8.2_二元一次方程组的解法加减消元法.ppt
合集下载
2023~2024学年 8.2 课时2 加减消元法(20页)
灵活运用
怎样解下面的方程组?
2x y 1.5, ① 0.8x 0.6y 1.3;②
解:选择代入法,由①得,
y 1.5 2x ③
代入②,消去y,解得
0.8x 0.( 6 1.5 2x)1.3
x 1
代入③,得 y 3.5.
xy
1, 3.5
是原方程组的解.
x 2y 3, ① 3x 2y 5. ②
① ②
②-①得 11x=44,解得x=4.
将x=4代入①可得y=2.
因此这个方程组的解为
x
y
4,
2..
答:1辆大卡车一次方程组的两种解法, 它们都是通过消元使方程组转化为一元一次方程,只是 消元的方法不同.我们应根据方程组的具体情况,选择适 合它的解法.
应用提升
2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨, 3辆大卡车和2辆小卡车工 作5小时可运输垃圾80 吨, 那么1辆大卡车和1辆小卡车各运多少吨垃圾?
解:设1辆大卡车和1辆小卡车各运x吨和y吨.
根据题意可得方程组:52((32xx25yy))
36, 80.
化简可得:145xx1100yy3860, .
例题分析
2台大收割机和5台小收割机同时工作2 h共收割小麦3.6 hm2,3台大收割机 和2台小收割机同时工作5 h收割小麦8 hm2.1台大收割机和1台小收割机每 小时各收割小麦多少公顷?
分析:如果1台大收割机和1台小收割机每小时各收小麦x hm2 和y hm2,那么2台大收割 机和5台小收割机同时工作1小时共收割小麦 hm2 ,3台大收割机和2台小收割机同时 工作1小时共收割小麦 hm2 .由此考虑两种情况下的工作量.
解: ②×4得:
4x-4y=16 ③
二元一次方程组的解法 乘法 加减消元法.ppt
加 减 消 元 法:
消去一个未知数的方法是:如果两个方程中有一个未知数的系数 相等,那么把这两个方程相减(或相加);否则,先把其中一个方 程乘以适当数,将所得方程与另一个方程相减(或相加),或者先 把两个方程分别乘以适当的数,再把所得到的方程相减(或相加). 这种解二元一次方程组的方法叫做加减消元法简称加减法
所以
x 1
y
3
2x3(3)11
x 1
解方程组
3x 4y 8 ① 4x 2y 1 ②
能不能使两个方 程中x(或y)的 系数相等(或互
为相反数)
解 : ②×2,得 8x4y2 ③
③- ,得
(8x4y)(3x4y)(2)8
5x10
解 得 x2 把 x2 代入①,得
3(2)4y8
x2
所以
y 7
x 3
y
2
试一试:用加减法解方程组
3x+4y= 16 ①
5x-6y= 33 ②
解: ①×3,②×2,得
9x+12y= 48 ③ 10x-12y= 66 ④
③+④,得
(9x+12y)+(10x-12y)=48+66 19x= 114
x=6
把x=6代入①,得 x= 6
所以
y= - 1
3×6+4y= 16 4y= -2 y= - 1 2
8.2 二元一次方程组的解法 加减消元法
3x 5y 21 ① 2x 5y 11 ②
①+②
4x 5y 3 ① 2x 5y 1 ②
①-②
下例方程组可以用加 减消元法来做吗?
3x+4y= 16 ①
5x-6y= 33 ② 分析:1、此方程组能否直接用加减法消
人教版七年级数学下册《8.2 消元——解二元一次方程组 第一课时》课件ppt
2x y 5, (2) 3x 4 y 2;
解:(1)
y=2x-3,① 3x+2 y=8.②
把①代入②,
得3x+2(2x-3)=8,解得x=2.
把x=2代入①,得y=1.
x=2,
所以原方程组的解是
y=1.
2 x-y=5,①
(2)
3
x+4
y=2.②
由①,得y=2x-5.
③把③代入②,得3x+4(2x-5)=2,
A.消y
B.消x
C.消x 和消y 一样
D.无法确定
知识点 2 代入消元法的应用
4x 8 y 12, ①
例3
用代入消元法解方程组:
3x
2
y
5.
②
导引:观察方程组可以发现,两个方程中x 与y 的系数的绝对值都不相等,
但①中y 的系数的绝对值是②中y 的系数的绝对值的4倍,因此可把
2y 看作一个整体代入.
A.-1 B.1 C.5 2 015 D.-5 2 015
1 4 若单项式2x 2y a+b与 3 x a-by 4是同类项,则a,b
的值分别是( A )
A.a=3,b=1 B.a=-3,b=1 C.a=3,b=-1 D.a=-3,b=-1
5
已知关于x,y 的方程组
x=3-m,
y=1+2m,
a= 5, 2
b= 1 ,
综上可知,a= 5 ,b= 1 ,c
2 5.
