4、理想气体的性质与热力

合集下载

热工基础 第三章.理想气体的性质与热力过程

热工基础 第三章.理想气体的性质与热力过程
CV ,m McV xi M i cV ,i xi CV ,m,i
i 1 i 1
29
k
i 1 k
i 1 k
3-4 理想气体的热力过程
1.热力过程的研究目的与方法
(1)目的: 了解外部条件对热能与机械 能之间相互转换的影响,以便合理地安排 热力过程,提高热能和机械能转换效率。
V V1 V2 Vk Vi
i 1
k
25
3. 理想混合气体的成分 成分:各组元在混合气体中所占的数量份额。 (1) 成分的分类 1)质量分数 :某组元的质量与混合气体总质量
的比值称为该组元的质量分数。
k k mi wi , m mi wi 1 m i 1 i 1 2)摩尔分数 : 某组元物质的量与混合气体总物
22
3-3
理想混合气体
1. 理想混合气体的定义 由相互不发生化学反应的理想气体组成混合 气体,其中每一组元的性质如同它们单独存在一 样,因此整个混合气体也具有理想气体的性质。 混合气体的性质取决于各组元的性质与份额。 2. 理想混合气体的基本定律 (1)分压力与道尔顿定律 分压力: 某组元i单独占有混合气体体积V并处于 混合气体温度T 时的压力称为该组元的 分压力。用 pi 表示。
10
由比定容热容定义式可得
qV u cV dT T V
(4)比定压热容
cp
q p dT
据热力学第一定律,对微元可逆过程,
q dh vdp
11
焓也是状态参数, h h(T ,
p)
h h dh dT dp T p p T 对定压过程,dp 0 ,由上两式可得 h q p dT T p

第三章__理想气体热力性质及过程

第三章__理想气体热力性质及过程

容积成分: i
Vi V
, i
1
摩尔成分: xi

ni n
, xi
1
换算关系:
i xi
i

xi M i xi M i

xi M i M eq

xi Rg,eq Rg ,i

xi

i Rg,i
Rg ,e q
分压力的确定:

piV=ni RT PVi=ni RT

ppi V Vi i ,
2
u 1 cVdT
如果取定值比热或平均比热,又可简化为
二、焓
ucVT
也可由热Ⅰ导得 d h(cVRg)dT cpdT
同理,有
2
h 1 cpdT
hcpT
结论:理想气体的u、h 均是温度的单值函数。
三、 熵变的计算
由可逆过程
ds du pd
T

ds du
cp
Rg 1
三、 真实比热容、平均比热容和定值比热容
1. 真实比热容(精确,但计算繁琐)
cpa0a 1 Ta2T2a3 T3
c V (a 0 R g) a 1 T a 2 T 2 a 3 T 3
qp
2 1
cpdt
2
q 1 cdt
2. 平均比热容(精确、简便)

