河南2013年中考数学模拟试卷(五)
河南省鹤壁市兰苑中学中考数学第一次模拟测试试卷 新人教版
![河南省鹤壁市兰苑中学中考数学第一次模拟测试试卷 新人教版](https://img.taocdn.com/s3/m/ad08e658f11dc281e53a580216fc700abb68528b.png)
2013年初中毕业调研暨中考第一次模拟试卷 数 学注意事项:本试卷分试题卷和答题卡两部分.试题卷共4页,三个大题,满分120分,考试时间100分钟.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡.一、选择题(每小题3分,满分24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的选项填涂在答题卡的相应位置. 1.实数5的倒数是 (A )51-(B )51(C )-5 (D )52. 如图-1,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,若76BOD ∠=︒,则BOM ∠等于(A )38︒(B )104︒(C )142︒(D )144︒3. 已知两圆的半径分别是3和4,圆心距的长为1,则两圆的位置关系为(A)外离(B)相交(C)内切(D)外切4. 如图-2,在等腰梯形ABCD 中,BC∥AD ,AD =5,DC =4,DE∥AB 交BC 于点E ,且EC =3,则梯形ABCD 的周长是 (A )26(B )25 (C )21(D )205. 将二次函数2x y =的图象向下平移2个单位,则平移后的二次函数的解析式为(A )22-=x y (B )22+=x y (C )2)2(-=x y (D )2)2(+=x y6. 如图-3,⊙O 中,半径OA=4,∠AOB=120°,用阴影部分的扇形围成的圆锥底面圆的半径长是(A)1 (B) (C) (D)27. Rt ABC △中,∠C=900,AC =9,BC =12,则点C 到AB 的距离是 (A )536 (B )2512 (C )49 (D )433 8. 某同学为了解鹤壁东火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的(A )总体 (B )个体 (C )样本 (D )以上都不对二、填空题(每小题3分,满分21分)9. 5月8日,“最美教师”张丽莉为救学生身负重伤,张老师舍己救人的事迹受到全国人民的极大关注,在住院期间,共有691万人以不同方式向她表示问候和祝福,将691万人用科学记数法表示为 人.(结果保留两个有效数字)10. 若关于x 的方程220x x m --=有两个相等的实数根,则m 的值是 . 11. 函数y =21x -的自变量x 的取值范围是___________.12. 从-2、1、3 这三个数中任取两个不同的数相乘,积是无理数的概率是 .13. 如图-4,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (20,53-),D 是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象 上,那么该函数的解析式是____________.14. 如图-5,六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,则下列结论中:①∠E=2∠K; ②BC=2HI ;③六边形ABCDEF 的周长=六边形GHIJKL的周长;④S 六边形ABCDEF=2S 六边形GHIJKL . 其中正确的是__________.15. 如图-6,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D .若∠C =18°, 则∠CDA = °.三、解答题(本大题共8个小题,满分75分)16.(本题满分8分)计算:4cos45°+(π+3)0-8+116-⎛⎫ ⎪⎝⎭.17. (本题满分9分)如图-7,四边形ABCD 是平行四边形,以AB 为直径的⊙O 经过点D ,E 是⊙O 上一点,且∠AED=45°。
2013年河南中考数学试卷及答案
![2013年河南中考数学试卷及答案](https://img.taocdn.com/s3/m/5a1e3c8b360cba1aa811dacb.png)
2013年河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1. 本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上。
参考公式:二次函数图像2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a--一、 选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
1、-2的相反数是【】(A )2 (B)2-- (C)12 (D)12-【解析】根据相反数的定义可知:-2的相反数为2【答案】A2、下列图形中,既是轴对称图形又是中心对称图形的是【】【解析】轴对称是指在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。
中心对称图形是指平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么就说这两个图形关于这个点成中心对称。
结合定义可知,答案是D【答案】D3、方程(2)(3)0x x -+=的解是【】(A )2x = (B )3x =- (C )122,3x x =-= (D )122,3x x ==-【解析】由题可知:20x -=或者30x +=,可以得到:122,3x x ==-【答案】D4、在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是【】(A ) 47 (B )48 (C )48.5 (D )49【解析】中位数是将数据按照从小到大的顺序排列,其中间的一个数或中间两个数的平均数就是这组数的中位数。
本题的8个数据已经按照从小到大的顺序排列了,其中间的两个数是48和49,它们的平均数是48.5。
因此中位数是48.5【答案】C5、如图是正方形的一种张开图,其中每个面上都标有一个数字。
那么在原正方形中,与数字“2”相对的面上的数字是【】(A )1 (B )4 (C )5 (D )6【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。
河南中考数学模拟试卷(05)
![河南中考数学模拟试卷(05)](https://img.taocdn.com/s3/m/39cc8419bc64783e0912a21614791711cc7979cf.png)
河南中考数学模拟试卷(05)一.选择题(共10小题,满分30分,每小题3分)1.(3分)21的相反数是()A.21B.﹣21C.D.﹣2.(3分)有一个正方体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2022次后,骰子朝下一面的点数是()A.5B.3C.4D.23.(3分)如图,直线AB,CD相交于点O,若CO⊥AB,∠1=56°,则∠2等于()A.30°B.45°C.34°D.56°4.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.=﹣3C.x2•x4=x6D.(2x2)3=6x65.(3分)如图,菱形ABCD的对角线AC、BD相交于O点,E、F分别是AB、BC边上的中点,连接EF,若EF=3,BD=8,则菱形ABCD的周长为()A.5B.14C.20D.286.(3分)一元二次方程6x2+2x+1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根7.(3分)甲同学射靶8次,成绩分别为:5,7,6,7,7,8,6,7,则甲同学的射靶成绩的众数为()A.5B.6C.7D.88.(3分)一种计算机每秒可以进行4×108次运算,则它工作3×103秒运算的次数为()A.12×1024B.1.2×1012C.12×1012D.1.2×1013 9.(3分)如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.10.(3分)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是()A.B.C.D.二.填空题(共5小题,满分15分,每小题3分)11.(3分)写出同时具备下列两个条件的一次函数表达式:(1)y随着x的增大而减小;(2)图象经过点(﹣2,﹣1):(写出一个即可).12.(3分)不等式组的解集是.13.(3分)小南和小开在新华书店选购了部分课外阅读书籍,结账时发现该书店自助收银系统允许购书读者从“微信”“支付宝”“云闪付”“网银”四种支付方式中任选一种方式进行支付,则他们分别独立结账,恰好选择的是同一种支付方式的概率为.14.(3分)如图,在扇形ABC中,∠BAC=90°,AB=1,若以点C为圆心,CA为半径画弧,与交于点D,则图中阴影部分的面积和是.15.(3分)如图,直线CD与EF相交于点O,∠COE=60°,将一等腰直角三角尺AOB 的直角顶点与O重合,OA平分∠COE.将三角尺AOB以每秒2°的速度绕点O顺时针旋转,同时直线EF以每秒6°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤60),若直线EF平分∠BOD,则t的值为.三.解答题(共8小题,满分75分)16.(10分)计算:﹣|﹣1|+.17.(9分)为倡导绿色健康节约的生活方式,某社区开展“垃圾分类,从我做起”的活动,志愿者随机抽取了社区内50名居民,对其3月份垃圾分类投放次数进行了调查,并对数据进行了统计整理,以下是部分数据和不完整的统计图表:信息1:垃圾分类投放次数分布表信息组别投放次数频数A0≤x<5aB5≤x<1010C10≤x<15cD15≤x<2014E x≥20e合计50信息2:垃圾分类投放次数占比统计图信息3:C组包含的数据:12,12,10,12,13,10,11,13,12,11,13.请结合以上信息完成下列问题:(1)统计表中的a=,e=.(2)统计图中B组对应扇形的圆心角为度;(3)C组数据的众数是,抽取的50名居民3月份垃圾分类投放次数的中位数是;(4)根据调查结果,请你估计该社区2000名居民中3月份垃圾分类投放次数不少于15次的人数.18.(9分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B.(1)若AB=2,求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.19.(9分)如图,从一栋两层楼的楼顶A处看对面的教学楼CD,测得教学楼底部点C处的俯角是45°,测得此大楼楼顶D处的仰角为60°,已知两栋楼的水平距离为8米.求该大楼CD的高度(结果保留根号).20.(9分)2020年5月,全国两会召开以后,应势复苏的“地摊经济”带来了市场新活力,雅苑社区拟建A,B两类摊位以激活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,建A类摊位每平方米的费用为50元,建B类摊位每平方米的费用为40元,用120平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共100个,且B类摊位的数量不少于A类摊位数量的4倍,求建造这100个摊位的最大费用.21.(9分)某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可售出200千克,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系.(1)求y与x之间的函数关系式;(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?22.(10分)如图,AB是⊙O的直径,弦CD⊥AB于H,E为CD延长线上一点,过E点作⊙O的切线,切点为G,连接AG交CD于F点.(1)求证:EF=EG;(2)若FG2=FD•FE,试判断AC与GE的位置关系,并说明理由;(3)在(2)的条件下,若sin E=,AH=3,求⊙O半径的长.23.(10分)如图,已知正方形ABCD的顶点D关于射线CP的对称点G落在正方形内,连接BG并延长交边AD于点E,交射线CP于点F.连接DF,AF,CG.(1)试判断DF与BF的位置关系,并说明理由;(2)若CF=4,DF=2,求AE的长;(3)若∠ADF=2∠F AD,求tan∠F AD的值.。
中考数学二轮复习专题二解答重难点题型突破题型五几何图形探究题试题(含答案)230
![中考数学二轮复习专题二解答重难点题型突破题型五几何图形探究题试题(含答案)230](https://img.taocdn.com/s3/m/c5e2df2a0b4e767f5acfcee9.png)
题型五 几何图形探究题类型一 几何图形静态探究1.(2017·成都)问题背景:如图①,等腰△ABC 中,AB =AC ,∠BAC =120°,作AD⊥BC 于点D ,则D 为BC 的中点,∠BAD =12∠BAC =60°,于是BC AB =2BD AB =3; 迁移应用:如图②,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE=120°,D ,E ,C 三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD ,BD ,CD 之间的等量关系式;拓展延伸:如图③,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF.①证明△CEF 是等边三角形;②若AE =5,CE =2,求BF 的长.2.(2017·许昌模拟)在正方形ABCD 中,对角线AC 、BD 交于点O ,动点P 在线段BC 上(不含点B),∠BPE =12∠ACB,PE 交BO 于点E ,过点B 作BF⊥PE,垂足为F ,交AC 于点G.(1)当点P 与点C 重合时(如图①),求证:△BOG≌△POE;(2)通过观察、测量、猜想:BF PE=__________,并结合图②证明你的猜想;(3)把正方形ABCD 改为菱形,其他条件不变(如图③),若∠ACB=α,求BF PE的值.(用含α的式子表示)3.(2014·河南)(1)问题发现如图①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE.填空:①∠AEB 的度数为__________;②线段AD ,BE 之间的数量关系为__________.(2) 拓展探究如图②,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE=90°,点A ,D ,E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.(3)解决问题如图③,在正方形ABCD 中,CD =2,若点P 满足PD =1,且∠BPD =90°,请直接写出点A 到BP 的距离.4.(2017·长春改编)【再现】如图①,在△ABC 中,点D ,E 分别是AB ,AC 的中点,可以得到:DE∥BC,且DE =12BC.(不需要证明) 【探究】如图②,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,判断四边形EFGH 的形状,并加以证明;【应用】(1)在【探究】的条件下,四边形ABCD 中,满足什么条件时,四边形EFGH 是菱形?你添加的条件是:__________.(只添加一个条件)(2)如图③,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,对角线AC ,BD 相交于点O.若AO =OC ,四边形ABCD 面积为5,求阴影部分图形的面积.5.(2016·新乡模拟)问题背景:已知在△ABC 中,AB 边上的动点D 由A 向B 运动(与A ,B 不重合),同时,点E 由点C 沿BC 的延长线方向运动(E 不与C 重合),连接DE 交AC 于点F ,点H 是线段AF 上一点,求AC HF的值. (1)初步尝试如图①,若△ABC 是等边三角形,DH ⊥AC ,且D ,E 的运动速度相等,小王同学发现可以过点D 做DG∥BC,交AC 于点G ,先证GH =AH.再证GF =CF ,从而求得AC HF的值为__________; (2)类比探究如图②,若在△ABC 中,∠ABC =90°,∠ADH =∠BAC=30°,且点D ,E 的运动速度之比是3∶1,求AC HF的值; (3)延伸拓展如图③,若在△ABC 中,AB =AC ,∠ADH =∠BAC=36°,记BC AC=m ,且点D ,E 的运动速度相等,试用含m 的代数式表示AC HF的值(直接写出结果,不必写解答过程) .类型二 几何图形动态探究1.