天津市中考数学试题及答案

合集下载

2022年天津市中考数学试卷(含答案)

2022年天津市中考数学试卷(含答案)

机密★启用前2022年天津市初中学业水平考试试卷数 学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。

第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。

试卷满分120分。

考试时间100分钟。

答卷前,请务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。

答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。

考试结束后,将本试卷和“答题卡”一并交回。

祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。

2.本卷共12题,共36分。

一、选择题(本大题共12小题,每小题3分,共36分. 在每小题给出的四个选项中,只有一项是符合题目要求的) (1)计算32−+−()()的结果等于(A )5− (B )1−(C )5(D )1(2)tan 45°的值等于(A )2 (B )1(C )2(D )3(3)将290000用科学记数法表示应为(A )60.2910× (B )52.910×(C )42910×(D )329010×(4)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是(5)右图是一个由5个相同的正方体组成的立体图形,它的主视图是(6(A )3和4之间 (B )4和5之间 (C )5和6之间 (D )6和7之间(7)计算1122a a a ++++的结果是 (A )1 (B )22a + (C )2a +(D )2aa + (B )(A ) (C )(D )第(5)题(A ) (B ) (C ) (D )(8)若点12A x ,(),21B x −,(),34C x ,()都在反比例函数8y x=的图象上,则1x ,2x ,3x 的大小关系是(A )123x x x << (B )231x x x << (C )132x x x <<(D )213x x x <<(9)方程2430x x ++=的两个根为(A )11x =,23x = (B )11x =−,23x = (C )11x =,23x =−(D )11x =−,23x =−(10)如图,OAB △的顶点O 00,,()顶点A B ,分别在第一、四象限,且AB x ⊥轴,若6AB =,5OA OB ==,则点A 的坐标是 (A )54,() (B )34,()(C )53,() (D )43,() (11)如图,在ABC △中,AB AC =,若M 是BC 边上任意一点,将ABM △绕点A 逆时针旋转得到ACN △,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是 (A )AB AN = (B )//AB NC(C )AMN ACN ∠=∠(D )MN AC ⊥(12)已知抛物线2y ax bx c a b c =++,,(是常数,0a c <<)经过点10,(),有下列结论:① 20a b +<;② 当1x >时,y 随x 的增大而增大;③ 关于x 的方程20ax bx b c +++=()有两个不相等的实数根. 其中,正确结论的个数是 (A )0 (B )1 (C )2(D )3第(11)题ABC NM 第(10)题第(18)题机密★启用前2022年天津市初中学业水平考试试卷数 学第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔)。

天津市中考数学试卷(Word版含答案)

天津市中考数学试卷(Word版含答案)

2021年天津市中考数学试卷一、选择题〔本大题共12小题,每题3分,共36分。

在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕。

1.计算〔﹣3〕+5的结果等于〔〕。

A.2 B.﹣2 C.8 D.﹣82.cos60°的值等于〔〕。

A. B.1 C. D.3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是〔〕。

A. B.C.D.4.据【天津日报】报道,天津市社会保障制度更加成熟完善,截止2021年4 月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为〔〕。

A.0.1263×108 B.1.263×107 C.12.63×106 D.126.3×1055.如图是一个由4个相同的正方体组成的立体图形,它的主视图是〔〕。

A. B.C.D.6.估计的值在〔〕。

A.4和5之间B.5和6之间 C.6和7之间D.7和8之间7.计算的结果为〔〕。

A.1 B.a C.a+1 D.8.方程组的解是〔〕A. B. C. D.9.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.以下结论一定正确的选项是〔〕。

A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.假设点A〔﹣1,y1〕,B〔1,y2〕,C〔3,y3〕在反比例函数的图象上,那么y1,y2,y3的大小关系是〔〕。

A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y311.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,那么以下线段的长度等于BP+EP最小值的是〔〕。

A.BC B.CE C.AD D.AC12.抛物线y=x2﹣4x+3与x轴相交于点A,B〔点A在点B左侧〕,顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,那么平移后的抛物线解析式为〔〕。