22
利用代入消元法解二元一次方程组的关键是找准代 入式,在方程组中选择一个系数最简单(尤其是未知数前 的系数为±1)的方程,进行变形后代入另一个方程,从 而消元求出方程组的解.
同学们, 下节课见!
x y 13 ,
例2
解:(1)
y=2x-3,① 3x+2 y=8.②
把①代入②,
得3x+2(2x-3)=8,解得x=2.
把x=2代入①,得y=1.
x=2,
所以原方程组的解是
y=1.
2 x-y=5,①
(2)
3
x+4
y=2.②
由①,得y=2x-5.
③把③代入②,得3x+4(2x-5)=2,
A.消y
B.消x
C.消x 和消y 一样
D.无法确定
知识点 2 代入消元法的应用
4x 8 y 12, ①
例3
用代入消元法解方程组:
3x
2
y
5.
②
导引:观察方程组可以发现,两个方程中x 与y 的系数的绝对值都不相等,
但①中y 的系数的绝对值是②中y 的系数的绝对值的4倍,因此可把
2y 看作一个整体代入.
A.-1 B.1 C.5 2 015 D.-5 2 015
1 4 若单项式2x 2y a+b与 3 x a-by 4是同类项,则a,b
的值分别是( A )
A.a=3,b=1 B.a=-3,b=1 C.a=3,b=-1 D.a=-3,b=-1
5
已知关于x,y 的方程组
x=3-m,
y=1+2m,
a= 5, 2
b= 1 ,
综上可知,a= 5 ,b= 1 ,c
2 5.
22
利用代入消元法解二元一次方程组的关键是找准代 入式,在方程组中选择一个系数最简单(尤其是未知数前 的系数为±1)的方程,进行变形后代入另一个方程,从 而消元求出方程组的解.
同学们, 下节课见!
x y 13 ,
例2
人教初中数学七下 8.2 消元 解二元一次方程组(第3课时)课件 【经典初中数学课件】
8
三、研读课文
一
元
一
知次
不
识等
式
点的
三
解 法
及
练
习
注意:当不等式的两边都乘或除以同一个负数时, 不等号的方向 改变 .归纳:解一元一次方程,要根 据等式的性质,将方程逐步化为 X=a的形式;而解
一元一次不等式,则要根据不等式的性质,将不等
式逐步化为 x<a (或 X>a )的形式.
一
元
一
知
次 不
四、归纳小结
3、解一元一次不等式的一般步骤: ① 去分母 ② 去括号 ③ __移__项___ ④ 合__并__同__类__项__⑤ 系数化为1 .
4、学习反思___________________.
五、强化训练
1、下列式子中,属于一元一次不等式的
是( D )
A. 4>3
B. C.C. 3x-2<y+7
解得 y= 14
11
把y=
14 11
代入①得2x+ 解得y= 9
70 11
=8
11
所以方程组的解是
x
=
70 14
y= 9
11
四、归纳小结
四、归纳小结 1、加减消元法的步骤: (1)将原方程组的两个方程化为有一个未知数
的系数_相__反或相等 的两个方程; (2)把这两个方程相加或_相__减___,消去一个
4
这个不等式的解集在数轴上的表示:
5
04
四、归纳小结
1、含有 一 个未知数,未知数__次__数_是__1____的 不等式,叫做一元一次不等式.
2、解一元一次方程,要根据等式的性质,将方 程逐步化为 X=a 的形式;而解一元一次 不等式,则要根据不等式的性质,将不等式逐 步化为 x<a (或 X>a )的形式.
人教初中数学七下 8.2 消元-解二元一次方程组课件 【经典初中数学课件 】
P
1 0 7
解:设有x支篮球队和y支排球队参赛.
{ 由题意,得 X+y=48
①
10x+12y=520 ②
由①, 得 y =48- x ③
把③代入②,得 10x+12(48-x)=520
解这个方程,得 x= 28.
把x= 28代入③ ,得 y=20.
{ X=28
所以这个方程组的解是 y=20
解:设骑车用x小时,步行用y小时.
求原方程组正确的解
x 5
y
4
x 3
y
1
ax by 1,
2①已知方程组 bx ay 3的解为
x y
1, 1, 2
求a,b
②求满足5x+3y=x+2y=7的x,y的值.
1.用代入法解方程组:
2s 3t, (1)3s 2t 5
s=3 t=2
⑵
2x y 7 3x 4y 5
提高巩固
1.解下列二元一次方程组
x+1=2(y-1) ⑴
3x+2y=13 ⑵
3(x+1)=5(y-1)+4 3x-2y=5
你认为怎样代入更简便? 请用你最简便的方法解出它的解。 你的思路能解另一题吗?