(2015·河南)如图①,在Rt △ABC 中,∠B =90°,BC =2AB =8,点D 、E 分别是边BC 、AC 的中点,连接DE ,将△EDC 绕点C 按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,AE BD =__________;②当α=180°时,AE BD=__________;(2)拓展探究试判断:当0°≤α<360°时,AE BD的大小有无变化?请仅就图②的情形给出证明.(3)问题解决当△EDC 旋转至A ,D ,E 三点共线时,直接写出线段BD 的长.2.已知,点O 是等边△ABC 内的任一点,连接OA ,OB ,OC.(1)如图①,已知∠AOB=150°,∠BOC =120°,将△BOC 绕点C 按顺时针方向旋转60°得△ADC.①∠DAO 的度数是__________;②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图②中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.3.(2013· 河南)如图①,将两个完全相同的三角形纸片和重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图②,固定△ABC,使△DCE绕点C旋转.当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是__________;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是__________;(2) 猜想论证当△DEC绕点C旋转到图③所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想;(3) 拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图④),若在射线BA上存在点F,使S△DCF=S△BF的长.BDC,请直接写出相应的4.(2017·郑州模拟)【问题情境】数学课上,李老师提出了如下问题:在△ABC中,∠ABC=∠ACB =α,点D是AB边上任意一点,将射线DC绕点D逆时针旋转α与过点A且平行于BC边的直线交于点E.请判断线段BD与AE之间的数量关系.小颖在小组合作交流中,发表自己的意见:“我们不妨从特殊情况下获得解决问题的思路,然后类比到一般情况.”小颖的想法获得了其他成员一致的赞成.【问题解决】(1)如图①,当α=60°时,判断BD与AE之间的数量关系;解法如下:过D点作AC的平行线交BC于F,构造全等三角形,通过推理使问题得到解决,请你直接写出线段BD与AE之间的数量关系:__________.【类比探究】(2)如图②,当α=45°时,请判断线段BD与AE之间的数量关系,并进行证明;(3)如图③,当α为任意锐角时,请直接写出线段BD与AE之间的数量关系:__________.(用含α的式子表示,其中0°<α<90°)5.(2017·烟台)【操作发现】(1)如图①,△ABC为等边三角形,现将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;【类比探究】(2)如图②,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF,请直接写出探究结果:①求∠EAF的度数;②线段AE,ED,DB之间的数量关系.题型五 第22题几何图形探究题类型一 几何图形静态探究1.迁移应用:①证明:∵∠BAC =∠DAE =120°,∴∠DAB =∠CAE ,在△DAB 和△EAC 中,⎩⎪⎨⎪⎧DA =EA ∠DAB =∠EAC AB =AC,∴△DAB ≌△EAC;,图②)②解:结论:CD =3AD +BD.理由:如解图①,作AH ⊥CD 于H.∵△DAB ≌△EAC ,∴BD =CE , 在Rt △ADH 中,DH =AD·cos 30°=32AD , ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∵CD =DE +EC =2DH +BD =3AD +BD ;拓展延伸:①证明:如解图②,作BH ⊥AE 于H ,连接BE.∵四边形ABCD 是菱形,∠ABC =120°,∴△ABD ,△BDC 是等边三角形,∴BA =BD =BC ,∵E 、C 关于BM 对称,∴BC =BE =BD =BA ,FE =FC ,∴A 、D 、E 、C 四点共圆, ∴∠ADC =∠AEC =120°,∴∠FEC =60°,∴△EFC 是等边三角形,②解:∵AE =5,EC =EF =2,∴AH =HE =2.5,FH =4.5,在Rt △BHF 中,∵∠BFH =30°,∴HF BF =cos 30°,∴BF =4.532=3 3. 2.(1)证明:∵四边形ABCD 是正方形,P 与C 重合,∴OB =OP ,∠BOC =∠BOG =90°,∵PF ⊥BG ,∠PFB =90°,∴∠GBO =90°-∠BGO ,∠EPO =90°-∠BGO ,∴∠GBO =∠EPO ,在△BOG 和△POE 中,⎩⎪⎨⎪⎧∠GBO =∠EPO OB =OP ∠BOG =∠POE,∴△BOG ≌△POE(ASA );(2)解:猜想BF PE =12. 证明:如解图①,过P 作PM ∥AC 交BG 于M ,交BO 于N , ∴∠PNE =∠BOC =90°,∠BPN =∠OCB.∵∠OBC =∠OCB =45°,∴∠NBP =∠NPB ,∴NB =NP.∵∠MBN =90°-∠BMN ,∠NPE =90°-∠BMN ,∴∠MBN =∠NPE ,在△BMN 和△PEN 中,⎩⎪⎨⎪⎧∠MBN =∠NPE NB =NP ∠MNB =∠PNE,∴△BMN ≌△PEN(ASA ),∴BM =PE.∵∠BPE =12∠ACB ,∠BPN =∠ACB ,∴∠BPF =∠MPF. ∵PF ⊥BM ,∴∠BFP =∠MFP =90°.在△BPF 和△MPF 中,⎩⎪⎨⎪⎧∠BPF =∠MPE PF =PF∠PFB =∠PFM,∴△BPF ≌△MPF(ASA ). ∴BF =MF. 即BF =12BM.∴BF =12PE.即BF PE =12;(3)解:如解图②,过P 作PM ∥AC 交BG 于点M ,交BO 于点N , ∴∠BPN =∠ACB =α,∠PNE =∠BOC =90°. 由(2)同理可得BF =12BM ,∠MBN =∠EPN ,∴△BMN ∽△PEN ,∴BM PE =BN PN. 在Rt △BNP 中,tan α=BNPN ,∴BM PE =tan α,即2BF PE =tan α,∴BF PE =tan α2. 3.解:(1)∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD =∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧AC =BC ∠ACD =∠BCE CD =CE, ∴△ACD ≌△BCE(SAS ).∴∠ADC =∠BEC. ∵△DCE 为等边三角形,∴∠CDE =∠CED =60°.∵点A ,D ,E 在同一直线上,∴∠ADC =120°,∴∠BEC =120°,∴∠AEB =∠BEC -∠CED =60°;②∴AD =BE ;(2)∠AEB =90°,AE =BE +2CM.理由:∵△ACB 和△DCE 均为等腰直角三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACD =∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧CA =CB ∠ACD =∠BCE CD =CE, ∴△ACD ≌△BCE(SAS ).∴AD =BE ,∠ADC =∠BEC. ∵△DCE 为等腰直角三角形,∴∠CDE =∠CED =45°. ∵点A ,D ,E 在同一直线上,∴∠ADC =135°,∴∠BEC =135°,∴∠AEB =∠BEC -∠CED =90°.∵CD =CE ,CM ⊥DE ,∴DM =ME. ∵∠DCE =90°,∴DM =ME =CM , ∴AE =AD +DE =BE +2CM ;(3)点A 到BP 的距离为3-12或3+12.理由如下:∵PD =1,∴点P 在以点D 为圆心,1为半径的圆上. ∵∠BPD =90°,∴点P 在以BD 为直径的圆上.∴点P 是这两圆的交点.①当点P 在如解图①所示位置时, 连接PD 、PB 、PA ,作AH ⊥BP ,垂足为H , 过点A 作AE ⊥AP ,交BP 于点E ,∵四边形ABCD 是正方形,∴∠ADB =45°.AB=AD =DC =BC =2,∠BAD =90°.∴BD =2. ∵DP =1,∴BP = 3.∵∠BPD =∠BAD =90°,∴A 、P 、D 、B 在以BD 为直径的圆上, ∴∠APB =∠ADB =45°.∴△PAE 是等腰直角三角形. 又∵△BAD 是等腰直角三角形,点B 、E 、P 共线,AH ⊥BP , ∴由(2)中的结论可得:BP =2AH +PD. ∴3=2AH +1.∴AH =3-12;②当点P 在如解图②所示位置时, 连接PD 、PB 、PA ,作AH ⊥BP ,垂足为H , 过点A 作AE ⊥AP ,交PB 的延长线于点E ,同理可得:BP =2AH -PD.∴3=2AH -1.∴AH =3+12.综上所述:点A 到BP 的距离为3-12或3+12.4.解:【探究】平行四边形. 理由:如解图①,连接AC ,∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC ,EF =12AC ,同理HG ∥AC ,HG =12AC ,综上可得:EF ∥HG ,EF =HG ,故四边形EFGH 是平行四边形. 【应用】(1)添加AC =BD ,理由:连接AC ,BD ,同(1)知,EF =12AC ,同【探究】的方法得,FG =12BD ,∵AC =BD ,∴EF =FG ,∵四边形EFGH 是平行四边形,∴▱EFGH 是菱形;(2)如解图②,由【探究】得,四边形EFGH 是平行四边形, ∵F ,G 是BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴△CFG ∽△CBD ,∴S △CFG S △BCD =14,∴S △BCD =4S△CFG,同理:S △ABD =4S △AEH ,∵四边形ABCD 面积为5,∴S △BCD +S △ABD =5,∴S △CFG +S △AEH =54,同理:S △DHG +S △BEF =54,∴S 四边形EFGH =S 四边形ABCD -(S △CFG +S △AEH +S △DHG +S △BEF )=5-52=52,设AC 与FG ,EH 相交于M ,N ,EF 与BD 相交于P ,∵FG ∥BD ,FG =12BD ,∴CM =OM =12OC ,同理:AN =ON =12OA ,∵OA =OC ,∴OM =ON ,易知,四边形ENOP ,FMOP 是平行四边形,S ▱EPON =S ▱FMOP , ∴S 阴影=12S 四边形EFGH =54.5.解:(1)∵△ABC 是等边三角形,∴△AGD 是等边三角形,∴AD =GD ,由题意知:CE =AD ,∴CE =GD , ∵DG ∥BC ,∴∠GDF =∠CEF ,在△GDF 与△CEF 中,⎩⎪⎨⎪⎧∠GDF =∠CEF ∠GFD =∠EFC ,GD =CE∴△GDF ≌△CEF(AAS ),∴CF =GF , ∵DH ⊥AG ,∴AH =GH ,∴AC =AG +CG =2GH +2GF =2(GH +GF)=2HF , ∴ACHF=2; (2)如解图①,过点D 作DG ∥BC 交AC 于点G , 则∠ADG =∠ABC =90°.∵∠BAC =∠ADH =30°,∴AH =DH ,∠GHD =∠BAC +∠ADH =60°,∠HDG =∠ADG -∠ADH =60°,∴△DGH 为等边三角形. ∴GD =GH =DH =AH ,AD =GD·tan 60°=3GD. 由题意可知,AD =3CE.∴GD =CE. ∵DG ∥BC ,∴∠GDF =∠CEF.在△GDF 与△CEF 中,⎩⎪⎨⎪⎧∠GDF =∠CEF ∠GFD =∠EFC CE =GD ,∴△GDF ≌△CEF(AAS ),∴GF =CF.GH +GF =AH +CF ,即HF =AH +CF ,∴HF =12AC ,即ACHF =2;(3)AC HF =m +1m.理由如下: 如解图②,过点D 作DG ∥BC 交AC 于点G , 易得AD =AG ,AD =EC ,∠AGD =∠ACB. 在△ABC 中,∵∠BAC =∠ADH =36°,AB =AC ,∴AH =DH ,∠ACB =∠B =72°,∠GHD =∠HAD +∠ADH =72°. ∴∠AGD =∠GHD =72°,∵∠GHD =∠B =∠HGD =∠ACB ,∴△ABC ∽△DGH.∴GH DH =BCAC =m ,∴GH =mDH =mAH.由△ADG ∽△ABC 可得DG AD =BC AB =BCAC =m.∵DG ∥BC ,∴FG FC =GDEC=m.∴FG =mFC.∴GH +FG =m(AH +FC)=m(AC -HF),即HF =m(AC -HF).∴ACHF =m +1m.类型二 几何图形动态探究 1.解:(1)①当α=0°时, ∵Rt △ABC 中,∠B =90°,∴AC =AB 2+BC 2=(8÷2)2+82=45,∵点D 、E 分别是边BC 、AC 的中点,∴AE =45÷2=25,BD =8÷2=4,∴AE BD =254=52.②如解图①,当α=180°时,可得AB ∥DE , ∵AC AE =BC BD ,∴AE BD =AC BC =458=52;(2)当0°≤α<360°时,AEBD 的大小没有变化,∵∠ECD =∠ACB ,∴∠ECA =∠DCB , 又∵EC DC =AC BC =52,∴△ECA ∽△DCB ,∴AE BD =EC DC =52;(3)①当D 在AE 上时,如解图②,∵AC =45,CD =4,CD ⊥AD , ∴AD =AC 2-CD 2=(45)2-42=80-16=8, ∵AD =BC ,AB =DC ,∠B =90°, ∴四边形ABCD 是矩形,∴BD =AC =45;②当D 在AE 延长线上时,如解图③,连接BD ,过点D 作AC 的垂线交AC 于点Q ,过点B 作AC 的垂线交AC 于点P ,∵AC =45,CD =4,CD ⊥AD ,∴AD =AC 2-CD 2=(45)2-42=80-16=8,∵原图中点D 、E 分别是边BC 、AC 的中点,∴DE =12AB =12×(8÷2)=12×4=2,∴AE =AD -DE =8-2=6,由(2)可得AE BD =52,∴BD =652=1255.综上所述,BD 的长为45或1255.2.解:(1)①∵∠AOB =150°,∠BOC =120°,∴∠AOC =90°, 由旋转的性质可知,∠OCD =60°,∠ADC =∠BOC =120°, ∴∠DAO =360°-60°-90°-120°=90°; ②线段OA ,OB ,OC 之间的数量关系是OA 2+OB 2=OC 2.如解图①,连接OD.∵△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴△ADC ≌△BOC ,∠OCD =60°. ∴CD =OC ,∴△OCD 是等边三角形,∴OC =OD =CD ,∠COD =∠CDO =60°,∵∠AOB =150°,∠BOC =120°,∴∠AOC =90°, ∴∠AOD =30°,∠ADO =60°.∴∠DAO =90°. 在Rt △ADO 中,∠DAO =90°,∴OA 2+AD 2=OD 2, ∴OA 2+OB 2=OC 2;(2)①当α=β=120°时,OA +OB +OC 有最小值.作图如解图②,将△AOC 绕点C 按顺时针方向旋转60°得△A′O′C,连接OO′. ∴△A ′O ′C ≌△AOC ,∠OCO ′=∠ACA′=60°.∴O′C=OC ,O ′A ′=OA ,A ′C =AC ,∠A ′O ′C =∠AOC.∴△OCO′是等边三角形.∴OC =O′C=OO′,∠COO ′=∠CO′O=60°. ∵∠AOB =∠BOC =120°,∴∠AOC =∠A′O′C=120°. ∴∠BOO ′=∠OO′A′=180°.∴B ,O ,O ′,A ′四点共线. ∴OA +OB +OC =O′A′+OB +OO′=BA′时值最小;②当等边△ABC 的边长为1时,OA +OB +OC 的最小值为A′B=3.3.