cV
ln
T2 T1

Rg
ln
2 1
s

c
p
ln
T2 T1
Rg
ln
p2 p1
s

c
p
ln
2 1
cV
ln
p2 p1

理想气体的性质

理想气体的性质

理想气体的性质
理想气体是指在一定条件下具有理想行为的气体。

它是理想化的气
体模型,假设气体中分子之间没有相互作用和体积,并且分子之间的
碰撞是弹性碰撞。

以下是理想气体的主要性质:
1. 理想气体的分子是无限小的,没有体积,分子之间没有相互作用力。

这意味着气体的体积可以无限压缩,并且气体分子之间不存在任
何引力或斥力。

2. 理想气体的分子运动是完全混乱的,分子在空间中自由运动,并
且沿各个方向上的速度分布是相等的。

这被称为分子速度均分定理。

3. 理想气体的压强与温度成正比,压力与体积成反比。

这意味着如
果气体的温度升高,压强也会增加,反之亦然;如果气体的体积减小,压力也会增加,反之亦然。

这被称为理想气体状态方程或理想气体定律。

4. 理想气体的温度与体积成正比,温度与压强成正比。

这意味着如
果气体的体积增加,温度也会增加,反之亦然;如果气体的压强减小,温度也会减小,反之亦然。

这被称为理想气体的热力学性质。

需要注意的是,现实气体往往存在分子间相互作用和体积,因此它
们不完全符合理想气体模型。

然而,理想气体模型在许多实际应用中
仍然是一个非常有用的近似模型。

理想气体

理想气体
西安交通大学热流中心
热工基础与应用 第三章
五、理想气体的基本热力过程
(一) 定容过程
(二) 定压过程
(三) 定温过程 (四) 定熵过程
六、理想气体的多变过程
(一) 多变过程
(二) 计算公式表
西安交通大学热流中心
热工基础与应用 第三章
氮气, 例:初压力为 0.1MPa ,初温为 27 o C 的 1 kg 氮气,在 n = 1.25 若取比热容为定值, 的压缩过程中被压缩至原来体积的 1 5 ,若取比热容为定值,试求压缩 后的压力,温度,压缩过程所耗压缩功及与外界交换的热量。 后的压力,温度,压缩过程所耗压缩功及与外界交换的热量。若从相同初态 出发分别经过定温和定熵过程压缩至相同的体积,试进行相同的计算, 出发分别经过定温和定熵过程压缩至相同的体积,试进行相同的计算,并将 图上。 此三过程画在同一p-v图上和T-s图上。 解:(1)多变过程 :(1 对于氮气有 Rg = 0.297 kJ (kg ⋅ K)
ds =
δ qre
T
T2 T1
=
du + pdv cV dT + pdv p / T = Rg / v dT dv = ds = cV → + Rg T T T v
∆s = ∫ cV
v dT + R g ln 2 T v1
∆s = cV ln
T2 v + R g ln 2 T1 v1
∆s = ∫ c p
第二节
理想气体的热力性质和热力过程
一、理想气体及其状态方程 1、状态方程: 称为克拉贝龙状态方程。 pv = Rg T 称为克拉贝龙状态方程。 理想气体定义:凡是遵循克拉贝龙状态方程的气体称为理想气体。 理想气体定义:凡是遵循克拉贝龙状态方程的气体称为理想气体。 从微观上讲,凡符合下述假设的气体称为理想气体: 从微观上讲,凡符合下述假设的气体称为理想气体: 气体分子是不占据体积的弹性质点; (1)气体分子是不占据体积的弹性质点; 气体分子相互之间没有任何作用力。 (2)气体分子相互之间没有任何作用力。

第4章-理想气体的热力性质和热力过程

第4章-理想气体的热力性质和热力过程
由理想气体状态方 pV程mRgT 得冬夏两季室内空 量气 平质 均值之差:
m
pRgVT1w
1
Ts
0.098MPa36m3 0.28[7kJ/(kgK)]
2
1 73K
1 308K
5.117kg
9
第二节 理想气体的比热容
10
• 热容:指工质温度升高1K所需的热量。
C Q dT
• 比热容:1kg(单位质量)工质温度升高1K所
k
nn1n2n3 ni nk ni i 1
• 第 i 种组元气体的摩尔分数 (mole fraction of a mixture):
xi
ni n
(433)
xi nni nni 1
各组元摩 尔分数之
和为1
37
换算关系
mnM
mi niMi
• 根据热力学第一定律,任意准静态过程:
q d u p d v d h v d p
u是状态参数: uf(T,v)
du(T u)vdT(uv)Tdv
q( T u)vdT[p( u v)T]dv
单位物量的物质 在定容过程中温 度变化1K时热 力学能的变化值
q u
• 定容: dv0 cv (dT)v (T)v 12
3
第一节 理想气体及其状态方程
4
• 理想气体 ideal gas定义:
– 遵循克拉贝龙(Clapeyron)状态方程的气体,
即基本状态参数 p、v、T 满足方程
pv 常数 T 的气体称为理想气体。
理想气体的基本假设:
• 分子为不占体积的弹性质点 uu(T)
• 除碰撞外分子间无作用力
理想气体是实际气体在低压高温时的抽象

第三章理想气体的性质与热力过程

第三章理想气体的性质与热力过程
2
3-1 理想气体及其状态方程
一、实际气体与理想气体 1. 理想气体: 是一种假象的气体模型,气体分子是
一些弹性的、不占体积的质点,分子之间没有 相互作用力。
2. 实际气体: 实际气体是真实气体,在工程使用范
围内离液态较近,分子间作用力及分子本身体 积不可忽略,热力性质复杂,工程计算主要靠 图表。如:电厂中的水蒸气、制冷机中的氟里 昂蒸汽、氨蒸汽等。
k cp cv
定容加热与定压加热
15
K为比热容比( 绝热指数)
对于同一物质,比热容是常数?
T 1K
(1)定容比热容
c
(2)定压比热容
q
dT
s
16
三、利用比热容计算热量的方法

