .以AB 为底边的等腰三角形B .以BC 为底边的等腰三角形 C .以AB 为斜边的直角三角形D .以BC 为斜边的直角三角形正确答案:B 错因:学生对题中给出向量关系式不能转化:2不能拆成(+)。
统计(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(原卷版)
专题13统计易错点一:统计用表中概念不清、识图不准致误(频率分布直方图、总体取值规律)频率分布直方图作频率分布直方图的步骤①求极差:极差为一组数据中最大值与最小值的差.②决定组距与组数将数据分组时,一般取等长组距,并且组距应力求“取整”,组数应力求合适,以使数据的分布规律能较清楚地呈现出来.③将数据分组④列频率分布表各小组的频率=小组频数样本容量.⑤画频率分布直方图纵轴表示频率组距,频率组距实际上就是频率分布直方图中各小长方形的高度,小长方形的面积=组距×频率组距=频率.频率分布直方图的性质①因为小矩形的面积=组距×频率组距=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.②在频率分布直方图中,各小矩形的面积之和等于1.③频数相应的频率=样本容量.④频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本在某一范围内的频率,可近似地估计总体在这一范围内的可能性.易错提醒:频率分布条形图和频率分布直方图是两个完全不同的概念,考生应注意两者之间的区别.虽然它们的横轴表示的内容是相同的,但是频率分布条形图的纵轴表示频率;频率分布直方图的纵轴表示频率与组距的比值,其各小组的频率等于该小组上的矩形的面积.例:如图所示是某公司(共有员工300人)2021年员工年薪情况的频率分布直方图,由此可知,员工中年薪在1.4万元~1.6万元之间的共有______人.易错分析:解本题容易出现的错误是审题不细,对所给图形观察不细心,认为员工中年薪在1.4万元~1.6万元之间的频率为()10.020.080.1020.60-++⨯=,从而得到员工中年薪在1.4万元~1.6万元之间的共有3000.60180⨯=(人)的错误结论.正解:由所给图形,可知员工中年薪在1.4万元~1.6万元之间的频率为()10.020.080.080.100.1020.24-++++⨯=,所以员工中年薪在1.4万元~1.6万元之间的共有3000.2472⨯=(人).故72.易错警示:考生误认为频率分布直方图中纵轴表示的是频率,这是错误的,而是“频率/组距”,所以频率对应的是各矩形的面积.变式1:某大学有男生2000名.为了解该校男生的身体体重情况,随机抽查了该校100名男生的体重,并将这100名男生的体重(单位:kg )分成以下六组:[)54,58、[)58,62、[)62,66、[)66,70、[)70,74、[]74,78,绘制成如下的频率分布直方图:70,78上的男生大约有人.该校体重(单位:kg)在区间[]变式2:现对某类文物进行某种物性指标检测,从1000件中随机抽取了200件,测量物性指标值,得到如下频率分布直方图,据此估计这1000件文物中物性指标值不小于95的件数为.变式3:如图是根据我国部分城市某年6月份的平均气温数据得到的样本频率分布直方图,其中平均气温的范围是[20,26],样本数据的分组为[20,21),[21,22),[22,23),[23,24),[24,25),[25,26].已知样本中平均气温低于22°C的城市个数为11,样本中平均气温不低于25°C的城市个数是.1.已知某班全体学生在某次数学考试中的成绩(单位:分)的频率分布直方图如图所示,则图中a所代表的数值是.2.某校共有400名学生参加了趣味知识竞赛(满分:这400名学生的竞赛成绩分组如下:分布直方图如图所示,则这400名学生中竞赛成绩不低于3.从某小学所有学生中随机抽取100名学生,将他们的身高(单位:图),其中样本数据分组[100,110),[110,120),[120,130),[130,140),[140,150)4.某工厂抽取100件产品测其重量(单位:[[[[,42],据此绘制出如图所示的频率分布直方图,则重量在40,40.5),40.5,41),41,41.5),41.5件数为.5.某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c .假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.设函数()()()f c p c q c =+,则函数()f c 在区间[95,105]取得最小值时c =.6.某大学有男生10000名.为了解该校男生的身体体重情况,随机抽查了该校100100名男生的体重(单位:kg )分成以下六组:[)54,58、[)58,62、[)62,66、[66,70kg []7.某中学为了解高三男生的体能情况,通过随机抽样,获得了秒),将数据按照[)11.5,12,[)12,12.5,…8.某工厂对一批产品的长度(单位:mm)进行检验,将抽查的产品所得数据分为五组,整理后得到的频率分布直方图如图所示,若长度在20mm以下的产品有30个,9.某中学为了解学生的数学学习情况,在全体学生中随机抽取30,40成绩,将所得的数据分为7组:[)图,则在被抽取的学生中,该次数学考试成绩不低于10.某区为了解全区12000名高二学生的体能素质情况,测试,并将这1000名的体能测试成绩整理成如下频率分布直方图.根据此频率分布直方图,这平均成绩的估计值为.11.将一个容量为100的样本数据,按照从小到大的顺序分为组号123456频数10161815若第6组的频率是第3组频率的12.节约用水是中华民族的传统美德,某市政府希望在本市试行居民生活用水定额管理,即确定一个合理易错点二:统计中的数字特征的实际意义理解不清楚致误(频率分布直方图特征数考查)众数、中位数、平均数①众数:一组数据中出现次数最多的数.②中位数:把一组数据按从小到大(或从大到小)的顺序排列,处在中间位置的数(或中间两个数的平均数)叫做这组数据的中位数.③平均数:如果n个数x1,x2,…,x n,那么()∑==+++=niinxnxxxnx12111叫做这n个数的平均数.总体集中趋势的估计①平均数、中位数和众数等都是刻画“中心位置”的量,它们从不同角度刻画了一组数据的集中趋势.②一般地,对数值型数据(如用水量、身高、收入、产量等)集中趋势的描述,可以用平均数、中位数;而对分类型数据(如校服规格、性别、产品质量等级等)集中趋势的描述,可以用众数.频率分布直方图中平均数、中位数、众数的求法①样本平均数:可以用每个小矩形底边中点的横坐标与小矩形面积的乘积之和近似代替.②在频率分布直方图中,中位数左边和右边的直方图的面积应相等.③将最高小矩形所在的区间中点作为众数的估计值.易错提醒:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.例.某班50名学生期中考试数学成绩的频率分布直方图如图所示.根据频率分布直方图,估计该班本次测试众数为.变式1:为响应自己城市倡导的低碳出行,小李上班可以选择自行车,他记录了100次骑车所用时间(单位:分钟),得到频率分布直方图,则骑车时间的众数的估计值是分钟变式2:数学兴趣小组的四名同学各自抛掷骰子5次,分别记录每次骰子出现的点数,四名同学的部分统计结果如下:甲同学:中位数为3,方差为2.8;乙同学:平均数为3.4,方差为1.04;丙同学:中位数为3,众数为3;丁同学:平均数为3,中位数为2.根据统计结果,数据中肯定没有出现点数6的是同学.变式3:以下5个命题中真命题的序号有.①样本数据的数字特征中,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息;②若数据1x ,2x ,3x ,…,n x 的标准差为S ,则数据1ax b +,2ax b +,3ax b +,…,n ax b +的标准差为aS ;③将二进制数(2)11001000转化成十进制数是200;④x 是区间[0,5]内任意一个整数,则满足“3x <”的概率是35.1.2022年11月卡塔尔世界杯如期举行,这是世界足球的一场盛宴.为了了解全民对足球的热爱程度,组委会在某场比赛结束后,随机抽取了1000名观众进行对足球“喜爱度”的调查评分,将得到的分数分成6段:[)70,75,[)75,80,[)80,85,[)85,90,[)90,95,[]95,100,得到如图所示的频率分布直方图.图中部分数据丢失,若已知这1000名观众评分的中位数估计值为87.5,则m=.2.为了普及环保知识,增强环保意识,某中学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为o m ,平均数为x ,则,,e o m m x 的大小关系是.3.《中国居民膳食指南(2022)》数据显示,学生的体重情况,某机构从该地中学生中随机抽取数据,按[)40,45,[)45,50,[50,55所示.根据调查的数据,估计该地中学生体重的中位数是4.为了解某校高三学生的数学成绩,随机地抽查了该校布直方图如图所示.请根据以上信息,估计该校高三学生数学成绩的中位数为两位)5.2021年某省高考体育百米测试中,成绩全部介于按如下方式分成六组:第一组[12,13该100名考生的成绩的中位数(保留一位小数)是6.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速的众数、中位数的估计值分别为.7.某快递驿站统计了近期每天代收快件的数量,并制成如下图所示的频率分布直方图.则该快递驿站每天代收包裹数量的中位数为8.某质检部门对某新产品的质量指标随机抽取10.某大学天文台随机调查了该校100位天文爱好者的年龄,得到如下样本数据频率分布直方图,则估计该校100名天文爱好者的平均岁数为.11.众数、平均数和中位数都描述了数据的集中趋势,、、分别表示众数、平均数、形态中,m n p12.如图为某工厂工人生产能力频率分布直方图,则估计此工厂工人生产能力的平均值为易错点三:运用数字特征作评价时考虑不周(方差、标准差的求算)方差、标准差①假设一组数据为n x x x x ,,,321,则这组数据的平均数()∑==+++=ni i n x n x x x n x 12111 ,方差为()()()[]()⎪⎪⎭⎫ ⎝⎛-=-=-+-+-=∑∑=2221222212111n ii n i i n x n x n x x n x x x x x x ns ,标准差()211∑=-=ni i x x n s ②若假设一组数据为n x x x x ,,,321,它的平均数为x ,方差为2s ,则一组数据为b ax b ax b ax b ax n ++++ ,,,321,的平均数为b x a +,方差为22s a 。
2024届高考数学易错题专项(排列组合)练习(附答案)
2024届高考数学易错题专项(排列组合)练习易错点一:相邻与不相邻问题处理方法不当致误(相邻问题)1.2023年杭州亚运会期间,甲、乙、丙3名运动员与5名志愿者站成一排拍照留念,若甲与乙相邻、丙不A.12C.1 4易错点二:“捆绑法”中忽略了“内部排列”或“整体列”(不相邻问题) 1.4名男生和3名女生排队(排成一排)照相,下列说法正确的是( ) A .若女生必须站在一起,那么一共有5335A A 种排法B .若女生互不相邻,那么一共有3434A A 种排法C .若甲不站最中间,那么一共有1666C A 种排法D .若甲不站最左边,乙不站最右边,那么一共有7676A 2A 种排法2.某校文艺汇演共6个节目,其中歌唱类节目3个,舞蹈类节目2个,语言类节目1个,则下列说法正确的是( )A .若以歌唱类节目开场,则有360种不同的出场顺序B .若舞蹈类节目相邻,则有120种出场顺序C .若舞蹈类节目不相邻,则有240种不同的出场顺序D .从中挑选2个不同类型的节目参加市艺术节,则有11种不同的选法3.现将8把椅子排成一排,4位同学随机就座,则下列说法中正确的是( )A .4个空位全都相邻的坐法有120种B .4个空位中只有3个相邻的坐法有240种C .4个空位均不相邻的坐法有120种D .4个空位中至多有2个相邻的坐法有900种4.有甲、乙、丙、丁、戊五位同学,下列说法正确的是( ).A .若五位同学排队要求甲、乙必须相邻且丙、丁不能相邻,则不同的排法有12种B .若五位同学排队最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C .若甲、乙、丙三位同学按从左到右的顺序排队,则不同的排法有20种D .若甲、乙、丙、丁四位同学被分配到三个社区参加志愿活动,每个社区至少一位同学,则不同的分配方案有36种5.现将9把椅子排成一排,5位同学随机就座,则下列说法中正确的是( )A .4个空位全都相邻的坐法有720种B .4个空位中只有3个相邻的坐法有1800种C .4个空位均不相邻的坐法有1800种D .4个空位中至多有2个相邻的坐法有9000种6.现有3位歌手和4名粉丝站成一排,要求任意两位歌手都不相邻,则不同的排法种数可以表示为( )A .731424735454A A A A A A -- B .4343A AC .7314222473543254A A A A C A A A -- D .4345A A7.为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”、“数”六门体验课程,每周一门,连续开设六周,则下列说法正确的是( )A .某学生从中选2门课程学习,共有15种选法B .课程“乐”“射”排在不相邻的两周,共有240种排法C .课程“御”“书”“数”排在相邻的三周,共有144种排法D .课程“礼”不排在第一周,也不排在最后一周,共有480种排法8.有甲、乙、丙等6名同学,则说法正确的是( )A .6人站成一排,甲、乙两人不相邻,则不同的排法种数为480B .6人站成一排,甲、乙、丙按从左到右的顺序站位,则不同的站法种数为240C .6名同学平均分成三组到A 、B 、C 工厂参观(每个工厂都有人),则有90种不同的安排方法D .6名同学分成三组参加不同的活动,甲、乙、丙在一起,则不同的分组方法有6种9.有甲、乙、丙、丁、戊五位同学,下列说法正确的是( )A .若五位同学排队要求甲、乙必须相邻且丙、丁不能相邻,则不同的排法有12种B .若五位同学排队最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C .若甲乙丙三位同学按从左到右的顺序排队,则不同的排法有20种D .若甲、乙、丙、丁四位同学被分配到三个社区参加志愿活动,每个社区至少一位同学,则不同的分配方案有72种10.4名男生和3名女生排成一排照相,要求男生和男生互不相邻,女生与女生也互不相邻,则不同的排法种数是( )A .36B .72C .81D .14411.杭州第19届亚运会火炬9月14日在浙江台州传递,火炬传递路线以“和合台州活力城市”为主题,全长8公里.从和合公园出发,途经台州市图书馆、文化馆、体育中心等地标建筑.假设某段线路由甲、乙等6人传递,每人传递一棒,且甲不从乙手中接棒,乙不从甲手中接棒,则不同的传递方案共有( )A .288种B .360种C .480种D .504种12.A ,B ,C ,D ,E 五名学生按任意次序站成一排,其中A 和B 不相邻,则不同的排法种数为( )A .72B .36C .18D .64易错点三:忽视排列数、组合数公式的隐含条件(排列组合综合) 1.()(2)(3)(4)(15)N ,15x x x x x x +----∈> 可表示为( )在车站的个数为( )A .15B .16C .17D .188.不等式2886x x A A -<⨯的解集为( )A .{2,8}B .{2,6}C .{7,12}D .{8}9.若24C P mm n n =,则m = . 10.已知()1111A A A N ,2n n n n n n x n n -+-+++=∈≥,求x 的值. 11.解关于正整数x 的不等式288P 6P x x -<. 12.解关于正整数n 的方程:4321A 140A n n +=.13.已知57A 56C n n =,且()201212nn n x a a x a x a x -=+++⋅⋅⋅+.求12323n a a a na +++⋅⋅⋅+的值. 14.(1)解不等式266A 4A x x -<.(2)若2222345C C C C 55n ++++= ,求正整数n .15.(1)若32213A 2A 6A x x x +=+,则x = .(2)不等式46C C n n >的解集为 .易错点四:实际问题不清楚导致计算重复或者遗漏致误(加法与乘法原理) 1.高考期间,为保证考生能够顺利进入考点,交管部门将5名交警分配到该考点周边三个不同路口疏导交通,每个路口至少1人,至多2人,则不同的分配方染共有()A.81 B.48 C.36 D.245.从4名优秀学生中选拔参加池州一中数学、物理、化学三学科培优研讨会,要求每名学生至多被一学科选中,则每学科至少要选用一名学生的情况有()种A.24 B.36 C.48 D.606.将5个不同的小球放入3个不同的盒子,每个盒子至少1个球,至多2个球,则不同的放法种数有( )A.30种B.90种C.180种D.270种7.哈六中高一学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现在从中任选3人,要求这三人不能是同一个班级的学生,且在三班至多选1人,不同的选取法的种数为A.484B.472C.252D.2328.下列说法正确的是()A.4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有81种报名方法B.4名同学选报跑步、跳高、跳远三个项目,每项限报一人,且每人至多报一项,共有24种报名方法C.4名同学争夺跑步、跳高、跳远三项冠军,共有64种可能的结果D.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为12个9.如图,线路从A到B之间有五个连接点,若连接点断开,可能导致线路不通,现发现AB之间线路不通,则下列判断正确的是()A.至多三个断点的有19种B.至多三个断点的有22种C.共有25种D.共有28种10.某班有5名同学报名参加校运会的四个比赛项目,计算在下列情况下各有多少种不同的报名方法. (1)每人恰好参加一项,每项人数不限;(2)每项限报一人,每项都有人报名,且每人至多参加一项;(3)每人限报一项,人人参加了项目,且每个项目均有人参加.11.已知8件不同的产品中有3件次品,现对它们一一进行测试,直至找到所有次品.(1)若在第5次测试时找到最后一件次品,则共有多少种不同的测试方法?(2)若至多测试5次就能找到所有次品,则共有多少种不同的测试方法?12.杭州亚运会启动志愿者招募工作,甲、乙等6人报名参加了A、B、C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者,每人至多参加一个项目,若甲不能参加A、B项目,乙不能参加B、C项目,那么共有种不同的选拔志愿者的方案.(用数字作答)13.某校在高二年级开设选修课,其中数学选修课开四个班.选课结束后,有四名同学要求改修数学,但每班至多可再接收2名同学,那么不同的分配方案有(用数字作答)14.某单位有A、B、C、D四个科室,为实现减负增效,每科室抽调2人,去参加再就业培训,培训后这8人中有2人返回原单位,但不回到原科室工作,且每科室至多安排1人,问共有种不同的安排方法?易错点五:均匀分组与不均匀分组混淆致误(相同元素与不同元素分配问题)1.第19届亚运会将于2023年9月23日在杭州开幕,因工作需要,还需招募少量志愿者.甲、乙等4人报名参加了“莲花”、“泳镜”、“玉琮”三个场馆的各一个项目的志愿者工作,每个项目仅需1名志愿者,每人至多参加一个项目.