解:(1)①∵△DEC 绕点C 旋转使点D 恰好落在AB 边上,∴AC =CD ,∵∠BAC =90°-∠B =90°-30°=60°, ∴△ACD 是等边三角形,∴∠ACD =60°, 又∵∠CDE =∠BAC =60°,∴∠ACD =∠CDE , ∴DE ∥AC ;②∵∠B =30°,∠C =90°,∴CD =AC =12AB ,∴BD =AD =AC ,根据等边三角形的性质,△ACD 的边AC 、AD 上的高相等, ∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2;(2)∵△DEC 是由△ABC 绕点C 旋转得到,∴BC =CE ,AC =CD , ∵∠ACN +∠BCN =90°,∠DCM +∠BCN =180°-90°=90°, ∴∠ACN =∠DCM ,∵在△ACN 和△DCM 中,⎩⎪⎨⎪⎧∠ACN =∠DCM ∠CMD =∠N =90°AC =DC ,∴△ACN ≌△DCM(AAS ),∴AN =DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2;(3)如解图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形, ∴BE =DF 1,且BE 、DF 1上的高相等,此时S △DCF 1=S △BDE ; 过点D 作DF 2⊥BD ,∵∠ABC =60°,F 1D ∥BE ,∴∠F 2F 1D =∠ABC =60°, ∵BF 1=DF 1,∠F 1BD =12∠ABC =30°,∠F 2DB =90°,∴∠F 1DF 2=∠ABC =60°,∴△DF 1F 2是等边三角形,∴DF 1=DF 2,∵BD =CD ,∠ABC =60°,点D 是角平分线上一点, ∴∠DBC =∠DCB =12×60°=30°,∴∠CDF 1=180°-∠BCD =180°-30°=150°, ∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,∵在△CDF 1和△CDF 2中,⎩⎪⎨⎪⎧DF 1=DF 2∠CDF 1=∠CDF 2CD =CD ,∴△CDF 1≌△CDF 2(SAS ),∴点F 2也是所求的点,∵∠ABC =60°,点D 是角平分线上一点,DE ∥AB ,∴∠DBC =∠BDE =∠ABD =12×60°=30°, 又∵BD =4,∴BE =ED =12×4÷cos 30°=2÷32=433, ∴BF 1=433,BF 2=BF 1+F 1F 2=433+433=833, 故BF 的长为433或833. 4.解:(1)当α=60°时,△ABC 、△DCE 是等边三角形, ∴EC =DC ,AC =BC ,∠ACB =∠DCE =60°,∴∠ACB -∠ACD =∠DCE -∠ACD ,即∠BCD =∠ACE ,在△BDC 和△AEC 中,⎩⎪⎨⎪⎧EC =DC ∠BCD =∠ACE AC =BC,∴△BDC ≌△AEC(SAS ),∴BD =AE ;(2)BD =2AE ;理由如下:如解图①,过点D 作DF ∥AC ,交BC 于F. ∵DF ∥AC ,∴∠ACB =∠DFB.∵∠ABC =∠ACB =α,α=45°,∴∠ABC =∠ACB =∠DFB =45°.∴△DFB 是等腰直角三角形∴BD =DF =22BF. ∵AE ∥BC ,∴∠ABC +∠BAE =180°.∵∠DFB +∠DFC =180°,∴∠BAE =∠DFC.∵∠ABC +∠BCD =∠ADC ,∠ABC =∠CDE =α,∴∠ADE =∠BCD.∴△ADE ∽△FCD.∴AE FD =AD FC. ∵DF ∥AC ,∴BD BF =AD CF .∴AE BD =BD BF =22.∴BD =2AE. (3)补全图形如解图②,∵AE ∥BC ,∠EAC =∠ACB =α,∴∠EAC =∠EDC =α,∴A 、D 、C 、E 四点共圆,∴∠ADE =∠ACE ,∵∠ADE +∠EDC =∠ADC =∠ABC +∠BCD ,∠ABC =∠EDC =α, ∴∠ADE =∠BCD ,∴∠ACE =∠BCD ,∵∠ABC =∠EAC =α,∴△BDC ∽△AEC ,∴BD AE =BC AC, 又∵BC AC=2cos α,∴BD =2cosα·AE.5.解:(1)①∵△ABC 是等边三角形,∴AC =BC ,∠BAC =∠B =60°,∵∠DCF =60°,∴∠ACF =∠BCD ,在△ACF 和△BCD 中,⎩⎪⎨⎪⎧AC =BC ∠ACF =∠BCD CF =CD,∴△ACF ≌△BCD(SAS ),∴∠CAF =∠B =60°,∴∠EAF =∠BAC +∠CAF =120°; ②相等;理由如下:∵∠DCF =60°,∠DCE =30°,∴∠FCE =60°-30°=30°,∴∠DCE =∠FCE ,在△DCE 和△FCE 中,⎩⎪⎨⎪⎧CD =CF ∠DCE =∠FCE CE =CE,∴△DCE ≌△FCE(SAS ),∴DE =EF ;(2)①∵△ABC 是等腰直角三角形,∠ACB =90°,∴AC =BC ,∠BAC =∠B =45°,∵∠DCF =90°,∴∠ACF =∠BCD ,在△ACF 和△BCD 中,⎩⎪⎨⎪⎧AC =BC∠ACF =∠BCD CF =CD,∴△ACF ≌△BCD(SAS ),∴∠CAF =∠B =45°,AF =BD , ∴∠EAF =∠BAC +∠CAF =90°;②AE 2+DB 2=DE 2;理由如下:∵∠DCF =90°,∠DCE =45°,∴∠FCE =90°-45°=45°,∴∠DCE =∠FCE ,在△DCE 和△FCE 中,⎩⎪⎨⎪⎧CD =CF∠DCE =∠FCE CE =CE,∴△DCE ≌△FCE(SAS ),∴DE =EF ,在Rt △AEF 中,AE 2+AF 2=EF 2,又∵AF =DB ,∴AE 2+DB 2=DE 2.。
河南省2013年中考数学试卷(解析版)
![河南省2013年中考数学试卷(解析版)](https://img.taocdn.com/s3/m/142d91f39ec3d5bbfd0a7458.png)
河南省2013年中考数学试卷一、选择题(每小题3分,共24分)下列各小题均匀四个答案,其中只有一个十正确的.1.(3分)(2013•河南)﹣2的相反数是()A.2B.﹣2 C.D.考点:相反数.分析:根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.解答:解:﹣2的相反数是2,故选:A.点评:此题主要考查了相反数,关键是掌握相反数的定义.2.(3分)(2013•河南)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、是中心对称图形,不是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选D.点评:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2013•河南)方程(x﹣2)(x+3)=0的解是()A.x=2 B.x=﹣3 C.x1=﹣2,x2=3 D.x1=2,x2=﹣3考点:解一元二次方程-因式分解法.分析:根据已知得出两个一元一次方程,求出方程的解即可.解答:解:(x﹣2)(x+3)=0,x﹣2=0,x+3=0,x1=2,x2=﹣3,故选D.点评:本题考查了解一元关键是能把一元一次方程和解一元二次方程的应用,关键是能把一元二次方程转化成一元一次方程.4.(3分)(2013•河南)在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则8人体育成绩的中位数是()A.47 B.48 C.48.5 D.49考点:中位数.分析:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,由此计算即可.解答:解:这组数据的中位数为=48.5.故选C.点评:本题考查了中位数的知识,解答本题的关键是掌握中位数的定义,注意在求解前观察:数据是否为从小到大排列.5.(3分)(2013•河南)如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是()A.1B.4C.5D.6考点:专题:正方体相对两个面上的文字.分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“2”与“4”是相对面,“3”与“5”是相对面,“1”与“6”是相对面.故选B.点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.(3分)(2013•河南)不等式组的最小整数解为()A.﹣1 B.0C.1D.2考点:一元一次不等式组的整数解.分析:先求出不等式组的解集,再求其最小整数解即可.解答:解:不等式组解集为﹣1<x≤2,其中整数解为0,1,2.故最小整数解是0.故选B.点评:本题考查了一元一次不等式组的整数解,属于基础题,正确解出不等式的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。
2024年河南省九年级中考数学模拟试卷(六)
![2024年河南省九年级中考数学模拟试卷(六)](https://img.taocdn.com/s3/m/0df9533e9a6648d7c1c708a1284ac850ad0204d2.png)
2024年河南省九年级中考数学模拟试卷(六)一、单选题1.实数3-,2,12024,02024,)A.-3 B.12024C.20240D2.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()A.B.C.D.3.下列说法中错误的是()A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查4.不等式组2111313412x xxx+≥⎧⎪-⎨-<⎪⎩的解集在数轴上表示正确的是()A.B.C.D.5.如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=()A .30°B .60°C .120°D .150°6.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( ) A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+7.人体红细胞的直径约为0.0000077米,数据0.0000077用科学记数法表示为7.710n ⨯,则n 的值是( ) A .5B .5-C .6D .6-8.如图,在菱形ABCD 中,8AB =,120BAD ∠=︒,点O 是对角线BD 的中点,OE CD ⊥于点E ,则OE 的长为( )A .B C .4 D .29.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论错误的是( ) A .该函数有最大值B .该函数图象的对称轴为直线1x =C .当2x >时,函数值y 随x 增大而减小D .方程20ax bx c ++=有一个根大于310.如图,A 是平面直角坐标系中y 轴上的一点,AO =AO 为底构造等腰ABO V ,且120ABO ∠=︒,将ABO V 沿着射线OB 方向平移,每次平移的距离都等于线段OB 的长,则第2024次平移结束时,点B 的对应点2024B 的坐标为( )A .()B .()C .(D .(二、填空题11.分解因式:34x x -=.12.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是. 13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89,方差分别是21.2S =甲,22.3S =乙,211.5S =丙,你认为适合选参加决赛.(填“甲”“乙”或“丙”)14.如图,B 、E 是以AD 为直接的半圆O 的三等分点,弧BE 的长为23π,作BC ⊥AE ,交AE 的延长线于点C ,则图中阴影部分的面积为.15.如图,在平行四边形ABCD 中,4AB =,6AD =,120A ∠=︒,点F ,N 分别为CD ,AB 的中点,点E 在边AD 上运动,将EDF V 沿EF 折叠,使得点D 落在D ¢处,连接BD ',点M 为BD '中点,则MN 的最小值是.三、解答题16.(1)计算:111245-⎛⎫⎛⎫÷--+ ⎪ ⎪⎝⎭⎝⎭;(2)化简: 11111a a a a ⎛⎫+÷ ⎪+--⎝⎭. 17.如图,一次函数y x b =+与反比例函数ky x=的图象相交于点A ,B 两点,点B 的坐标为()4,2--.(1)分别求出一次函数和反比例函数的解析式; (2)已知点C 坐标为()2,0,求ABC V 的面积.18.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理、描述和分析(成绩用m 表示),共分成四个组:A . 8085m ≤<,B . 8590m ≤<, C . 9095m ≤<,D . 95100m ≤≤.另外给出了部分信息如下: 八年级10名学生的成绩: 99, 80,99,86, 99,96,90,100,89,82. 九年级10名学生的成绩在C 组的数据:94,90,94. 八、九年级抽取学生成绩统计表九年级抽取学生成绩扇形统计图根据以上信息,解答下列问题: (1)上面图表中的a =,b =, c =;(2)扇形统计图中“D 组”所对应的圆心角的度数为;(3)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m <95)的学生有多少人?(4)现准备从九年级中D 组中的甲、乙、丙、丁四个学生中随机选取两个参加市区的比赛,请用树状图或列表法求出恰好选中甲和丁的概率.19.如图,某建筑物楼顶挂有广告牌BC ,张伟准备利用所学的三角函数知识估测该建筑CO的高度.由于场地有限,不便测量,所以张伟从点A 沿坡度为i =30米到达点P ,测得广告牌底部C 点的仰角为45︒,广告牌顶部B 点的仰角为53︒,张伟的身高忽略不计,已知广告牌12BC =米,求建筑物CO 的高度.(参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈)20.重庆市涪陵区是中国规模最大、最集中的榨菜产区,享有中国“榨菜之乡”的美誉.已知3件鲜脆榨菜丝和4件麻辣萝卜干的进价共240元,5件鲜脆榨菜丝和2件麻辣萝卜干的进价共260元.(1)请分别求出每件鲜脆榨菜丝和麻辣萝卜干的进价.(2)某特产店计划用不超过5600元购进鲜脆榨菜丝和麻辣萝卜干共150件,且鲜脆榨菜丝的数量不少于麻辣萝卜干数量的32.在销售过程中,每件鲜脆榨菜丝的售价为50元,每件麻辣萝卜干的售价为42元.为了方便顾客选择喜欢的口味,特产店拿出一件鲜脆榨菜丝和一件麻辣萝卜干作为样品让顾客免费品尝(此样品不再销售给顾客).若剩下的特产全部都卖完,该特产店应如何进货,可使利润最大?最大利润为多少元? 21.阅读与思考下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.阿基米德折弦定理从圆上任意一点出发的两条弦所组成的折线,称为该圆的一条折弦,如图1.古希腊数学家阿基米德发现,若PA ,PB 是O e 的折弦.C 是»AB 的中点,CE PA ⊥于点E ,则AE PE PB =+.这就是著名的“阿基米德折弦定理”. 证明如下:如图2,在AE 上截取AF PB =,连接CA ,CF ,CP ,CB .则FAC PBC ∠=∠(依据1).∵C 是»AB 的中点,∴AC BC =n n,∴AC BC =. 在FAC V 和PBC V 中,AC BC = FAC PBC ∠=∠AF BP =∴()FAC PBC SAS V V ≌,∴CF CP =. ∵CE PA ⊥于点E ,∴FE PE =(依据2).∴AE FE AF PE PB =+=+.任务:(1)填空:材料中的依据1是指________________;依据2是指________________. (2)如图3,BC 是O e 的直径,D 是»AC 上一点,且满足45DAC ∠=︒,若12AB =,O e 的半径为10,求AD 的长.22.如图,已知抛物线 ²y x bx c =-++₁的顶点 D 的坐标为()14,,与x 轴的正半轴交于点 A ,与y 轴交于点B ,连接AB .(1)求b ,c 的值;(2)点(),P m n 在抛物线y 1上,当2m <时, 请根据图象直接写出n 的取值范围;(3)将抛物线1y 向右平移1个单位得到抛物线2y ,1y 与2y 交于点 C ,将点C 向下平移k 个单位,使得点C 落在线段AB 上,求k 的值.23.随着教育教学改革的不断深入,数学教学如何改革和发展,如何从“重教轻学”向自主学习探索为主的方向发展,是一个值得思考的问题.从数学的产生和发展历程来看分析,不外乎就是三个环节:【观察猜想】-【探究证明】-【拓展延伸】.下面同学们从这三个方面试看解决下列问题:已知:如图1所示将一块等腰三角板BMN 放置与正方形ABCD 的B ∠重含,连接 AN 、CM ,E 是AN 的中点,连接BE .【观察猜想】(1)CM 与 BE 的数量关系是________,CM 与BE 的位置关系是___________; 【探究证明】(2)如图2所示,把三角板 BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM与BE 的关系是否仍然成立,并说明理由; 【拓展延伸】(3)若旋转角45α=︒,且2NBE ABE ∠=∠,求BCBN的值.。
2013数学河南中考真题
![2013数学河南中考真题](https://img.taocdn.com/s3/m/1dbe540bdd36a32d73758129.png)
日
•z )
将
副直 角 三 角 板 A B c 和
=
EDF
·
如 图 放置 ( 其 中 L
A
,
.