天津市2021年中考数学真题(解析版)

天津市2021年中考数学真题(解析版)
A. B. C. D.
【答案】C
【解析】
【分析】根据平行四边形性质以及点的平移性质计算即可.
【详解】解:∵四边形ABCD是平行四边形,
点B的坐标为(-2,-2),点C的坐标为(2,-2),
∴点B到点C为水平向右移动4个单位长度,
∴A到பைடு நூலகம்也应向右移动4个单位长度,
∵点A的坐标为(0,1),
则点D的坐标为(4,1),
∴abc>0,
∵ ,
∴△= = >0,
∴ 有两个不等的实数根;
∵b=a+2,a>2,c=1,
∴a+b+c=a+a+2+1=2a+3,
∵a>2,
∴2a>4,
∴2a+3>4+3>7,
故选D.
【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.
【答案】D
【解析】
【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可
【详解】∵抛物线 ( 是常数, )经过点 ,当 时,与其对应的函数值 .
∴c=1>0,a-b+c= -1 4a-2b+c>1,
∴a-b= -2 2a-b>0,
∴2a-a-2>0,
∴a>2>0,
∴b=a+2>0,
二、填空题(本大题共6小题,每小题3分,共18分)
13.计算 的结果等于_____.
【答案】
【解析】
【分析】根据合并同类项的性质计算,即可得到答案.
【详解】
故答案为: .
【点睛】本题考查了整式加减的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解.

2021年天津市中考中考数学试卷(附答案详解)

2021年天津市中考中考数学试卷(附答案详解)

2021年天津市中考中考数学试卷(附答案详解)1.计算(-5)×3的结果等于多少?A。

-2B。

2C。

-15D。

152.计算tan30°的值等于多少?A。

√3/2B。

√2/2C。

1D。

23.据2021年5月12日《XXX》报道,第七次全国人口普查数据公布,普查结果显示,全国人口共万人。

将用科学记数法表示应为多少?A。

0.×10^6B。

1.×10^5C。

14.1178×10^4D。

141.178×10^34.在一些美术字中,有的汉字是轴对称图形。

下面4个汉字中,可以看作是轴对称图形的是哪个?A.B.C.D.5.如图是一个由6个相同的正方体组成的立体图形,它的主视图是哪个?A.B.C.D.6.估算√17的值在哪两个整数之间?A。

2和3之间B。

3和4之间C。

4和5之间D。

5和6之间7.方程组{x+y=2.3x+y=4}的解是哪个?A.x=1.y=1}B.x=2.y=-2}C.x=3.y=-3}D.x=4.y=2}8.如图,▱ABCD的顶点A,C的坐标分别是(0,1),(-2,-2),(2,-2),则顶点D的坐标是哪个?A。

(-4,1)B。

(4,-2)C。

(4,1)D。

(2,1)9.计算(a-b)/(a-b)的结果是多少?A。

3B。

3a+3bC。

1D。

5/6a10.若点A(-5,y1),B(1,y2),C(5,y3)都在反比例函数y=-1/x的图象上,则y1,y2,y3的大小关系是哪个?A。

y1<y2<y3B。

y2<y3<y1C。

y1<y3<y2D。

y3<y1<y211.如图,在△ABC中,∠BAC=120°,将△ABC绕点C 逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD。

当点A,D,E在一条直线上时,∠BAC的度数为多少?12.如图,正方体ABCD-EFGH中,面ABCD和面EFGH 是底面,点M,N分别在棱AE和棱CG上,且AM=CN。

2020年天津市中考数学试卷(解析版)

2020年天津市中考数学试卷(解析版)

2020年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.cos60°的值等于()A.B.1 C.D.3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.计算的结果为()A.1 B.a C.a+1 D.8.方程组的解是()A.B.C.D.9.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.计算x7÷x4的结果等于.14.计算的结果等于.15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是(写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上. (1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。

2022年天津市中考数学真题(解析版)

2022年天津市中考数学真题(解析版)