实验和理论证明,不同气体的比热容要随温度的变化 而变化,一般情况下,气体的比热容随温度的升高而 升高,表达为多项式形式:
第三章 理想气体的性质
1
本章基本要求
1.掌握理想气体的概念及理想气体状态方程的各种 表达形式,并能熟练运用; 2.理解理想气体比热容的概念及影响因素,掌握理 想气体比热容的分类;能够熟练利用平均比热容 表或定值比热容进行热量的计算; 3.掌握理想气体的热力学能及焓的特点,能够进行 理想气体的热力学能、焓及熵变化量的计算; 4.掌握理想气体的四个基本热力过程(即定容、定 压、定温及绝热过程)的状态参数和能量交换特 点及基本计算,以及上述过程在p-v 图和T-s图上 的表示;
R 8314 Rg 或 R MRg M M
Rm=8314[J/kmol.K],与气体种类和状态无关, 而Rg与气体种类有关,与状态无关。
M 为气体的摩尔质量,单位为(kg/kmol)

例:空气的气体常数为

04理想气体的性质

04理想气体的性质

用全微分来代 替偏微分,去 掉下标
du cV = dT
dh cp = dT
理想气体的cV 和cp也都只是温度的函数 小结:当温度一定时,理想气体的u, h,cV 和cp都是定值!
du cV = dT dh cp = dT
du = cV dT
dh = c p dT
Δu = u2 − u1 = ∫ cV (T ) dT
实际应用中,常见的气体如空气、氮气、氧 气、氢气、氦气、氩气、一氧化碳等均可视 为理想气体,在应用理想气体状态方程对这 些实际气体进行计算时,误差很小(一般在 1%以内)。 但是,对于火力发电厂装置中采用的水蒸气 或制冷装置中采用的工质氟利昂蒸汽等,不 能视为理想气体,即pv=RgT 不成立,需要借 助状态参数表(chapter9)
小结
⑴ pV = nRT (n mol) 状 ⑵ pV = mR T (m kg) g 态 方 ⑶ pv = R T (1 kg) g 程 dp dV dT dm + = + (变质量系统) ⑷ p V T m
使用状态方程时注意事项: 1、绝对压力 ,Pa 2、热力学温度 , K 3、区分: 比体积v与体积V —— m3/kg, m3 气体常数Rg与通用气体常数R—— J /(kg⋅K), J/(mol ⋅K ) 气体常数Rg与气体种类有关,与状态无关; 通用气体常数R为恒量8.3145 J/(mol ⋅K )
若不加“可逆过程”条件,按吸热量计算—— cV = q = 0
关于cV 和cp的几点说明(5)
“热容”和“比热容”的概念也较为常用 物质在可逆过程中温度升高1 K(或1℃)所吸 收的热量称为热容,单位为J/K,符号为C; 单位质量的物质在可逆过程中温度升高1 K (或1℃)所吸收的热量称为比热容,单位为 J/(K·kg),符号为c

理想气体的热力学性质

理想气体的热力学性质

理想气体的热力学性质理想气体是热力学中常用的模型,其特点是分子之间几乎没有相互作用力,分子体积可以忽略不计。

在理想气体模型中,分子与分子之间以及分子与容器壁之间仅存在完全弹性碰撞。

本文将探讨理想气体的热力学性质,包括理想气体状态方程、内能、焓、熵等。

一、理想气体状态方程理想气体状态方程是描述理想气体状态的基本方程,它表明理想气体的物理性质与其温度、压力和摩尔数有关。

理想气体状态方程可以表示为:PV = nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的物质的量,R为气体常数,T为气体的温度。

根据理想气体状态方程可以得出以下几点关于理想气体热力学性质的结论:1. 对于一定物质的量和温度下的理想气体,其压力与体积成反比,即在温度不变的情况下,当压力增加时,体积减小;反之,当压力减小时,体积增加。