6 0 •B L F
L CE F
45°
) 使点 E 落 在
10
边 上 且 E D // B C 则
方程 ( x
) (x
+
3 )
O
的 解是
的 度数 为
(
)
h
4
E
D
在
次体 育 测 试 中 小 芳所 在小 组
则这
8
Scanned by CamScanner
三解
题 共 吕个 小题 满 分 7 5 分 ) 答题( 本大 求h{ 珲 1 淄 分) 先化 丅
'
(3 )
材œ {1 这 大接受训 告 的市民 中 随机 1 •B 观 / ' ( t k j 概 率 儉多 少 丫 持 C 1Il •B
l 部 大部 分地 区 持 ( 9 分) 从 2 0 13 年 1 月 7 日起 中 印 l 东 •B 霾 天 气 的 主 要 ' 团团赜 出现 雾 天 i 某市 记 者 为 了 了 e
按
使
21
照 工 程 计划 需 对 原 水 库 大 坝 进 行 混 凝 土 培厚 加 高
坝 高 由原 来 的 如图 是某
1 62
17 6 6
木 以 抬 高 蓄水 位
元 购买
12 2
的 it 品牌 种 西 罗 56 0 分 ) 某文 具 商店 销 售 功 能 相 同 的 A ( •z 僭亃 共 器 计算 算 器 购买 2 个 僶品 牌 和 3 个 月 品 牌 的 笋 计 算器 傓, 1 牌的
2013年北京、上海、大连、河南、福州市中考数学试题及答案
![2013年北京、上海、大连、河南、福州市中考数学试题及答案](https://img.taocdn.com/s3/m/2f627c08de80d4d8d15a4f38.png)
2013年北京市高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为( )A. 39.6³102B. 3.96³103C. 3.96³104D. 3.96³104 2. 43-的倒数是( ) A. 34 B. 43 C. 43- D. 34-3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( ) A.51 B. 52 C. 53 D. 544. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于( )A. 40°B. 50°C. 70°D. 80°5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上。
若测得BE=20m ,EC=10m ,CD=20m ,则河的宽度AB 等于( )A. 60mB. 40mC. 30mD. 20m 6. 下列图形中,是中心对称图形但不是轴对称图形的是( )7. 某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5 6 7 8 人数1015205则这50名学生这一周在校的平均体育锻炼时间是( )A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时8. 如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )二、填空题(本题共16分,每小题4分)9. 分解因式:a ab ab 442+-=_________________10. 请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式__________10 11. 如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为__________12. 如图,在平面直角坐标系x O y 中,已知直线l :1--=x t ,双曲线xy 1=。
2013年河南中招数学考试模拟试卷
![2013年河南中招数学考试模拟试卷](https://img.taocdn.com/s3/m/d27bc041cf84b9d528ea7a68.png)
2013年河南中招数学考试模拟试卷注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟2.请用蓝、黑色钢笔或圆珠笔直接答在试卷上.3.答卷前将密封线内的项目填写清楚.参考公式:二次函数2(0)y ax bx c a=++≠图象的顶点坐标为24(,)24b ac ba a--.一、选择题(每小题3分,共24分)1.计算下列式子,结果是-3的是()A.-(-3) B.(-3)-1 C.(-3)0 D.-|-3 |2.下面运算中,正确的是()A.2x5·2x5=4x5 B.2x5+2x5=4x10 C.(x5)5=x25 D.(x-2y)2=x2-4y23.某工厂对一个生产小组的零件进行抽样调查,在10天中,这个生产小组每天出的次品数如下(单位:个) 2,0,1,1,3,2,1,1,0,1那么,在这10天中,这个生产小组每天出的次品数的()A.平均数是1.5 B.中位数是1 C.众数是3 D.方差是1.654.如图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.5.如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段EC的长度为()A.2 B.3 C.4 D.1第5题图第6题图6.如图,P是正三角形ABC内一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P’AB,则点P与点P’之间的距离为()A.4 B.4.8 C. 6 D. 87.若b>0二次函数y=ax2+bx+a2-1的图象如图所示,则a等于()A.12--.12-+C.1 D. -18.如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=21CD•OA;⑤∠DOC=90°,其中正确个数是()A.2 B.3 C.4 D.5二、填空题(每小题3分,共21分)9.函数的自变量xx2+的取值范围是__ ______.10.一个袋子中装有3个红球和2个绿球,这些求除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为 .11.方程2x=x的解是12.如图,在ABC△中,120AB AC A BC=∠==,°,,A⊙与BC相切于点D,且交AB AC、于M N、两点,则图中阴影部分的面积是(保留π).13.如图,已知一次函数1y x=+的图象与反比例函数kyx=的图象在第一象限相交于点A,与x轴相交于点C A B x,⊥轴于点B,AOB△的面积为1,则AC的长为 .(保留根号) 14.如图,在菱形ABCD 中,DE ⊥AB , 54sin =A ,BE =4,则tan ∠BDE 的值是第13题图 第14题图第15题图15. 如图,将边长为33+的等边△ABC 折叠,折痕为DE ,点B 与点F 重合,EF和DF 分别交AC 于点M 、N ,DF ⊥AB ,垂足为D ,AD =1,则重叠部分的面积为 ____. 三、解答题(本大题共8个小题,满分75分)16.(8分)计算:-22212-⎛⎫- ⎪⎝⎭+(-π)0-(217.(9分)如图,在△ABC 中,AB =AC ,BD ⊥AC , CE ⊥AB ,垂足分别为D 、E ,BD 和CE 相交于点F ,请写出图中三组全等的三角形,并选出其中一组加以证明.18.(9分)为活跃校园文化气氛,某校举行以“看我家乡”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:请根据以上图表提供的信息,解答下列问题:(1)表中m 和n 所表示的数分别为:m = ,n = ; (2)请在图中,补全频数分布直方图; (3)比赛成绩的中位数落在哪个分数段?(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?19.(9分)如图,线段AB DC 、分别表示甲、乙两建筑物的高,AB BC DC BC ⊥,⊥,从B 点测得D 点的仰角α为60°从A 点测得D 点的仰角β为30°,已知甲建筑物高36AB =米.频数分数(分)DNE FM CBA(1)求乙建筑物的高DC ;(2)求甲、乙两建筑物之间的距离BC (结果精确到0.01米).1.414 1.732)20.(9分)小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图一11中线段AB 所示.(1)小李到达甲地后,再经过 小时小张到达乙地;小张骑自行车的速度是 千米/小时.(2)试求出图中EF 及AB 的解析式.(3)若小李想在小张休息期间与他相遇,则他出发的时间x 应在什么范围?(直接写出答案)21.(10分)四通公司要将本公司100吨货物运往某地销售,经与八达运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元,租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若四通公司计划此次租车费用不超过5000元,通过计算说明该公司有哪几种租车方案?并求出最低的租车费用.22.(10分)几何模型:条件:如下左图,A 、B 是直线l 同旁的两个定点. 问题:在直线l 上确定一点P ,使PA PB +的值最小.αβD乙CBA 甲方法:作点A 关于直线l 的对称点A ',连结A B '交l 于点P ,则P A P B AB '+=的值最小(不必证明). 模型应用:(1)如图1,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.连结BD ,由正方形对称性可知,B 与D 关于直线AC 对称.连结ED 交AC 于P ,则PB PE +的最小值是___________;(2)如图2,O ⊙的半径为2,点A B C 、、在O ⊙上,OA OB ⊥,60AOC ∠=°,P 是OB 上一动点,求PA PC +的最小值;(3)如图3,45AOB ∠=°,P 是AOB ∠内一点,10PO =,Q R 、分别是OA OB 、上的动点,求PQR △周长的最小值.23.(11分)如图,一次函数1y=x+22-分别交y 轴、x 轴于A 、B 两点,抛物线y=﹣x 2+bx+c 过A 、B 两点. (1)求这个抛物线的解析式;(2)作垂直x 轴的直线x=t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.数学试题参考答案一.选择题(每小题3分,共24分)1.D 2.C 3.B 4.A 5. A 6. C 7.D 8.B 二、填空题(每小题3分,共21分)9.02≠-≥x x 且 10.53 11.0,121==x x 12π313..21 15. 4933+三、解答题(本大题共8个小题,满分75分)16.解:22012(tan 601)()22-⎛⎫-+--+-π- ⎪⎝⎭4412=-++-+5分)43412=-++-2=…………………………………………………………………………(8分) 17.解:△ABD ≌△ACE 、△BCE ≌△CBD 、△BEF ≌△CDF …………3分∵BD ⊥AC , CE ⊥AB ∴∠BDA =∠CEA =90°, …………5分 又∠A =∠A ,AB =AC ,∴△ABD ≌△ACE (AAS ) …………9分 18.(1)m=90,n=0.3; ………………………………………2分 (2)图略. ………………………………4分 (3)比赛成绩的中位数落在:70分~80分. ……………………6分(4)获奖率为:40%(或0.3+0.1=0.4) ……………………9分 19.解:(1)过点A 作AE CD ⊥于点E , 根据题意,得6030DBC DAE αβ∠=∠=∠=∠=°,°,36AE BC EC AB ===,米,设DE x =,则36DC DE EC x =+=+,………………………2分在Rt AED △中,tan tan 30DEDAE AE∠==°,AE BC AE ∴=∴==,,在Rt DCB △中,tan tan 60DC DBC BC ∠===°,, 3361854x x x DC ∴=+=∴=,,(米). ……………………6分 (2)BC AE ==,18x =,1818 1.73231.18BC ∴==⨯≈(米). ……………………9分20.解:(1)1 ; 15 …………………2分 (2)解:由图可知,E 、F 、A 、B 四点的坐标分别为E (5,60),F (9,0), A (6,0),B (8,120)。
人教版中考模拟考试数学试卷及答案(共七套)
![人教版中考模拟考试数学试卷及答案(共七套)](https://img.taocdn.com/s3/m/217cbb1653d380eb6294dd88d0d233d4b14e3f4a.png)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
河南2013年中考数学模拟试卷(九)
![河南2013年中考数学模拟试卷(九)](https://img.taocdn.com/s3/m/96191a73168884868762d60e.png)
河南2013年中考数学模拟试卷(九)(满分120分考试时间100分钟)一、选择题(每小题3分,共24分)1.64的立方根是【】A.8 B.±8 C.4 D.±42.下列长度的三条线段,不能组成三角形的是【】A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,8 3.如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是【】A.B.C.D.4.小华所在的九年级(1)班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是【】A.1.65米是该班学生身高的平均水平B.班上比小华高的学生人数不会超过25人C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米5.如果关于x 的方程221kx k x-++1=0有两个不相等的实数根,那么k的取值范围是【】A.12k<且0k≠B.1k<且0k≠C.1122k-<≤D.1122k-<≤且0k≠6.如图,若正方形EFGH是由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是【】A.M或O或N B.E或O或CC.E或O或N D.M或O或C7.如图,CD是⊙O的直径,弦AB⊥CD于点E,∠BCD=25°,则下列结论错误的是【】A.AE=BE B.OE=DENMOHGFEDCBAOCC .∠AOD =50° D .D 是弧AB 的中点8. 如图,一条抛物线与x 轴相交于A ,B 两点,其顶点P 在折线C -D -E 上移动,若点C ,D ,E 的坐标分别为(-1,4),(3,4),(3,1),点B 的横坐标的最小值为1,则点A 的横坐标的最大值为【 】 A .1 B .2 C .3D .4二、填空题(每小题3分,共21分)9. 使式子12x x ++-有意义的x 的取值范围是_____________.10. 按下列图示的程序计算,若开始输入的值为x =3,则最后输出的结果是_____.11. 如图是两个可以自由转动的转盘,转盘均被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),则转盘停止后指针指向的数字之和为偶数的概率是________. 12. 某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米,母线AB与底面半径OB 的夹角为α,4tan 3α=,则圆锥的侧面积是_______平方米(结果保留π).876321 αOBA第11题图 第12题图 第13题图13. 如图,点A 1,A 2,…,A n 在抛物线y =x 2的图象上,点B 1,B 2,…,B n 在y轴上,若△A 1B 0B 1,△A 2B 1B 2,…,△A n B n -1B n 都为等腰直角三角形(点B 0是坐标原点),则△A 2013B 2012B 2013的腰长等于_______. 14. 如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC =10,则正方形的边 长为_______.否是 输入x 计算(1)2x x +的值>100 输出结果 y=x 2A 1A 2B 2B 1B 0yx1086FEDA y xPEODCBA15. 如图,在直角梯形ABCD 中,∠A =90°,∠B =120°,AD =3,AB =6.在底边AB 上取点E ,在射线DC 上取点F ,使得∠DEF =120°.若射线EF 经过点C ,则AE 的长度为__________.三、解答题(本大题共8小题,满分75分)16. (8分)先化简:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭,当b =-1时,再从-2<a <3的范围内选取一个合适的整数a 代入求值.17. (9分)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票(每人只能推荐一人,不设弃权票),选出了票数最多的甲、乙、丙三人,投票结果统计如图1.其次,对三名候选人进行了笔试和面试两项测试,各项成绩如图表所示.图2是某同学根据图表绘制的一个不完整的条形统计图.其他8%甲34%乙丙28%1009590858075甲乙丙竞选人笔试面试分数图1图2测试项目测试成绩/分甲乙 丙 笔试 92 90 95 面试859580请你根据以上信息解答下列问题:(1)补全图1和图2;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3来确定,计算三名候选人的平均成绩,成绩高的将被录取,则应该录取谁?A D CBE F18. (9分)如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)当点P 在边AC 上运动时,四边形AECF 可能是矩形吗?