若甲不能参加“莲花”场馆的项目,则不同的选择方案共有()A.6种B.12种C.18种D.24种2.从2个不同的红球、2个不同的黄球、2个不同的蓝球共六个球中任取2个,放入红、黄、蓝色的三个袋子中,每个袋子至多放入一个球,且球色与袋色不同,那么不同的放法有()A.42种B.36种C.72种D.46种3.阳春三月,草长莺飞,三个家庭的3位妈妈和1位爸爸带着3位女宝宝和2位男宝宝共9人踏春.在沿行一条小溪时,为了安全起见,他们排队前进,宝宝不排最前面也不排最后面,为了方便照顾孩子,每两位大人之间至多排2位宝宝,由于男宝宝喜欢打闹,由这位爸爸照看且排在2位男宝宝之间.则不同的排法种数为()A.216 B.288C.432 D.5124.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()A.20种B.30种C.50种D.60种5.杭州亚运会启动志愿者招募工作,甲、乙等6人报名参加了A、B、C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者,每人至多参加一个项目,若甲不能参加A、B项目,乙不能参加B、C项目,那么共有()种不同的选拔志愿者的方案.A.36 B.40 C.48 D.526.现有甲、乙、丙3位同学在周一至周五参加某项公益劳动,要求每人参加一天且每天至多安排一人,并要求甲同学安排在另外两位前面,则不同的安排总数为()易错点六:由于重复计数致错(可重复与限制问题)1.2023年6月25日19时,随着最后一场比赛终场哨声响起,历时17天的.2023年凉山州首届“火洛杯”禁毒防艾男子篮球联赛决赛冠军争夺赛在凉山民族体育馆内圆满闭幕,为进一步展现凉山男儿的精神风貌主办方设置一场扣篮表演,分别由西昌市、冕宁县、布拖县、昭觉县4个代表队每队各派1名球员参加扣且在游览过程中必须按先M后N的次序,则不同的游览线路有多少种?9.用0,1,2,3,4,5,6可以组成多少个无重复数字的五位数?其中能被5整除的五位数有多少个?10.某单位安排7位工作人员在10月1日至10月7日值班,每人值班一天,其中甲、乙二人都不安排在10月1日和2日,共有多少种不同的安排方法?参考答案易错点一:相邻与不相邻问题处理方法不当致误(相邻问题)1.2023年杭州亚运会期间,甲、乙、丙3名运动员与5名志愿者站成一排拍照留念,若甲与乙相邻、丙不A .18种B .36种C .72种D .144种【答案】C【详细分析】根据相邻问题捆绑法即可由全排列求解.【答案详解】由题意可得12331233A A A A 72=,故选:C7.甲、乙两个家庭周末到附近景区游玩,其中甲家庭有2个大人和2个小孩,乙家庭有2个大人和3个小孩,他们9人在景区门口站成一排照相,要求每个家庭的成员要站在一起,且同一家庭的大人不能相邻,则所有不同站法的种数为( ) A .144 B .864 C .1728 D .2880【答案】C【详细分析】利用捆绑以及插空法求得正确答案.【答案详解】甲家庭的站法有2223A A 12=种,乙家庭的站法有3234A A 72=种,最后将两个家庭的整体全排列,有22A 2=种站法,则所有不同站法的种数为127221728⨯⨯=. 故选:C8.某驾校6名学员站成一排拍照留念,要求学员A 和B 不相邻,则不同的排法共有( ) A .120种 B .240种 C .360种 D .480种【答案】D【详细分析】正难则反,首先我们可以求出6名学员随机站成一排的全排列数即66A ,然后求学员A 和B 相邻的排列数,两数相减即可.【答案详解】一方面:若要求学员A 和B 相邻,则可以将学员A 和B 捆绑作为一个“元素”,此时一共有5个元素,但注意到学员A 和B 可以互换位置,所以学员A 和B 相邻一共有2525A A 2154321240⋅=⨯⨯⨯⨯⨯⨯=种排法.另一方面:6名学员随机站成一排的全排列数为66A 654321720=⨯⨯⨯⨯⨯=种排法.结合以上两方面:学员A 和B 不相邻的不同的排法共有625625A A A 720240480-⋅=-=种排法.故选:D.9.某高铁动车检修基地库房内有A E ~共5条并行的停车轨道线,每条轨道线只能停一列车,现有动车01,02、A.12C.1 4【答案】B【详细分析】根据分步乘法原理结合排列数求解即可.【答案详解】先让甲站好中间位置,再让2名女生相邻有两种选法,最后再排剩余的2名男生,根据分步乘法原理得,有22222A A 8⨯⨯=种不同的排法.故选:B12.5名同学排成一排,其中甲、乙、丙三人必须排在一起的不同排法有( )A .70种B .72种C .36种D .12种【答案】C【详细分析】相邻问题用捆绑法即可得解.【答案详解】甲、乙、丙先排好后视为一个整体与其他2个同学进行排列,则共有3333A A 36=种排法.故选:C13.现有2名男生和3名女生,在下列不同条件下进行排列,则( )A .排成前后两排,前排3人后排2人的排法共有120种B .全体排成一排,女生必须站在一起的排法共有36种C .全体排成一排,男生互不相邻的排法共有72种D .全体排成一排,甲不站排头,乙不站排尾的排法共有72种 【答案】ABC【详细分析】根据题意,利用排列数公式,以及捆绑法、插空法,以及分类讨论,结合分类计数原理,逐项判定,即可求解.【答案详解】由题意知,现有2名男生和3名女生,对于A 中,排成前后两排,前排3人后排2人,则有3252A A 120=种排法,所以A 正确;对于B 中,全体排成一排,女生必须站在一起,则有3333A A 36=种排法,所以B 正确;对于C 中,全体排成一排,男生互不相邻,则有3234A A 72=种排法,所以C 正确;对于D 中,全体排成一排,甲不站排头,乙不站排尾可分为两类:(1)当甲站在中间的三个位置中的一个位置时,有13A 3=种排法,此时乙有13A 3=种排法,共有113333A A A 54=种排法;C .如果三名同学选择的社区各不相同,则不同的安排方法共有60种D .如果甲、乙两名同学必须在同一个社区,则不同的安排方法共有20种 【答案】AC【详细分析】对于A ,根据社区A 必须有同学选择,由甲、乙、丙三名同学都有5种选择减去有4种选择求解;对于B ,根据同学甲必须选择社区A ,有乙丙都有5种选择求解;对于C ,根据三名同学选择的社区各不相同求解;对于D ,由甲、乙两名同学必须在同一个社区,捆绑再选择求解;【答案详解】对于A ,如果社区A 必须有同学选择,则不同的安排方法有335461-=(种),故A 正确; 对于B ,如果同学甲必须选择社区A ,则不同的安排方法有2525=(种),故B 错误;对于C ,如果三名同学选择的社区各不相同,则不同的安排方法共有54360⨯⨯=(种),故C 正确; 对于D ,甲、乙两名同学必须在同一个社区,第一步,将甲、乙视作一个整体,第二步,两个整体挑选社区,则不同的安排方法共有2525=(种),故D 错误. 故选:AC.18.在树人中学举行的演讲比赛中,有3名男生,2名女生获得一等奖.现将获得一等奖的学生排成一排合影,则( )A .3名男生排在一起,有6种不同排法B .2名女生排在一起,有48种不同排法C .3名男生均不相邻,有12种不同排法D .女生不站在两端,有108种不同排法 【答案】BC【详细分析】利用捆绑法可判断A 、B ;利用插空法可判断C ;利用分步计数法可判断D. 【答案详解】解:由题意得:对于选项A :3名男生排在一起,先让3个男生全排后再作为一个整体和2个女生做一个全排,共有3333A A 36⋅=种,A 错误;对于选项B :2名女生排在一起,先让2个女生全排后再作为一个整体和3个男生做一个全排,共有2424A A 48⋅=种,B 正确;对于选项C :3名男生均不相邻,先让3个男生全排后,中间留出两个空位让女生进行插空,共有2323A A 12⋅=种,C 正确;对于选项D :女生不站在两端,先从三个男生种选出两个进行全排后放在两端,共有2232C A 6⋅=种,然后将剩下的3人进行全排后放中间,共有223323C A A 36⋅⋅=种,D 错误.故选:BC易错点二:“捆绑法”中忽略了“内部排列”或“整体列”(不相邻问题)1.4名男生和3名女生排队(排成一排)照相,下列说法正确的是( )A .若女生必须站在一起,那么一共有5335A A 种排法B .若女生互不相邻,那么一共有3434A A 种排法C .若甲不站最中间,那么一共有1666C A 种排法D .若甲不站最左边,乙不站最右边,那么一共有7676A 2A -种排法【答案】AC【详细分析】分别利用捆绑法、插空法、优先安排特殊元素法、间接法依次求解.【答案详解】选项A ,利用捆绑法,将3名女生看成一个整体,其排列方式有33A 种,加上4名男生一共有5个个体,则有55A 种排列方式,则由乘法原理可知一共有5335A A 种排法,故A 正确;选项B ,利用插空法,4名男生排成一排形成5个空,其排列方式有44A 种,再将3名女生插入空中,有35A 种排列方式,则由乘法原理可知一共有4345A A 种排法,故B 不正确;选项C ,利用优先安排特殊元素法,甲不站最中间,甲先从除中间之外的6个位置选一个,其选择方式有16C 种,再将剩余的6人全排列,有66A 种排列方式,则由乘法原理可知一共有1666C A 种排法,故C 正确;选项D ,利用间接法,3人站成一排共有77A 种排法,若甲站最左边有66A 种排法,乙站最右边有66A 种排法,甲站最左边且乙站最右边有55A 种排法,所以甲不站最左边,乙不站最右边,那么一共有765765A 2A A -+种排法,故D 不正确; 故选:AC.2.某校文艺汇演共6个节目,其中歌唱类节目3个,舞蹈类节目2个,语言类节目1个,则下列说法正确的是( )A .若以歌唱类节目开场,则有360种不同的出场顺序B .若舞蹈类节目相邻,则有120种出场顺序C .若舞蹈类节目不相邻,则有240种不同的出场顺序D .从中挑选2个不同类型的节目参加市艺术节,则有11种不同的选法 【答案】AD【详细分析】根据全排列、捆绑法、插空法,结合分步与分类计数原理依次详细分析选项,即可判断. 【答案详解】A :从3个歌唱节目选1个作为开场,有13C =3种方法,后面的5个节目全排列,所以符合题意的方法共有553A 360=种,故A 正确;B :将2个舞蹈节目捆绑在一起,有22A 2=种方法,再与其余4个节目全排列,所以符合题意的方法共有552A 240=,故B 错误;C :除了2个舞蹈节目以外的4个节目全排列,有44A 24=种,再由4个节目组成的5个空插入2个舞蹈节目,所以符合题意的方法有2524A 480=种,故C 错误;D :符合题意的情况可能是1个歌唱1个舞蹈、1个歌唱1个语言、1个舞蹈1个语言, 所以不同的选法共111111323121C C C C C C 11++=种,故D 正确. 故选:AD.3.现将8把椅子排成一排,4位同学随机就座,则下列说法中正确的是( ) A .4个空位全都相邻的坐法有120种 B .4个空位中只有3个相邻的坐法有240种 C .4个空位均不相邻的坐法有120种D .4个空位中至多有2个相邻的坐法有900种 【答案】AC【详细分析】对于A ,用捆绑法即可;对于B ,先用捆绑法再用插空法即可;对于C ,用插空法即可;对于D ,用插空法的同时注意分类即可.【答案详解】对于A ,将四个空位当成一个整体,全部的坐法:55A 120=种,故A 对;对于B ,先排4个学生44A ,然后将三个相邻的空位当成一个整体,和另一个空位插入5个学生中有25A 种方法,所以一共有4245480A A =种,故B 错;对于C ,先排4个学生44A ,4个空位是一样的,然后将4个空位插入4个学生形成的5个空位中有45C 种,所以一共有4445A C 120=,故C 对;对于D ,至多有2个相邻即都不相邻或者有两个相邻,由C 可知都不相邻的有120种,空位两个两个相邻的有:4245A C 240=,空位只有两个相邻的有412454A C C 720=,所以一共有1202407201080++=种,故D 错; 故选:AC.4.有甲、乙、丙、丁、戊五位同学,下列说法正确的是( ).A .若五位同学排队要求甲、乙必须相邻且丙、丁不能相邻,则不同的排法有12种B .若五位同学排队最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C .若甲、乙、丙三位同学按从左到右的顺序排队,则不同的排法有20种D .若甲、乙、丙、丁四位同学被分配到三个社区参加志愿活动,每个社区至少一位同学,则不同的分配方案有36种 【答案】BCD【详细分析】根据相关的计数原理逐项详细分析.【答案详解】对于A ,将甲乙捆绑有22A 种方法,若戊在丙丁之间有22A 排法,丙丁戊排好之后用插空法插入甲乙,有14A 种方法;若丙丁相邻,戊在左右两边有2122A A 种排法,但甲乙必须插在丙丁之间,一共有212222A A A 种排法,所以总的排法有221212224222A A A A A A 24+= ,故A 错误;对于B ,若甲在最左端,有44A 24= 种排法,若乙在最左端,先排甲有13A 3= 种排法,再排剩下的3人有33A 6= ,所以总共有243642+⨯= 种排法,正确;对于C ,先将甲乙丙按照从左至右排好,采用插空法,先插丁有14A 种,再插戊有15A 种,总共有1145A A 20=种,正确;对于D ,先分组,将甲乙丙丁分成3组有24C 种分法,再将分好的3组安排在3个社区有33A 种方法,共有2343C A 36= 种方法,正确;故选:BCD.5.现将9把椅子排成一排,5位同学随机就座,则下列说法中正确的是( ) A .4个空位全都相邻的坐法有720种 B .4个空位中只有3个相邻的坐法有1800种 C .4个空位均不相邻的坐法有1800种D .4个空位中至多有2个相邻的坐法有9000种 【答案】AC【详细分析】对于A ,用捆绑法即可;对于B ,先用捆绑法再用插空法即可;对于C ,用插空法即可;对于D ,用插空法的同时注意分类即可.【答案详解】对于A,将四个空位当成一个整体,全部的坐法:66A 720=,故A 对;对于B ,先排5个学生55A ,然后将三个相邻的空位当成一个整体,和另一个空位插入5个学生中有26A 中方法,所以一共有5256A A 3600=种,故B 错;对于C ,先排5个学生55A ,4个空位是一样的,然后将4个空位插入5个学生中有46C 种,所以一共有5456A C 1800=,故C 对;对于D ,至多有2个相邻即都不相邻或者有两个相邻,由C 可知都不相邻的有1800种,空位两个两个相邻的有: 5256A C 1800=,空位只有两个相邻的有521564A C C 7200=,所以一共有18001800720010800++=种,故D 错;故选:AC6.现有3位歌手和4名粉丝站成一排,要求任意两位歌手都不相邻,则不同的排法种数可以表示为( )A .731424735454A A A A A A --B .4343A AC .7314222473543254A A A A C A A A -- D .4345A A【答案】CD【详细分析】第一种排法:先排4名粉丝,然后利用插空法将歌手排好;第二种排法:先计算3位歌手和2位歌手站一起的排法,然后利用总排法去掉前面两种不满足题意的排法即可 【答案详解】第一种排法:分2步进行:①将4名粉丝站成一排,有44A 种排法; ②4人排好后,有5个空位可选,在其中任选3个,安排三名歌手,有35A 种情况. 则有4345A A 种排法,第二种排法:先计算3位歌手站一起,此时3位歌手看做一个整体,有314354A A A 种排法,再计算恰好有2位歌手站一起,此时2位歌手看做一个整体,与另外一个歌手不相邻,有22243254C A A A 种排法, 则歌手不相邻有3142224354773254A A A C A A A A --种排法. 故选:CD7.为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”、“数”六门体验课程,每周一门,连续开设六周,则下列说法正确的是( ) A .某学生从中选2门课程学习,共有15种选法故选:BC.10.4名男生和3名女生排成一排照相,要求男生和男生互不相邻,女生与女生也互不相邻,则不同的排法种数是( )A .36B .72C .81D .144【答案】D【详细分析】先将3名女生全排列,然后利用插空法,将4名男生排到3名女生之间的4个空位上,根据分步乘法计数原理,即可求得答案.【答案详解】由题意先将3名女生全排列,然后利用插空法, 将4名男生排到3名女生之间的4个空位上,故共有3434A A 624144=⨯=种不同的排法,故选:D11.杭州第19届亚运会火炬9月14日在浙江台州传递,火炬传递路线以“和合台州活力城市”为主题,全长8公里.从和合公园出发,途经台州市图书馆、文化馆、体育中心等地标建筑.假设某段线路由甲、乙等6人传递,每人传递一棒,且甲不从乙手中接棒,乙不从甲手中接棒,则不同的传递方案共有( )A .288种B .360种C .480种D .504种【答案】C【详细分析】根据排列数以及插空法的知识求得正确答案. 【答案详解】先安排甲乙以外的4个人,然后插空安排甲乙两人,所以不同的传递方案共有4245A A 480=种.故选:C12.A ,B ,C ,D ,E 五名学生按任意次序站成一排,其中A 和B 不相邻,则不同的排法种数为( )A .72B .36C .18D .64【答案】A【详细分析】先将其余三人全排列,利用插空法求解. 【答案详解】解:先将其余三人全排列,共有33A 种情况, 再将A 和B 插空,共有24A 种情况,所以共有2343A A 12672=⨯=种情况,故选:A.。
(完整版)高中数学易错题