1.解下列二元一次方程组(分组练习)
⑴ x+1=2(y-1)
①
3(x+1)=5(y-1)+4 ②
8.2 代入消元法解方程
用代入法
解二元一次 方程组
用代入法解二元一次 方程组的一般步骤
1、将方程组里的一个方程变形, 用含有一个未知数的一次式表 示另一个未知数(变形)
2、用这个一次式代替另一个方程 中的相应未知数,得到一个一元一 次方程,求得一个未知数的值(代 入)
8.2.2 二元一次方程组的解法-加减法
解由③④组成的方程组
解得 【点睛】整体代入法(换元法)是数学中的重要方法之一,这种方法往
往能使运算更简便.
练一练
例6:2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆 小卡车工作5小时可运输垃圾80 吨, 那么1辆大卡车和1辆小卡车每小时各运 多少吨垃圾?
解:设1辆大卡车和1辆小卡车每小时各运x吨和y吨垃圾.
讲解新知
怎样解下面的二元一次方程组呢? 3 x + 5 y = 21 ①
2 x – 5 y = -11 ②
5y和-5y互为相反数……
分析: ①+② (3x+5y)+ (2x-5y) = 21 + (-11)
①左边 + ② 左边 = ① 右边 + ②右边 3x+5y +2x - 5y=10 5x=10 x=2
3
将③代入②得 5 23 2 y 2 y 33
3
解得:y=4
把y=4代人③ ,得x=5 x=5
所以原方程组的解为: y=4
除代入消元, 还有其他方法吗?
讲解新知
3x+2y=23 ① 5x+2y=33 ②
y的系数相等
分析: ①-② (3x+2y) - (5x+2y) = 23 - 33 ①左边 - ② 左边 = ① 右边 - ②右边 3x+2y -5x - 2y=-10 -2x=-10 x=5
① ②
解: ②×4得: 4x-4y=16③
①+③得:7x = 35,
解得:x = 5.
把x = 5代入②得,y = 1.
所以原方程组的解为
知识小结
同一未知数的系数 不相等也不互为相反数 时,利用等式的性质,使得
解得 【点睛】整体代入法(换元法)是数学中的重要方法之一,这种方法往
往能使运算更简便.
练一练
例6:2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆 小卡车工作5小时可运输垃圾80 吨, 那么1辆大卡车和1辆小卡车每小时各运 多少吨垃圾?
解:设1辆大卡车和1辆小卡车每小时各运x吨和y吨垃圾.
讲解新知
怎样解下面的二元一次方程组呢? 3 x + 5 y = 21 ①
2 x – 5 y = -11 ②
5y和-5y互为相反数……
分析: ①+② (3x+5y)+ (2x-5y) = 21 + (-11)
①左边 + ② 左边 = ① 右边 + ②右边 3x+5y +2x - 5y=10 5x=10 x=2
3
将③代入②得 5 23 2 y 2 y 33
3
解得:y=4
把y=4代人③ ,得x=5 x=5
所以原方程组的解为: y=4
除代入消元, 还有其他方法吗?
讲解新知
3x+2y=23 ① 5x+2y=33 ②
y的系数相等
分析: ①-② (3x+2y) - (5x+2y) = 23 - 33 ①左边 - ② 左边 = ① 右边 - ②右边 3x+2y -5x - 2y=-10 -2x=-10 x=5
① ②
解: ②×4得: 4x-4y=16③
①+③得:7x = 35,
解得:x = 5.
把x = 5代入②得,y = 1.
所以原方程组的解为
知识小结
同一未知数的系数 不相等也不互为相反数 时,利用等式的性质,使得
人教版数学七年级下册8.2.2 加减消元法2 课件
+ +
=8
=7
+
2 x 3 y 7 3 x 2 y 8
上一节课我们学习了用直接加减法解二 元一次方程组,这个方程组能否用呢?
那么如何用简单的方法解这个方程组呢?
8.2.4消元——二元一次方程组 的解法(加减法2)
学习目标 1.掌握用加减法解二元一次方程组,并 能根据不同类型的二元一次方程组选择 合适的方法。 2.进一步理解加减消元法解二元一次方 程组所体现的化归思想。
求出一个未知数的值
代入原方程求出另一个未知数的值 写出方程组的解
回代
写解
返回
一、导引研学
5 x 2 y 25 (1) 3 x 4 y 15
4 x 3 y 3 (2) 3 x 2 y 15
1.以上两个题可以用直接加减消元法求解吗? 2.直接使用加减法解二元一次方程组的条件是什么? 3.请你观察(1)中两个方程中未知数的系数有何特点? 你能使两个方程中某一未知数的系数相等或相反呢?如何 消掉y? 4.请你观察(2)中两个方程中未知数的系数是否具有(1 )中系数的特点?如果不具备的话,你还能使两个方程中 某一未知数的系数相等或相反呢?如何消掉x,y? 你能总结出变形后加减消元法的一般步骤吗?