说明理由. (2)若在AC 边上存在点P ,使四边形AECF 是正方形,且32AP BC,求此 时∠A 的大小.ABCE FM NP19. (9分)“保护生态环境,建设绿色社会”已经从理念变为人们的行动.某化工厂2012年1月的利润为200万元.设2012年1月为第1个月,第x 个月的利润为y 万元.由于排污超标,该化工厂从2012年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).(1)分别求该化工厂治污期间及改造工程顺利完工后y 与x 之间对应的函数关系式;(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元? (3)若当月利润少于100万元时为该厂资金紧张期,则该厂资金紧张期共有几个月?1601208040O 15200y /万元x /月20.(9分)如图,新星小学门口有一直线马路,为方便学生过马路,交警在门口设有一定宽度的斑马线,斑马线的宽度为4米,为安全起见,规定车头距斑马线后端的水平距离不得低于2米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为∠FAE=15°和∠FAD=30°.司机距车头的水平距离为0.8米,试问该旅游车停车是否符合上述安全标准?(E,D,C,B四点在平行于斑马线的同一直线上,参考数据:tan15°=2-3,sin15°=624-,cos15°=624+,3≈1.732,2≈1.414)ABCDEF4米0.8米21.(10分)随着人们环保意识的不断增强,某市家庭电动自行车的拥有量逐年增加.据统计,某小区2010年底拥有家庭电动自行车125辆,2012年底家庭电动自行车的拥有量达到180辆.(1)若该小区2010年底到2013年底家庭电动自行车拥有量的年平均增长率相同,则该小区到2013年底电动自行车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1 000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.22. (10分)如图1,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接GD ,求证:△ADG ≌△ABE .(2)连接FC ,通过观察,猜测∠FCN 的度数,并说明理由.(3)如图2,将图1中的正方形ABCD 改为矩形ABCD ,且AB =a ,BC =b (a ,b 为常数),E 是线段BC 上一动点(不含端点B ,C ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.当点E 由B 向C 运动时,∠FCN 的大小是否总保持不变?若∠FCN 的大小不变,请用含a ,b 的代数式表示tan ∠FCN 的值;若∠FCN 的大小发生改变,请举例说明.AB E CF DNM GDM NGFC E BA图1 图223. (11分)已知二次函数y =a (x 2 6x +8)(a >0)的图象与x 轴分别交于A ,B 两点,与y 轴交于点C ,点D 是抛物线的顶点.(1)如图1,连接AC ,将△OAC 沿直线AC 翻折,若点O 的对应点O'恰好落在该抛物线的对称轴上,求实数a 的值.(2)如图2,在正方形EFGH 中,点E ,F 的坐标分别是(4,4),(4,3),边HG 位于边EF 的右侧.小林同学经过探索后发现了一个正确的命题:“若点P 是边EH 或边HG 上的任意一点,则四条线段P A ,PB ,PC ,PD 不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边 形).”若点P 是边EF 或边FG 上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程.(3)如图2,当点P 在抛物线对称轴上时,设点P 的纵坐标t 是大于3的常数,试问:是否存在一个正数a ,使得四条线段P A ,PB ,PC ,PD 与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.图2图1OA BCD O'xyH GFEyxO'D CB A O2013年中考数学模拟试卷(九)参考答案一、选择题 1 2 3 4 5 6 7 8 CACBDAB B二、填空题 9.12≤≤x - 10.231 11.4912.60π13.2 013214.41015.5或2三、解答题 16.原式1a b=+,a 只能取2,把a =2,b =-1代入得,原式=1. 17.(1)略;(2)甲68票,乙60票,丙56票;(3)应该录取乙. 18.(1)四边形AECF 可能是矩形,理由略;(2)∠A =30°. 19.(1)治污期间:200y x=;改造工程顺利完工后:2060y x =-. (2)完工后经过8个月,该厂利润才能达到200万元. (3)共有5个月.20.该旅游车停车符合规定的安全标准. 21.(1)216辆;(2)方案①室内车位20个,露天车位50个;方案②室内车位21个, 露天车位45个.22.(1)证明略;(2)∠FCN =45°,理由略;(3)∠FCN 的大小总保持不变,tan ∠FCN ba=. 23.(1)34a =; (2)成立,探索过程略;(3)当t >3时,存在正数277t t a ±-=,使得四条线段P A ,PB ,PC ,PD与一个平行四边形的四条边对应相等.。
2024年河南省南阳市中考数学模拟试卷
![2024年河南省南阳市中考数学模拟试卷](https://img.taocdn.com/s3/m/a3572b55a9114431b90d6c85ec3a87c240288afa.png)
2024年河南省南阳市中考数学模拟试卷一、选择题(每小题3分,共30分)。
1.(3分)下列说法错误的是()A.“对顶角相等”是必然事件B.“刻舟求剑”是不可能事件C.“方程x2+k=0有实数解”是随机事件D.某彩票的中奖机会是1%,买100张一定会中奖2.(3分)下列计算正确的是()A.=×B.C.2=D.﹣=3.(3分)已知△ABC如图所示.则与△ABC相似的是下列图中的()A.B.C.D.4.(3分)如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.B.C.D.5.(3分)关于x的一元二次方程x2+m=6x有两个不相等的实数根,则m的值可能是()A.8B.9C.10D.116.(3分)将抛物线y=﹣x2﹣2x+3的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过()A.(﹣2,2)B.(﹣1,1)C.(0,6)D.(1,﹣3)7.(3分)如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4)B.(6,2)C.(4,4)D.(8,4)8.(3分)如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上,若A(2,0),D (4,0),以O为圆心、OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是()A.15°B.22.5°C.30°D.45°9.(3分)如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为()A.2B.5C.7D.910.(3分)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球距O点水平距离为3m B.小球距O点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1:2二、填空题(每小题3分,共15分)。
2023年河南省中考数学模拟预测试卷(附答案)
![2023年河南省中考数学模拟预测试卷(附答案)](https://img.taocdn.com/s3/m/d31f1a517f21af45b307e87101f69e314332fac0.png)
河南省中考数学模拟预测试卷注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。
参考公式:二次函数2y =ax +bx+c (a ≠0)图象的顶点坐标为(-2b a,244ac-b a ).一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的.1.下列各数中最小的是 (A )-5(B )-π(C )3(D )02.如图所示的几何体的左视图是3.电子比荷是自然科学中的重要常数,其数值约为1760亿,若将1760亿用科学计数法表示为1.76×10n,则n 的值是 (A )10(B )11(C )12(D )-114.如图,a ,b 为平面内两条直线,且a ∥b ,直线c 截a ,b 于A ,B 两点,C ,D 分别为a ,b 上的点,在平面内有一点E ,EA ,EB 分别平分∠BAC 和∠ABD ,则∠E 等于(C)(D )15.不等式组⎧⎨⎩≥23-2<2x +x 的解集在数轴上可表示为 6.在某公司的面试中,李明的得分情况为:个人形象89分,工作能力93分,交际能力83分.已知个人形象、工作能力和交际能力的权重为3 : 4 : 4,则李明的最终成绩是 (A )96.7分(B )97.1分(C )88.3分(D )265分7.如图所示的图形是按下列步骤做得的:①在直线l 上截取线段AB ,使AB = 2;②分别以A ,B 为圆心,以1.5为半径作弧,两弧分别交于C ,D 两点,连接AC ,AD ,BC ,(D )(C )(A )(B )(D )(C )(B )(A )453210-1543210-1-1012345543210-1BD ,则四边形ACBD 的面积是 (A )5 (B )25 (C )3 (D )23 8.在如图所示的直角坐标系xOy 中有一线段AB ,其中A 和B 均在坐标轴上且AB = 4,点P (x ,y )是AB 的中点.现将AB 进行移动,但仍保持AB = 4,则x ,y 应满足的关系是 (A )x 2 + y 2 = 1 (B )x + y = 1 (C )x 2 + y 2= 4 (D )x + y = 4(第7题) (第8题)(第10题)二、填空题(每小题3分,共21分) 9.计算:20+|-1| - 3-2= .10.如图,DE ∥BC ,AD = 3,DC = 1,若BC = 3,则DE = .11.一个不透明的矩形容器里装有10个小球(除颜色外完全相同),其中4个白球,6个红球,现从容器中摸出两个球,则摸到相同颜色的球的概率是 . 12.如图,两个45°的三角板叠放在一起,延长BC 和AC ,分别交DE 于点M ,N ,若∠ABD = 30°,则∠AND 的大小是 度. 13.在如图所示的直角坐标系xOy 中,AC ⊥OB ,OA ⊥AB ,OB = 3,点C 是OB 上靠近O 点的三等分点,若反比例函数ky =x >x ( )0 的图象(图中未画出)与△OAB 有两个交点, 则k 的取值范围是 . 14.如图,在Rt △ABC 中,AB = 1,∠ACB = 30°,点D 是AC 的中点,⊙O 是△ABC 的内切圆,以点D 为圆心,以AD 的长为半径作AB ,则图中阴影部分的面积是 . 15.如图,△ABC 是以BC 为底边的等腰三角形,AB = 3,BC = 5,P 是折线BAC 上动点(不与B ,C 重合),过P 作BC 的垂线l 交BC 于D ,连接AD .当△ACD 是等腰三角形时,BP 的长是 .(第12题) (第13题) (第14题) (第15题) 三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:⎛⎫⨯ ⎪⎝⎭22221--112-b a +ab+b a b a a ,其中a = b = 202X .DCBAlPB AOyxED CBA MNEDC B ACBAO yxlP DCBA17.(9分)如图,AB 是⊙O 的直径,D 是圆周上半部分不与A ,B 重合的动点,连接BD ,AD .(1)延长BD 交⊙O 在A 点的切线于C ,若AO =3CD ,求∠ACB 的大小;(2)填空:①若AB = 2,当AD = 时△ABD 的面积最大;②当∠BAD = °时BD =3AD .18.(9分)临近毕业,许多学生面临选择普通高中还是职业高中的问题.为了了解同学们的看法,红星中学数学兴趣小组已对全校3 000名毕业生进行调查,其中男生1 700人,女生1 300人. (1)展开调查由于调查3 000人费时费力,小组决定采用抽签作为样本进行抽样调查的方式,则抽到男生的概率为 ,抽到女生的概率为 ; (2)结果分析将调查结果绘制成如下不完整的统计图,回答问题: “毕业生对于高中选择”的条形统计图 “毕业生对于高中选择”的扇形统计图①调查中认为“无所谓”的有多少人? ②调查中认为“两者都有准备”的圆心角度数是多少? ③补全统计图; ④全校毕业生中认为“一定要进入普通高中”的人数约是多少?19.(9分)已知方程x 2+ 3mx + 2m - 3 = 0. (1)求证:对于任意的实数m ,方程总有两个不相等的实数根; (2)设a ,b 是平行四边形的两邻边边长,也是方程的两根,且a > b ,求a - b 的最小值. 20.(9分)某数学活动小组测量了学校旗杆的高度.如图,BC 为旗杆,他们先在A 点测得C 的仰角为45°,再向前走3米到达D 点,测得C 的仰角为53°,求旗杆高.(结果保留整数)参考数据:sin 53°≈0.8,cos 53°≈0.6,tan 37°≈0.75,2≈1.41.21.(10分)为便民惠民,人民公园特推出下列优惠方案: ①普通卡:每人每次20元;②贵宾卡:年费为200元,每人每次10元; ③至尊卡:年费为500元,但进入不再收费. 设某人参观x 次时,所需总费用为y 元.ODCDCBACBAyy 3y 2y 1(1)直接写出选择普通卡和贵宾卡消费时的函数关系式;(2)在同一个坐标系中,若三种方案对应的函数图象如图所示,求出点A ,B ,C 的坐标; (3)根据图象,直接写出选择哪种方案更合算.22.(10分)如图①,△ABC 和△DBE 是两个一模一样的三角板(两锐角为30°,60°),现将△DBE 绕点B 顺时针旋转,计旋转角为θ(0°<θ≤180°),连接AD ,CE . (1)问题发现当θ= 90°时,CEAD = .(2)拓展探究试判断,当0°<θ< 180°时,CEAD 的大小有无变化?请仅就图②的情形给出证明.(3)解决问题若AC = 2,请直接写出....在旋转过程中AD 的最大值. 23.(11分)已知抛物线y = ax 2+(b + 1)x + b - 1(a ≠0),直线y = - x + 2541aa -a +.定义:若存在某一数x 0,使得点(x 0,x 0)在抛物线y = ax 2+(b + 1)x + b - 1(a ≠0)上,则称x 0是抛物线的一个不动点.(1)当a = 1,b = - 2时,求抛物线的不动点;(2)若对任意的b 值,抛物线恒有两个不动点,求a 的取值范围;(3)在(2)的条件下,若A ,B 两点的横坐标是抛物线的不动点,且AB 的中点C 在直线上,请直接写出....b 的最小值.备用图图②图①ADECBA ( D)BC ( E )C ( E)BA ( D)参考答案及评分标准说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.三、解答题(本大题共8个小题,满分75分)16.(8分)原式 = a +b a -b a +b a -b a ab 2-1()()() ………………………………………………………… 3分=a +b ab a -1=bb a b a b+a - =b1 (6)分将b=2016代入得:原式 =12016………………………………………………………… 8分 17.(9分)(1)设CD = 1,AD = x ,由已知条件可得AB = ………………… 2分根据射影定理可得出关系式:AD 2= CD ·BD ………………………………… 5分所以x 2即x 4= 12 - x 2得, …………………………………………………………………… 6分 ∴∠ACB = 60°. …………………………………………………………………… 7分(2)②60. (9)分 18.(9分)(1)①1730;②1330; …………………………………………………………………… 2分 (2)①参与调查的总人数为80/16% = 500(人)∴调查中认为“无所谓”的有500×24% =120(人) ………………………… 3分 ②调查中认为“两者都有准备”所占百分比为100=20%500,∴调查中认为“两者都有准备”的圆心角度数是360°×20% = 72° (4)分③正确补全统计图(图略)…………………………………… 7分提示:在条形统计图中持“无所谓”看法的人数为120人,1分;在扇形统计图中“两者都有准备”为20%;1分;“一定要进入普通高中” ,40%,1分. ④全校毕业生中认为“一定要进入普通高中”的人数约为人2003000=1200 500()× …………………………………… 9分19.(9分)(1)证明:方程的判别式Δ=(3m )2- 4(2m - 3)= 9m 2- 8m + 12 ………………… 1分该式子的判别式Δ' = 82- 4×9×12 = - 368 < 0 …………………2分所以对于任意的m ,Δ恒大于0…………………………………… 3分即对于任意的实数m ,方程总有两个不相等的实数根 ………………… 4分(2)由韦达定理(或:根与系数的关系)可得:①a + b = -3m ;②ab = 2m - 3 (6)分又a > b ,所以………………………… 8分所以当m =49时,a - b…………………………9分 20.