2. 在一定压力和温度下的理想气体,其体积与摩尔数成正比,即在压力和温度不变的情况下,当摩尔数增加时,体积增加;反之,当摩尔数减小时,体积减小。

3. 在一定摩尔数和温度下的理想气体,其体积与绝对温度成正比,即在摩尔数和压力不变的情况下,当温度增加时,体积增加;反之,当温度减小时,体积减小。

以上是理想气体状态方程与理想气体热力学性质的基本关系。

二、理想气体的内能理想气体的内能是指气体分子的平均动能和分子间势能之和。

根据统计力学和热力学原理,可以得出理想气体的内能与温度成正比,并与摩尔数无关。

内能可以表示为:U = 3/2nRT其中,U表示理想气体的内能,n表示气体的物质的量,R为气体常数,T为气体的温度。

三、理想气体的焓理想气体的焓是指在气体过程中,单位物质的量气体所吸收或放出的热量。

对于理想气体而言,其焓与温度成正比,并与压力和体积有关。

焓可以表示为:H = U + PV其中,H表示理想气体的焓,U表示理想气体的内能,P表示气体的压力,V表示气体的体积。

四、理想气体的熵理想气体的熵是指单位物质的量气体在某一过程中所发生的无序程度的度量。

理想气体的热力性质及其热力过程

理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
第三节 理想气体的热力学能与焓 理想气体的状态方程及比热容确定后,利用热力学第一定律就可方便地求得理想气体的热力学能和焓的计算式。
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
图7-3 例7-3图
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
图7-7 绝热过程在p-v、T-s图上的表示
Cycle Diagram
Text
Text
Text
Text
Text
Cycle name
Add Your Text
Diagram
Your Slogan here
第七章 理想气体的热力性质及其热力过程
二、四个基本热力过程分析 1.定容过程
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
图7-4 定容过程在p-v、T-s图上的表示
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
2.定压过程
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
热工设备中实际进行的热力过程均是多变过程,且通常要比理论的多变过程更为复杂。例如,制冷压缩机气缸中制冷剂蒸汽的压缩过程,在整个过程中指数n是变化的。压缩开始时,工质温度低于缸壁温度,工质是吸热的,随着对工质不断地压缩,温度升高,高于缸壁温度后开始放热,瞬时多变指数约从1.4左右变化到1.0左右。制冷压缩机压缩过程的多变指数大小还与制冷剂的种类、制冷剂蒸汽与气缸壁的热交换情况、活塞与气缸壁的密封情况等因素有关。通常,制冷压缩机压缩多变指数要小于活塞式空气压缩机压缩多变指数。对多变指数n是变化的实际过程,热工计算中为简便起见常常这样处理:若n的变化范围不大,则用一个不变的平均多变指数近似地代替实际变化的n;如果n的变化较大,可将实际过程分段,每段近似为n值不变,各力性质及其热力过程

高中物理 第五章理想气体的热力性质和热力过程

高中物理 第五章理想气体的热力性质和热力过程

1300c
9001.11713001.081 900 479.2kJ / kg
Qp mqp 100479.2 47920 kJ
查表5-2
c pm 0.9956 0.000093 t
t 900 1300 2200
c1300 0.000093 22001.2002 kJ /(kg K ) pm900 0.9956
dh dt
h u pv u RT h(T )
二、应用比热容计算热量的 方法
1. 曲线关系
q
2
c

t2
t1
cdt
t
面积ABCDA
c=a+bt+et2+ ┉ B
A
c m t12 (t 2 t1 )
=面积1BC01-面积1AD01
1
0 t
D(t1)
C(t2)
= 02- 01
k J (kg K )
k J ( kg K )
q du pdv
定容过程 和定压过程 dv 0
q dh vdp
dp 0
(q) p dh dh cp ( )p dt
(q) v du du cv ( )v dt
理想气体
u u (T )
cv
cp
du dT
u u (T )
理想气体:氧气、氢气、氮气、一氧化碳、二氧化碳、空气、 燃气、烟气……(在通常使用的温度、压力下) 实际气体:氨、氟里昂、蒸汽动力装置中的水蒸气……
二、理想气体状态方程
1kg气体: 1kmol气体:
pv RT pVM RM T
m kg气体: n kmol气体:

理想气体的热力性质和热力过程

理想气体的热力性质和热力过程
1、目的 揭示过程中工质状态参数的变化规律以及能量转换情
况,进而找出影响转化的主要因素。 2、一般方法
(1)、对实际热力过程进行分析,将各种过程近似地概括为 几种典型过程,即定容、定压、定温和绝热过程。为使问题 简化,暂不考虑实际过程中的不可逆的耗损而作为可逆过程。
(2)、用简单的热力学方法对四种基本热力过程进行分析计算。
c t2 p,0℃
t2
-
c t1 p,0℃
t1
c t2 p,t1
c
t2 p,0℃
t2
-ct1 p,0℃来自t1t2 t1
p267附录A-4a给出了一些常用气体的平均比热容表
c c R t2
t2
v,t1
p,t1
g
(3)、平均比热容直线关系
qp
2 1
cp
(t)dt
2 1
(a
bt)dt
[a
b 2
所以MRg与物质的种类无关。(也与状态无关)令R= MRg , R 称为摩尔气体常数。取标准状态参数得
R MRg
p0Vm0 T0
101325Pa 0.02241325m3/mol 273.15K
8.3143 J/(mol.K)
对于各种气体的气体常数的
Rg
R M
(3 5)
理想气体状态方程可有以下四种形式:
(t1
t2
)](t2
t1 )
c t2 p,t1
a
b 2
(t1
t2
)
(3 19)
上式称为比热容的线
性关系。附录A-5p268给 出了一些常用气体的平
均比热容直线关系式。
(4)、定值比热容
cp a
由分子运动论也可导出1mol理想气体的热力学能