点评教师:
凉水河镇 中学数学教师 张学琴
组织单位:湖北省丹江口市教育局
录制单位:凉水河镇中学 录制人员:马彬彬 录制时间:2016.5.20
• • • • • • • • • • • • • • • • • • • •
1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。 2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。 3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。 4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。 5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了? 7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。 8、真想干总会有办法,不想干总会有理由;面对困难,智者想尽千方百计,愚者说尽千言万语;老实人不一定可靠,但可靠的必定是老实人;时间,抓起来是黄金,抓不起来是流水。 9、成功的道路上,肯定会有失败;对于失败,我们要正确地看待和对待,不怕失败者,则必成功;怕失败者,则一无是处,会更失败。 10、一句简单的问候,是不简单的牵挂;一声平常的祝福,是不平常的感动;条消息送去的是无声的支持与鼓励,愿你永远坚强应对未来,胜利属于你! 11、行为胜于言论,对人微笑就是向人表明:我喜欢你,你使我快乐,我喜欢见到你。最值得欣赏的风景,就是自己奋斗的足迹。 12、人生从来没有真正的绝境。无论遭受多少艰辛,无论经历多少苦难,只要一个人的心中还怀着一粒信念的种子,那么总有一天,他就能走出困境,让生命重新开花结果。 13、当机会呈现在眼前时,若能牢牢掌握,十之八九都可以获得成功,而能克服偶发事件,并且替自己寻找机会的人,更可以百分之百的获得成功。 14、相信自己,坚信自己的目标,去承受常人承受不了的磨难与挫折,不断去努力去奋斗,成功最终就会是你的! 15、相信你做得到,你一定会做到。不断告诉自己某一件事,即使不是真的,最后也会让自己相信。 16、当你感到悲哀痛苦时,最好是去学些什么东西。领悟会使你永远立于不败之地。 17、出发,永远是最有意义的事,去做就是了。当一个人真正觉悟的一刻,就是他放弃追寻外在世界的财富,开始追寻他内心世界的真正财富。 18、幻想一步成功者突遭失败,会觉得浪费了时间,付出了精力,却认为没有任何收获;在失败面前,懦弱者痛苦迷茫,彷徨畏缩;而强者却坚持不懈,紧追不舍。 19、进步和成长的过程总是有许多的困难与坎坷的。有时我们是由于志向不明,没有明确的目的而碌碌无为。但是还有另外一种情况,是由于我们自己的退缩,与自己“亲密”的妥协没有坚持到底的意志,才使得机会逝去,颗粒无收。 20、任何人都不可以随随便便的成功,它来自完全的自我约束和坚韧不拔的毅力。永远别放弃自己,哪怕所有人都放弃了你。
第八章二元一次方程组课件8.2.2加减消元法解二元一次方程组
解: ①+②得:
① ②
5x=10
x=2
把x=2代入①得: 3×2+5y=21
x 2 ∴原方程组的解是 y 3
y=3
练习:用加减消元法解方程组 ① 2 s 5 t 13 ② 3 s 5 t 7
用加减消元法解方程组
3x 2 y 0 4 x 2 y 2
解:由题意得:
∵
2x y 7 3x y 8 x3 y 1
∴
ax y b x by a ab 3 x3 ∴把 方程组得: y 1 3a b 1 a 1 解这个方程组得: b2
∵
例2. 用加减法解方程组:
分析:解方程组的方法就是消元,
加减消元法的前提条件是同一个 但是当同一个未知数的系数既不相
同也不互为相反数,怎么解呢?
未知数的系数必须相同或者互为相反数。
用短除法求两个数的最小公倍数。
我们把几个数公有的倍数叫做这几 个数的公倍数,其中最小的一个数叫
做这几个数的最小公倍数。
利用短除法,求下面各组数的最小公倍数。
12和18
3 12 18 2 2
分析:把含小数系数的二元一
次方程组化为整数系数方程组, 可以简化运算。
原方程组可化为
3 x 10 y 10 ① 2 x 5 y 190 ②
悟空顺风探妖踪,
千里只行四分钟。
归时四分行六百,
风速多少才称雄。
解:设悟空在静风中行走的速度为 x 里/分,风速为 y 里/分。
由题意得:
2 mn 3m 2 n 2n 5
解 : 根据同类项的定义, 有
台大收割机和2台小收割机工作5
小时收割小麦8公倾。 问:1台大收割机和1台小收割 机1小时分别收割小麦多少公倾? 分析:两种情况下的工作量
① ②
5x=10
x=2
把x=2代入①得: 3×2+5y=21
x 2 ∴原方程组的解是 y 3
y=3
练习:用加减消元法解方程组 ① 2 s 5 t 13 ② 3 s 5 t 7
用加减消元法解方程组
3x 2 y 0 4 x 2 y 2
解:由题意得:
∵
2x y 7 3x y 8 x3 y 1
∴
ax y b x by a ab 3 x3 ∴把 方程组得: y 1 3a b 1 a 1 解这个方程组得: b2
∵
例2. 用加减法解方程组:
分析:解方程组的方法就是消元,
加减消元法的前提条件是同一个 但是当同一个未知数的系数既不相
同也不互为相反数,怎么解呢?