(9分) 设旗杆高为x 米 在△ABC 中AB = x 米…………………………………………………………… 2分在△BCD 中BD = 0.75 x 米 ..................................................................... 4分 由题意知x - 0.75x = 3 (6)分解得:x = 12…………………………………………………………… 8分 即旗杆高为12米…………………………………………………………… 9分21.(10分)(1)普通卡:y 1 = 20x ;贵宾卡:y 2 = 10x + 200; ………………………………………2分(2)令y 1 = 500得x 1 = 25;令y 2 = 500得x 1 = 30;联立y 1和y 2得x 3 = 20;所以A (20,400),B (25,500),C (30,500) ………………………………… 5分(3)①当0 < x < 20时,选择普通卡更合算;(注:若写为0 ≤ x < 20,不扣分)②当x = 20时,选择普通卡和贵宾卡的总费用相同,均比至尊卡合算; ③当20 < x < 30时,选择贵宾卡更合算;④当x = 30时,选择贵宾卡和至尊卡的总费用相同,均比普通卡合算; ⑤当x > 30时,选择至尊卡更合算. (10)分22.(10分)(1 …………………………………………………………… 1分(2)无变化(注:若无判断,但后续证明完全正确,不扣分)证明如下:在旋转过程中∠CBE =∠ABD………………………………………………… 3分又由△ABC ≌△DBE 可知:AB = DB ,CB = EB∴CB EB =D B AB ∴△CBE ∽△DBA ………………………………………………… 6分∴CE CB ==AD AB ………………………………………………… 7分 ∴CE AD的大小无变化 ………………………………………………… 8分(3)………………………………………………… 10分【提示】当旋转角θ= 180°时AD 达到最大. 23.(11分)(1)当a = 1,b = - 2时,抛物线y = x 2- x - 3令x 2 - x - 3 = x ,即x 2- 2x - 3 = 0,解得x 1 = -1,x 2 = 3所以此时抛物线的不动点为-1或3 …………………………………………… 3分 (2)若对任意的b 值,抛物线恒有两个不动点则令ax 2+(b + 1)x + b - 1 = x即ax 2+ bx + b - 1 = 0恒有两个不等实数解 ………………………………… 5分∴令Δ= b 2- 4a (b - 1)> 0对任意的b 值恒成立 即b 2- 4ab + 4a > 0对任意的b 值恒成立 (7)分方法一:令Δ' =(4a )2- 4·4a < 0 即a 2- a < 0解得0 < a < 1 (9)分方法二:令×()a --a 2444>04即a 2- a < 0解得0 < a < 1 (9)分 (3)-1…………………………………………………………………… 11分【提示】设A (x 1,x 1),B (x 2,x 2)(x 1≠x 2)因为AB 的中点C 在直线上,所以12122++=-+22541x x x x aa -a +所以122+=541ax x a -a +又因为x 1,x 2是方程ax 2+ bx + b - 1 = 0的两根所以12+=-b x x a ,即2-=541b aa a -a +整理得⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222115411114521a b =-=-=-a -a +-+-+a a a 所以b 的最小值是-1.教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
全国名校2013年中考数学模拟试卷分类汇编18 二次函数的图象和性质
![全国名校2013年中考数学模拟试卷分类汇编18 二次函数的图象和性质](https://img.taocdn.com/s3/m/48b8cc7c8e9951e79b8927d0.png)
二次函数的图象和性质一、选择题1、(2013·湖州市中考模拟试卷7)函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )答案:C2、(2013·湖州市中考模拟试卷8)抛物线2y x =先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .()213y x =++B .()213y x =+-C .()213y x =--D .()213y x =-+答案:D3、(2013·湖州市中考模拟试卷10)已知抛物线2y ax bx c =++(a <0)过)0,2(-A 、)0,0(O 、),3(1y B -、),3(2y C 四点,则1y 与2y 的大小关系是( )A .1y >2yB .1y 2y =C .1y <2yD .不能确定 答案:A4、(2013年河南西华县王营中学一摸)将抛物线22-=x y 向左平移3个单位长度,再向上平移2个单位长度,所得的抛物线的解析式为( )A .()23+=x yB .()23-=x yC .()122++=x yD .()122+-=x y 答案:A5、(2013安徽芜湖一模)已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0). 对于下列命题:①b ﹣2a =0;②abc >0;③a ﹣2b +4c <0; ④8a +c >0.其中正确结论的是__________. 答案:②③④6、(2013吉林镇赉县一模)某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线x x y 42+-=(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米 答案:A7、(2013吉林镇赉县一模)如图,⊙O 的半径为2,C 1是函数221x y =的图象,C 2是函数221x y -=的图象,C 3是函数x y 3=的图象,则阴影部分的面积是 平方单位(结果保留π). 答案:π35 8、(2013江苏东台实中)抛物线4412-+-=x x y 的对称轴是( ). A 、2-=x B 、2=x C 、4-=x D 、4=x 答案:B9、(2013江苏东台实中)函数42-=x y 的图像与y 轴的交点坐标是( ). A 、(2,0) B 、(-2,0) C 、(0,4) D 、(0,-4) 答案:D10、(2013江苏东台实中)二次函数c bx ax y ++=2的图象如图所示,则下列结论中正确的是:( )A a >0 b <0 c >0B a <0 b <0 c >0C a <0 b >0 c <0D a <0 b >0 c >0 答案:D11、(2013江苏东台实中)已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )答案:B12、(2013江苏东台实中)将抛物线y =2x 经过怎样的平移可得到抛物线y =2(x +3) -4.( )A 、先向左平移3个单位,再向上平移4个单位B 、先向左平移3个单位,再向下平移4个单位C 、先向右平移3个单位,再向上平移4个单位D 、先向右平移3个单位,再向下平移4个单位 答案:B13、(2013江苏东台实中)已知函数201220132+-=x x y 与x 轴交点是)0,(),0,(n m ,则)20122014)(20122014(22+-+-n n m m 的值是( ) A 、2012 B 、2011 C 、2014 D 、、2013 答案:A14、(2013江苏射阴特庸中学)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( )A .a >0B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根 答案:D15、(2013江苏扬州弘扬中学二模)如图是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图象,观察图象写出y 2≥y 1时,x 的取值范围( ) A .x ≥0 B .0≤x ≤1 C .-2≤x ≤1 D .x ≤1答案:C 16、(2013江苏射阴特庸中学)已知二次函数的图象(-0.7≤x ≤2)如右图所示.关于该函数在所给自变量x 的取值范围内,下列说法正确的是( ) A .有最小值1,有最大值2 B .有最小值-1,有最大值1 C .有最小值-1,有最大值2 D .有最小值-1,无最大值 答案:C17、(2013江苏扬州弘扬中学二模)点A (2,y 1)、B (3,y 2)是二次函数y =x 2-2x +1的图象上两点,则y 1与y 2的大小关系为y 1_____ y 2( 填“>”、“<”、“=”). 答案:<18、(2013山东省德州一模)现掷A 、B 两枚均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x 、y ,并以此确定点P (x y ,),那么11题图各掷一次所确定的点P落在已知抛物线24y x x=-+上的概率为()A.118B.112C.19D.16答案:B19、(2013山东省德州一模)已知抛物线cbxaxy++=2的图象如图所示,则下列结论:①abc>0;②2=++cba;③a<21;④b>1.其中正确的结论是()A. ①②B. ②③C. ③④D. ②④答案:D20、(2013山西中考模拟六) 若二次函222y ax bx a=++-(a b,为常数)的图象如下,则a的值为()A.2- B. C.1答案:D二、填空题1、(2013吉林镇赉县一模)抛物线()9122-++=kxky开口向下,且经过原点,则k= .答案:-32、(2013江苏东台实中)抛物线5)2(42+--=xy的对称轴是____,顶点坐标是____.答案:2=x;(2,5)3、(2013江苏东台实中)已知抛物线与x轴两交点分别是(-1,0),(3,0)另有一点(0,-3)也在图象上,则该抛物线的关系式________________ .答案:322--=xxy4、(2013江苏射阴特庸中学)如图,已知抛物线y=x2+bx+c经过点(0,-3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你所确定的b的值是(写出一个值即可).(第16题)答案:-1,0,……只要满足-2<b<2就行,答案不唯一。
河南省中考数学真题模拟题分类卷5 图形的变换及锐角三角函数(近几年)
![河南省中考数学真题模拟题分类卷5 图形的变换及锐角三角函数(近几年)](https://img.taocdn.com/s3/m/3a4253d60066f5335b812196.png)
河南省中考数学真题模拟题分类卷5 图形的变换及锐角三角函数(近几年)一、单选题1.如下摆放的几何体中,主视图与左视图有可能不同的是()A. B. C. D.2.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A. 主视图相同B. 左视图相同C. 俯视图相同D. 三种视图都不相同3.如图,胶带的左视图是()A. B. C. D.4.如图是由7个相同的小正方体搭成的几何体,在标号为①的小正方体上方添加一个小正方体后,所得几何体的三视图与原几何体的三视图相比没有发生变化的是()A. 主视图和俯视图B. 主视图和左视图C. 左视图和俯视图D. 主视图、左视图和俯视图5.下列立体图形的主视图与左视图相同是()A. ①②③B. ②③C. ①②④D. ①②③④6.小敏计划在暑假参加海外游学,她打算制作一个正方体礼盒送给外国朋友.如图所示是她设计的礼盒的平面展开图,请你判断,正方体礼盒上与“孝”字相对的面上的字是()A. 义B. 仁C. 智D. 信7.如图,由5个完全相同的小正方体组合成一个立体图形,它的俯视图是()A. B. C. D.8.如图是由8个相同的小正方体组成的几何体,其主视图是()A. B. C. D.9.如图,的顶点,,点在轴的正半轴上,延长交轴于点.将绕点顺时针旋转得到,当点的对应点落在上时,的延长线恰好经过点,则点的坐标为()A. B. C. D.10.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A. 厉B. 害C. 了D. 我11.如图,在中,,以点为圆心,的长为半径作弧交于点,再分别以点,为圆心,大于的长为半径作弧,两弧交于点,作射线交于点.若,,则的值为()A. B. C. D.二、填空题12.小华用一张直角三角形纸片玩折纸游戏,如图1,在中,,,.第一步,在边上找一点,将纸片沿折叠,点落在处,如图2,第二步,将纸片沿折叠,点落在处,如图3.当点恰好在原直角三角形纸片的边上时,线段的长为 .13.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.14.如图,在矩形中,,,对角线,交于点,点是边上一动点.将沿翻折得到,交于点,且点在下方,连接.当是直角三角形时,的周长为.15.如图,在周长为16,面积为6的矩形纸片中,是的中点. 是上一动点,将沿直线折叠,点落在点处.在上任取一点,连接,,则的最小值为 .16.如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=6,D,E分别是AB,AC边的中点,将△ABC绕点B 顺时针旋转60°到△A′BC′的位置,则整个旋转过程中线段DE所扫过部分的面积(即图中阴影部分面积)为 .17.已知:Rt△ABC中,∠B=90°,AB=4,BC=3,点M、N分别在边AB、AC上,将△AMN沿直线MN折叠,点A落在点P处,且点P在射线CB上,当△PNC为直角三角形时,PN的长为 .18.如图,在正方形外作等腰直角三角形,连接,则.19.如图,在矩形ABCD中,,,点E在边BC上,且.连接AE,将沿AE 折叠,若点B的对应点落在矩形ABCD的边上,则a的值为________.20.如图,在矩形ABCD中,AB=6,BC=12,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C,D的对应点分别为C′,D′,折痕与边AD交于点F,当点B,C′,D′恰好在同一直线上时,AF的长为 .三、解答题21.开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点与佛像的底部在同一水平线上.已知佛像头部为,在处测得佛像头顶部的仰角为,头底部的仰角为,求佛像的高度(结果精确到.参考数据:,,)22.数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m 的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:,,,)23.“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)24.如图,某公园有一小亭,它周围350米内是文物保护区.某勘探队员在公园由西向东行走,在处测得小亭在北偏东的方向上,若勘探队员行走的速度是每分钟60米,从点走到点需要20分钟,此时测得小亭在北偏西的方向上.若该公园打算沿射线的方向修一条笔直的小路,则此小路是否会通过文物保护区?请说明理由.(结果保留整数.参考数据:,,,)25.如图,一艘游轮在海面上点O处遇到大雾,向位于A处的救援船发出求救信号,救援船指定B地为相遇地点,其中游轮在救援船的北偏西51°方向上,在相遇点B的南偏西54°方向上,相遇点B在救援船的北偏东9°方向上,救援船以50海里/时的速度行驶2小时到达B地.若游轮的速度是30海里/时,求游轮用多长时间能到达B地.(结果保留一位小数.参考数据:≈1.41,≈1.73)26.疫情期间,为了保障大家的健康,各地采取了多种方式进行预防,某地利用无人机规劝居民回家.如图,一条笔直的街道,在街道处的正上方处有一架无人机,该无人机在处测得俯角为的街道处有人聚集,然后沿平行于街道的方向再向前飞行60米到达处,在处测得俯角为的街道处也有人聚集,已知两处聚集点之间的距离为120米,求无人机飞行的高度.(参考数据:,,,)四、综合题27.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道上架设测角仪,先在点M处测得观星台最高点A的仰角为,然后沿方向前进到达点N处,测得点的仰角为.测角仪的高度为,(1)求观星台最高点A距离地面的高度(结果精确到.参考数据:);(2)“景点简介”显示,观星台的高度为,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.28.如图(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:① 的值为________;②∠AMB的度数为________.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB= ,请直接写出当点C与点M重合时AC的长.29.中原福塔,又名“河南广播电视塔”,是郑州市著名地标之一.小明和小亮利用卷尺和自制的测角仪测量福塔的高度.如图,小明站在点处测得福塔顶端的仰角为,小亮站在点处测得福塔顶端的仰角为.已知测角仪高度为,两人相距(点,,在一条直线上).