高中数学易错题数学概念的理解不透必修一(1)若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( ) A.a ≤-21或a ≥21 B.a <21 C.-21≤a ≤21 D.a ≥ 21【错解】选A.由题意,方程ax 2+x+a=0的根的判别式20140a ∆<⇔-<⇔ a ≤-21或a ≥21,所以选A.【正确解析】D .不等式ax 2+x+a <0的解集为 Φ,若a=0,则不等式为x<0解集不合已知条件,则a 0≠;要不等式ax 2+x+a <0的解集为 Φ,则需二次函数y=ax 2+x+a 的开口向上且与x 轴无交点,所以a>0且20140120a a a ⎧∆≤⇔-≤⇔≥⎨>⎩.必修一(2)判断函数f(x)=(x -1)xx-+11的奇偶性为____________________【错解】偶函数.f(x)=(x -===,所以()()f x f x -===,所以f (x )为偶函数.【正解】非奇非偶函数.y=f(x)的定义域为:(1)(1)01011101x x xx x x +-≥⎧+≥⇔⇔-≤<⎨-≠-⎩,定义域不关于原点对称,所以此函数为非奇非偶函数.1) 必修二(4)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( ) (A)12l l ⊥,23l l ⊥13//l l ⇒ (B )12l l ⊥,3//l l ⇒13l l ⊥(C)123////l l l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 【错解】错解一:选A.根据垂直的传递性命题A 正确; 错解二:选C.平行就共面;【正确解答】选B.命题A 中两直线还有异面或者相交的位置关系;命题C 中这三条直线可以是三棱柱的三条棱,因此它们不一定共面;命题D 中的三条线可以构成三个两两相交的平面,所以它们不一定共面.必修五(5)x=ab 是a 、x 、b 成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 【错解】C.当.x=ab 时,a 、x 、b 成等比数列成立;当a 、x 、b 成等比数列时,x=ab 成立 .【正确解析】选D.若x=a=0,x=ab 成立,但a 、x 、b 不成等比数列, 所以充分性不成立;反之,若a 、x 、b成等比数列,则2x ab x =⇔=x=ab 不一定成立,必要性不成立.所以选D.排列组合(6)(1)把三枚硬币一起掷出,求出现两枚正面向上,一枚反面向上的概率. 分析:(1)【错解】三枚硬币掷出所有可能结果有2×2×2=8种,而出现两正一反是一种结果,故所求概率P=.81【正解】在所有的8种结果中,两正一反并不是一种结果,而是有三种结果:正、正、反,正、反、正,反、正、正,因此所求概率,83=P 上述错解在于对于等可能性事件的概念理解不清,所有8种结果的出现是等可能性的,如果把上述三种结果看作一种结果就不是等可能性事件了,应用求概率的基本公式n m P =自然就是错误的.公式理解与记忆不准(7)若1,0,0=+>>y x y x ,则yx41+的最小值为___________.【错解】 y x 41+8)2(14422=+≥≥y x xy ,错解原因是忽略等号成立条件. 【正解】yx 41+=945)(4≥++=+++yx xy yy x xy x(8)函数y=sin 4x+cos 4x -43的相位____________,初相为__________ .周期为_________,单调递增区间为____________.【错解】化简y=sin 4x+cos 4x -43=1cos 44x ,所以相位为4x ,初相为0,周期为2π,增区间为….【正确解析】y=sin 4x+cos 4x -43=11cos 4sin(4)442x x π=+.相位为42x π+,初相为2π,周期为2π,单调递增区间为21[,]()42k k k Z ππ-∈. 审题不严 (1)读题不清必修五(9)已知()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图像大致是【错解】选B.因为1()2x y =在0x >内递减,且1()()12x f x =+过点(0,2),所以选B. 【正确解答】A .根据函数与其反函数的性质,原函数的定义域与值域同其反函数的值域、定义域相同.当10,0()1,122x x y ><<⇒<<,所以选A.或者首先由原函数过点(0,2),则其反函数过点(2,0),排除B 、C ;又根据原函数在0x >时递减,所以选A. 排列组合(10)一箱磁带最多有一盒次品.每箱装25盒磁带,而生产过程产生次品磁带的概率是0.01.则一箱磁带最多有一盒次品的概率是 .【错解】一箱磁带有一盒次品的概率240.01(10.01)⨯-,一箱磁带中无次品的概率25(10.01)-,所以一箱磁带最多有一盒次品的概率是240.01(10.01)⨯-+25(10.01)-.【正确解析】一箱磁带有一盒次品的概率124250.01(10.01)C ⋅⨯-,一箱磁带中无次品的概率02525(10.01)C ⋅-,所以一箱磁带最多有一盒次品的概率是124250.01(10.01)C ⋅⨯-+02525(10.01)C ⋅-.(2)忽视隐含条件必修一(11)设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是( )不存在)D (18)C (8)B (449)A (-【错解】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--选A.【正确解析】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--Θ 原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆ ⇒.3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18.选B. 必修一(12)已知(x+2)2+ y 24=1, 求x 2+y 2的取值范围.【错解】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328, ∴当x=-83 时,x 2+y 2有最大值283 ,即x 2+y 2的取值范围是(-∞, 283].【正确解析】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328 由于(x+2)2+ y 24 =1 ⇒ (x+2)2=1- y 24≤1 ⇒ -3≤x ≤-1,从而当x=-1时x 2+y 2有最小值1.∴ x 2+y 2的取值范围是[1, 283 ].(此题也可以利用三角函数和的平方等于一进行求解)必修一(13) 方程1122log (95)log (32)20x x ------=的解集为___________________- 【错解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=11111122log (95)log 4(32)954(32)(31)(33)0x x x x x x -------=-⇔-=-⇔--=1310x --=或1330x --=所以x=1或x=2.所以解集为{1,2}.【正解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=111111221954(32)log (95)log 4(32)3203302950x x x x x x x x -------⎧-=-⎪-=-⇔->⇔-=⇔=⎨⎪->⎩所以解集为{2}.字母意义含混不清(14)若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为( )A.0916x y ±= B.0169x y ±= C.034x y ±= D.043x y±= 【错解】选D.22222222252593310416164443c c a b b b b x y e y x a a a a a a +==⇒===+⇒=⇒=±⇒=±⇒±=,选D. 【正确解析】2222222211x y y x a b b a-=-⇒-=,与标准方程中字母a,b 互换了.选C.4.运算错误(1)数字与代数式运算出错若)2,1(),7,5(-=-=b a ρρ,且(b a ρρλ+)b ρ⊥,则实数λ的值为____________.【错解】(5,72)a b λλλ+=--+r r ,则(b a ρρλ+)()052(72)03b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r.【正确解析】(5,72)a b λλλ+=--+r r,(ba ρρλ+)19()052(72)05b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r必修二18. 已知直线l 与点A (3,3)和B (5,2)的距离相等,且过二直线1l :3x -y -1=0和2l:x+y-3=0的交点,则直线l的方程为_______________________【错解】先联立两直线求出它们交点为(1,2),设所求直线的点斜式,再利用A、B到12k=⇔=-,所以所求直线为x+2y-5=0.【正确解析】x-6y+11=0或x+2y-5=0.联立直线1l:3x-y-1=0和2l:x+y-3=0的方程得它们的交点坐标为(1,2),令过点(1,2)的直线l为:y-2=k(x-1)(由图形可看出直线l的斜率必然存在),11,62k k=⇔==-,所以直线l的方程为:x-6y+11=0或x+2y-5=0.(2)运算方法(如公式、运算程序或运算方向等)选择不当导致运算繁杂或不可能得解而出错必修二19. 已知圆(x-3)2+y2=4和直线y=mx的交点分别为P,Q两点,O为坐标原点,则OQOP⋅的值为.【运算繁杂的解法】联立直线方程y=mx与圆的方程(x-3)2+y2=4消y,得关于x的方程22(1)650m x x+-+=,令1122(,),(,)P x y Q x y,则12122265,11x x x xm m+=⋅=++,则221212251my y m x xm==+,由于向量OPuuu r与向量OQuuu r共线且方向相同,即它们的夹角为0,所以212122255511mOP OQ OP OQ x x y ym m⋅=⋅=+=+=++u u u r u u u r.【正确解析】根据圆的切割线定理,设过点O的圆的切线为OT(切点为T),由勾股定理,则222325OP OQ OT⋅==-=.(3)忽视数学运算的精确性,凭经验猜想得结果而出错曲线x2-122=y的右焦点作直线交双曲线于A、B两点,且4=AB,则这样的直线有___________条.【错解】4条.过右焦点的直线,与双曲线右支交于A、B时,满足条件的有上、下各一条(关于x轴对称);与双曲线的左、右分别两交于A、B两点,满足条件的有上、下各一条(关于x 轴对称),所以共4条.【正解】过右焦点且与X 轴垂直的弦AB (即通径)为222241b a ⨯==,所以过右焦点的直线,与双曲线右支交于A 、B 时,满足条件的仅一条;与双曲线的左、右分别两交于A 、B 两点,满足条件的有上、下各一条(关于x 轴对称),所以共3条. 5.数学思维不严谨(1)数学公式或结论的条件不充分24.已知两正数x,y 满足x+y=1,则z=11()()x y x y++的最小值为 .【错解一】因为对a>0,恒有12a a +≥,从而z=11()()x y x y++≥4,所以z 的最小值是4.【错解二】22222()2x y xy z xy xy xy +-==+-≥21)-=,所以z 的最小值是1). 【正解】z=11()()x y x y ++=1y xxy xy x y+++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210()24x y t xy +<=≤=,由2()f t t t =+在10,4⎛⎤⎥⎝⎦上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值334.(2)以偏概全,重视一般性而忽视特殊情况必修一(1)不等式|x+1|(2x -1)≥0的解集为____________解析:(1)【错解】1[,)2+∞.因为|x+1|≥0恒成立,所以原不等式转化为2x-1≥0,所以1[,)2x ∈+∞【正确解析】}1{),21[-⋃+∞.原不等式等价于|x+1|=0或2x-1≥0,所以解集为1[,){1}2x ∈+∞⋃-.必修一(2)函数y =的定义域为 .(2) 【错解】10(1)(1)011x x x x x+≥⇒+-≥⇒≥-或1x ≤-.【正解】(1)(1)0(1)(1)010111011x x x x x x x x x+-≥+-≤⎧⎧+≥⇒⇒⇒-≤<⎨⎨-≠≠-⎩⎩(3)解题时忽视等价性变形导致出错 27.已知数列{}n a 的前n 项和12+=n n S ,求.n a【错解】 .222)12()12(1111----=-=+-+=-=n n n n n n n n S S a 【正确解析】当1=n 时,113a S ==,n 2≥时,1111(21)(21)222nn n n n n n n a S S ----=-=+-+=-=.所以13(1)2(2)n n n a n -⎧=⎪=⎨≥⎪⎩.选修实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点. 【错解】 将圆012222=-+-+a ax y x 与抛物线 x y 212=联立,消去y , 得 ).0(01)212(22≥=-+--x a x a x ①因为有两个公共点,所以方程①有两个相等正根,得⎪⎪⎩⎪⎪⎨⎧>->-=∆.01021202a a , 解之得.817=a【正确解析】要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根.当方程①有一正根、一负根时,得⎩⎨⎧<->∆.0102a 解之,得.11<<-a因此,当817=a 或11<<-a 时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点.(1)设等比数列{}n a 的全n 项和为n S .若9632S S S =+,求数列的公比q .【错解】 ,2963S S S =+Θq q a q q a q q a --⋅=--+--∴1)1(21)1(1)1(916131, .012(363)=整理得--q q q1q 24q ,0)1q )(1q 2(.01q q 20q 33336=-=∴=-+∴=--≠或得方程由.【正确解析】若1=q ,则有.9,6,3191613a S a S a S ===但01≠a ,即得,2963S S S ≠+与题设矛盾,故1≠q .又依题意 963S 2S S =+ ⇒ q q a q q a q q a --⋅=--+--1)1(21)1(1)1(916131 ⇒ 01q q 2(q 363)=--,即,0)1)(12(33=-+q q 因为1≠q ,所以,013≠-q 所以.0123=+q 解得 .243-=q空间识图不准必修二直二面角α-l -β的棱l 上有一点A ,在平面α、β内各有一条射线AB ,AC 与l 成450,AB βα⊂⊂AC ,,则∠BAC= .【错解】如右图.由最小角定理,12221cos cos cos 23BAC BAC πθθ∠=⋅=⨯=⇒∠=. 【正确解析】3π或23π.如下图.当6CAF π∠=时,由最小角定理,时,12221cos cos cos 2223BAC BAC πθθ∠=⋅=⨯=⇒∠=;当AC 在另一边DA 位置23BAC π∠=.。
高中高考数学易错易混易忘题分类汇总及解析
高中高考数学易错易混易忘题分类汇总及解析高中高考数学易错易混易忘题分类汇总及解析第一部分高考函数考点易错题【易错点1】忽视空集是任何非空集合的子集导致思维不全面。
例1.设,,若,求实数a组成的集合的子集有多少个?【易错点分析】此题由条件易知,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a值产生漏解现象。
【知识点归类点拔】(1)在应用条件A∪B=BA∩B=AAB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。
有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转化如:,,其中,若求r的取值范围。
将集合所表达的数学语言向自然语言进行转化就是:集合A表示以原点为圆心以2的半径的圆,集合B表示以(3,4)为圆心,以r 为半径的圆,当两圆无公共点即两圆相离或内含时,求半径r的取值范围。
思维马上就可利用两圆的位置关系来解答。
此外如不等式的解集等也要注意集合语言的应用。
【练1】已知集合、,若,则实数a的取值范围是。
【易错点2】求解函数值域或单调区间易忽视定义域优先的原则。
例2、已知,求的取值范围【易错点分析】此题学生很容易只是利用消元的思路将问题转化为关于x的函数最值求解,但极易忽略x、y满足这个条件中的两个变量的约束关系而造成定义域范围的扩大。
【知识点归类点拔】事实上我们可以从解析几何的角度来理解条件对x、y的限制,显然方程表示以(-2,0)为中心的椭圆,则易知-3≤x≤-1,。
此外本题还可通过三角换元转化为三角最值求解。
【练2】(05高考重庆卷)若动点(x,y)在曲线上变化,则的最大值为()(A)(B)(C)(D)【易错点3】求解函数的反函数易漏掉确定原函数的值域即反函数的定义域。
例3. 是R上的奇函数,(1)求a的值(2)求的反函数【易错点分析】求解已知函数的反函数时,易忽略求解反函数的定义域即原函数的值域而出错。
高考数学复习易做易错题选
高考数学复习易做易错题选一、选择题;1.设ABCD 是空间四边形;E ;F 分别是AB ;CD 的中点;则BC AD EF ,,满足( )A 共线B 共面C 不共面D 可作为空间基向量2.在正方体ABCD-A 1B 1C 1D 1,O 是底面ABCD 的中心;M 、N 分别是棱DD 1、D 1C 1的中点;则直线OM( )A 是AC 和MN 的公垂线B 垂直于AC 但不垂直于MNC 垂直于MN ;但不垂直于ACD 与AC 、MN 都不垂直3.已知平面α∥平面β;直线L ⊂平面α,点P ∈直线L,平面α、β间的距离为8;则在β内到点P 的距离为10;且到L 的距离为9的点的轨迹是( )A 一个圆B 四个点C 两条直线D 两个点4.正方体ABCD-A 1B 1C 1D 1中;点P 在侧面BCC 1B 1及其边界上运动;并且总保持A P ⊥BD 1,则动点P 的轨迹( )A 线段B 1C B BB 1的中点与CC 1中点连成的线段C 线段BC 1D CB 中点与B 1C 1中点连成的线段5. 下列命题中;① 若向量a 、b 与空间任意向量不能构成基底;则a ∥b 。
② 若a ∥b ; b ∥c ;则c ∥a .③ 若 OA 、OB 、OC 是空间一个基底;且 OD =31OA +31 OB +31OC ,则A 、B 、C 、D 四点共面。
④ 若向量 a + b ; b + c ; c + a 是空间一个基底;则 a 、 b 、 c 也是空间的一个基底。
其中正确的命题有( )个。
A 1B 2C 3D 46.给出下列命题;①分别和两条异面直线AB 、CD 同时相交的两条直线AC 、BD 一定是异面直线②同时与两条异面直线垂直的两直线不一定平行③斜线b 在面α内的射影为c ;直线a ⊥c ;则a ⊥b ④有三个角为直角的四边形是矩形;其中真命题是( )7.已知一个正四面体和一个正八面体的棱长相等;把它们拼接起来;使一个表面重合;所得多面体的面数有( )A 、7B 、8C 、9D 、108.下列正方体或正四面体中;P 、Q 、R 、S 分别是所在棱的中点;这四个点不共面的一个图是( )9. a 和b 为异面直线;则过a 与b 垂直的平面( )A 、有且只有一个B 、一个面或无数个C 、可能不存在D 、可能有无数个10.给出下列四个命题;(1)各侧面在都是正方形的棱柱一定是正棱柱. (2)若一个简单多面体的各顶点都有3条棱;则其顶点数V 、面数F 满足的关系式为2F-V=4.(3)若直线l ⊥平面α;l ∥平面β;则α⊥β.(4)命题“异面直线a 、b 不垂直;则过a 的任一平面与b 都不垂直”的否定.其中;正确的命题是( )A .(2)(3)B .(1)(4)C .(1)(2)(3)D .(2)(3)(4) 11.如图;△ABC 是简易遮阳棚;A ;B 是南北方向上两个定点;正东方向射出的太阳光线与地面成40°角;为了使遮阴影面ABD 面积最大;遮阳棚ABC 与地面所成的角应为( )A .75°B .60°C .50°D .45°12.一直线与直二面角的两个面所成的角分别为α;β;则α+β满足( )A 、α+β<900B 、α+β≤900C 、α+β>900D 、α+β≥900。
高考数学易错题解题方法 15例
设直线 PF1 的斜率为 k,则 PF1: y k (x 4) 4 , 即 kx y 4k 4 0 . ∵ 直 线 PF1 与 圆 C 相 切 ,
∴ | k 0 4k 4 | 5 .解得 k 11, 或k 1 .
k2 1
2
2
当 k= 11 时,直线 PF1 与 x 轴的交点横坐标为 36 ,不合题意,舍去.
(1)求 m 的值与椭圆 E 的方程;
(2)设 Q 为椭圆 E 上的一个动点,求 AP AQ 的取值范围.
【错解分析】本题易错点(1)在于计算椭圆的方程的量本 身就大,方法和计算技巧的运用很重要。
解:(1)点 A 代入圆 C 方程,得 (3 m)2 1 5 .
∵m<3,∴m=1.圆 C: (x 1)2 y2 5 .
13
12
y
P2
P1
P0
O
x
2
坐标为 4 ,则 cos 的值等于
.
