最新初二下册期末数学试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每题4分,共40分)
1、-2781 )
A 、0
B 、-6
C 、0或-6
D 、6
2、如图1,AC =BD ,AD ⊥AC ,BC ⊥BD ,那么AD 与BC 的
关系为( )
A 、一定相等
B 、一定不相等
C 、可能相等,也可能不相等
D 、增加条件后,它们相等 (图1)
3、已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ).
A 、 A 、
B 两点的距离 B 、 A 、
C 两点的距离
C 、 A 、B 两点到原点的距离之和
D 、 A 、C 两点到原点的距离之和
4、如图2,能使AB ∥CD 的条件是( )
A 、∠B=∠D
B 、∠D+∠B=90°
C 、 ∠B+∠D+∠E=180°
D 、∠B+∠D=∠E
5、已知一次函数y =kx +b ,其中kb >0。则所有符合条件的
一次函数的图象一定通过( )
A 、第一、二象限
B 、第二、三象限
C 、第三、四象限
D 、第一、四象限 6、227 1033x y xy x y +==+=,
,则( ) A 、207 B 、147 C 、117 D 、87
7、方程 |x|=ax+1有一负根而无正根, 则a 的取值范围是( )
A 、a>-1
B 、a>1
C 、a ≥-1
D 、a ≥1
8、32,33和34分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,36也能按此规律进行“分裂”,则36A 、41 B 、39
C 、31
D 、29
9、比较555444333345、、的大小,正确的是( ) A 、333555444534<< B 、555333444354<<
C 、444555333435<<
D 、333444555543<<
10、如图,已知Rt △ABC ,∠C =90°,∠A =30°,在直线BC
或AC 上取一点P ,使得△PAB 是等腰三角形,则符合条件的P
32 3 5 33 7 9 11 4 13 15 17
(图2)E D C B A
C B A
点有( )
A 、2 个
B 、4个
C 、6个
D 、8个
二、填空题(每题4分,共32分)
11、三个有理数a、b、c之积是负数,其和是正数,当x =
c c b b a a ++时,则
______29219=+-x x 12、a 、b 为实数,且满足b >a >0, ab b a 422=+,则
b a b a +-的值等于 ; 13、已知等式:()()b x a x x x ++=++352,则=+a b b a ____________; 14、如图,四边形ABCD ,EFGH ,NHMC 都是正方形, 边长分别为a b
c ,,;A B N E F ,,,,五点在同一直线上, 则c = (用含有a b ,的代数式表示). 15、按一定规律排列的一列数依次为:1111112310152635
,,,,,,,按此规律排列下去,这列数中的第7个数是 .
16、一批学生划船,若乘大船除1船坐6人外,其余每船均坐17人; 若乘小船,
则除1船坐2人外,其余每船均坐10人,如果学生人数超过100人,不到200人,那么学生人数是 .
17、用三种边长相等的正多边形地砖各一块铺地,其顶点拼在一起,
刚好能完全铺满地面。已知正多边形的边数为x 、y 、z ,
则z
y x 111++的值为____________。 18、如图所示,在ABC Rt ∆中,已知︒=∠90B ,6=AB ,
8=BC ,F E D ,,分别是三边CA BC AB ,,上的点,
则FD EF DE ++的最小值为 。
三、解答题(第19-22每题10分,第23、24题每题12分,第25题14分,共78分)
19、已知直线过点P(-2,3),且与两坐标轴围成的三角形面积为4,求直线的解析式.
a D C
B A M c N E F b G H 第14题图
20、民航规定:旅客可以免费携带a 千克物品,若超过a 千克,则要收取一定的
费用,当携带物品的质量为b 千克(b >a )时,所交费用为Q=10b-200(元)。
(1)小明携带了35千克物品,质量大于a 千克,他应交多少费用?
(2)小王交了100元费用,他携带了多少千克物品?
(3)若收费标准以超重部分的质量m (千克)计算,在保证所交费用Q 不变的情况下,试用m 表示Q 。
21、 如图, △ABC 为等边三角形,AE =CD ,AD 、BE 相交于点P ,BQ ⊥AD 与Q ,PQ =4,PE =1
(1)求证 ∠BPQ =60° (2)求AD 的长
22
、如图,在ABCD 中,过点B 作BE ⊥CD,垂足为E,连结AE,F 为AE 上一点,且∠BFE=∠C.(1)求证:△ABF ∽△EAD ;(2)若AB=4,∠BAE=30°,求AE 的长;(3)在(2)的条件下,若AD=3,求BF 的长.
23、某仪器厂计划制造A 、B 两种型号的仪器共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于制造仪器,两种型号的制造成本和售价如下表:
A C E F D 第20题图
B D
C E A P Q