(1).求中原福塔的高度;(结果精确到.参考数据:,,,)(2).“景点简介”显示,中原福塔总高.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.30.如图,某人在山坡坡脚处测得一座建筑物顶点的仰角为,沿山坡向上走到处再测得该建筑物顶点的仰角为.已知米,,的延长线交于点,山坡坡度为(即).注:取为.(1)求该建筑物的高度(即的长).(2)求此人所在位置点的铅直高度(测倾器的高度忽略不计).(3)若某一时刻,米长木棒竖放时,在太阳光线下的水平影长是米,则同一时刻该座建筑物顶点投影与山坡上点重合,求点到该座建筑物的水平距离.31.蔡明园公园位于河南省驻马店市上蔡县蔡都镇西南部,其公园南山门被誉为“亚洲第一门”,学完了三角函数知识后,某数学“综合与实践”小组的同学把“测量南山门最高点的高度”作为一项课题活动,他们制定了测量方案,并利用课余时间完成了实地测量.为了减小测量误差,小组在测量仰角以及两点间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如表:(1).请帮助该小组的同学根据上表中的测量数据,求南山门最高点的高度AB.(结果精确到0.1m,参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,≈1.41)(2).该小组要写出一份完整的课题活动报告,除上表中的项目外,你认为还需要补充哪些项目?(写出一个即可)(如需作图或作辅助线,请先将原题草图画在对应题目的答题区域后再作答.)32.在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆” ,的连接点在上,当点在上转动时,带动点,分别在射线,上滑动,.当与相切时,点恰好落在上,如图2.请仅就图2的情形解答下列问题.(1)求证:;(2)若的半径为,,求的长.33.将正方形的边绕点A逆时针旋转至,记旋转角为.连接,过点D作垂直于直线,垂足为点E,连接,(1)如图1,当时,的形状为________ ,连接,可求出的值为________;(2)当且时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点为顶点的四边形是平行四边形时,请直接写出的值.34.在,,.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1).观察猜想如图1,当时,的值是 1 ,直线BD与直线CP相交所成的较小角的度数是 2 . (2).类比探究如图2,当时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3).解决问题当时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.35.如图,在菱形中,,将边绕点逆时针旋转至,记旋转角为.过点作于点,过点作直线于点,连接.(1).(探索发现)填空:当时,= 1 .的值是 2(2).(验证猜想)当时,(1)中的结论是否仍然成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由;(3).(拓展应用)在(2)的条件下,若,当是等腰直角三角形时,请直接写出线段的长.36.在中,,,点P是平面内不与点A,C重合的任意一点,连接CP,将线段CP绕点P旋转得到线段DP,连结AP,CD,BD.(1)观察猜想:如图1,当时,线段CP绕点P顺时针旋转得到线段DP,则的值是________,直线AP与BD相交所成的较小角的度数是________;(2)类比探究:如图2,当时,线段CP绕点P顺时针旋转得到线段请直接写出AP与BD相交所成的较小角的度数,并说明与相似,求出的值;(3)拓展延伸:当时,且点P到点C的距离为,线段CP绕点P逆时针旋转得到线段DP,若点A,C,P在一条直线上时,求的值.37.如图①,△ABC为直角三角形,∠ACB=90°,∠BAC=30°,点D在AB边上,过点D作DE⊥AC于点E,取BC边的中点F,连接DF并延长到点G,使FG=DF,连接CG.(如需作图或作辅助线,请先将原题草图画在对应题目的答题区域后再作答.)(1).问题发现:填空:CE与CG的数量关系是 1 ,直线CE与CG所夹的锐角的度数为 2 .(2).探究证明:将△ADE绕点A逆时针旋转,(1)中的结论是否仍然成立,若成立,请仅就图②所示情况给出证明,若不成立,请说明理由;(3).问题解决:若AB=4,AD=3,将△ADE由图①位置绕点A逆时针旋转α(0°<α<180°),当△ACE是直角三角形时,请直接写出CG的值.38.如图(1).观察猜想:如图1,在中,,,是的平分线,以为一边作正方形,点与点重合,则 1 .(2).类比探究:在(1)的条件下,如果正方形绕点旋转,连接、、,(1)中的结论是否成立?请按图2加以证明.(3).问题解决:当正方形旋转到、、三点共线时,请直接写出线段的长.39.在△ABC中,∠ACB=90°,AC=BC=2,D是射线BC上一动点,过点B作BE⊥AD,垂足为点E,交直线AC于点P.(1)(问题发现)如图①,若点D在BC的延长线上,试猜想AP,CD,BC之间的数量关系为________;(2)(类比探究)如图②,若点D在线段BC上,试猜想AP,CD,BC之间的数量关系,并说明理由;(3)(拓展应用)当E为BP的中点时,直接写出线段CD的长度.40.如图(1).问题发现如图①,△ABC和△CDE均为等边三角形,直线AD和直线BE交于点F.填空:①∠AFB的度数是 1 ;②线段AD,BE之间的数量关系为 2 .(2).类比探究如图②,△ABC和△CDE均为等腰直角三角形,∠ABC=∠DEC=90°,AB=BC,DE=EC,直线AD和直线BE交于点F.请判断∠AFB的度数及线段AD,BE之间的数量关系,并说明理由.(3).解决问题如图③,在平面直角坐标系中,点A的坐标为(4,0),点B为y轴上任意一点,连接AB,将BA绕点B逆时针旋转90°至BC,连接OC,请直接写出OC的最小值.41.定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH. 操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF,BE上,折痕为CD.则四边形ABCD为矩形.(1).证明:四边形ABCD为矩形;(2).点M是边AB上一动点.①如图b,O是对角线AC的中点,若点N在边BC上,OM⊥ON,连接MN.求tan∠OMN的值;②若AM=AD,点N在边BC上,当△DMN的周长最小时,求的值;③连接CM,作BR⊥CM,垂足为R.若AB=2 ,则DR的最小值= .答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】B4.【答案】A5.【答案】D6.【答案】B7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】B二、填空题12.【答案】或13.【答案】或414.【答案】或615.【答案】16.【答案】17.【答案】或18.【答案】219.【答案】或20.【答案】或三、解答题21.【答案】解:设佛像的高度为xm,∵∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=x,∵佛像头部为,∴CD=x-4,∵∠DAC=37.5°,∴tan∠DAC= = ≈0.77,解得:x≈17.4,经检验,该方程有意义,且符合题意,因此x≈17.4是该方程的解,∴求佛像的高度约为17.4m.22.【答案】解:,,,,,,,在中,,,,答:炎帝塑像DE的高度约为51m23.【答案】解:在Rt△ACE中,∵tan∠CAE= ,∴AE= 在Rt△DBF中,∵tan∠DBF= ,∴BF=.∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151(cm).答:高、低杠间的水平距离CH的长为151cm 24.【答案】解:此小路不会通过文物保护区.理由如下:如图,过点作于点.设米.∵在中,,∴,∴.∵在中,,∴,∴.∵,∴,解得,此小路不会通过文物保护区.25.【答案】解:如图,过点O作OC⊥AB于点C.由题意易得∠OAB=51°+9°=60°,∠OBA=54°-9°=45°.设OC=x海里,则BC=x海里,在Rt△OBC中,OB= x海里,在Rt△OAC中,AC= =x海里.∵AC+BC=AB,∴x+x=50×2,解得x=150-50 ,∴OB=x=(150 -50 )海里,∴(小时). 故游轮大约用3小时能到达B地.26.【答案】解:如图,过点作于.∴四边形为矩形.米.设米.则米,米.在中,解得:(米).∴飞机高度为180米.答:无人机飞行的高度为180米.四、综合题27.【答案】(1)解:如图,过点A作AE⊥MN交MN的延长线于点E,交BC的延长线于点D,设AD的长为xm,∵AE⊥ME,BC∥MN,∴AD⊥BD,∠ADC=90°,∵∠ACD=45°,∴CD=AD=xm,BD=BC+CD=(16+x)m,由题易得,四边形BMNC为矩形,∵AE⊥ME,∴四边形CNED为矩形,∴DE=CN=BM= ,在Rt△ABD中,,解得:,即AD=10.7m,AE=AD+DE=10.7+1.6=12.3m,答:观星台最高点距离地面的高度为12.3m.(2)解:本次测量结果的误差为:12.6-12.3=0.3m,减小误差的合理化建议:多次测量,求平均值.28.【答案】(1)1;40°(2)解:类比探究:如图2,,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴,∠CAO=∠DBO,在△AMB中,∠AMB=180°-(∠MAB+∠ABM)=180°-(∠OAB+∠ABM+∠DBO)=90°(3)解:拓展延伸:①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC= x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x-2,Rt△AOB中,∠OAB=30°,OB= ,∴AB=2OB=2 ,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,( x)2+(x−2)2=(2 )2,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,∴AC=3 ;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC= x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,( x)2+(x+2)2=(2 )2.x2+x-6=0,(x+3)(x-2)=0,x1=-3,x2=2,∴AC=2 ;.综上所述,AC的长为3 或229.【答案】(1)解:如图,延长交于点.由题意知,四边形和四边形均为矩形.,,.设,则.在中,,,在中,,,.解得.答:中原福塔的高度约为;(2)解:误差为.减小误差可多次测量,去测量数据的平均值.30.【答案】(1)解:∵∠ACB=60°,∠ABC=90°,BC=80,∴∴.(2)解:过点P作PE⊥BD于E,PF⊥AB于F,又∵AB⊥BC,∴四边形BEPF是矩形.∴PE=BF,PF=BE.设PE=x米,则BF=PE=x米,∵在Rt△PCE中,tan∠PCD ,∴CE=3x.∵在Rt△PAF中,∠APF=45°,∴AF=AB﹣BF=136﹣x,PF=BE=BC+CE=80+3x.又∵AF=PF,∴136﹣x=80+3x,解得:x=14,∴人所在的位置点P的铅直高度为14米.(3)解:设点M的铅直高度为a米,得,解得,∴点M到该座建筑物的水平距离= 米. 31.【答案】(1)解:设DE交AB于G.由题意,CD=BG=1.5m,CF=DE=79.6m,在Rt△ADG中,∠AGD=90°,∵tan∠ADG=,∴tan36°=,∴≈0.73,在Rt△AEG中,tan∠AEG=,tan45°=,∴=1,∴AG=EG,∵DG=DE﹣EG=DE﹣AG,∵tan∠ADG=,∴tan36°=,∴≈0.73,∴AG≈33.59(m),∴AB=AG+BG=33.59+1.5≈35.1(m).答:南山门最高点的高度AB约为35.1m.(2)解:还需要补充项目有:计算过程,人员分工,指导老师,活动感受等. 32.【答案】(1)证明:连接,取轴正半轴与交点于点,如下图:,为的外角,,,,.(2)解:过点作的垂线,交与点,如下图:由题意:在中,,由(1)知:,,,,,,由圆的性质,直径所对的角为直角;在中,由勾股定理得:,即.33.【答案】(1)等腰直角三角形;(2)解:①两个结论仍然成立连接BD,如图所示:∵,∴∵∴∴∵∴∴是等腰直角三角形∴∵四边形为正方形∴∴∵∴∴∴∴结论不变,依然成立②若以点为顶点的四边形是平行四边形时,分两种情况讨论第一种:以CD为边时,则,此时点在线段BA的延长线上,如图所示:此时点E与点A重合,∴,得;②当以CD为对角线时,如图所示:此时点F为CD中点,∵∴∵∴∴∴∴∴综上:的值为3或1.34.【答案】(1)1;(2)解:如图2中,设BD交AC于点O,BD交PC于点E.,,,,,,,,直线BD与直线CP相交所成的小角的度数为(3)解:如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.,,,,,,,,,,,,,,,,,,,A,D,C,B四点共圆,,,,,设,则,,c.如图3﹣2中,当点P在线段CD上时,同法可证:,设,则,,,35.【答案】(1)30;(2)解:当时,(1)中的结论仍然成立.证明:如图1,连接.,,.,...,即.,,..,(3)解:线段的长为或.连接,交于点.,,,,∵DE=BE,∠DEB=90°,∴∠EDB=∠EBD=45°,.,∠B′EB=90°,,.,..分两种情况:如图,,∵∠B′BE=∠DBF=30°,∴cos∠B′BE=cos∠DBF= ,又∵∠B′BE+∠EBD=∠EBD+∠DBF,∴∠B′BD=∠EBF,∴△B′BD∽△EBF,∴,.如图,.∵∠B′BE=∠DBF=30°,∴cos∠B′BE=cos∠DBF= ,又∵∠B′BE-∠FBB′=∠DBF-∠FBB′,∴∠B′BD=∠EBF,∴△B′BD∽△EBF,∴,.综上所述,线段的长为或.36.【答案】(1)1;60°(2)解:如图2中,设交于O.∵,∴都是等腰直角三角形,∴,∴,,∴,∴,∵,∴,∴,直线AP与相交所成的较小角的度数是45°.(3)解:如图3-1中,当点P在的延长线上时,设,则,∵,∴,在中,∵,∴,∴.如图3-2中,当点P落在上时,设,则,∵,∴,∴,∴,综上所述,的值为或.37.【答案】(1)EC=CG;30°(2)解:成立.理由如下:如图②,连接CD,BG,延长BD交CE的延长线于H,设BH交AC于点O.在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=30°,∴cos∠BAC==,cos∠EAD==,∠EAC=∠DAB,∴=,∴△ACE∽△ABD,∴==,∠ACE=∠ABD,∵∠HOC=∠AOB,∴∠H=∠OAB=30°,∵CF=FB,DF=FG,∴四边形DCGB是平行四边形,∴CG=BD,CG∥BH,∴∠1=∠H=30°,∴EC=CG,直线CE与CG所夹的锐角的度数为30°.(3)解:如图③﹣1中,当∠AEC=90°时,由题意AC=AB=2 ,AE=AD=,∴EC=,∴CG=EC=,如图③﹣2中,当∠EAC=90°时,可得EC==,∴CG=EC=5.综上所述,CG的值为或5.38.【答案】(1)(2)解:(1)中的结论成立.证明:∵,∴.∵,∴,∴,∴,∴.∵四边形是正方形,∴,∴,∴,∵,∴,∴(3)解:或.如图2,当点E在线段BF上时,由(1)知CF=EF=CD= ,∵在Rt△BCF中,CF= ,CB=3 ,∴,∴. 由(2)知,∴BE= AF,∴,∴,如图3,当点E在线段BF的延长线上时,同理可得,∴,∴,综上所述,当正方形旋转到、、三点共线时,线段的长为或.39.【答案】(1)BC=AP+CD(2)解:AP=BC+CD,理由如下:∵∠ACB=90°,BE⊥AD,∴∠P+∠PAE=90°,∠P+∠PBC=90°,∴∠PAE=∠PBC,且∠ACB=∠BCP,AC=BC,∴△ACD≌△BCP(ASA),∴CD=CP,∵AP=AC+CP,∴AP=BC+CD.(3)解:如图:过点D作DM⊥AB,垂足为M,∵AE⊥BE,点E是PB中点,∴AB=AP,且AE⊥BE,∴∠DAC=∠DAM,∵∠DAC=∠DAM,AD=AD,∠ACD=∠AMD=90°,△ACD≌△AMD(AAS)∴AC=AM=2,CD=DM,∵∠ACB=90°,AC=BC=2,∴AB=,∠ABC=45°,∴MB=AB-AM=,∵DM⊥AB,∠ABC=45°,∴∠MDB=∠ABC=45°,∴DM=BM=,∴CD=,当点D在BC的延长线上时,如图:同理可得:CD=CP=AP+CA=.综上所述:线段CD的长度为或.40.【答案】(1)60°;AD=BE(2)解:,.∵,,,,由勾股定理,∴,由勾股定理,∴,∴,.∴△ACD∽△BCE.∴,.∵,∴;(3)解:过C作CE⊥y轴于E,∵点A的坐标为(4,0),∴OA=4,∵将BA绕点B逆时针旋转90°至BC,∴AB=BC,∴,∴,在和中,,∴,∴,设,,,∵,,.OC的最小值.41.【答案】(1)证明:设正方形ABEF的边长为a,∵AE是正方形ABEF的对角线,∴∠DAG=45°,由折叠性质可知AG=AB=a,∠FDC=∠ADC=90°,则四边形ABCD为矩形,∴△ADG是等腰直角三角形.∴,∴.∴四边形ABCD为矩形;(2)①解:如图,作OP⊥AB,OQ⊥BC,垂足分别为P,Q.∵四边形ABCD是矩形,∠B=90°,∴四边形BQOP是矩形.∴∠POQ=90°,OP∥BC,OQ∥AB.∴.∵O为AC中点,∴OP= BC,OQ= AB.∵∠MON=90°,∴∠QON=∠POM.∴Rt△QON∽Rt△POM.∴.∴.②解:如图c,作M关于直线BC对称的点P,连接DP交BC于点N,连接MN.则△DMN的周长最小,∵DC∥AP,∴,设AM=AD=a,则AB=CD= a.∴BP=BM=AB-AM=(-1)a.∴;③2。