工程热力学(理想气体的热力性质)

工程热力学(理想气体的热力性质)

mi , m
wi
mi m
;
wi 1;
xi
ni n
;
i
Vi V
换 算 关 系 :i xi ;
wi
xi M i ; xi M i
xi
wi / M i wi / M i
工程热力学 Thermodynamics
2、折合摩尔质量和折合气体常数 :
M eq
m n
xi M i
Rg,eq
R M eq
工程热力学 Thermodynamics
第四章 理想气体的热力性质
第一节 理想气体及其状态方程式 一、概述 二、状态方程:
pv RgT 称为克拉珀龙状态方程。
理想气体定义:凡是遵循克拉贝珀状态方程的气体
称为理想气体。
从微观上讲,凡符合下述假设的气体称为理想气体: 1. 气体分子是不占据体积的弹性质点; 2. 气体分子相互之间没有任何作用力。
工程热力学 Thermodynamics
1、真实比热容
c
c c(t) c c(T )
c a0 a1T a2T 2 a3T 3
c b0 b1t b2t2 b3t3
1
2、平均比热容(表)
o
t1
定义式:
c t2
q
t2 cdt t1
t1 t2 t1 t2 t1
计算:
c t2
三 理想气体比热容
理想气体 :
u u(T )
cV
du dT
f (T )
cV
u T
v
cp
h T
p
h u pv u(T ) RgT h(T )
cp
dh dT
(T )
迈耶尔公式:

热工基础 第3章 理想气体的性质及热力过程

热工基础 第3章  理想气体的性质及热力过程
qv u w cv (T2 T1)
qv h wt cp (T2 T1) v ( p1 p 2 ) cv (T2 T1)
3.3 §4-理1 理想想气气体体的的热基力本过热程力 过 程
(4)在p-v、T-s图上表示
垂直于 v坐标 的直线

ds cV
dT T
( T s
)v
T cV
定容线为一 条斜率为正 的指数曲线
3.1 气 体 的 比 热 容
1、按定比热计算理想气体比热容
分子运动论
运动自由度
Cv,m[kJ/kmol.K] Cp,m [kJ/kmol.K]
γ
单原子
3 2 Rm 5 2 Rm
1.67
双原子
5 2 Rm 7 2 Rm
1.4
多原子
7 2 Rm 9 2 Rm
1.29
3.1 气 体 的 比 热 容
2、按真实比热计算理想气体比热容 理想气体
p1 p2
v2 T2 v1 T1
s
cp
ln
T2 T1
Rg ln
p2 p1
cp
ln
T2 T1
s
cp
ln
v2 v1
cv ln
p2 p1
cp
ln
v2 v1
3.3 理 想 气 体 的 基 本 热 力 过 程 (3)膨胀功、技术功和热量
第3章 理想气体的性质及热力过程
课程介绍
气体的比热容
气体的比热容
计算热力学能, 焓, 热量都要用到比热容 定义: 比热容
单位物量的物质升高1K或1℃所需的热量
3.1 气 体 的 比 热 容
比热容
c : 质量比热容 Cm: 摩尔比热容 C’: 容积比热容

3热工ch3 理想气体的性质及热力过程4

3热工ch3  理想气体的性质及热力过程4

实际气体 理想气体 状态方程
ห้องสมุดไป่ตู้
§3–2
一、定义和分类
理想气体的比热容
c与过程有关 c是温度的函数
—specific heat; specific heat capacity
q 定义: c lim T
T 0
K) 分类: 质量热容(比热容)c J/(kg· (specific heat capacity per unit of mass) 体积热容 c‘ J/(Nm3· K) 按 (volumetric specific heat capacity) 物 摩尔热容 Cm J/(mol· K) 量 C m Mc (mole specific heat capacity)
技术功
wt= -∫vdp = v(p1-p2)
dT v2 s cv Rg ln T v1 1
0
2
熵变: ds=cvdT/T
p
2
T
2
1
1
v
s
例1:空气从T1=720k, p1=0.2MPa先定容冷却,压力下降 到p2=0.1MPa,然后定压加热,使比体积增加3倍(v3=4v2 ). 求过程1-2和过程2-3中的热量及2-3的膨胀功并求T3、v3、 s3-s1 p
一、多变过程及基本热力过程
大部分热力过程中气 体基本状态参数满足:
pv
n
=常数
汽车气缸内气体示功图
pv
n
=常数
可逆多变过程
n —多变指数(常数)
n =0、1、 k 、∞时分别表示气体工质的定压、定 温、绝热(可逆绝热过程即为定熵过程)和定容过 程,称为基本热力过程
(fundamental thermodynamic process)