5
答案: 3 3 4 10
【错解分析】本题常见错误写成 3 3 4 的相反数,这样的错误常常是忽略角度所在的象限。 10
【解题指导】本题主要考察三角函数的定义,及对两角和与差公式的理解。
【练习 7】已知 sin x sin cos , cos x sin cos ,则cos 2x
6 7 8 9
为( ) A.(1005,1004) C.(2009,2008)
B.(1004.1003) D.(2008,2007)
5
0
1
10 x
4
3
2
11
【范例 7】如图,点 P 是单位圆上的一个顶点,它从初始位置 P0 开
始沿单位圆按逆时针方向运动角
(
0
【高考数学】高三易错题138道
高三易错题一:集合与命题易错题错误原因分析1.已知集合{}220,M x x x m x R =-+=∈非空,则集合M 中所有元素之和为.入选理由:集合的互异性考的比较隐蔽2.已知A 是由实数组成的数集,满足:A a ∈则A a∈-11;且A ∉1.(1)若A ∈2,则A 中至少含有哪些元素;(2)A 能否为单元素集合?若能,求出集合A ;若不能,说明理由;(3)若A a ∈,则a11-是A 中的元素吗?说明理由.入选理由:集合新定义的理解3.已知集合A {|25}x x =-≤≤,B {|121}x m x m =+≤≤-,满足B A ⊆,求实数m 的取值范围入选理由:交并集运算注意∅是否存在以及端点处是否可取4.非空集合P 满足(1){}54321,,,,⊆P ;(2)若a P ∈,则6a P -∈,符合上述两个条件的集合P 的个数是_______________入选理由:子集个数的运算。
对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n 21n -22n-.高三易错题二:不等式易错题错误原因分析1.已知41,145a c a c -≤-≤--≤-≤,试求9a c -的取值范围.入选理由:待定系数法的应用2.解关于x 的不等式2(2)20mx m x +-->,并写出解集入选理由:字母讨论不全,没有条理导致分类不全3.若不等式20ax bx c ++>的解集为()1,2,求不等式20cx bx a ++>的解集。
入选理由:韦达定理的应用4.入选理由:图像法求不等式8.若不等式()11m x x ≤++-的解集为全集,求实数m 的求值范围.入选理由:绝对值函数的值域高三易错题三:函数16.已知18361log 9,18,,log 455n m m n -==试用表示.入选理由:对数的基本性质可否熟练高三易错题三:三角比和三角函数易错题错误原因分析1.已知sin sin(2)(1),m m βαβ=+≠求证:1tan()tan .1mmαβα++=-入选理由:角的拼凑(由结论去找条件)9.将一块圆心角为120︒,半径为20cm的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值.入选理由:模拟考试中得分率很低高三易错题四:数列1.已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围入选理由:数列单调性与函数单调性的区别错误原因分析2.设等差数列{}n a 的前n 项和为n S ,若{}nS 也是等差数列,且公差和{}n a 的公差相同,则数列{}n a 的首项和公差的和_________1=+d a ;入选理由:等差数列和前n 项和的公式入选理由:奇数项和偶数项之间的关系(相除和相减)项的和在等差数列10.已知数列{a n }满足:a 1=32,且a n =n 1n 13na n 2n N 2a n 1*≥∈--(,)+-求数列{a n }的通项公式;入选理由:对于分式递推公式。
备战2024年高考数学考试易错题专题10 直线和圆的方程(4大易错点分析)(原卷版)
专题10直线和圆的方程易错点一:使用两平行线间距离公式忽略系数相等致错(平行线求距离问题)距离问题技巧总结①两点间的距离:已知111222(,),(,)P x y P x y 则12P P ②点到直线的距离:0022Ax By C d A B③两平行线间的距离:两条平行直线11:0l Ax By C 与22:0l A x B y C 的距离公式d.易错提醒:在求两条平行线间距离时,先将两条直线y x ,前的系数统一,然后代入公式求算.1易错点二:求有关截距相等问题时易忽略截距为零的情况(直线截距式的考点)直线方程的五种形式的比较如下表:名称方程的形式常数的几何意义适用范围点斜式()11y y k x x -=-11(,)x y 是直线上一定点,k 是斜率不垂直于x 轴斜截式y kx b =+k 是斜率,b 是直线在y 轴上的截距不垂直于x 轴两点式112121y y x x y y x x --=--11(,)x y ,22(,)x y 是直线上两定点不垂直于x 轴和y 轴截距式1x y a b+=a 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距不垂直于x 轴和y 轴,且不过原点一般式2200Ax By C A B ++=+¹()A 、B 、C 为系数任何位置的直线给定一般式求截距相等时,具体方案如下:形如:第一种情况B A B C A C A C x y B C y x C By Ax000令令第二种情况:000时,横纵截距皆为 C C By Ax 截距之和为0时,横纵截距都为0也是此类模型易错提醒:求截距相等时,往往会忽略横纵截距为0的情况从而漏解例.已知直线l 过点(2,1)且在x ,y 轴上的截距相等(1)求直线l 的一般方程;(2)若直线l 在x ,y 轴上的截距不为0,点 ,P a b 在直线l 上,求33a b 的最小值.变式1.已知直线l 过点 1,2且在x y ,轴上的截距相等(1)求直线l 的一般方程;(2)若直线l 在x y ,轴上的截距不为0,点(,)P a b 在直线l 上,求33a b 的最小值.变式2.已知直线1l :240ax y ,直线2l :210bx y ,其中a ,b 均不为0.(1)若12l l ,且1l 过点 1,1,求a ,b ;(2)若12//l l ,且1l 在两坐标轴上的截距相等,求1l 与2l 之间的距离.变式3.已知直线1:2240l ax y a ,直线222:4480l a x y a (1)若直线1l 在两坐标轴上的截距相等,求实数a 的值;(2)若1l 2l ,求直线2l 的方程.1易错点三:求有关圆的切线问题易混淆“在”“过”(求有关圆的切线问题)技巧总结第一类:求过圆上一点 00,y x 的圆的切线方程的方法正规方法:第一步:求切点与圆心的连线所在直线的斜率k 第二步:利用垂直关系求出切线的斜率为k1第三步:利用点斜式 00x x k y y 求出切线方程注意:若0 k 则切线方程为0x x ,若k 不存在时,切线方程为0y y 秒杀方法:①经过圆222r y x 上一点 00,y x P 的切线方程为200r y y x x ②经过圆 222r b y a x 上一点 00,y x P 的切线方程为 200r b y b y a x a x ③经过圆022F Ey Dx y x 上一点 00,y x P 的切线方程为0220000F y y E x x D y y x x 第二类:求过圆外一点 00,y x 的圆的切线方程的方法方法一:几何法第一步:设切线方程为 00x x k y y ,即000 y kx y kx ,第二步:由圆心到直线的距离等于半径长,可求得k ,切线方程即可求出方法二:代数法第一步:设切线方程为 00x x k y y ,即00y kx kx y ,第二步:代入圆的方程,得到一个关于x 的一元二次方程,由0 可求得k ,切线方程即可求出注意:过圆外一点的切线必有两条,当上面两种方法求得的k 只有一个时,则另一条切线的斜率一定不存在,可得数形结合求出.第三类:求斜率为k 且与圆相切的切线方程的方法方法一:几何法第一步:设切线方程为m kx y ,即0m y kx第二步:由圆心到直线的距离等于半径长,可求得m ,切线方程即可求出.方法二:代数法第一步:设切线方程为m kx y ,第二步:代入圆的方程,得到一个关于x 的一元二次方程,由0 可求得m ,切线方程即可求出方法三:秒杀方法已知圆222r y x 的切线的斜率为k ,则圆的切线方程为12k r kx y 已知圆 222r b y a x 的切线的斜率为k ,则圆的切线方程为kab k r kx y 12工具:点与圆的位置关系判断圆的标准方程为)0()()(222 r r b y a x 一般方程为)04(02222 F E D F Ey Dx y x .①点在圆上:22020)()(r b y a x 0002020 F Ey Dx y x ②点在圆外:22020)()(r b y a x 0002020 F Ey Dx y x ③点在圆内:22020)()(r b y a x 0002020 F Ey Dx y x 易错提醒:求切线问题时首要任务确定点与圆的位置关系并采用对应方案进行处理例、圆的方程为122y x ,过点2321,的切线方程变形1、圆的方程为042422y x y x ,过点12323,的切线方程变形2、圆的方程为042422y x y x ,过点 11,的切线方程变形3、圆的方程为 11222 y x ,切线斜率为1方程为1易错点四:忽略斜率是否存在(与圆的代数结构有关的最值问题)处理此类问题宗旨:截距式与斜率式都可转化为动直线与圆相切时取得最值①截距式:求形如ny mx 的最值转化为动直线斜率的最值问题②斜率式:求形如nx m y 的最值转化为动直线截距的最值问题③距离式:求形如222)()(r b y a x 的最值转化为动点到定点的距离的平方的最值问题形如:若 y x P ,是定圆 222:r b y a x C 上的一动点,则求ny mx 和xy 这两种形式的最值思路1:几何法①ny mx 的最值,设t ny mx ,圆心 b a C ,到直线t ny mx 的距离为,22n m tnb ma d由r d 即可解得两个t 值,一个为最大值,一个为最小值②x y 的最值:xy 即点P 与原点连线的斜率,数形结合可求得斜率的最大值和最小值思路2:代数法①ny mx 的最值,设t ny mx ,与圆的方程联立,化为一元二次方程,由判别式等于0,求得t 的两个值,一个为最大值,一个为最小值.②x y 的最值:设xy t ,则tx y ,与圆的方程联立,化为一元二次方程,由判别式等于0,求得t 的两个值,一个为最大值,一个为最小值.易错提醒:截距式与斜率式在学习直线与圆的位置关系后,都可转化为动直线与圆相切时取得最值.同时,需要注意若是斜率式,则需考虑斜率是否存在例、已知()M m n ,为圆C :22414450x y x y 上任意一点.(1)求2m n 的最大值;(2)求32n m 的最大值和最小值;(3)求22m n 的最大值和最小值.变形1、如果实数x ,y 满足 22336x y ,求:(1)y x的最大值与最小值;(2)x y 的最大值与最小值;(3)22x y 的最大值和最小值.变形2、已知实数x ,y 满足方程22(2)3x y .(1)求y x的最大值和最小值;(2)求y x 的最大值和最小值;(3)求22x y 的最大值和最小值.变形3、已知实数x y 、满足222410x y x y .(1)求4y x 的最大值和最小值;。
历年高考数学复习易错题选--三角部分选
历年高考数学复习易错题选三角部分易错题选一、选择题:1.为了得到函数⎪⎭⎫⎝⎛-=62sin πx y 的图象,可以将函数x y 2cos =的图象( ) A 向右平移6π B 向右平移3π C 向左平移6π D 向左平移3π 错误分析:审题不仔细,把目标函数搞错是此题最容易犯的错误.答案: B2.函数⎪⎭⎫ ⎝⎛⋅+=2tan tan 1sin x x x y 的最小正周期为 ( )Aπ B π2 C2π D 23π错误分析:将函数解析式化为x y tan =后得到周期π=T ,而忽视了定义域的限制,导致出错.答案: B3.曲线y=2sin(x+)4πcos(x-4π)和直线y=21在y 轴右侧的交点按横坐标从小到大依次记为P 1、P 2、P 3……,则|P 2P 4|等于 ( ) A .πB .2πC .3πD .4π正确答案:A 错因:学生对该解析式不能变形,化简为Asin(ωx+ϑ)的形式,从而借助函数图象和函数的周期性求出|P 2P 4|。
4.下列四个函数y=tan2x ,y=cos2x ,y=sin4x ,y=cot(x+4π),其中以点(4π,0)为中心对称的三角函数有( )个A .1B .2C .3D .4正确答案:D 错因:学生对三角函数图象的对称性和平移变换未能熟练掌握。
5.函数y=Asin(ωx+ϕ)(ω>0,A ≠0)的图象与函数y=Acos(ωx+ϕ)(ω>0, A ≠0)的图象在区间(x 0,x 0+ωπ)上( )A .至少有两个交点B .至多有两个交点C .至多有一个交点D .至少有一个交点正确答案:C 错因:学生不能采用取特殊值和数形结合的思想方法来解题。
6.在∆ABC 中,2sinA+cosB=2,sinB+2cosA=3,则∠C 的大小应为( )A .6πB .3πC .6π或π65D .3π或32π正确答案:A 错因:学生求∠C 有两解后不代入检验。
2024届高考数学易错题专项(导数及其应用) 练习(附答案)
2024届高考数学易错题专项(导数及其应用) 练习 易错点一:忽略切点所在位置及求导简化形式(导数的概念及应用)易错点二:转化为恒成立后参变分离变号的前提条件(利用导数研究函数的单调性)1易错点三:误判最值与极值所在位置(利用导数研究函数的极值与最值)易错点四:零点不易求时忽略设零点建等式(利用导数研究函数零点问题)(2)讨论函数()f x 在区间(1,)+∞上的零点个数. 10.设函数2()(1)e x f x mx x -=++,其中m ∈R . (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点,设极大值点为a ,b 为()f x 的零点,求证:ln 2a b -≥. 11.已知函数()()ln f x x x =- (1)求()f x 的单调区间和极值;(2)讨论()()2g e x x xf ax -=-的零点个数.参考答案易错点一:忽略切点所在位置及求导简化形式(导数的概念及应用)1.已知函数()ln f x x =与()g x 的图象关于直线y x =对称,直线l 与()()1,e 1x g x h x +=-的图象均相切,则l的倾斜角为()8.已知函数()f x=(1)若12a=,求曲线(2)讨论()f x的单调性;的单调性)1易错点三:误判最值与极值所在位置(利用导数研究函数的极值与最值)1.已知函数()()2ln R x f x kx x kx k =--∈,在()20,e 有且只有一个极值点,则k 的取值范围是( )由图象知要使直线y a=与只需a<0或2e14a+ =,综上所述:易错点四:零点不易求时忽略设零点建等式(利用导数研究函数零点问题)1.已知函数()3296f x x x x a =-+-(R a ∈).。
2023届高考复习数学易错题专题(常用逻辑用语)汇编 (附答案)
2023届高考复习数学易错题专题(常用逻辑用语)汇编1.命题“∀a ,b >0,a +1b ≥2和b +1a ≥2至少有一个成立”的否定为( ) A .∀a ,b >0,a +1b<2和b +1a <2至少有一个成立 B .∀a ,b >0,a +1b≥2和b +1a ≥2都不成立 C .∃a ,b >0,a +1b<2和b +1a <2至少有一个成立 D .∃a ,b >0,a +1b≥2和b +1a ≥2都不成立 2.使“a b >”成立的一个充分不必要条件是()A.1a b >+ B.1a b > C.22a b > D.33a b >3.下列命题的否定是真命题的是( )A .a ∀∈R ,一元二次方程210x ax --=有实根B .每个正方形都是平行四边形C .m N N ∃∈D .存在一个四边形ABCD ,其内角和不等于360°4.“直线m 垂直于平面α内的无数条直线”是“m ⊥α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.设x >0,y >0,则“x +y =1”是“xy ≤14”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(多选)下列命题的否定中,真命题的是( )A .x R ∃∈,2104x x -+<B .所有正方形既是矩形也是菱形C .0a ∃>,2220x x a +++=D .所有三角形都有外接圆 7.(多选)下列选项中p 是q 的充分不必要条件的是( )A.:12p x <<,:12q x ≤≤B.:1p xy >,:1q x >,1y > C.1:1p x >,:1q x < D.p :两直线平行,q :内错角相等8.已知命题p :x 2-3x +2≤0,命题q :x 2-4x +4-m 2≤0.若p 是q 的充分不必要条件,则m 的取值范围是( )A .(-∞,0]B .[1,+∞)C .{0}D .(-∞,-1]∪[1,+∞)9.已知:0p a ≥;:q x R ∀∈,20x ax a -+>,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.(多选)已知命题:{11}p m mm ∃∈-≤≤∣,2532a a m -+<+,若p 是假命题,则实数a 的取值范围是( )A .a 0B .a 5C .a 0D .a 511.(多选)下列命题正确的是( )A .“a >1”是“1a <1”的充分不必要条件B .命题“∃x ∈(0,+∞),ln x =x -1”的否定是“∀x ∈(0,+∞),ln x ≠x -1”C .设x ,y ∈R,则“x ≥2且y ≥2”是“x 2+y 2≥4”的必要不充分条件D .设a ,b ∈R,则“a ≠0”是“ab ≠0”的必要不充分条件12.命题“0x ∀>11x+≥”的否定是___________. 13.若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________.14.已知():210110p x q m x m m -≤≤-≤≤+>,:,且q 是p 的必要不充分条件,则实数m 的取值范围是____________.15.命题“x ∃∈R ,210x x ++≤”的否定是______.16.已知命题“2,10x R ax ax ∀∈-+>”为真命题,则实数a 的取值范围是__________.17.设:12m x m α-≤≤,:24x β≤≤,m R ∈,α是β的必要条件,但α不是β的充分条件,则实数m 的取值范围为___________.18.若“∃x ∈[4,6],x 2-ax -1>0”为假命题,则实数a 的取值范围为________.19.在①x ∃∈R ,2220x ax a ++-=,②存在区间()2,4A =,(),3B a a =,使得A B =∅ ,这2个条件中任选一个,补充在下面问题中,并求解问题中的实数a .问题:求解实数a ,使得命题[]:1,2p x ∀∈,20x a -≥,命题:q ______,都是真命题.(若选择两个条件都解答,只按第一个解答计分.)答案解析1.命题“∀a ,b >0,a +1b ≥2和b +1a ≥2至少有一个成立”的否定为( ) A .∀a ,b >0,a +1b<2和b +1a <2至少有一个成立 B .∀a ,b >0,a +1b≥2和b +1a ≥2都不成立 C .∃a ,b >0,a +1b<2和b +1a <2至少有一个成立 D .∃a ,b >0,a +1b≥2和b +1a ≥2都不成立 【参考答案】D【答案解析】 “∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为:∃a ,b >0, a +1b ≥2和b +1a ≥2都不成立.2.使“a b >”成立的一个充分不必要条件是()A.1a b >+ B.1a b > C.22a b > D.33a b >【参考答案】A【答案解析】对于A 选项,若1a b >+,则a b >成立,即充分性成立,反之,若a b >,则 1a b >+不一定成立,所以1a b >+是“a b >”成立的一个充分不必要条件,对于B 选项,当0b <时,由1a b >得a b <,则a b >不成立,即1a b>不是充分条件,不满足条件;对于C 选项,由22a b >,若2a =-,1b =,则a b <,则a b >不一定成立,所以22a b >不是a b >的充分条件,不满足条件,对于D 选项,由33a b >可得a b >,则33a b >是a b >成立的充要条件,不满足题意。
(完整版)高中数学易错题(含答案)