未知数的系数必须相同或者互为相反数。
用短除法求两个数的最小公倍数。
我们把几个数公有的倍数叫做这几 个数的公倍数,其中最小的一个数叫
做这几个数的最小公倍数。
利用短除法,求下面各组数的最小公倍数。
12和18
3 12 18 2 2
分析:把含小数系数的二元一
次方程组化为整数系数方程组, 可以简化运算。
原方程组可化为
3 x 10 y 10 ① 2 x 5 y 190 ②
悟空顺风探妖踪,
千里只行四分钟。
归时四分行六百,
风速多少才称雄。
解:设悟空在静风中行走的速度为 x 里/分,风速为 y 里/分。
由题意得:
2 mn 3m 2 n 2n 5
解 : 根据同类项的定义, 有
台大收割机和2台小收割机工作5
小时收割小麦8公倾。 问:1台大收割机和1台小收割 机1小时分别收割小麦多少公倾? 分析:两种情况下的工作量
消元-解二元一次方程组(共28张ppt)七年级下册数学人教版
组 500x+250y=22 500 000
2
消去 y
= 22 500 000
5 = 2 ,
500 + 250 = 22 500 000 .
解这个方程组时,可以先消去 x 吗?
解:设这些消毒液应该分装 x 大瓶、y 小瓶.
根据大、小瓶数的比,以及消毒液分装量与总产量的数
5 = 2,
①
x=16-3y
3(16-3y)+y=20
y=3.5
x=5.5
2x+2y=
18
x y
18元
x+3y=16
3x+y=20
2x+2y=?
2.如图,在长为 15,宽为 12 的长方形中,有形状、
大小完全相同的 5 个小长方形,则图中阴影部分的面
积为( B )
15×12-5xy=180-135=45
A.35
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
瓶装(250 g)两种产品的销售数量(按瓶计算)比为 2︰5.
某厂每天生产这种消毒液 22.5 t,这些消毒液应该分装
大、小瓶两种产品各多少瓶?
例题中有哪些未知量?
未知量有消毒液应该分装的大瓶数和小瓶数.
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
B.45
C.55
2 + = 15,
= 3.
D.65
y=9
2x+3x=15
x=3
x
2x+y=15
y
y=3x
3.篮球联赛中,每场比赛都要分出胜负,胜一场得 2
分.负一场得 1 分,某队为了争取较好的名次,想在全
2
消去 y
= 22 500 000
5 = 2 ,
500 + 250 = 22 500 000 .
解这个方程组时,可以先消去 x 吗?
解:设这些消毒液应该分装 x 大瓶、y 小瓶.
根据大、小瓶数的比,以及消毒液分装量与总产量的数
5 = 2,
①
x=16-3y
3(16-3y)+y=20
y=3.5
x=5.5
2x+2y=
18
x y
18元
x+3y=16
3x+y=20
2x+2y=?
2.如图,在长为 15,宽为 12 的长方形中,有形状、
大小完全相同的 5 个小长方形,则图中阴影部分的面
积为( B )
15×12-5xy=180-135=45
A.35
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
瓶装(250 g)两种产品的销售数量(按瓶计算)比为 2︰5.
某厂每天生产这种消毒液 22.5 t,这些消毒液应该分装
大、小瓶两种产品各多少瓶?
例题中有哪些未知量?
未知量有消毒液应该分装的大瓶数和小瓶数.
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
B.45
C.55
2 + = 15,
= 3.