热力学系统的理想气体与实际气体

热力学系统的理想气体与实际气体

热力学系统的理想气体与实际气体热力学是研究能量转换和能量传递的学科,而热力学系统是指能够与外界发生能量交换的物体或介质。

在热力学的研究中,我们常常涉及到两种类型的气体:理想气体和实际气体。

本文将探讨理想气体与实际气体之间的差异及其在热力学系统中的应用。

一、理想气体的定义与性质1. 理想气体的定义理想气体是在一定的温度和压力下,具有如下特性:分子之间无相互作用力,分子体积可忽略不计,分子运动符合玻尔兹曼分布定律。

2. 理想气体的性质(1)温度与压力的关系:理想气体的温度与压力成正比,即PV = nRT,其中P为气体的压力,V为气体的体积,n为气体的物质量,R 为气体常数,T为气体的绝对温度。

(2)摩尔体积:理想气体的摩尔体积与温度和压力成反比,即V/n = RT/P。

(3)理想气体的状态方程:理想气体的状态方程可以用来描述气体的状态,即PV = nRT。

(4)理想气体的内能和焓:理想气体的内能只与温度有关,与压力和体积无关;焓是气体的内能与气体对外界做的功之和。

二、实际气体的行为与修正尽管理想气体模型在很多情况下可以提供准确的结果,但在高压、低温等条件下,实际气体的行为与理想气体有很大差异。

实际气体的行为可以通过以下修正来描述。

1. Van der Waals修正Van der Waals修正是一种修正理想气体行为的经验模型。

Van der Waals方程为(P + an²/V²)(V - nb) = nRT,其中a和b分别为Van der Waals方程的修正常数。

这个方程能够更好地描述实际气体的状态。

2. Peng-Robinson修正Peng-Robinson修正是Van der Waals方程的改进版。

Peng-Robinson 方程为P = (RT)/(V - b) - (aα)/(V (V + b)),其中a和b的表示方式与Van der Waals方程略有不同,α是一个校正因子。

理想气体的热力学性质

理想气体的热力学性质

理想气体的热力学性质理想气体是一种理论模型,它假设气体分子为无相互作用的点状粒子,并且在有限的温度和压力条件下满足适用于大量分子的统计规律。

在热力学中,理想气体的热力学性质是研究理想气体在不同温度、压力和体积条件下的行为和性质。

本文将从理想气体的状态方程、内能、焓、熵以及热容等方面来讨论理想气体的热力学性质。

一、理想气体的状态方程理想气体的状态方程描述了气体的状态与温度、压力和体积之间的关系。

根据理想气体状态方程可以得到以下形式:PV = nRT其中,P是气体的压力,V是气体的体积,n是气体的摩尔数,R是气体常数,T是气体的温度。

在这个方程中,R是一个常数,与气体的性质相关。

二、理想气体的内能理想气体的内能是指气体分子的平均动能和势能的总和。

由于理想气体的分子间相互作用力很小或者为零,因此它的内能仅与温度有关。

根据理想气体的内能公式可以得到:U = (3/2)nRT其中,U是内能,n是气体的摩尔数,R是气体常数,T是气体的温度。

这个公式表明,理想气体的内能与温度成正比,且与气体的体积和压力无关。

三、理想气体的焓理想气体的焓是指气体的内能与压力的乘积。

在常温常压条件下,理想气体的焓变化可以近似为:ΔH = ΔU + Δ(PV) ≈ ΔU对于理想气体,内能变化主要由温度变化引起,而体积和压力的变化对焓的贡献可以忽略不计。

四、理想气体的熵理想气体的熵是指气体在热平衡和不可逆过程中的熵变。

根据热力学第二定律,理想气体的熵变可以表示为:ΔS = nCvln(T₂/T₁) + nRln(V₂/V₁)其中,ΔS是气体的熵变,n是气体的摩尔数,Cv是气体的摩尔热容,R是气体常数,T₁和T₂分别是气体的初温和末温,V₁和V₂分别是气体的初体积和末体积。