高中数学易错题一.选择题(共6小题)1.已知在△ABC中,∠ACB=90°,BC=4,AC=3,P是AB上一点,则点P到AC,BC的距离乘积的最大值是()A.2B.3C.4D.52.在△ABC中,边AB=,它所对的角为15°,则此三角形的外接圆直径为()A.缺条件,不能求出B.C.D.3.在△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,则d的取值范围是()A.3<d<4 B.C.D.4.在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于()A.B.C.D.5.(2009•闸北区二模)过点A(1,﹣2),且与向量平行的直线的方程是()A.4x﹣3y﹣10=0 B.4x+3y+10=0 C.3x+4y+5=0 D.3x﹣4y+5=06.(2011•江西模拟)下面命题:①当x>0时,的最小值为2;②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象;④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12.其中正确的命题是()A.①②④B.②④C.②③D.③④二.填空题(共10小题)7.Rt△ABC中,AB为斜边,•=9,S△ABC=6,设P是△ABC(含边界)内一点,P到三边AB,BC,AC的距离分别为x,y,z,则x+y+z的取值范围是_________.8.(2011•武进区模拟)在△ABC中,,且△ABC的面积S=asinC,则a+c的值=_________.9.锐角三角形ABC中,角A,B,C所对的边分别是a,b,c.边长a,b是方程的两个根,且,则c边的长是_________.10.已知在△ABC中,,M为BC边的中点,则|AM|的取值范围是_________.11.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为_________.12.三角形ABC中,若2,且b=2,一个内角为300,则△ABC的面积为_________.13.△ABC中,AB=AC,,则cosA的值是_________.14.(2010•湖南模拟)已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,则x、y、z 所满足的关系式为_________.15.(2013•东莞二模)如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为_________.16.三角形ABC中,三个内角B,A,C成等差数列,∠B=30°,三角形面积为,则b=_________.三.解答题(共12小题)17.在△ABC中,AC=b,BC=a,a<b,D是△ABC内一点,且AD=a,∠ADB+∠C=π,问∠C为何值时,四边形ABCD的面积最大,并求出最大值.18.(2010•福建模拟)在△ABC中,角A,B,C所对的边分别是a,b,c,.(1)求sinC;(2)若c=2,sinB=2sinA,求△ABC的面积.19.已知外接圆半径为6的△ABC的边长为a、b、c,角B、C和面积S满足条件:S=a2﹣(b﹣c)2和sinB+sinC=(a,b,c为角A,B,C所对的边)(1)求sinA;(2)求△ABC面积的最大值.20.(2010•东城区模拟)在△ABC中,A,B,C是三角形的三个内角,a,b,c是三个内角对应的三边,已知b2+c2﹣a2=bc.(1)求角A的大小;(2)若sin2B+sin2C=2sin2A,且a=1,求△ABC的面积.21.小迪身高1.6m,一天晚上回家走到两路灯之间,如图所示,他发现自己的身影的顶部正好在A路灯的底部,他又向前走了5m,又发现身影的顶部正好在B路灯的底部,已知两路灯之间的距离为10m,(两路灯的高度是一样的)求:(1)路灯的高度.(2)当小迪走到B路灯下,他在A路灯下的身影有多长?22.(2008•徐汇区二模)在△ABC中,已知.(1)求AB;(2)求△ABC的面积.23.在△ABC中,已知.(1)求出角C和A;(2)求△ABC的面积S;(3)将以上结果填入下表.C A S情况①情况②24.(2007•上海)通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB 的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC 不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.25.(2010•郑州二模)在△ABC中,a、b、c分别是角A、B、C的对边,=(2b﹣c,cosC),=(a,cosA),且∥.(Ⅰ)求角A的大小;(Ⅱ)求2cos2B+sin(A﹣2B)的最小值.26.在△ABC中,A、B、C是三角形的内角,a、b、c是三内角对应的三边,已知,.(1)求∠A;(2)求△ABC的面积S.27.在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(Ⅰ)求角B的值;(Ⅱ)若a+c=4,求△ABC面积S的最大值.28.已知△ABC的外接圆半径,a、b、C分别为∠A、∠B、∠C的对边,向量,,且.(1)求∠C的大小;(2)求△ABC面积的最大值.高中数学易错题参考答案与试题解析一.选择题(共6小题)1.已知在△ABC中,∠ACB=90°,BC=4,AC=3,P是AB上一点,则点P到AC,BC的距离乘积的最大值是()A.2B.3C.4D.5考点:三角形中的几何计算.专题:计算题.分析:设点P到AC,BC的距离分别是x和y,最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,进而求得x和y的关系式,进而表示出xy的表达式,利用二次函数的性质求得xy的最大值.解答:解:如图,设点P到AC,BC的距离分别是x和y,最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,即=4,所以4x=12﹣3y,y=,求xy最大,也就是那个矩形面积最大.xy=x•=﹣•(x2﹣3x),∴当x=时,xy有最大值3故选B.点评:本题主要考查了三角函数的几何计算.解题的关键是通过题意建立数学模型,利用二次函数的性质求得问题的答案.2.在△ABC中,边AB=,它所对的角为15°,则此三角形的外接圆直径为()A.缺条件,不能求出B.C.D.考点:三角形中的几何计算.专题:计算题.分析:直接利用正弦定理,两角差的正弦函数,即可求出三角形的外接圆的直径即可.解答:解:由正弦定理可知:====.故选D.点评:本题是基础题,考查三角形的外接圆的直径的求法,正弦定理与两角差的正弦函数的应用,考查计算能力.3.在△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,则d的取值范围是()A.3<d<4 B.C.D.考点:三角形中的几何计算.专题:数形结合;转化思想.分析:画出图形,利用点到直线的距离之间的转化,三角形两边之和大于第三边,求出最小值与最大值.解答:解:由题意△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,在图(1)中,d=CE+PE+PF>CD==,在图(2)中,d=CE+EP+FP<CE+EG<AC=4;∴d的取值范围是;故选D.点评:本题是中档题,考查不等式的应用,转化思想,数形结合,逻辑推理能力,注意,P为△ABC内任一点,不包含边界.4.在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于()A.B.C.D.考点:三角形中的几何计算.专题:计算题.分析:由题意可知双曲线的焦点坐标就是A,B,利用正弦定理以及双曲线的定义化简即可得到答案.解答:解:由题意可知双曲线的焦点坐标就是A,B,由双曲线的定义可知BC﹣AB=2a=10,c=6,===;故选D.点评:本题是基础题,考查双曲线的定义,正弦定理的应用,考查计算能力,常考题型.5.(2009•闸北区二模)过点A(1,﹣2),且与向量平行的直线的方程是()A.4x﹣3y﹣10=0 B.4x+3y+10=0 C.3x+4y+5=0 D.3x﹣4y+5=0考点:三角形中的几何计算.专题:计算题.分析:通过向量求出直线的斜率,利用点斜式方程求出最新的方程即可.解答:解:过点A(1,﹣2),且与向量平行的直线的斜率为﹣,所以所求直线的方程为:y+2=﹣(x﹣1),即:3x+4y+5=0.故选C.点评:本题是基础题,考查直线方程的求法,注意直线的方向向量与直线的斜率的关系,考查计算能力.6.(2011•江西模拟)下面命题:①当x>0时,的最小值为2;②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象;④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12.其中正确的命题是()A.①②④B.②④C.②③D.③④考点:三角形中的几何计算;恒过定点的直线.专题:应用题.分析:①由于基本不等式等号成立的条件不具备,故的最小值大于2,故①不正确.②设过定点P(2,3)的直线的方程,求出它与两坐标轴的交点,根据条件可得4k2+14k+9=0,或4k2﹣38k+9=0.而这两个方程的判别式都大于0,故每个方程都有两个解,故满足条件的直线有四条.③将函数y=cos2x的图象向右平移个单位,可以得到函数y﹣sin(2x﹣)的图象,故③不正确.④若△ABC中,∠A=60°,a=4,则此三角形周长可以为12,此时,三角形是等边三角形.解答:解:①∵≥2=2,(当且仅当x=0时,等号成立),故当x>0时,的最小值大于2,故①不正确.②设过定点P(2,3)的直线的方程为y﹣3=k(x﹣2),它与两坐标轴的交点分别为(2﹣,0),(0,3﹣2k),根据直线与两坐标轴围成的面积为13=,化简可得4k2+14k+9=0,或4k2﹣38k+9=0.而这两个方程的判别式都大于0,故每个方程都有两个解,故满足条件的直线有四条,故②正确.③将函数y=cos2x的图象向右平移个单位,可以得到函数y=cos2(x﹣)=sin[﹣(2x﹣)]=sin()=﹣sin(2x﹣)的图象,故③不正确.④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12,此时,三角形是等边三角形,故④正确.故选B.点评:本题基本不等式取等号的条件,过定点的直线,三角函数的图象变换,诱导公式的应用,检验基本不等式等号成立的条件,是解题的易错点.二.填空题(共10小题)7.Rt△ABC中,AB为斜边,•=9,S△ABC=6,设P是△ABC(含边界)内一点,P到三边AB,BC,AC的距离分别为x,y,z,则x+y+z的取值范围是[,4].考点:向量在几何中的应用;三角形中的几何计算.专题:综合题.分析:设三边分别为a,b,c,利用正弦定理和余弦定理结合向量条件利用三角形面积公式即可求出三边长.欲求x+y+z的取值范围,利用坐标法,将三角形ABC放置在直角坐标系中,通过点到直线的距离将求x+y+z的范围转化为,然后结合线性规划的思想方法求出范围即可.解答:解:△ABC为Rt△ABC,且∠C=90°,设三角形三内角A、B、C对应的三边分别为a,b,c,∵(1)÷(2),得,令a=4k,b=3k(k>0)则∴三边长分别为3,4,5.以C为坐标原点,射线CA为x轴正半轴建立直角坐标系,则A、B坐标为(3,0),(0,4),直线AB方程为4x+3y﹣12=0.设P点坐标为(m,n),则由P到三边AB、BC、AB的距离为x,y,z.可知,且,故,令d=m+2n,由线性规划知识可知,如图:当直线分别经过点A、O时,x+y+z取得最大、最小值.故0≤d≤8,故x+y+z的取值范围是.故答案为:[].点评:本题主要考查了解三角形中正弦定理、余弦定理、平面向量数量积的运算、简单线性规划思想方法的应用,综合性强,难度大,易出错.8.(2011•武进区模拟)在△ABC中,,且△ABC的面积S=asinC,则a+c的值=4.考点:二倍角的余弦;三角形中的几何计算.专题:计算题.分析:首先根据三角形的面积公式求出b的值,然后将所给的式子写成+=3进而得到acosC+ccosA+a+c=6,再根据在三角形中acosC+ccosA=b=2,即可求出答案.解答:解:∵S=absinC=asinC∴b=2∴acos2+ccos2=3∴+=3即a(cosC+1)+c(cosA+1)=6∴acosC+ccosA+a+c=6∵acosC+ccosA=b=2∴2+a+c=6∴a+c=4故答案为:4.点评:本题考查了二倍角的余弦以及三角形中的几何运算,解题的关键是巧妙的将所给的式子写成+=3的形式,属于中档题.9.锐角三角形ABC中,角A,B,C所对的边分别是a,b,c.边长a,b是方程的两个根,且,则c边的长是.考点:三角形中的几何计算.专题:计算题.分析:先根据求得sin(A+B)的值,进而求得sinC的值,根据同角三角函数的基本关系求得cosC,根据韦达定理求得a+b和ab的值,进而求得a2+b2,最后利用余弦定理求得c的值.解答:解:∵,∴sin(A+B)=∴sinC=sin(π﹣A﹣B)=sin(A+B)=∴cosC==∵a,b是方程的两根∴a+b=2,ab=2,∴a2+b2=(a+b)2﹣2ab=8∴c===故答案为:点评:本题主要考查了三角形中的几何计算,余弦定理的应用,韦达定理的应用.考查了考生综合运用基础知识的能力.10.已知在△ABC中,,M为BC边的中点,则|AM|的取值范围是.考点:三角形中的几何计算;正弦定理.专题:计算题;解三角形.分析:构造以BC为正三角形的外接圆,如图满足,即可观察推出|AM|的取值范围.解答:解:构造以BC为正三角形的外接圆,如图,显然满足题意,由图可知红A处,|AM|值最大为,A与B(C)接近时|AM|最小,所以|AM|∈.故答案为:.点评:本题考查三角形中的几何计算,构造法的应用,也可以利用A的轨迹方程,两点减距离公式求解.11.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.考点:棱柱的结构特征;三角形中的几何计算.专题:计算题.分析:由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.解答:解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.点评:本小题主要考查棱柱的结构特征、三角形中的几何计算等基础知识,考查空间想象力.属于基础题.12.三角形ABC中,若2,且b=2,一个内角为300,则△ABC的面积为1或.考点:三角形中的几何计算.专题:计算题.分析:先利用2,转化得到2acosB=c;再借助于余弦定理得a=b=2;再分∠A=30°以及∠C=30°两种情况分别求出对应的面积.解答:解:因为2,转化为边长和角所以有2acosB=c可得:cosB==⇒a2=b2⇒a=b=2.当∠A=30°=∠B时,∠C=120°,此时S△ABC=×2×2×sinC=;当∠C=30°时,∠A=∠B=75°,此时S△ABC=×2×2×sinC=1.故答案为:或1.点评:本题主要考查余弦定理的应用以及三角形中的几何计算.解决本题的关键在于利用2,转化得到2acosB=c;再借助于余弦定理得a=b=2.13.△ABC中,AB=AC,,则cosA的值是.考点:三角形中的几何计算.专题:计算题.分析:根据AB=AC可推断出B=C,进而利用三角形内角和可知cosA=cos(π﹣2B)利用诱导公式和二倍角公式化简整理,把cosB的值代入即可.解答:解:∵AB=AC,∴B=C∴cosA=cos(π﹣2B)=cos2B=2cos2B﹣1=﹣1=﹣故答案为:﹣点评:本题主要考查了三角形中的几何计算,二倍角公式的应用.考查了学生综合运用三角函数基础知识的能力.14.(2010•湖南模拟)已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,则x、y、z 所满足的关系式为x+y+z=3.考点:三角形中的几何计算.专题:计算题.分析:设等边三角形的边长为a,高为h将P与三角形的各顶点连接,进而分别表示出三角形三部分的面积,相加应等于总的面积建立等式求得x+y+z的值.解答:解:设等边三角形的边长为a,高为h将P与三角形的各顶点连接根据面积那么:ax+ay+az=ah所以x+y+z=h因为等边三角形的边长为2,所以高为h=3所以x.y.z所满足的关系是为:x+y+z=3故答案为:3点评:本题主要考查了三角形中的几何计算.考查了学生综合分析问题的能力和转化和化归的思想.15.(2013•东莞二模)如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为.考点:三角形中的几何计算.专题:计算题.分析:根据已知可得△AOC是等边三角形,从而得到OA=AC=2,则可以利用勾股定理求得AD的长.解答:解:(2)∵OA=OC,∠AOC=60°,∴△AOC是等边三角形,∴OA=AC=2,∵∠OAD=90°,∠D=30°,∴AD=•AO=.故答案为:.点评:本题考查和圆有关的比例线段,考查同弧所对的圆周角等于弦切角,本题在数据运算中主要应用含有30°角的直角三角形的性质,本题是一个基础题.16.三角形ABC中,三个内角B,A,C成等差数列,∠B=30°,三角形面积为,则b=.考点:三角形中的几何计算.专题:计算题.分析:先利用三个内角成等差数列求得A,根据,∠B=30°求得C,然后利用tan30°=表示出a,代入三角形面积公式求得b.解答:解:三角形ABC中,三个内角A,B,C成等差数列A+B+C=3A=180°∴∠A=60°∵∠A=30°,∴C=90S=ab=∵tan30°=∴a=∴b=故答案为:点评:本题主要考查了三角形的几何计算.考查了学生基础知识综合运用的能力.三.解答题(共12小题)17.在△ABC中,AC=b,BC=a,a<b,D是△ABC内一点,且AD=a,∠ADB+∠C=π,问∠C为何值时,四边形ABCD的面积最大,并求出最大值.考点:三角形中的几何计算.专题:计算题.分析:设出BD,利用余弦定理分别在△ABC,△ABD中表示出AB,进而建立等式求得b﹣x=2acosC代入四边形ABCD的面积表达式中,利用正弦函数的性质求得问题的答案.解答:解:设BD=x,则由余弦定理可知b2+a2﹣2abcosC=AB2=a2+x2+2axcosC∴b﹣x=2acosC.∵S=(absinC)﹣(axsinC)=a(b﹣x)sinC=a2•sin2C,∴当C=时,S有最大值.点评:本题主要考查了三角形的几何计算.注意灵活利用正弦定理和余弦定理以及其变形公式.18.(2010•福建模拟)在△ABC中,角A,B,C所对的边分别是a,b,c,.(1)求sinC;(2)若c=2,sinB=2sinA,求△ABC的面积.考点:三角形中的几何计算;二倍角的正弦.专题:计算题.分析:(1)利用同角三角函数关系及三角形内角的范围可求;(2)利用正弦定理可知b=2a,再利用余弦定理,从而求出a、b的值,进而可求面积.解答:解:(1)由题意,,∴(2)由sinB=2sinA可知b=2a,又22=a2+b2﹣2abcosC,∴a=1,b=2,∴点评:此题考查学生灵活运用三角形的面积公式,灵活运用正弦、余弦定理求值,是一道基础题题.19.已知外接圆半径为6的△ABC的边长为a、b、c,角B、C和面积S满足条件:S=a2﹣(b﹣c)2和sinB+sinC=(a,b,c为角A,B,C所对的边)(1)求sinA;(2)求△ABC面积的最大值.考点:三角形中的几何计算;正弦定理的应用;余弦定理的应用.专题:计算题;综合题.分析:(1)由三角形的面积公式,结合余弦定理求出的值,进而有sinA=.(2)利用,结合正弦定理,求出b+c的值,利用三角形的面积公式和基本不等式求出面积的最大值.解答:解:(1)得进而有(2)∵,∴即所以故当b=c=8时,S最大=.点评:本题是中档题,考查三角函数的化简,正弦定理、余弦定理的应用,三角形的面积公式以及基本不等式的应用,考查计算能力,逻辑推理能力.20.(2010•东城区模拟)在△ABC中,A,B,C是三角形的三个内角,a,b,c是三个内角对应的三边,已知b2+c2﹣a2=bc.(1)求角A的大小;(2)若sin2B+sin2C=2sin2A,且a=1,求△ABC的面积.考点:三角形中的几何计算;正弦定理.专题:计算题.分析:(1)利用余弦定理和题设等式求得cosA的值,进而求得A.(2)利用正弦定理把题设中的正弦转化成边的关系,进而求得bc的值,最后利用三角形面积公式求得答案.解答:解:(1)因为b2+c2﹣a2=2bccosA=bc所以所以(2)因为sin2B+sin2C=2sin2A所以b2+c2=2a2=2因为b2+c2﹣a2=bc所以bc=1所以=点评:本题主要考查了正弦定理和余弦定理的应用.注意挖掘题设中关于边,角问题的联系.21.小迪身高1.6m,一天晚上回家走到两路灯之间,如图所示,他发现自己的身影的顶部正好在A路灯的底部,他又向前走了5m,又发现身影的顶部正好在B路灯的底部,已知两路灯之间的距离为10m,(两路灯的高度是一样的)求:(1)路灯的高度.(2)当小迪走到B路灯下,他在A路灯下的身影有多长?考点:三角形中的几何计算.专题:综合题.分析:(1)由题意画出简图,设CN=x,则QD=5﹣x,路灯高BD为h,利用三角形相似建立方程解德;(2)由题意当小迪移到BD所在线上(设为DH),连接AH交地面于E,则DE长即为所求的影长,利用三角形相似建立方程求解即可.解答:解:如图所示,设A、B为两路灯,小迪从MN移到PQ,并设C、D分别为A、B灯的底部.由题中已知得MN=PQ=1.6m,NQ=5m,CD=10m(1)设CN=x,则QD=5﹣x,路灯高BD为h∵△CMN∽△CBD,即⇒又△PQD∽△ACD即⇒由①②式得x=2.5m,h=6.4m,即路灯高为6.4m.(2)当小迪移到BD所在线上(设为DH),连接AH交地面于E.则DE长即为所求的影长.∵△DEH∽△CEA⇒⇒解得DE=m,即他在A路灯下的身影长为m.点评:此题考查了学生理解题意的能力,还考查了利用三角形相似及方程思想求解变量及学生的计算能力.22.(2008•徐汇区二模)在△ABC中,已知.(1)求AB;(2)求△ABC的面积.考点:三角形中的几何计算.专题:计算题.分析:(1)求AB长,关键是求sinB,sinC,利用已知条件可求;(2)根据三角形的面积公式,故关键是求sinA的值,利用sinA=sin(B+C)=sinBcosC+cosBsinC可求解答:解:(1)设AB、BC、CA的长分别为c、a、b,,∴,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)因为.∴sinA=sin(B+C)=sinBcosC+cosBsinC=﹣﹣﹣﹣﹣﹣﹣(12分)故所求面积﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题的考点是三角形的几何计算,主要考查正弦定理得应用,考查三角形的面积公式,关键是正确记忆公式,合理化简.23.在△ABC中,已知.(1)求出角C和A;(2)求△ABC的面积S;(3)将以上结果填入下表.C A S情况①情况②考点:三角形中的几何计算.专题:计算题;分类讨论.分析:(1)先根据正弦定理以及大角对大边求出角C,再根据三角形内角和为180°即可求出角A.(2)分情况分别代入三角形的面积计算公式即可得到答案;(3)直接根据前两问的结论填写即可.