D.65
y=9
2x+3x=15
x=3
x
2x+y=15
y
y=3x
3.篮球联赛中,每场比赛都要分出胜负,胜一场得 2
分.负一场得 1 分,某队为了争取较好的名次,想在全
8.2消元--二元一次方程组的解法(2)
6x-5y=17②
应用( B )
A.①-②消去y C. ②- ①消去常数项
3x+2y=13
B.①-②消去x D. 以上都不对
2.方程组 A.6x=8
消去y后所得的方程是(B) 3x-2y=5 ②
B.6x=18 C.6x=5
D.x=18
山东星火国际传媒集团
四.指出下列方程组求解过程中是否有错误步骤, 并给予订正:
山东星火国际传媒集团
3x 5 y 21 解二元一次方程组: 2 x 5 y -11
解:由①+②得: 5x=10
① ②Biblioteka x=2 把x=2代入①,得: y=3 x 2 所以原方程组的解是 y 3
山东星火国际传媒集团
加减消元法
3x 5 y 21 2 x 5 y -11
7x-4y=4
①
3x-4y=14 ① 5x+4y=2
②
5x-4y=-4 ② 解:①-②,得 2x=4-4, x=0 解: ①-②,得 2x=4+4, x=4
解 ①-②,得
-2x=12
x =-6 解: ①+②,得 8x=16 x =2
山东星火国际传媒集团
【例】用加减法解方程组:
① ② ①×3得: 6x+9y=36 ③ ②×2得: 6x+8y=34 ④
②
②
山东星火国际传媒集团
二.填空题:
1.已知方程组
x+3y=17 2x-3y=6 ② 两个方程
只要两边 分别相加 就可以消去未知数 y 25x-7y=16
2.已知方程组
25x+6y=10 ② 只要两边分别相减 就可以消去未知数 x
两个方程
应用( B )
A.①-②消去y C. ②- ①消去常数项
3x+2y=13
B.①-②消去x D. 以上都不对
2.方程组 A.6x=8
消去y后所得的方程是(B) 3x-2y=5 ②
B.6x=18 C.6x=5
D.x=18
山东星火国际传媒集团
四.指出下列方程组求解过程中是否有错误步骤, 并给予订正:
山东星火国际传媒集团
3x 5 y 21 解二元一次方程组: 2 x 5 y -11
解:由①+②得: 5x=10
① ②Biblioteka x=2 把x=2代入①,得: y=3 x 2 所以原方程组的解是 y 3
山东星火国际传媒集团
加减消元法
3x 5 y 21 2 x 5 y -11
7x-4y=4
①
3x-4y=14 ① 5x+4y=2
②
5x-4y=-4 ② 解:①-②,得 2x=4-4, x=0 解: ①-②,得 2x=4+4, x=4
解 ①-②,得
-2x=12
x =-6 解: ①+②,得 8x=16 x =2
山东星火国际传媒集团
【例】用加减法解方程组:
① ② ①×3得: 6x+9y=36 ③ ②×2得: 6x+8y=34 ④
②
②
山东星火国际传媒集团
二.填空题:
1.已知方程组
x+3y=17 2x-3y=6 ② 两个方程
只要两边 分别相加 就可以消去未知数 y 25x-7y=16
2.已知方程组
25x+6y=10 ② 只要两边分别相减 就可以消去未知数 x
两个方程
人教七年级数学下课件8.2消元——解二元一次方程组第2课时用加减法解二元一次方程组
解:(1)设出租车的起步价是 x 元,超过 1.5 千米后每千米收费 y 元.依 题意得,xx++((46..55--11..55))yy==1104..55,解得xy==42..5,答:出租车的起步 价是 4.5 元,超过 1.5 千米后每千米收费 2 元
(2)4.5+(5.5-1.5)×2=12.5(元).答:小张乘出租车从市政府到娄底 南站(高铁站)走了 5.5 千米,应付车费 12.5 元
【综合运用】 16.(13 分)(2015·娄底)假如娄底市的出租车是这样收费的:起步价所包含的路程为 0~ 1.5 千米,超过 1.5 千米的部分按每千米另收费. 小刘说:“我乘出租车从市政府到娄底汽车站走了 4.5 千米,付车费 10.5 元.” 小李说:“我乘出租车从市政府到娄底汽车站走了 6.5 千米,付车费 14.5 元.” 问:(1)出租车的起步价是多少元?超过 1.5 千米后每千米收费多少元? (2)小张乘出租车从市政府到娄底南站(高铁站)走了 5.5 千米,应付车费多少元?
x=2, A.y=-4
x=2, B.y=4
x=-2, C.y=4
x=-2, D.y=-4
3.(4 分)解方程组32xx-+33yy==41,②①时,用加减消元法最简便的是( A )
A.①+② B.①-② C.①×2-②×3 D.①×3+②×2
4.(4 分)用加减法解方程组44xx+ -33yy= =62.,若先求 x 的值,应先将两个方程组___加_____; 若先求 y 的值,应先将两个方程相___减_____.
13.(2015·武汉)定义运算“*”,规定 x*y=ax2+by,其中 a,b 为常数,且 1*2=5,2*1=
6,则 2*3=___1_0____.