这个公式表明,理想气体的熵变与温度和体积的变化有关。

五、理想气体的热容理想气体的热容是指单位摩尔气体在温度变化时吸收或者释放的热量。

根据理想气体的热容定义可以得到以下公式:Cv = (3/2)RCp = (5/2)R其中,Cv是等体热容,Cp是等压热容。

第4章理想气体的性质及其热力过程

第4章理想气体的性质及其热力过程

解 :取整个容器(包括真空容器)为系统, 由能量方程得知: U1 = U 2 , T1 = T2 = T 对绝热过程,其环境熵变
∆S sys = CP ln
T2 P P − R ln 2 = 0 − R ln 2 T1 P1 P 1
P 0 .2 = R ln 1 = 0.287 ln = 0.199 kJ / kg ⋅ k P2 0 .1
∆S sur = S 2 − S1 +
q P q = R ln 1 + T0 P2 T0
100 330 .4 = 0.287 ln + = 0.44 kJ / k g ⋅ k 1000 300
例 6: 如果室外温度为-10℃, 为保持车间内最低温度为 20℃, 需要每小时向车间供热 36000kJ, 求:1) 如采用电热器供暖,需要消耗电功率多少。2) 如采用热泵供暖,供给热泵的功率至 少是多少。3) 如果采用热机带动热泵进行供暖,向热机的供热率至少为多少。图 4.1 为热 机带动热泵联合工作的示意图。假设:向热机的供热温度为 600K,热机在大气温度下放热。 600K 293K & &′ Q Q 1 1 & W 热泵 热机 263K 图 4.1 解 :1)用电热器供暖,所需的功率即等于供热率, 故电功率为
. . .
3600 W s = 3600 Q + mCv (T2 − T1 )
. . 3600 W − Q = 293 + 3600(0.2 − 0.1) = 544 K T2 = T1 + mCv 2 × 0.7175
.
.
由定容过程:
P2 T2 T 544 = , P2 = P1 2 = 0.1 × = 0.186 MPa P1 T1 T1 293

热力学中的理想气体与热力学律

热力学中的理想气体与热力学律

热力学中的理想气体与热力学律热力学是研究能量转换和能量传递规律的学科。

在热力学中,理想气体是一个重要的概念。

本文将探讨理想气体的定义、性质以及与热力学定律之间的关系。

一、理想气体的定义理想气体是一种理想化的气体模型,假设气体分子之间无相互作用力,气体分子体积可以忽略不计。

理想气体能够遵守理想气体状态方程,即PV=nRT,其中P代表气体的压强,V代表气体的体积,n代表气体的物质量,R代表气体常数,T代表气体的温度。

二、理想气体的性质1. 零相对分子体积:理想气体中的分子体积可以忽略不计,因此在气体分子之间是没有空隙的。

2. 分子间作用力可忽略:理想气体假设分子间无相互作用力,这使得气体的物性参数与分子之间的相互作用力无关。

3. 碰撞是弹性碰撞:理想气体中分子之间的碰撞是完全弹性碰撞,能量和动量守恒。

4. 温度均一:在理想气体中,温度是均匀分布的,不会出现温度梯度。

5. 理想气体的扩散速率与分子质量无关:理想气体的扩散速率只与温度和分子大小有关,而与分子质量无关。

三、理想气体与热力学定律1. 理想气体状态方程:理想气体遵循状态方程PV=nRT,其中P为气体的压强,V为气体的体积,n为气体的物质量,R为气体常数,T为气体的温度。

2. 理想气体的一级热力学定律(物态方程):一级热力学定律表明,当理想气体从初态变为末态时,其内能的增量等于对这个过程进行的功与系统所吸收的热量之和。

3. 理想气体的二级热力学定律(熵增定律):二级热力学定律表明,对于一个孤立系统,其熵不会减少,只会增加或保持不变。

4. 理想气体的三级热力学定律(绝对温标):三级热力学定律指出,在接近绝对零度时,所有物质都趋于相同的极低温度,即零度绝对温标。

综上所述,热力学中的理想气体是一种重要的模型,具有一定的假设前提,但在理论和实验研究中起到了极大的作用。

理解理想气体的定义、性质以及与热力学定律之间的关系,有助于我们更好地应用热力学知识解决实际问题,推动科学研究的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


分析:热力学第一定律微分方程式 闭口系统: 热力学能的全微分方程: 则定容过程:
q du pdv
u u du ( )dT ( )dv v T T v
u qv ( )dT v T 比定容热容: c qV u ) ( V v dT T
开口系统 焓的全微分方程
2、理想气体状态方程 理想气体状态方程又称为克拉贝龙方程,其基本方程式为: pv= RgT 式中: p─气体的绝对压力,Pa; v─气体的比容,m3/kg; T─气体的热力学温度,K; Rg ─气体常数,J/(kg·K)。数值大小只与气体的种类有关, 与气体的状态无关。 对于mkg气体的系统,其状态方程是: mpv=pV =mRgT 用物质的量摩尔(mol)表示时,1 kmol的物质的量为Mkg。 pVm= M Rg T 令R = MRg,则 pVm= R T
p1V1 9.81104 4 m1 4.67kg RgT1 287 293
p2V2 0.475104 4 m1 0.226kg RgT2 287 293
所以:Δm=m1-m2 =4.67-0.226=4.44 kg
3-2 理想气体的热容、热力学能 、焓和熵
1、热容的定义 定义:物体温度升高1K(1 ℃ )所需要的热量,称热容量。 热容的大小取决于工质的性质、物量、过程。计算式: C = δQ/dT = δQ/dt 分类:1)按单位物量分类 比热容(质量热容):1kg物质的热容量。符号c, c=δq/dT = δq/dt J/(kg· K)或kJ/(kg· K) 摩尔热容:1摩尔物质的热容,符号Cm。 Cm =M c 2)按过程分类 比定容热容:定容过程的热容量。cv= δqv/dT 比定压热容:定压过程的热容量。cp= δqp/dT