解答:解:(1)∵,…(2分)∵c>b,C>B,∴C=60°,此时A=90°,或者C=120°,此时A=30°…(2分)(2)∵S=bcsinA∴A=90°,S=bcsinA=;A=30°,S=bcsinA=.…(2分)(3)点评:本题主要考查三角形中的几何计算.解决本题的关键在于根据正弦定理以及大角对大边求出角C.24.(2007•上海)通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB 的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC 不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.考点:三角形中的几何计算;解三角形.专题:计算题;数形结合.分析:(1)由正弦定理知===2R,根据题目中所给的条件,不难得出弦AB的长;(2)若∠C是钝角,故其余弦值小于0,由余弦定理得到a2+b2<c2<(2R)2,即可证得结果;(3)根据图形进行分类讨论判断三角形的形状与两边a,b的关系,以及与直径的大小的比较,分成三类讨论即可.解答:解:(1)在△ABC中,BC=2,∠ABC=45°===2R⇒b=2sinA=∵A为锐角∴A=30°,B=45°∴C=75°∴AB=2Rsin75°=4sin75°=;(2)∠C为钝角,∴cosC<0,且cosC≠1cosC=<0∴a2+b2<c2<(2R)2即a2+b2<4R2(8分)(3)a>2R或a=b=2R时,△ABC不存在当时,A=90,△ABC存在且只有一个∴c=当时,∠A=∠B且都是锐角sinA=sinB=时,△ABC存在且只有一个∴c=2RsinC=2Rsin2AC=当时,∠B总是锐角,∠A可以是钝角,可是锐角∴△ABC存在两个∠A<90°时,c=∠A>90°时,c=点评:本题考查三角形中的几何计算,综合考查了三角形形状的判断,解三角形,三角形的外接圆等知识,综合性很强,尤其是第三问需要根据a,b两边以及直径的大小比较确定三角形的形状.再在这种情况下求第三边的表达式,本解法主观性较强.难度较大.25.(2010•郑州二模)在△ABC中,a、b、c分别是角A、B、C的对边,=(2b﹣c,cosC),=(a,cosA),且∥.(Ⅰ)求角A的大小;(Ⅱ)求2cos2B+sin(A﹣2B)的最小值.考点:三角形中的几何计算.专题:计算题.分析:(Ⅰ)根据∥和两向量的坐标可求得,利用正弦定理把边转化成角的正弦,然后利用两角和公式化简整理求得cosA的值,进而求得A(Ⅱ)把A的值代入,利用两角和公式整理后,利用正弦函数的性质求得2cos2B+sin(A﹣2B)的最小值.解答:解:(Ⅰ)由得.由正弦定理得,.∴.∵A,B∈(0,π),∴sinB≠0,,∴.(Ⅱ)解:∵∴2cos2B+sin(A﹣2B)==,.2cos2B+sin(A﹣2B)的最小值为点评:本题主要考查了三角形中的几何计算,正弦定理的应用和两角和公式的化简求值.注意综合运用三角函数的基础公式,灵活解决三角形的计算问题.26.在△ABC中,A、B、C是三角形的内角,a、b、c是三内角对应的三边,已知,.(1)求∠A;(2)求△ABC的面积S.考点:正弦定理的应用;三角形中的几何计算.专题:计算题.分析:(1)由已知结合正弦与余弦定理=化简可求b,由余弦定理可得,cosA=代入可求cosA,及A(2)代入三角形的面积公式可求解答:解:(1)∵∵∴=化简可得,b2﹣2b﹣8=0∴b=4由余弦定理可得,cosA==∴;(2)==点评:本题主要考查了解三角形的基本工具:正弦定理与余弦定理的应用,解题的关键是具备综合应用知识解决问题的能力27.在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(Ⅰ)求角B的值;(Ⅱ)若a+c=4,求△ABC面积S的最大值.考点:三角函数中的恒等变换应用;三角形中的几何计算.专题:计算题.分析:(Ⅰ)利用正弦定理化简(2a+c)cosB+bcosC=0,得到三角形的角的关系,通过两角和与三角形的内角和,求出B的值;(Ⅱ)通过S=,利用B=以及a+c=4,推出△ABC面积S的表达式,通过平方法结合a的范围求出面积的最大值.解答:解(Ⅰ)由正弦定理得(2sinA+sinC)cosB+sinBcosC=0,即2sinAcosB+sinCcosB+cosCsinB=0得2sinACcosB+sin(C+B)=0,因为A+B+C=π,所以sin(B+C)=sinA,得2sinAcosB+sinA=0,因为sinA≠0,所以cosB=﹣,又B为三角形的内角,所以B=.(Ⅱ)因为S=,由B=及a+c=4得S===,又0<a<4,所以当a=2时,S取最大值…(3分)点评:本题是中档题,考查三角形面积的最值,三角形的边角关系,三角函数的公式的灵活应用,考查计算能力.28.已知△ABC的外接圆半径,a、b、C分别为∠A、∠B、∠C的对边,向量,,且.(1)求∠C的大小;(2)求△ABC面积的最大值.考点:三角函数的恒等变换及化简求值;三角形中的几何计算.专题:综合题.分析:(1)由,推出,利用坐标表示化简表达式,结合余弦定理求角C;(2)利用(1)中c2=a2+b2﹣ab,应用正弦定理和基本不等式,求三角形ABC的面积S的最大值.解答:解答:解:(1)∵∴且,由正弦定理得:化简得:c2=a2+b2﹣ab由余弦定理:c2=a2+b2﹣2abcosC∴,∵0<C<π,∴(2)∵a2+b2﹣ab=c2=(2RsinC)2=6,∴6=a2+b2﹣ab≥2ab﹣ab=ab(当且仅当a=b时取“=”),所以,.点评:本题考查数量积判断两个平面向量的垂直关系,正弦定理,余弦定理的应用,考查学生分析问题解决问题的能力,是中档题.。
2023届高考复习数学易错题专题(指数函数、对数函数、幂函数、二次函数)汇编 (附答案)
2023届高考复习数学易错题专题(指数函数、对数函数、幂函数、二次函数)汇编1.在同一直角坐标系中,函数f (x )=2-ax ,g (x )=log a (x +2)(a >0,且a ≠1)的图象大致为( )2.若函数f (x )=ax 2+2ax +1在[-1,2]上有最大值4,则a 的值为( )A.38 B .-3 C.38或-3 D .43.函数f (x )=|a x -a |(a >0且a ≠1)的图象可能为( )4.若函数y =log a (2-ax )在[0,1]上单调递减,则a 的取值范围是( )A .(0,1)B .(1,2)C .(0,2)D .(1,+∞)5.已知lg x +lg y =2lg(x -2y ),则x y =( )A .4B .1C .4或1D .546.已知函数f (x )=ln(1+x )+ln(1-x ).若f (2a -1)<f (a ),则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,13∪(1,+∞) B.(0,1)C .(-∞,0)∪⎝⎛⎭⎫0,13 D.⎝⎛⎭⎫0,13 7、已知函数f (x )=⎩⎪⎨⎪⎧x 2+(4a -3)x +3a ,x <0,log a (x +1)+2,x ≥0(a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A.⎝⎛⎦⎤0,34 B.⎣⎡⎭⎫34,1 C.⎣⎡⎦⎤23,34 D.⎝⎛⎦⎤23,348.已知函数f (x )的定义域为R ,且在[0,+∞)上是增函数,g (x )=-f (|x |),若g (lg x )>g (1),则x 的取值范围是( )A .(0,10)B .(10,+∞)C .⎝⎛⎭⎫110,10D .⎝⎛⎭⎫0,110∪(10,+∞)9.若函数f (x )=12x 2+a |x |在区间[3,4]和[-2,-1]上均为增函数,则实数a 的取值范围是( )A .[4,6]B .[-6,-4]C .[2,3]D .[-3,-2]10.(多选)若实数a ,b 满足log a 2<log b 2,则下列关系中可能成立的有( )A .0<b <a <1B .0<a <1<bC .a >b >1D .0<b <1<a 11.已知函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,0≤x <1,log 2(x +1),x ≥1,g (x )=ax 2+2x +a -1,若对任意的实数x 1∈[0,+∞),总存在实数x 2∈[0,+∞),使得f (x 1)=g (x 2)成立,则实数a 的取值范围为( )A.⎝⎛⎦⎤-∞,74 B.⎣⎡⎭⎫74,+∞ C.⎣⎡⎭⎫0,74 D.⎣⎡⎦⎤0,74 12.已知不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,则a 的取值范围是( )A .[1,+∞)B .[-1,4)C .[-1,+∞)D .[-1,6] 13.(多选)已知函数f (x )=3x 2-6x -1,则( )A .函数f (x )有两个不同的零点B .函数f (x )在(-1,+∞)上单调递增C .当a >1时,若f (a x )在x ∈[-1,1]上的最大值为8,则a =3D .当0<a <1时,若f (a x )在x ∈[-1,1]上的最大值为8,则a =1314.已知函数y =ax 2-2x +3在[2,+∞)上是减函数,则实数a 的取值范围是________.15.若函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________.16.已知函数f (x )=a x +b (a >0,且a ≠1)的定义域和值域都是[-1,0],则a +b =_______.17.已知函数y =a 4-ax (a >0且a ≠1)在区间[1,2]上是减函数,则实数a 的取值范围是________.18、已知函数y =log 12(6-ax +x 2)在[1,2]上是增函数,则实数a 的取值范围为________.19.已知点P (a ,b )在函数y =e 2x 的图象上,且a >1,b >1,则a ln b 的最大值为________.20.已知函数f (x )=log a (x +3)在区间[-2,-1]上总有|f (x )|<2,则实数a 的取值范围为________.又x =0时,y =12,没有选项同时符合这3个条件.4.若函数y =log a (2-ax )在[0,1]上单调递减,则a 的取值范围是( )A .(0,1)B .(1,2)C .(0,2)D .(1,+∞)【参考答案】B【答案解析】令u =2-ax ,因为a >0,所以u =2-ax 在定义域上是减函数,要使函数y =log a (2-ax )在[0,1]上单调递减,则函数y =log a u 在其定义域上必为增函数,故a >1.当x ∈[0,1]时,u min =2-a ×1=2-a .因为2-ax >0在x ∈[0,1]时恒成立,所以u min >0,即2-a >0,a <2.综上可知,a 的取值范围是(1,2).5.已知lg x +lg y =2lg(x -2y ),则x y =( )A .4B .1C .4或1D .54 【参考答案】A【答案解析】由题意得⎩⎪⎨⎪⎧ lg xy =lg (x -2y )2,x -2y >0,x >0,y >0,∴⎩⎪⎨⎪⎧xy =(x -2y )2,①x >2y >0. ②由①得x 2-5xy +4y 2=0,∴⎝⎛⎭⎫x y 2-5x y+4=0,解得x y =4或x y =1(不满足②,舍去),∴x y 4. 6.已知函数f (x )=ln(1+x )+ln(1-x ).若f (2a -1)<f (a ),则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,13∪(1,+∞) B.(0,1) C .(-∞,0)∪⎝⎛⎭⎫0,13 D.⎝⎛⎭⎫0,13【参考答案】D【答案解析】由⎩⎪⎨⎪⎧1+x >0,1-x >0可得-1<x <1,所以函数f (x )的定义域为(-1,1).因为f (x )=ln(1+x )+ln(1-x )=ln(1-x 2),所以f (-x )=ln [1-(-x )2]=ln(1-x 2)=f (x ),所以f (x )为偶函数.易知y =1-x 2在(-1,0)上单调递增,在(0,1)上单调递减,且y =ln x 在(0,+∞)上单调递增,所以f (x )在(0,1)上单调递减,在(-1,0)上单调递增.由f (2a -1)<f (a )可得f (|2a -1|)<f (|a |),所以⎩⎪⎨⎪⎧ -1<2a -1<1,-1<a <1,|2a -1|>|a |,解得0<a <13.故选D.7、已知函数f (x )=⎩⎪⎨⎪⎧x 2+(4a -3)x +3a ,x <0,log a (x +1)+2,x ≥0(a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A.⎝⎛⎦⎤0,34B.⎣⎡⎭⎫34,1C.⎣⎡⎦⎤23,34D.⎝⎛⎦⎤23,34【参考答案】C 【答案解析】由题意,分段函数f (x )在R 上单调递减,可得对数的底数需满足0<a <1,根据二次函数图象开口向上,二次函数在⎝⎛⎭⎫-∞,-4a -32上单调递减,可得-4a -32≥0,解得a ≤34.又由[x 2+(4a -3)x +3a ]min ≥[log a (x +1)+2]max ,得3a ≥2,又a ∈(0,1),解得1>a ≥23.综上,a 的取值范围是⎣⎡⎦⎤23,34.8.已知函数f (x )的定义域为R ,且在[0,+∞)上是增函数,g (x )=-f (|x |),若g (lg x )>g (1),则x 的取值范围是( )A .(0,10)B .(10,+∞)C .⎝⎛⎭⎫110,10 D .⎝⎛⎭⎫0,110∪(10,+∞) 【参考答案】C【答案解析】∵g (-x )=-f (|-x |)=g (x ),∴g (x )是偶函数,又f (x )在[0,+∞)上是增函数,∴g (x )在[0,+∞)上是减函数.∵g (lg x )>g (1),∴g (|lg x |)>g (1),∴|lg x |<1,解得110<x <10,选C.9.若函数f (x )=12x 2+a |x |在区间[3,4]和[-2,-1]上均为增函数,则实数a 的取值范围是( )A .[4,6]B .[-6,-4]C .[2,3]D .[-3,-2]【参考答案】D【答案解析】f (x )=12x 2+a |x |,∵f (-x )=12(-x )2+a |-x |=12x 2+a |x |=f (x ),∴f (x )为实数集上的偶函数,∵f (x )在区间[3,4]和[-2,-1]上均为增函数,∴f (x )在[3,4]上递增,在[1,2]上递减,∴函数f (x )=12x 2+a |x |,x >0的对称轴x =-a ∈[2,3],得a ∈[-3,-2],故选D.10.(多选)若实数a ,b 满足log a 2<log b 2,则下列关系中可能成立的有( )A .0<b <a <1B .0<a <1<bC .a >b >1D .0<b <1<a【参考答案】ABC【答案解析】当0<b <a <1时,log 2b <log 2a <0,即1log b 2<1log a 2<0,故log a 2<log b 2,A 正确;当0<a <1<b 时,log b 2>0,log a 2<0,故log a 2<log b 2,B 正确;当a >b >1时,log 2a >log 2b>0,即1log a 2>1log b 2>0,故log a 2<log b 2,C 正确;当0<b <1<a 时,log b 2<0,log a 2>0,故log a 2>log b 2,D 错误.11.已知函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,0≤x <1,log 2(x +1),x ≥1,g (x )=ax 2+2x +a -1,若对任意的实数x 1∈[0,+∞),总存在实数x 2∈[0,+∞),使得f (x 1)=g (x 2)成立,则实数a 的取值范围为( )A.⎝⎛⎦⎤-∞,74 B.⎣⎡⎭⎫74,+∞ C.⎣⎡⎭⎫0,74 D.⎣⎡⎦⎤0,74 【参考答案】D【答案解析】因为对任意的实数x 1∈[0,+∞),总存在实数x 2∈[0,+∞),使得f (x 1)=g (x 2)成立,所以函数f (x )的值域是函数g (x )的值域的子集.当0≤x <1时,f (x )=x 2-x +1,此时f (x )∈⎣⎡⎦⎤34,1;当x ≥1时,f (x )=log 2(x +1)单调递增,f (x )∈[1,+∞),所以函数f (x )的值域为⎣⎡⎭⎫34,+∞.对于函数g (x )=ax 2+2x +a -1,当a =0时,函数g (x )=2x -1在[0,+∞)上单调递增,此时g (x )的值域为[-1,+∞),满足⎣⎡⎭⎫34,+∞⊆[-1,+∞); 当a ≠0时,要使函数f (x )的值域是函数g (x )的值域的子集,则二次函数的图象开口必须向上,即a >0,此时函数g (x )的对称轴为x =-1a <0,故函数g (x )在[0,+∞)上单调递增,此时g (x )的值域为[a -1,+∞),由⎣⎡⎭⎫34,+∞⊆[a -1,+∞)得,a -1≤340<a ≤74.综上可得:实数a 的取值范围为⎣⎡⎦⎤0,74. 12.已知不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,则a 的取值范围是( )A .[1,+∞)B .[-1,4)C .[-1,+∞)D .[-1,6] 【参考答案】C【答案解析】不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,等价于a ≥y x 2⎝⎛⎭⎫y x 2,对于x∈[1,2],y ∈[2,3]恒成立.令t =y x ,则1≤t ≤3,∴a ≥t -2t 2在[1,3]上恒成立.∵y =-2t 2+t =-2⎝⎛⎭⎫t -142+18,∴t =1时,y max =-1,∴a ≥-1,故选C. 13.(多选)已知函数f (x )=3x 2-6x -1,则( )A .函数f (x )有两个不同的零点B .函数f (x )在(-1,+∞)上单调递增C .当a >1时,若f (a x )在x ∈[-1,1]上的最大值为8,则a =3D .当0<a <1时,若f (a x )在x ∈[-1,1]上的最大值为8,则a =13【参考答案】ACD【答案解析】因为二次函数对应的一元二次方程的判别式Δ=(-6)2-4×3×(-1)=48>0,所以函数f (x )有两个不同的零点,A 正确.因为二次函数f (x )图象的对称轴为x =1,且图象开口向上,所以f (x )在(1,+∞)上单调递增,B 不正确.令t =a x ,则f (a x )=g (t )=3t 2-6t -1=3(t -1)2-4.当a >1时,1a ≤t ≤a ,故g (t )在⎣⎡⎦⎤1a ,a 上先减后增,又a +1a 2>1,故最大值为g (a )=3a 2-6a -1=8,解得a =3(负值舍去).同理当0<a <1时,a ≤t ≤1a ,g (t )在⎣⎡⎦⎤a ,1a 上的最大值为g ⎝⎛⎭⎫1a =3a 2-6a -1=8,解得a =13(负值舍去).故C 、D 正确.14.已知函数y =ax 2-2x +3在[2,+∞)上是减函数,则实数a 的取值范围是________.【参考答案】(-∞,0]【答案解析】当a =0时,y =-2x +3满足题意;当a ≠0时,则⎩⎪⎨⎪⎧ a <0,1a≤2,解得a <0.综上得a ≤0. 15.若函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________.【参考答案】2或12【答案解析】当a >1时,y =log a x (a >0,a ≠1)在[2,4]上单调递增,所以log a 4-log a 2=1,解得a=2;当0<a <1时,y =log a x (a >0,a ≠1)在[2,4]上单调递减,所以log a 2-log a 4=1,解得a =12.综上可得,a =2或12.16.已知函数f (x )=a x +b (a >0,且a ≠1)的定义域和值域都是[-1,0],则a +b =_______.【参考答案】-32【答案解析】当a >1时,f (x )在[-1,0]上是增函数,则⎩⎪⎨⎪⎧ f (-1)=-1,f (0)=0,即⎩⎪⎨⎪⎧a -1+b =-1,1+b =0,无解. 当0<a <1时,f (x )在[-1,0]上是减函数,则⎩⎪⎨⎪⎧ f (0)=-1,f (-1)=0,即⎩⎪⎨⎪⎧ 1+b =-1,a -1+b =0,解得⎩⎪⎨⎪⎧ a =12,b =-2,∴a +b =-32.17.已知函数y =a4-ax (a >0且a ≠1)在区间[1,2]上是减函数,则实数a 的取值范围是________. 【参考答案】(1,2]【答案解析】令u =4-ax ,由于a >0且a ≠1,内层函数u =4-ax 在区间[1,2]上为减函数,所以外层函数y =a u 为增函数,则有a >1.由题意可知,不等式4-ax ≥0对任意的x ∈[1,2]恒成立,所以4-2a ≥0,解得a ≤2.综上所述,实数a 的取值范围是(1,2].18、已知函数y =log 12(6-ax +x 2)在[1,2]上是增函数,则实数a 的取值范围为________.【参考答案】[4,5)【答案解析】设u =6-ax +x 2,∵y =log 12u 是减函数,∴函数u 在[1,2]上是减函数.∵u =6-ax +x 2的对称轴为直线x =a 2,∴a 2≥2,且u >0在[1,2]上恒成立.∴⎩⎪⎨⎪⎧ a 2≥2,6-2a +4>0,解得4≤a <5,∴实数a 的取值范围为[4,5). 19.已知点P (a ,b )在函数y =e 2x 的图象上,且a >1,b >1,则a ln b 的最大值为________.【参考答案】e【答案解析】由题意知b =e 2a ,则a ln b =a ln e 2a ,令t =a 2-ln a (t >0), 则ln t =ln a 2-ln a =-(ln a )2+2ln a =-(ln a -1)2+1≤1,当ln a =1时,“=”成立, 此时ln t =1,所以t =e ,即a ln b 的最大值为e.20.已知函数f (x )=log a (x +3)在区间[-2,-1]上总有|f (x )|<2,则实数a 的取值范围为________.【参考答案】⎝⎛⎭⎫0,2∪(2,+∞). 【答案解析】∵x ∈[-2,-1],∴1≤x +3≤2.当a >1时,log a 1≤log a (x +3)≤log a 2,即0≤f (x )≤log a 2.∵对任意的x ∈[-2,-1],|f (x )|<2恒成立,∴⎩⎪⎨⎪⎧a >1,log a 2<2,解得a > 2. 当0<a <1时,log a 2≤log a (x +3)≤log a 1,即log a 2≤f (x )≤0.∵对任意的x ∈[-2,-1],|f (x )|<2恒成立,∴⎩⎪⎨⎪⎧0<a <1,log a 2>-2,解得0<a <2. 综上可得,实数a 的取值范围为⎝⎛⎭⎫0,2∪(2,+∞).。