《加减消元法—二元一次方程组的解法》二元一次方程组2PPT课件 图文
你总该记得,有一个黄昏,白马 湖上的 黄昏, 在你那 间天花 板要压 到头上 来的, 一颗骰 子似的 客厅里 ,你和 我读着 竹久梦 二的漫 画集。 你告诉 我那篇 序做得 有趣, 并将其 大意译 给我听 。我对 于画, 你最明 白,彻 头彻尾 是一条 门外汉 。但对 于漫画 ,却常 常要像 煞有介 事地点 头或摇 头;而 点头的 时候总 比摇头 的时候 多—— 虽没有 统计, 我肚里 有数。 那一天 我自然 也乱点 了一回 头。 点头之余,我想起初看到一本漫 画,也 是日本 人画的 。里面 有一幅 ,题目 似乎是 《aa子 爵b泪》 (上两 字已忘 记), 画着一 个微侧 的半身 像:他 严肃的 脸上戴 着眼镜 ,有三 五颗双 钩的泪 珠儿, 滴滴答 答历历 落落地 从眼睛 里掉下 来。我 同时感 到伟大 的压迫 和轻松 的愉悦 ,一个 奇怪 的矛盾 !梦二 的画有 一幅— —大约 就是那 画集里 的第一 幅—— 也使我 有类似 的感觉 。那幅 的题目 和内容 ,我的 记性真 不争气 ,已经 模糊得 很。只 记得画 幅下方 的左角 或右角 里,并 排地画 着极粗 极肥又 极短的 一个“ !”和 一个“ ?”。 可惜我 不记得 他们哥 儿俩谁 站在上 风,谁 站在下 风。我 明白( 自己要 脸)他 们俩就 是整个 儿的人 生的谜 ;同时 又觉着 像是那 儿常常 见着的 两个胖 孩子。 我心眼 里又是 糖浆, 又是姜 汁,说 不上是 什么味 儿。无 论如何 ,我总 得惊异 ;涂呀 抹的几 笔,便 造起个 小世界 ,使你 又要叹 气又要 笑。叹 气虽是 轻轻的 ,笑虽 是微微 的,似 一把锋 利的裁 纸刀, 戳到喉 咙里去 ,便可 要你的 命。而 且同时 要笑又 要叹气 ,真是 不当人 子,闹 着玩儿 !
由①+②得: 5x=10
由①+②得: 5x=10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将②变形得:
① ②
标准的 代入消 元法
代入①,消去 x 了!
5 y 11 x 2
还有别的方法吗?
3x 5 y 21 2 x 5 y 11
①
②
认真观察此方程组中各个未知数 的系数有什么特点,并分组讨论看 还有没有其它的解法.并尝试一下能 否求出它的解
5y 5 y和
3x 5y 21 2 x 5 y -11
用加减法先 消去未知数y 该如何解? 解得的结果 与左面的解 相同吗?
将y =2代入①,
解得: x= 3
x 3 所以原方程组的解是 y 2
加减消元法解方程组基本思路是什么? 主要步骤有哪些? 一元 基本思路: 加减消元: 二元 主要步骤:
变形
加减 求解 写解 同一个未知数的系 数相同或互为相反数 消去一个元 分别求出两个未知数的值 写出方程组的解
①左边 + ② 左边 =
互为相反 数……
① ②
分析: (3x + 5y)+(2x - 5y)=21 + (-11)
① 右边 + ②右边
3x+5y +2x - 5y=10 5x =10 x=2
联系上面的解法,想一想怎样解方程组 4x+5y=3 ①
2x+5y=-1 ②
3x 5 y 21 2 x 5 y 11
①
②
分析:
观察方程组中的两个方程,未知数x的 系数相等,都是2。把两个方程两边分别 相减,就可以消去未知数x,同样得到一 个一元一次方程。
2x-5y=7
①
2x+3y=-1 ②
解:将②-①得: 8y=-8 y=-1 将y =-1代入①,得: 2x-5×(-1)=7 解得:x=1
所以原方程组的解是
x= 1
变形 加减
求解 写解
同一个未知数的系 数相同或互为相反数 消去一个元 分别求出两个未知数的值 写出方程组的解
拓展延伸
1.用加减消元法解方程组:来自x 1 y 1 ① 3 2 x 1 y2 ② 2 4
由③-④得: y= -1
将y= -1代入② , 7 解得: x
解:由①×6,得 2x+3y=4 ③ 由②×4,得
2x - y=8 ④
2
所以原方程组 7 x 的解是 2 y 1
反馈矫正 激励评价
1、用加减法解下列方程组 5x+2y=25 3x+4y=15
①
② ① ②
2x+3y=6
3x-2y=-2
1 2、若单项式 2
x
m n
y与
﹣3
xy
2 2 nm 是同类项,求m、n的值。
小结:学习了本节课你有哪些收获?
加减消元法:两个二元一次方程中同一未知数 的系数相反或相等时,将两个方程的两边分别 相加或相减,就能消去这个未知数,得到一个 一元一次方程,这种方法叫做加减消元法, 加减消元法解方程组的主要步骤:
① + ②
① ②
4x 5 y 3 2 x 5 y 1
① - ②
① ②
感悟规律 揭示本质
两个二元一次方程中同一未知数的 系数相反或相等时,将两个方程的两边 分别相加或相减,就能消去这个未知数, 得到一个一元一次方程,这种方法叫做 加减消元法,简称加减法.