比热容比:指cp与cv的比。用符号γ表示。 γ = cp / cv 可得: cp= γRg/( γ-1) cv= Rg/( γ-1)
例题:理想气体的比热容比γ =1.40,比定压热容cp =1.042 kJ/(kg· ,求该气体的摩尔质量。 K) 解;由迈耶公式: Rg = cp – cv= cp - cp / γ =1.042-1.042/1.4= 298 J/(kg· K) M=R/ Rg =8.3145/298 27.9 (g/mol)
式中:Vm—千摩尔体积, R─摩尔气体常数J/(mol·K)。 由阿佛加得罗定律推论得到:在相同压力和温度下,1kmol 的各种理想气体占有相同的容积。因此所有气体的R都相 等,且与状态无关。 在 物 理 标 准 状 态 下 , p0=760mmHg=101325Pa、t0=0℃ 时 , Vm0=22.4Nm3,利用理想气体状态方程式: R=(p0 Vm0)/T0 =8.314 J/(mol·K) 已知通用气体常数及气体的分子量可求得气体常数: Rg= R/M
例题:一体积为4m3的容器内充有p=9.81×104Pa, t=20 ℃ 的空气,抽气后容器的真空度pv=700mmHg,当地大气压 pb=735.6mmHg。若抽气前后温度保持不变,求: (1)抽气后容器内空气的绝对压力为多少(bar)? (2)必须抽走多少空气才能满足题目的要求(kg)?
解:用1、2分别表示抽气前后的状态。 (1)抽气后的压力: pb = pb - pv = ( 735.6-700 )mmHg=35.6mmHg=0.0475bar (2)设抽走的气体质量为Δ12 c |tt12 t2 t1 t2 t1
t2
热量
q12 c |tt12(t2 t1) c |t02 t2 c |t01 t1

从表上查得相应得数值,可以进行计算。 定值比热容:原子数目相同的气体具有相同的摩尔热容。 热量计算:q =c(t2-t1)
q dh vdp
定压过程 比定压热容
h u dh ( )dT ( )dp p T T p h q p ( )dT p T q p h cp ( ) p dT T
2、理想气体的比热容 (1)比定压热容与比定容热容 理想气体的内能和焓都只是温度的单值函数。所以: 比定压热容 cp= dh/dT 比定容热容 cv= du/dT 比定压热容与比定容热容的关系 cp= dh/dT =d(u+pv)/dT=du/dT +d(RgT)/dT = cv+Rg 即 cp – cv=Rg 此公式称为迈耶公式。 由此可见;气体的比定压热容大于比定容热容。 原因分析:定容过程 定压过程
第四节 理想气体的性质与热力过程
1 理想气体状态方程
1、理想气体与实际气体 气体是热力过程中常用的工质,如:空气、水蒸气等。 理想气体:1)分子之间的平均距离很大 2)分子之间无作用力,分子之间的碰撞以及分 子与器壁之间的碰撞皆为弹性碰撞。 适用条件:气体的压力不太高,温度不太低,分子之间 的作用力与分子本身的体积皆可忽略时。如:O2、 N2、H2、CO及大气中含有的少量水蒸汽。 实际气体:不符和上述条件的气体,如:水蒸汽,制冷剂 蒸汽等。
(2)热量计算 由比热容的定义可以求的热量的计算公式: δq= c dt 则过程热量 q=∫ δq= ∫ c dT 比热容的确定方法: 真实比热容:真实的反映比热容与温度的关系。如: cp=a0+a1T+a2T2+ a3T3 定压过程热量 q= ∫ cpdT= ∫ (a0+a1T+a2T2+ a3T3 )dT 这样的计算非常复杂。 平均比热容:气体从温度t1升高到t2需要的热量与温差的 c |tt12 商。用 表示。 则
相关文档
最新文档