不等式(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(原卷版)
专题03不等式易错点一:忽略不等式变号的前提条件(等式与不等式性质的应用)1.比较大小基本方法关系方法做差法与0比较做商法与1比较b a >0>-b a )0(1>>b a b a ,或)0(1<<b a b a ,b a =0=-b a )0(1≠=b baba <0=-b a )0(1><b a b a ,或)0(1<>b a ba ,2..等式的性质(1)基本性质性质性质内容对称性ab b a a b b a >⇔<<⇔>;传递性c a c b b a c a c b b a <⇒<<>⇒>>,;,可加性cb c a b a >>+⇔>可乘性b ac c b a bc ac c b a <⇒<>>⇒>>00,;,同向可加性db c a d c c a +>+⇒>>,同向同正可乘性bdac d c b a >⇒>>>>00,可乘方性n n b a N n b a >⇒∈>>*0,类型1.应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.类型2.比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法.易错提醒:(1)一般数学结论都有前提,不等式性质也是如此.在运用不等式性质之前,一定要准确把握前提条件,一定要注意不可随意放宽其成立的前提条件.(2)不等式性质包括“充分条件(或者是必要条件)”和“充要条件”两种,前者一般是证明不等式的理论基础,后者一般是解不等式的理论基础.B .若a b <,则20242024a b<C .若20242024ax bx <,则a b <D .若a b <,则20242024ax bx <1.已知实数,b ,,若a b >,则下列不等式成立的是()A .11a b<B .3311a b -<-C .2222a bc c >++D .22ac bc >2.若0b a <<,则下列结论不正确的是()A .11a b<B .2ab a >C .33a b>D .a b a b+>+3.已知a b >,c d >,则下列不等式一定成立的是()A .ac bd >B .e e c da b >C .e e e e a c b d ⋅>⋅D .()()ln ln a c d b c d ->-4.若110a b<<,则下列不等式中正确的是()A .a b <B .a b >C .a b ab +>D .2b a a b+>5.若a 、b 、c ∈R ,且a b >,则下列不等式一定成立的是()A .a c b c+≥+B .()2a b c -≥C .ac bc>D .2c a b>-6.下列命题中正确的是()A .若a b >,则22ac bc >B .若a b >,c d <,则a b c d>C .若a b >,c d >,则a c b d ->-D .若0ab >,a b >,则11a b<7.设x ∈R ,则“1x <”是“x x >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知a ,R b ∈,p :a b <,q :()22a b a b >-,则p 是q 的()易错点二:遗漏一元二次方法求解的约束条件(有关一元二次不等式求解集问题)解一元二次不等式的步骤:第一步:将二次项系数化为正数;第二步:解相应的一元二次方程;第三步:根据一元二次方程的根,结合不等号的方向画图;第四步:写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.对含参的不等式,应对参数进行分类讨论具体模型解题方案:1、已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>mn ),解关于x 的不等式02>++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>++c x b x a 的解集为)11(m n ,,即关于x 的不等式02>++a bx cx 的解集为11(mn ,.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:011(2≤++c x b x a 的解集为)1[]1(∞+-∞,,m n 即关于x 的不等式02≤++a bx cx 的解集为)1[]1(∞+-∞,,mn .2、已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>>m n ),解关于x 的不等式02>+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>+-c x b x a 的解集为11(n m --,即关于x 的不等式02>+-a bx cx 的解集为)11(nm --,.3.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤+-c x b x a 的解集为)1[1(∞+---∞,,nm 即关于x 的不等式02≤+-a bx cx 的解集为)1[]1(∞+---∞,,nm ,以此类推.4、已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;5、已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;6、已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;7、已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>0a .易错提醒:一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上.(2)①若0∆>,解集为{}21|x x x x x ><或.②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且.③若0∆<,解集为R .(2)当0a <时,二次函数图象开口向下.①若0∆>,解集为{}12|x x x x <<②若0∆≤,解集为∅。
高考数学易错题专项训练(一)
高考数学易错题专项训练(一)一、正误辨析(正确的打“√”,错误的打“×”)1.若A⊆B,但∃x∈B,且x∉A,则A是B的真子集;∅是任何集合的子集,是任何非空集合的真子集.()2.A⊆B说明集合A中的任何一个元素都是集合B中的元素.()3.若集合A中含有n个元素,则集合A的子集的个数为2n个,真子集的个数为2n-1个,非空真子集的个数为2n-2个.()4.交集的补集等于补集的并集,即∁U(A∩B)=(∁U A)∪(∁U B);并集的补集等于补集的交集,即∁U(A∪B)=(∁U A)∩(∁U B).()5.A∩B=A⇔A∪B=B⇔A⊆B.()6.若p⇒q且q⇒/p,则p是q的充分不必要条件,綈p是綈q的必要不充分条件.()7.全称命题的否定是特称命题;特称命题的否定是全称命题.()8.否命题是原命题的条件与结论同时否定,命题的否定是仅仅否定原命题的结论,而命题的条件不变.()9.函数y=f(x)的零点是方程f(x)=0的实数根,所以方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.()10.函数y=f(x)的图象与直线x=a(a∈R)的交点可能是0个、1个或2个.()11.f(x)为奇函数⇔f(x)的图象关于原点对称,f(x)为偶函数⇔f(x)的图象关于y轴对称.存在既是奇函数又是偶函数的函数:f(x)=0.()12.奇函数在关于原点对称的两个区间上具有相同的单调性;偶函数在关于原点对称的两个区间上具有相反的单调性.()13.若满足f(x+a)=f(x-a),则f(x)是周期函数,T=2a;若满足f(x+a)=1f(x),则f(x)是周期函数,T=2a(a≠0,a为常数).()14.若f(a+x)=f(a-x),则y=f(x)的图象关于x=a对称;如果f(x)满足f(x)=-f(2a-x),则函数f(x)的图象关于点(a,0)对称.()15.函数y=a x与y=log a x(a>0,a≠1)的图象关于直线y=x对称,且两函数在各自定义域上具有相同的单调性.()16.如果函数y=f(x)在区间[a,b]上有f(a)·f(b)<0,那么函数f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0.如果f(x)在(a,b)上单调,则y=f(x)在(a,b)内有唯一的零点.()17.在某个区间(a,b)内,如果f′(x)>0,则函数y=f(x)在区间(a,b)内单调递增;如果f′(x)<0.那么函数y=f(x)在区间(a,b)内单调递减.()18.函数f(x)在x0处有f′(x0)=0,且在点x=x0附近的左侧f′(x)<0,右侧f′(x)>0,则f(x0)叫做函数y=f(x)的极大值;若在点x=x0附近的左侧f′(x)>0,右侧f′(x)<0,则f(x0)叫做函数y=f(x)的极小值,函数的极大值可能会小于函数的极小值.()19.f′(x0)是曲线y=f(x)在点P(x0,y0)处的切线斜率,相应的切线方程是y-y0=f′(x0)(x-x0).()20.f′(x)≥0是可导函数f(x)在x∈(a,b)内是增函数的充要条件;f′(x0)=0是可导函数在x=x0处取得极值的必要条件.()二、矫正训练(一)选择题(共10小题)1.集合A={x||x+1|≤3},B={y|y=x,0≤x≤4}.则下列关系正确的是()A .A ∪B =R B .A ⊆∁R BC .B ⊆∁R AD .∁R A ∁R B2.已知函数f (x )=(m 2-m -1)x -5m -3是幂函数且是(0,+∞)上的增函数,则m 的值为( )A .2B .-1C .-1或2D .03.下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x 2+sin xB .y =x 2-cos xC .y =2x +12xD .y =x +sin 2x 4.设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( ) A .⎝ ⎛⎭⎪⎫13,1 B .⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C .⎝ ⎛⎭⎪⎫-13,13 D .⎝ ⎛⎭⎪⎫-∞,-13∪(13,+∞) 5.已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a6.设函数f (x )=⎩⎨⎧3x -1,x <1,2x ,x ≥1.则满足f (f (a ))=2f (a )的取值范围是( ) A .⎣⎢⎡⎦⎥⎤23,1 B .[0,1] C .⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞) 7.如图是函数f (x )=x 2+ax +b 的部分图象,则函数g (x )=ln x +f ′(x )的零点所在的区间是( )A .⎝ ⎛⎭⎪⎫14,12 B .(1,2) C .⎝ ⎛⎭⎪⎫12,1 D .(2,3) 8.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .-2C .3或-2D .129.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x ∈R ,使x 2+2ax +2-a =0”,若命题“p ∧q ”是真命题,则实数a 的取值范围是( )A .{a |a ≤-2或a =1}B .{a |a ≤-2}C .{a |a ≤-2或1≤a ≤2}D .{a |-2≤a ≤1}10.已知函数y =f (x )是定义在实数集R 上的奇函数,且当x >0,f (x )+xf ′(x )>0(其中f ′(x )是f (x )的导函数),设a =⎝ ⎛⎭⎪⎫log 124f ⎝ ⎛⎭⎪⎫log 124,b =2f (2),c =⎝ ⎛⎭⎪⎫lg 15f ⎝ ⎛⎭⎪⎫lg 15,则a ,b ,c 的大小关系是( )A .c >a >bB .c >b >aC .a >b >cD .a >c >b(二)填空题(共6小题)11.已知命题p :x 2-2x -3<0,命题q :x >a ,若命题p 是命题q 的充分条件,则实数a 的取值范围是________.12.如果f ′(x )是二次函数,且f ′(x )的图象开口向上,顶点坐标为(1,3),那么曲线y =f (x )上任一点的切线的倾斜角α的取值范围是________.13.已知函数f (x )=⎩⎨⎧(a -2)x -1,x ≤1,log a x ,x >1.若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________.14.若函数f (x )=x 3-3x +a 有三个不同的零点,则实数a 的取值范围是________.15.若函数f (x )=⎩⎨⎧-x +6,x ≤2,3+log a x ,x >2,(a >0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.16.已知f (x )=x e x ,g (x )=-(x +1)2+a ,若∃x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围是________.参考答案一、1.√ 2.√ 3.√ 4.√ 5.√ 6.√ 7.√ 8.√9.√10.×解析:不符合函数的定义,不会有2个及2个以上的交点.11.√ 12.√ 13.√ 14.√ 15.√16.×解析:不满足零点存在定理的条件,即没有明确图象是连续不断的一条曲线.17.√18.×解析:没有理解函数的极大(小)值的概念,本题把极大值与极小值定义弄反了.19.√20.×解析:错误理解函数单调性与导数的关系.二、1.解析:没有分析清楚集合中的元素导致错误.D [A ={x ||x +1|≤3}={x |-4≤x ≤2},B ={y |y =x ,0≤x ≤4}={y |0≤y ≤2},所以∁R B ={y |y >2或y <0},∁R A ={x |x <-4或x >2},所以∁R A∁R B ,选D .] 2.解析:容易遗漏幂函数的系数是1,且当α>0时,g =x α在(0,+∞)上为增函数而导致错误.B [因为函数为幂函数,所以m 2-m -1=1,即m 2-m -2=0,解得m =2或m =-1.因为幂函数在(0,+∞)上是增函数,所以-5m -3>0,即m <-35,所以m =-1.选B .]3.解析:判断函数的奇偶性时,应注意首先判断函数的定义域是否关于原点对称,这一点易忽略.A [函数f (x )=x 2+sin x 的定义域为R ,关于原点对称,因为f (1)=1+sin 1,f (-1)=1-sin 1,所以函数f (x )=x 2+sin x 既不是奇函数,也不是偶函数;函数f (x )=x 2-cos x 的定义域为R ,关于原点对称,因为f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),所以函数f (x )=x 2-cos x 是偶函数;函数f (x )=2x +12x 的定义域为R ,关于原点对称,因为f (-x )=2-x +12-x =12x +2x =f (x ),所以函数f (x )=2x +12x 是偶函数;函数f (x )=x +sin 2x 的定义域为R ,关于原点对称,因为f (-x )=-x +sin(-2x )=-x -sin 2x =-f (x ),所以函数f (x )=x +sin 2x 是奇函数.故选A .]4.解析:此类问题易于忽略的是首先判断函数的奇偶性和单调性,从而避免讨论.A [由 f (x )=ln(1+|x |)-11+x 2可知f (x )是偶函数,且在[0,+∞)上增函数,所以f (x )>f (2x -1)⇔f (|x |)>f (|2x -1|)⇔|x |>|2x -1|⇔13<x <1,故选A .]5.解析:此类问题易于忽略的是判断函数的单调性和转化到同一单调区间上讨论问题.C [因为函数f (x )=2|x -m |-1为偶函数,所以m =0,即f (x )=2|x |-1,所以a =f (log 0.53)=f ⎝ ⎛⎭⎪⎫log 213=f (log 23) b =f (log 25),c =f (2m )=f (0),因为log 25>log 23>0,而f (x )=2|x |-1在[0,+∞)上为增函数,所以c <a <b ,故选C .]6.解析:忽略了由f (f (a ))=2f (a )直接得到f (a )≥1,从而解不等式或利用数形结合的方法解决问题.C [由f (f (a ))=2f (a )可知f (a )≥1,则⎩⎨⎧a ≥12a ≥1或⎩⎪⎨⎪⎧a <13a -1≥1,解得a ≥23,答案选C .] 7.解析:忽略利用函数的图象求出a ,b 的范围导致错误.C [由函数图象可知0<b <1,f (1)=0,从而-2<a <-1,f ′(x )=2x +a ,所以g (x )=ln x +2x +a ,函数g (x )=ln x +2x +a 在定义域内单调递增,g ⎝ ⎛⎭⎪⎫12=ln 12+1+a <0,g (1)=ln 1+2+a >0,所以函数g (x )=ln x +f ′(x )的零点所在的区间是⎝ ⎛⎭⎪⎫12,1,选C .] 8.解析:忽略函数的定义域导致错误.A [函数的定义域为(0,+∞),函数的导数为y ′=x 2-3x ,由y ′=x 2-3x =12,得x 2-x -6=0,解得x =3或x =-2(舍去),选A .]9.解析:不能分析清楚存在与恒成立的区别导致错误.A [由x 2-a ≥0,得a ≤x 2,x ∈[1,2],所以a ≤1.要使q 成立,则有Δ=4a 2-4(2-a )≥0,即a 2+a -2≥0,解得a ≥1或a ≤-2.因为命题“p ∧q ”是真命题,则p ,q 同时为真,即⎩⎪⎨⎪⎧a ≤1,a ≥1或a ≤-2,即a ≤-2或a =1,选A .] 10.解析:不会构造函数,不能判断函数的奇偶性导致错误.C [令函数F (x )=xf (x ),则函数F (x )=xf (x )为偶函数.当x >0时,F ′(x )=f (x )+xf ′(x )>0,此时函数递增,则a =F (log 124)=F (-log 24)=F (-2)=F (2),b =F (2),c =F ⎝ ⎛⎭⎪⎫lg 15=F (-lg 5)=F (lg 5),因为0<lg 5<1<2<2,所以a >b >c ,选C .] 11.解析:忽略从集合的角度解决充要条件的应用问题而导致错误.(-∞,-1] [M ={x |x 2-2x -3<0}={x |-1<x <3},因为N ={x |x >a }且M ⊆N ,所以有a ≤-1.]12.解析:忽略倾斜角的范围以及正切函数的单调性导致错误.⎣⎢⎡⎭⎪⎫π3,π2 [由题意可设f ′(x )=a (x -1)2+3,(a >0),即函数切线的斜率为k =f ′(x )=a (x -1)2+3≥3,即tan α≥3,所以π3≤α<π2.]13.解析:忽略了第一段函数的最大值小于或等于第二段函数的最小值导致错误.(2,3][要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,所以⎩⎪⎨⎪⎧a >1,a >2,a ≤3.解得2<a ≤3,即a 的取值范围是(2,3].]14.解析:忽略函数的f (x )极大值=f (-1)=2+a >0,f (x )极小值=f (1)=a -2<0导致错误. (-2,2) [由f (x )=x 3-3x +a =0,得f ′(x )=3x 2-3,当f ′(x )=3x 2-3=0,得x =±1,由图象可知f (x )极大值=f (-1)=2+a ,f (x )极小值=f (1)=a -2,要使函数f (x )=x 3-3x +a 有三个不同的零点,则有f (x )极大值=f (-1)=2+a >0,f (x )极小值=f (1)=a -2<0,即-2<a <2,所以实数a 的取值范围是(-2,2).]15.解析:分段函数的值域是各段函数值域的并集,应首先求出各段函数的值域,易于忽略. (1,2] [当x ≤2,故-x +6≥4,要使得函数f (x )的值域为[4,+∞),只需f 1(x )=3+log a x (x >2)的值域包含于[4,+∞),故a >1,所以f 1(x )>3+log a 2,所以3+log a 2≥4,解得1<a ≤2,所以实数a 的取值范围是(1,2].]16.解析:由于是存在性的问题,易忽略g (x )的最大值大于或等于f (x )的最小值导致错误. ⎣⎢⎡⎭⎪⎫-1e ,+∞ [f ′(x )=e x +x e x =(1+x )e x ,当x >-1时,f ′(x )>0函数递增;当x <-1时,f ′(x )<0函数递减,所以当x =-1时f (x )取得极小值即最小值f (-1)=-1e .