解方程组
2x-5y=7 2x+3y=-1
8.2 二元一次方程组的解法 加减消元法
1、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
一元
2、用代入法解方程组的主要步骤是什么?
1.变
2.代 3.解 用含有一个未知数的代数式 表示另一个未知数
消去一个元
分别求出两个未知数的值 写出方程组的解
4.写
解下面的二元一次方程组
3x 5 y 21 2 x 5 y 11
y=-1
运用新知 拓展创新
3x-2y= -1 6x+7y=9 ① ②
分析:1、要想用加减法解二元一次方程组 必须具备什么条件? 2、此方程组能否直接用加减法消 元?
用加减法解方程组:
2 x 3 y 12 ① ② 3 x 4 y 17
解: ①×3得 6x+9y=36 ③ ②×2得 6x+8y=34 ④ ③-④得: y=2
① ②
标准的 代入消 元法
代入①,消去 x 了!
5 y 11 x 2
还有别的方法吗?
3x 5 y 21 2 x 5 y 11
①
②
认真观察此方程组中各个未知数 的系数有什么特点,并分组讨论看 还有没有其它的解法.并尝试一下能 否求出它的解
5y 5 y和
3x 5y 21 2 x 5 y -11
用加减法先 消去未知数y 该如何解? 解得的结果 与左面的解 相同吗?
将y =2代入①,
解得: x= 3
x 3 所以原方程组的解是 y 2
加减消元法解方程组基本思路是什么? 主要步骤有哪些? 一元 基本思路: 加减消元: 二元 主要步骤:
变形
加减 求解 写解 同一个未知数的系 数相同或互为相反数 消去一个元 分别求出两个未知数的值 写出方程组的解
①左边 + ② 左边 =
互为相反 数……
① ②
分析: (3x + 5y)+(2x - 5y)=21 + (-11)
① 右边 + ②右边
3x+5y +2x - 5y=10 5x =10 x=2
联系上面的解法,想一想怎样解方程组 4x+5y=3 ①
2x+5y=-1 ②
3x 5 y 21 2 x 5 y 11
①
②
分析:
观察方程组中的两个方程,未知数x的 系数相等,都是2。把两个方程两边分别 相减,就可以消去未知数x,同样得到一 个一元一次方程。
2x-5y=7
①
2x+3y=-1 ②
解:将②-①得: 8y=-8 y=-1 将y =-1代入①,得: 2x-5×(-1)=7 解得:x=1
所以原方程组的解是
x= 1
变形 加减
求解 写解
同一个未知数的系 数相同或互为相反数 消去一个元 分别求出两个未知数的值 写出方程组的解
拓展延伸
1.用加减消元法解方程组:来自x 1 y 1 ① 3 2 x 1 y2 ② 2 4
由③-④得: y= -1
将y= -1代入② , 7 解得: x
解:由①×6,得 2x+3y=4 ③ 由②×4,得
2x - y=8 ④
2
所以原方程组 7 x 的解是 2 y 1
反馈矫正 激励评价
1、用加减法解下列方程组 5x+2y=25 3x+4y=15
①
② ① ②
2x+3y=6
3x-2y=-2
1 2、若单项式 2
x
m n
y与
﹣3
xy
2 2 nm 是同类项,求m、n的值。
小结:学习了本节课你有哪些收获?
加减消元法:两个二元一次方程中同一未知数 的系数相反或相等时,将两个方程的两边分别 相加或相减,就能消去这个未知数,得到一个 一元一次方程,这种方法叫做加减消元法, 加减消元法解方程组的主要步骤:
① + ②
① ②
4x 5 y 3 2 x 5 y 1
① - ②
① ②
感悟规律 揭示本质
两个二元一次方程中同一未知数的 系数相反或相等时,将两个方程的两边 分别相加或相减,就能消去这个未知数, 得到一个一元一次方程,这种方法叫做 加减消元法,简称加减法.
解方程组
2x-5y=7 2x+3y=-1
8.2 二元一次方程组的解法 加减消元法
1、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
一元
2、用代入法解方程组的主要步骤是什么?
1.变
2.代 3.解 用含有一个未知数的代数式 表示另一个未知数
消去一个元
分别求出两个未知数的值 写出方程组的解
4.写
解下面的二元一次方程组
3x 5 y 21 2 x 5 y 11
y=-1
运用新知 拓展创新
3x-2y= -1 6x+7y=9 ① ②
分析:1、要想用加减法解二元一次方程组 必须具备什么条件? 2、此方程组能否直接用加减法消 元?
用加减法解方程组:
2 x 3 y 12 ① ② 3 x 4 y 17
解: ①×3得 6x+9y=36 ③ ②×2得 6x+8y=34 ④ ③-④得: y=2