2024年河南省郑州市中考数学模拟预押题试题
![2024年河南省郑州市中考数学模拟预押题试题](https://img.taocdn.com/s3/m/e3734018a9956bec0975f46527d3240c8447a1b4.png)
2024年河南省郑州市中考数学模拟预押题试题一、单选题1.12024-的相反数是( )A .12024-B .12024C .2024D .-20242.中汽协发布数据显示,2024年1~2月,新能源汽车产销分别完成125.2万辆和120.7万辆,同比分别增长28.2%和29.4%,市场占有率达到30%.将数据125.2万用科学记数法表示为( ) A .512.5210⨯B .61.25210⨯C .70.125210⨯D .71.25210⨯3.在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中,卯的俯视图是( )A .B .C .D .4.下列运算正确的是( ) A .224x x x +=B .236x x x ⋅=C .()325x x =D .532x x x ÷=5.将一个含有30︒角的直角三角板和一把直尺按如图方式放置,若126∠=︒,则2∠的度数为( )A .114︒B .124︒C .134︒D .144︒6.在数学活动课上,老师让同学们判断一个四边形门框是否为矩形,下面是某学习小组的四位同学拟订的方案,其中正确的是( ) A .测量对角线是否互相平分 B .测量各顶点到对角线交点距离是否相等 C .测量一组对角是否都为直角D .测量两组对边是否分别相等7.若关于x 的一元二次方程 220kx x +-=有两个实数根,则实数k 的取值范围是( )A .18k ≤-B .18k >-且0k ≠C .18k ≥-且0k ≠D .14k ≥-且0k ≠8.中国古代数学有着辉煌的成就,《周髀算经》、《算学启蒙》、《测圆海镜》、《四元玉鉴》是我国古代数学的重要文献.某中学拟从这4部数学名著中选择2部作为校本课程“数学文化”的学习内容,恰好选中《算学启蒙》的概率是( ) A .14B .12C .13D .169.如图,科技兴趣小组爱好编程的同学编了个电子跳蛙程序,跳蛙P 在平面直角坐标系中按图中箭头所示方向跳动,第1次从原点跳到点()1,1,第2次接着跳到点()2,0,第3次接着跳到点()3,2,…按这样的跳动规律,经过第2024次跳动后,跳蛙P 的坐标是( )A .()2024,0B .()2024,1C .()2023,1D .()2024,210.如图1,在菱形ABCD 中,120C ∠=︒,M 是AB 的中点,N 是对角线BD 上一动点,设DN 长为x ,线段MN 与AN 长度的和为y ,图2是y 关于x 的函数图象,图象右端点F 的坐标为(),则图象最低点E 的坐标为( )A .(3) B .(C .(D .()二、填空题11x 的取值范围为. 12.如图,点P 是直线334y x =-+上一动点,当线段OP 最短时,OP 的长为.13.若一组数据1a ,2a , …,n a 的平均数为4,方差为3,那么数据123a +,223a +,…,23n a +的平均数和方差分别是,.14.如图,在扇形AOB 中,105AOB ∠=︒,半径8OA =,将扇形AOB 沿过点B 的直线折叠,点O 恰好落在»AB 上的点D 处,折痕交OA 于点C ,则图中阴影部分的面积是.(结果保留π)15.如图,在等边ABC V 中,6AB BD AC =⊥,于点D ,点E F 、分别是BC DC 、上的动点,沿EF 所在直线折叠CEF △,使点C 落在BD 上的点C '处,若BEC '△是直角三角形,则DC '的值为.三、解答题16.(1)计算:221(2)(3)3-⎛⎫--- ⎪⎝⎭;(2)先化简,再求值:442m m m m m ++⎛⎫+÷⎪⎝⎭,其中2m . 17.某品牌汽车销售公司有营销员14人,销售部为制定营销人员月销售汽车定额,统计了这14个人某月的销售量如下(单位:辆):(1)这14位营销员该月销售量的中位数是______辆,众数是______辆;(2)若销售部工作人员把表中销售量数据“20”看成了“30”,那么销售量的中位数、方差和平均数中不受影响的是______(填“中位数”“方差”或“平均数”);(3)销售部经理把每位营销人员月销售量定额定为9辆,你认为是否合理,请说明理由. 18.如图,反比例函数()0k y x x=>和()60y x x =>的图象如图所示,点(),0C a 是x 轴正半轴上一动点,过点C 作x 轴的垂线,分別与()0k y x x=>和()60y x x =>的图象交于点A ,B .(1)当2a =时,线段92AB =,求A ,B 两点的坐标及k 值. (2)小明同学提出了一个猜想:“当k 值一定时,OAB V 的面积随a 值的增大而减小.”你认为他的猜想对吗?请说明理由.19.数学兴趣小组借助无人机开展实物测量的社会实践活动.如图所示,在河岸边的C 处,兴趣小组令一架无人机沿67︒的仰角方向飞行130米到达点A 处,然后无人机沿水平线AF 方向继续飞行30米至B 处,测得此时河对岸D 处的俯角为32o .线段AM 的长为无人机距地面的铅直高度,点,M C D 、在同一条直线上.(参考数据:1717512sin32,cos32,tan32,sin673220813≈≈≈≈o o o o ,512cos67,tan67135⎫≈≈⎪⎭o o(1)求无人机的飞行高度AM ; (2)求CD 的长.20.如图,在ABC V 中,AD 是BC 边上的高,以BC 为直径的O e 交AB 于点F ,交AD 于点E ,连结,BE EF AF BF >,.(1)求证:BEF BAD ∠∠=;(2)若45BAC ∠=︒,O e 的直径为5,7AB =,求BE 的长.21.我市在创建全国文明城市过程中,决定购买A ,B 两种树苗对某路段道路进行绿化改造,已知购买A 种树苗8棵,B 种树苗3棵,需要950元;若购买A 种树苗5棵,B 种树苗6棵,则需要800元.(1)求购买A ,B 两种树苗每棵各需多少元?(2)考虑到绿化效果和资金周转,购进A 种树苗不能少于52棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?(3)某包工队承包种植任务,若种好一棵A 种树苗可获工钱30元,种好一棵B 种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?22.如图1,已知抛物线24y ax ax c =-+的图象经过点(1,0)A ,(,0)B m ,(0,3)C -,过点C 作CD x ∥轴交抛物线于点D ,点P 是抛物线上的一个动点,连接PD ,设点P 的横坐标为n .(1)填空:m =_______,=a _______,c =_______;(2)在图1中,若点P 在x 轴上方的拋物线上运动,连接OP ,当四边形OCDP 面积最大时,求n 的值;(3)如图2,若点Q 在抛物线的对称轴l 上,连接PQ DQ 、,是否存在点P 使PDQ V 为等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由. 23.如图1,点O 是ABCD Y 的对角线AC ,BD 的交点,过点O 作OH AB ⊥,OM BC ⊥,垂足分别为H ,M ,若OH OM ≥,我们称OHOMλ=是ABCD Y 的中心距比.(1)如图2,当1λ=,求证:ABCD Y 是菱形;(2)如图3,当90ABC ∠=︒,且AB OB =,求ABCD Y 的λ值;(3)如图4,在ABC V 中,90C ∠=︒,6AC BC ==,动点P 从点B 出发.沿线段BC 向终点C 运动,动点Q 自C 出发,沿线段CA 向终点A 运动,P 、Q 两点同时出发,运动速度均为每秒1个单位,连结PQ ,以PQ 、AQ 为邻边作AQPE Y ,若AQPE Y 的中心距比λ=点P 的运动时间.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南2013年中考数学模拟试卷(五)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1. 1||3-的相反数是【 】A .13B .-13C .3D .-32. 地球上水的总储量为1.39×1018 m 3,但目前能被人们利用的水只占总储量的0.77%,即约为0.010 7×1018 m 3,因此我们要节约用水.能被人们利用的水可用科学记数法表示为【 】 A .1.07×1016 m 3B .0.107×1017 m 3C .10.7×1015 m 3D .1.07×1017 m 33. 下列说法正确的是【 】A .要了解全市居民对环境的保护意识,应采用全面调查的方式B .若甲组数据的方差2S 甲=0.1,乙组数据的方差2S 乙=0.2,则甲组数据比乙组稳定C .随机抛一枚硬币,落地后正面一定朝上D .若某彩票中奖概率为1%,则购买100张彩票就一定会中奖一次 4. 下列四个几何体中,主视图与左视图相同的几何体有【 】④球③圆锥②圆柱①正方体A .1个B .2个C .3个D .4个 5. 若直线y =-2x -4与直线y =4x +b 的交点在第三象限,则b 的取值范围是【 】A .-4<b <8B .-4<b <0C .b <-4或b >8D .-4≤b ≤86. 如图,若点M 是x 轴正半轴上的任意一点,过点M 作PQ ∥y 轴,分别交函数1k y x =(x >0)和2ky x=(x >0)的图象于点P 和点Q ,连接OP ,OQ ,则下列结论正确的是【 】 A .∠POQ 不可能等于90° B .12PM k QM k = C .这两个函数的图象一定关于x 轴对称yxOM QPD .△POQ 的面积是1212k k (||+||)7. 如图,P A ,PB 是⊙O 的切线,A ,B 是切点,点C 是劣弧AB 上的一个动点,若∠P =40°,则∠ACB 的度数是【 】 A .80°B .110°C .120°D .140°C POAByxA'B'C'A BCO第7题图 第8题图8. 如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA'B'C'的位置,若OB =23,∠C =120°,则点B′的坐标为【 】 A .(3,3)B . (3,3)-C .(6,6)D .(6,6)-二、填空题(每小题3分,共21分) 9. 使13a -有意义的实数a 的取值范围是_________. 10. 如图,直线BD ∥EF ,AE 与BD 交于点C ,若∠ABC =30°,∠BAC =75°,则∠CEF 的大小为___________.F EDC BABDAN MC第10题图 第12题图11. 小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x ,乙立方体朝上一面上的数字为y ,这样就确定点P 的一个坐标(x ,y ),那么点P 落在双曲线6y x=上的概率为___________. 12. 如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =23,则四边形MABN 的面积是_______________.13. 若x 1,x 2(x 1<x 2)是方程(x -a )(x -b )+2=0(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为___________.14. 如图,在平面直角坐标系xOy 中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y =kx +b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 1(1,1),A 27(2,3)2,那么点A n 的纵坐标是__________.OB 1A 1A 2y A 3y=kx+bB 2B 3x15. 在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB =5,BC =6,则CE +CF 的值为__________. 三、解答题(本大题共8小题,满分75分)16. (8分)若实数x ,y 满足26190x x x y ++-++=,求代数式2211yx y x y x y⎛⎫+÷ ⎪-+-⎝⎭的值.17. (9分)某市中小学全面开展“体艺2+1”活动,该市一学校根据实际情况,决定开设A :篮球,B :乒乓球,C :声乐,D :健美操四种活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成两幅不完整的统计图.408020图1图2B10% ADC人数/人100806040200AB CD项目请解答下列问题:(1)这次被调查的学生共有______人; (2)请你将统计图1补充完整;(3)求统计图2中D 项目对应的扇形圆心角的度数;(4)已知该校有学生2 400人,请根据调查结果估计该校最喜欢乒乓球的学生人数.18. (9分)如图,△ABC 内接于⊙O ,AD ⊥BC ,OE ⊥BC ,OE =12BC . (1)将△ACD 沿AC 折叠为△ACF ,将△ABD 沿AB 折叠为△ABG ,延长FC 和GB 相交于点H ,求证:四边形AFHG 是正方形; (2)若BD =6,CD =4,求AD 的长.FCE D AOGBH19. (9分)如图,矩形ABOD 的顶点A 是函数1ky x=与函数2(1)y x k =--+的图象在第二象限内的交点,AB ⊥x 轴于点B ,AD ⊥y 轴于点D ,且矩形ABOD 的面积为3.(1)求两函数的解析式以及两交点A ,C 的坐标; (2)直接写出当12y y >时x 的取值范围;(3)若点P 是y 轴上一点,且S △APC =5,求点P 的坐标.yAB OxCD20.(9分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:两问的计算结果均精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)C B AN QP M45°30°21.(10分)整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲、乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%,对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?哪种方案花费最少?最少为多少?22. (10分)正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC 上一动点,过点P 作PF ⊥CD 于点F .如图1,当点P 与点O 重合时,显然有DF =CF .(1)如图2,若点P 在线段AO 上(不与点A ,O 重合),PE ⊥PB 且PE 交CD 于点E . ①求证:DF =EF ;②写出线段PC ,P A ,CE 之间的一个等量关系,并证明你的结论. (2)若点P 在线段CA 的延长线上,PE ⊥PB 且PE 交直线CD 于点E .请补全图3,并判断(1)中的结论①、②是否仍成立,若不成立,请写出相应的结论.(所写结论均不必证明)P E F O图3图2图1PO BADCBAD CP (O )F CD BA23. (11分)已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . (1)求过点E ,D ,C 的抛物线的解析式.(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由.(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C ,G 构成的△PCG 是等腰三角形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.BC DOE A xy2013年中考数学模拟试卷(五)参考答案一、选择题1 2 3 4 5 6 7 8 B A B D A D B D二、填空题 9.3a >10.105°11.1912.18313.12a x x b <<< 14.132n -⎛⎫ ⎪⎝⎭15.232211322++或三、解答题 16.3.17.(1)200;(2)统计图略;(3)72°;(4)960人.18.(1)证明略;(2)12.19.(1)1232y y x x =-=-+,,(1 3) (3 1)A C --,,,;(2)10 3x x -<<>或;(3)1219(0 )(0 )22P P -,,,. 20.(1)5.6米;(2)需要挪走,理由略.21.(1)降价前甲、乙两种药品每盒的零售价格分别是15.8元、18元; (2)有3种搭配方案:方案一,甲种药品58箱,乙种药品42箱; 方案二,甲种药品59箱,乙种药品41箱; 方案三,甲种药品60箱,乙种药品40箱. 方案一花费最少,最少是6 740元.22.(1)①证明略;②2PC PA CE -=,证明略;(2)结论①仍成立;结论②不成立,此时PC ,PA ,CE 之间的数量关系是2PC PA CE +=.23.(1)2513166y x x =-++;(2)成立,证明略;(3)存在,1237127(2 2)(1 )( )355Q Q Q ,,,,,.。