函数g (x )的最大值为a ,若∃x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则有g (x )的最大值大于或等于f (x )的最小值,即a ≥-1e .]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学易错题精选: 集合与简易逻辑、极限与复数1.已知集合12{|,}10M x x Z N x=∈∈-且,则M 的非空真子集的个数是( )A .30个B .32个C .62个D .64个 2.不等式1ax a x->的解集为M ,且2M ∉,则a 的取值范围是( ) A .1(,)4+∞ B .1[,)4+∞ C .1(0,)2 D .1(0,]23.已知2{|40},{|10}P m m M m mx mx x =-<<=--<对一切实数都成立,则下列关系式中成立的是( )A .P MB .MP C .M P = D .M P =∅4.已知p 和q 是两个不相等的正整数,且2q ≥,则1(1)1lim 1(1)1p n qn n→∞+-+-=( ) A .0 B .1 C .p qD .11p q --5.设S 为复数集C 的非空子集.若对任意,x y S ∈,都有,,x y x y xy S +-∈, 则称S 为封闭集.下列命题:①集合{|,}S a bi a b i =+为整数,为虚数单位为封闭集;②若S 为封闭集,则一定有0S ∈; ③封闭集一定是无限集; ④若S 为封闭集,则满足S T C ⊆⊆的任意集合T 也是封闭集. 其中的真命题是________.(写出所有真命题的序号)6.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 ;若至少有一个元素,则a 的取值范围 .7.对任意两个集合M N 、,定义:{|}M N x x M x N -=∈∉且,MN M N N M =--()(),设2{|,}M y y x x R ==∈,{|3sin ,}N y y x x R ==∈,则MN = .8.已知数列{}n a 的前n 项和11(1)n n nS ba b =-+-+,其中b 是与n 无关的常数,且01b <<,若limn n S →∞存在,则lim n n S →∞= .9.limx →-∞= .10.如果(,R,0)z a bi a b a =+∈≠且是虚数,则222,,,||,||,,,||,||z z z z z z z z z z 中是虚数的有个,是实数的有 个,相等的有 组.11.设{}22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}2|280C x x x =+-= (1)A B A B =,求a 的值;(2)A B ∅,且A C =∅,求a 的值; (3)A B A C =≠∅,求a 的值.12.已知集合10{|1},{|1}6E x x mF x R x =-≥=∈>+. (1)若3m =,求E F ;(2)若E F R =,求实数m 的取值范围.13.设R 为全集,集合2{|10,}A x x ax x R =++=∈,{|1,}B y y x x R ==-∈,若R A C B A =,求实数a 的取值范围.14.设集合22{(,)|10},{(,)|42250}A x y ay x B x y x x y =--==+-+=,{(,)|}C x y y kx b ==+. (1)当0a =时,求A B ;(2)当1a =时,问是否存在正整数k 和b ,使得()()A C B C =∅,若存在,求出k 、b 的值;若不存在,说明理由.15.已知不等式2435x x a x -++-≤的解集中的最大解为3,求实数a 的值.16.设2x a -<时,不等式241x -<成立,求正数a 的取值范围.17.设:p 方程2210x mx ++=有两个不相等的正根;:q 方程22(2)3100x m x m +--+=无实根,求使p 或q 为真,p 且q 为假的实数m 的取值范围.18.试判断3a ≥是关于x 的方程210x ax ++=在区间[1,1]-上有解的什么条件并给出判断理由.19.已知不等式①32x x +>;②22132x x x +≥-+;③2210x mx +-<. (1)若同时满足①、②的x 也满足③,求实数m 的取值范围; (2)若满足③的x 至少满足①、②中的一个,求实数m 的取值范围.20.已知数列{}n a 的各项都是正数,且满足:0111,(4)2n n n a a a a +==-,N n ∈,证明:12n n a a +<<,N n ∈.21.试证明:不论正数a 、b 、c 是等差数列还是等比数列,当1,N n n >∈*且a 、b 、c 互不相等时,均有:2n n n a c b +>.22.已知函数21()22f x x x =-+,数列{}n a 满足递推关系式:1()(N )n n a f a n +=∈*,且11a =.(1)求2a 、3a 、4a 的值;(2)用数学归纳法证明:当5n ≥时,121n a n <--; (3)证明:当5n ≥时,有111n k kn a =<-∑.23.已知数列{}n a 为等差数列,公差0d ≠,由{}n a 中的部分项组成的数列12,,,nb b b a a a ,…,为等比数列,其中11b =,25b =,317b =.(1)求数列{}n b 的通项公式;(2)记123123nn n n n n n T C b C b C b C b =++++,求lim4nn n nT b →∞+.24.已知公比为(0)q q <<1的无穷等比数列{}n a 各项的和为9,无穷等比数列2{}n a 各项的和为815.(1)求数列{}n a 的首项1a 和公比q ; (2)对给定的(1,2,,)k k n =,设()k T 是首项为k a ,公差为21k a -的等差数列,求数列(2)T 的前10项之和;(3)设i b 为数列()i T 的第i 项,12n n S b b b =++,求n S ,并求正整数(1)m m >,使得lim nmn S n→∞存在且不等于零.25.当x →∞时,函数()(,N )nm x f x m n x b=∈*+的极限是否存在若存在,求出其极限.26.设z 是虚数,1z zω=+是实数,且1ω-<<2.(1)求||z 的值及z 的实部的取值范围; (2)设11z u z-=+,求证:u 为纯虚数;(3)求2u ω-的最小值.集合与简易逻辑、极限与复数易错题(参考答案)1.C 解:因为121122634=⨯=⨯=⨯,又x Z ∈且1210N x∈-,所以 101,2,3,4,6,12x -=,故{9,8,7,6,4,2}M =-,所以它的非空真子集有62262-=个.故选C .2.B 解:当0a ≤时,不等式的解集为{|0}x x R x ∈≠且,不符合题意,所以0a >,由不等式1ax a x ->得:1ax a x ->或1ax a x -<-,即10x->或210ax x -<,则有0x <或102x a <<,又2M ∉,所以122a ≤,即有14a ≥,故选B .3.A 解:当0m =时,10-<,对一切实数x ,不等式210mx mx --<恒成立;当0m ≠时,要使不等式恒成立,则0m <且240m m ∆=+<,即40m -<<,所以{|40}M m m =-<≤,故选A . 4.C 解:特殊值法由题意取1,2p q ==,则211(1)1lim lim lim11212(1)1p n n n q n n n n n nn →∞→∞→∞+-==++-+12p q ==,可见选C .5.①②解:∵集合S 为复数集,而复数集一定为封闭集,∴①是真命题. ②由封闭集定义知②为真命题.③是假命题.如{0}S =符合定义,但是S 为有限集.④是假命题.如S Z =,T 为整数和虚数构成集合,满足S T C ⊆⊆,但T 不是封闭集,22i i 都在T 中,但2)2)i i T +=,所以正确的是①②.6.9|,08a a a ⎧⎫≥=⎨⎬⎩⎭或,9|8a a ⎧⎫≤⎨⎬⎩⎭解:当A 中仅有一个元素时,0a =,或980a ∆=-=;当A 中有0个元素时,980a ∆=-<;当A 中有两个元素时,980a ∆=->;所以9|,08a a a ⎧⎫≥=⎨⎬⎩⎭或,9|8a a ⎧⎫≤⎨⎬⎩⎭.7.[3,0)(3,)-+∞解:依题意有[0,)M =+∞,[3,3]N =-,所以(3,)M N -=+∞,[3,0)N M -=-, 故[3,0)(3,)M N M N N M =--=-+∞()(). 8.1 解:因为1111()1(01)(1)(1)n n n n nnS ba b S S b b b -=-+-=--+-<<++, 所以11lim (lim lim )1lim(1)n n n nn n n n S b S S b -→∞→∞→∞→∞=--+-+,得1lim 1lim (1)n nn n S b →∞→∞=-+,则01b <<,故112b <+<,所以lim 1n n S →∞=. 9.52-解:lim x →-∞=lim xlimx =52=-. 10.4,5,3.解:2,,,z z z z 四个为虚数;22||,||,,||,||z z z z z z 五个为实数;2,||||,||z z z z z z z ===三组相等.11.解:(1)因为A B A B =,所以A B =,又由对应系数相等可得5a =和2196a -=同时成立,即5a =; (2)由于{2,3}B =,{4,2}C =- ,且A B ∅,A C =∅,故只可能3A ∈.此时23100a a --=,即5a =或2a =-,由(1)可知,当5a =时,{2,3}A B ==,此时A C ≠∅,与已知矛盾,所以5a =舍去,故2a =-;(3)由于{2,3}B =,{4,2}C =-,且A B A C =≠∅,此时只可能2A ∈,即22150a a --=,也即5a =,或3a =-,由(2)可知5a =不合题意,故3a =-.12.解:(1)当3m =时,{|13}{|24}E x x x x x =-≥=≤-≥或,10{|1}{|64}6F x x x x =>=-<<+, {|24}{|64}{|62}EF x x x x x x x =≤-≥-<<=-<≤-或;(2)因为{|1}E x x m =-≥,当0m ≤时,,E R E F R ==,满足条件;当0m >时,{|11}E x x m x m =≤-≥+或,由E F R =,{|64}F x x =-<<,得:16140m m m -≥-⎧⎪+≤⎨⎪>⎩解得03m <≤.综上,实数m 的取值范围为(,3]-∞. 13.解:因为R A C B A =,所以R A C B ⊆.又[0,)B =+∞,所以(,0)A ⊆-∞.所以方程210x ax ++=或者无实根,或者只有负实数根.所以,0∆<或00a ∆≥⎧⎨-<⎩,即240a -<或2400a a ⎧-≥⎨>⎩,得2a >-.故实数a 的取值范围为(2,)-+∞.14.解:(1)0a =,则{(,)|1,}A x y x y R ==-∈,由方程组2142250x x x y =-⎧⎨+-+=⎩解得:172x y =-⎧⎪⎨=⎪⎩,即7{(1,)}2A B =-. (2)1a =,则A 中的方程为210y x --=.因为A B C 、、都是非空集合,由已知必有A C =∅且B C =∅,此即方程组21y x y kx b⎧=+⎨=+⎩和方程组242250x x y y kx b⎧+-+=⎨=+⎩均无解,消去y 整理得222(21)10k x bk x b +-+-=(0)k ≠和242(1)250x k x b +--+=,所以22221(21)4(1)4410bk k b k kb ∆=---=-+<,2224(1)16(52)4(2819)0}k b k k b ∆=---=-+-<,将其看做关于k 的二元一次不等式,从而2316160b ∆=->,444(819)0b ∆=-->,所以21b >且52b <成立.又b N *∈,所以2b =,此时24810k k -+<,且2230k k --<,由此得k <<k N *∈,得1k =,即所求2b =,1k =. 15.解:将3x =代入2435x x a x -++-=,得35a -+=,即8a =. 当8a =时,原不等式可化为2343x x x -≤-+-,解得0323x x ≤≤⎧⎨≤≤⎩,即23x ≤≤,所以8a =满足要求.16.解:因为0a >,所以由2x a -<得22a x a -<<+,由241x -<,得:x <x <<22a a ⎧-≥⎪⎨+≤⎪⎩2a ≤,又0a >,所以02a <≤-,又220a a a ⎧-≥⎪⎪+≤⎨⎪>⎪⎩综上,正数a的取值范围是{|02}a a <≤-. 17.解:令2()21f x x mx =++,则由(0)0f >,且02ba->, 且0∆> ,求得1m <-,∴:(,1)p m ∈-∞-,2:4(2)4(310)023q m m m ∆=---+<⇒-<<,由p 或q 为真,p 且q 为假知,p 、q 一真一假. ①当p 真q 假时,123m m m <-⎧⎨≤-≥⎩或,即2m ≤-;②当p 假q 真时,123m m ≥-⎧⎨-<<⎩即13m -≤<.∴m 的取值范围是2m ≤-或13m -≤<. 答案:(,2][1,3)-∞--18.解:令2()10f x x ax =++=,则方程在区间[1,1]-上有解的充要条件是:240112(1)0(1)0a a f f ⎧-≥⎪⎪-≤-≤⎪⎨⎪-≥⎪≥⎪⎩或(1)(1)0f f -≤,由于第一个不等式的解集是{2,2}-,而第二个不等式的解集是{|22}a a a ≤-≥或,所以关于x 的方程210x ax ++=在区间[1,1]-上有解的充要条件是2a ≥,因为集合{|3}{|2}a a a a ≥≥,故而可得结论:3a ≥是关于x 的方程210x ax ++=在区间[1,1]-上有解的充分不必要条件.19.解:由题意知,解①得13x -<<;解②得01x ≤<或24x <≤. (1)设同时满足①、②的集合[0,1)(2,3)A =,满足③的集合为B ,因为A B ⊆,所以:(3)0(0)0f f ≤⎧⎨<⎩,所以173m ≤-为所求. (2)(1,3)[0,1)(2,4]B ⊆-,所以(1,4]B ⊆-,即方程2210x mx +-=的两根在[1,4]-内,所以:0(1)0(4)0144f f m ∆≥⎧⎪-≥⎪⎪⎨≥⎪⎪-<-<⎪⎩,所以3114m -≤≤为所求. 20.证明:用数学归纳法证明 ①当0n =时,01a =,10013(4)22a a a =-=,所以012a a <<,命题正确②假设当(N )n k k =∈*时,有12k k a a -<<,则当1n k =+时,11111(4)(4)22k k k k k k a a a a a a +---=--- 11112()()()2k k k k k k a a a a a a ---=---+ 111()(4)2k k k k a a a a --=---,而110,40k k k k a a a a ---<-->,所以10k k a a +-<.又2111(4)[4(2)]222k k k k a a a a +=-=--<,所以当1n k =+时,命题正确由①②知,对一切N n ∈,有12n n a a +<<.21.证明:(1)设a 、b 、c 为等比数列,,(01)b a c bq q q q==>≠且,所以1()2nnnn n n n n n n b a c b q b q b q q+=+=+>.(2)设a 、b 、c为等差数列,则2b a c =+,猜想()(2N )22n n na c a c n n ++>≥∈*且.下面用数学归纳法证明: ①当2n =时,由2222()()a c a c +>+,所以222()22a c a c ++>.②假设n k =时成立,即()22k k ka c a c ++>,则当1n k =+时,1111111()24k k k k k k a c a c a c +++++++=+++ 111()4k k k k a c a c c a ++>+++1()()4k k a c a c =++ ()()22k a c a c ++>1()2k a c ++= 22.解:(1)由11a =及21122n n n a a a +=-+计算得:232a =,3138a =,4217128a =.(2)证明:(Ⅰ)2512172172171217217391()22(1)22212812812821281282564a =-+=--⨯=-<-,即当5n =时,结论成立.(Ⅱ)假设结论对(5)n k k =≥成立,即121k a k <--. 因为21133(1)222n n a a +=-+≥,函数213()(1)22f x x =-+在(1,)+∞上递增, 则1()(2)1k f a f k <--,所以21113(21)212k a k +<--+-21112212(1)k k k =-+<---,即当1n k =+时结论也成立. 由(Ⅰ)(Ⅱ)知,不等式121n a n <--对一切5n ≥都成立. (3)因为当5n ≥时,121n a n <--,所以112n n a +<-.又由21122n n n a a a +=-+,即1(2)22n n n a a a +--=, 即111122n n na a a +=---,得111122n n n a a a +=---,且11a =. 所以111111()22nnk k kkk a a a==+=---∑∑11111111222n n n a a a ++=-=-<----.23.解:(1)由题意知25117a a a =,即221111(4)(16)2a d a a d a d d +=+⇒=. 因为0d ≠,所以12a d =,数列{}nb a 的公比511143a a dq a a +===, 所以113nn ba a -=.① 又111(1)2n n b n b a a b d a +=+-=.② 由①②得111132n n b a a -+=.因为120a d =≠,所以1231n n b -=-.(2)1212n n n n n n T C b C b C b =+++10211(231)(231)(231)nn n n n C C C -=++-++-122122(333)()3n n nn n n n n n C C C C C C =+++-+++2[(13)1](21)3n n =+---214233n n =-+, 所以1214233lim lim 44231n n n n n n n n nT b -→∞→∞-+=++-12111()()23234lim13131()()244n nn n n →∞--+==+-. 24.解:(1)由题设可得1212918151a q a q⎧=⎪-⎪⎨⎪=⎪-⎩,解得1323a q =⎧⎪⎨=⎪⎩所以数列{}n a 的首项1a 为3,公比q 为23.(2)由(1)知,123()3n n a -=⨯,所以,(2)T 是首项为22a =,公差2213d a =-=的等差数列,它的前10项之和为10110210931552S =⨯+⨯⨯⨯=,即数列(2)T 的前10项之和为155.(3)因为i b 为数列()i T 的第i 项,()i T 是首项为i a ,公差为21i a -的等差数列,所以(1)(21)(21)(1)i i i i b a i a i a i =+--=---, 所以12n n S b b b =+++12335(21)[12(1)]n a a a n a n =++++--+++-.令12335(21)n S a a a n a =++++-.因为12112()(21)n n S qS a a a a n a +-=+++---,所以1112(21)(1)21(1)n n a n a a q S q q ++--=--- 245(1845)()3n n =-+,故(1)2(1)45(1845)()232n n n n n n S S n --=-=-+-.所以12(1)lim lim[45(1845)()]32n nmm n n S n n n n n →∞→∞-=-+- 因为1m >,且lim n m n S n→∞存在,所以当2m =时,1lim 2nmn S n →∞=-; 当2m >时,lim 0nmn S n→∞=,由题设,limn mn S n →∞不等于0.因此2m >不合题意,舍去,故满足题设的正整数m 的值为2.25.解:(1)当n m =时1lim ()lim111()x x mf x b x→∞→∞==+;(2)当n m <时1()lim ()lim 011()m nx x mx f x bx-→∞→∞==+;(3)当n m >时lim ()lim 11()n mx x mx f x bx-→∞→∞=+不存在. 所以0lim ()1x n m f x n m n m →∞<⎧⎪==⎨⎪>⎩()()不存在(). 26.解:(1)设(R,0)z a bi a b b =+∈≠、且, 则221a bi z a bi za b ω-=+=+++2222()()a ba b i a b a b =++-++,因为ω是实数,所以220bb a b -=+. 由0b ≠,得221a b +=,即||1z =,因为||1z =,所以2||1z z z ==,所以12z z z a zω=+=+=. 由已知12ω-<<,即122a -<<,解得112a -<<. (2)证明:11z u z-=+ 1()(1)(1)1()[(1)][(1)]a bi a bi a bi a bi a bi a bi -+--+-==+++++-1bia-=+.所以u 是纯虚数.(3)22222()21(1)bi b u a a a a ω---=-=-++2211221(1)a a a a a a --=-=+++22(1)31a a=++-+, 因为112a -<<,所以1122a <+<,所以242(1)51a a≤++<+,所以2u ω-的最小值为1.。