2022年天津市中考数学真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.tan 45︒的值等于( )A .2B .1CD 2.将290000用科学记数法表示应为( )A .60.2910⨯B .52.910⨯C .42910⨯D .329010⨯3.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .4.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .5 )A .3和4之间B .4和5之间C .5和6之间D .6和7之间6.计算1122a a a ++++的结果是( )A .1B .22a +C .2a +D .2aa +7.若点()()()123,2,,1,,4A x B x C x -都在反比例函数8y x =的图像上,则123,,x x x 的大小关系是( )A .123x x x <<B .231x x x <<C .132x x x <<D .213x x x <<8.方程2430x x ++=的两个根为( )A .121,3x x ==B .121,3x x =-=C .121,3x x ==-D .121,3x x =-=-9.如图,△OAB 的顶点O (0,0),顶点A ,B 分别在第一、四象限,且AB ⊥x 轴,若AB =6,OA =OB =5,则点A 的坐标是( )A .(5,4)B .(3,4)C .(5,3)D .(4,3)10.如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是( )A .AB AN =B .AB NC ∥ C .AMN ACN ∠=∠D .MN AC ⊥11.已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a c <<)经过点(1,0),有下列结论:①20a b +<;②当1x >时,y 随x 的增大而增大;③关于x 的方程2()0ax bx b c +++=有两个不相等的实数根.其中,正确结论的个数是( )A .0B .1C .2D .3二、填空题12.计算7m m ⋅的结果等于___________.13.计算1)的结果等于___________.14.不透明袋子中装有9个球,其中有7个绿球、2个白球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是___________.15.若一次函数y x b =+(b 是常数)的图象经过第一、二、三象限,则b 的值可以是___________(写出一个即可).16.如图,已知菱形ABCD 的边长为2,60DAB ∠=︒,E 为AB 的中点,F 为CE 的中点,AF 与DE 相交于点G ,则GF 的长等于___________.17.如图,在每个小正方形的边长为1的网格中,圆上的点A ,B ,C 及DPF ∠的一边上的点E ,F 均在格点上.(Ⅰ)线段EF 的长等于___________;(Ⅱ)若点M ,N 分别在射线,PD PF 上,满足90MBN ∠=︒且BM BN =.请用无刻度的直尺,在如图所示的网格中,画出点M ,N ,并简要说明点M ,N 的位置是如何找到的(不要求证明)___________.三、解答题18.解不等式组211 3.x x x ≥-⎧⎨+≤⎩,①②请结合题意填空,完成本题的解答.(1)解不等式①,得___________;(2)解不等式②,得___________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为___________.19.在读书节活动中,某校为了解学生参加活动的情况,随机调查了部分学生每人参加活动的项数.根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为___________,图①中m 的值为___________;(2)求统计的这组项数数据的平均数、众数和中位数.20.已知AB 为O 的直径,6AB =,C 为O 上一点,连接,CA CB .(1)如图①,若C 为 AB 的中点,求CAB ∠的大小和AC 的长;(2)如图②,若2,AC OD =为O 的半径,且OD CB ⊥,垂足为E ,过点D 作O 的切线,与AC 的延长线相交于点F ,求FD 的长.21.如图,某座山AB 的项部有一座通讯塔BC ,且点A ,B ,C 在同一条直线上,从地面P 处测得塔顶C 的仰角为42︒,测得塔底B 的仰角为35︒.已知通讯塔BC 的高度为32m ,求这座山AB 的高度(结果取整数).参考数据:tan 350.70tan 420.90︒≈︒≈,.22.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km ,超市离学生公寓2km ,小琪从学生公寓出发,匀速步行了12min 到阅览室;在阅览室停留70min 后,匀速步行了10min 到超市;在超市停留20min 后,匀速骑行了8min 返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离km y 与离开学生公寓的时间min x 之间的对应关系.请根据相关信息,解答下列问题:(1)填表:离开学生公寓的时间/min585087112离学生公寓的距离/km 0.5 1.6(2)填空:①阅览室到超市的距离为___________km ;②小琪从超市返回学生公寓的速度为___________km /min ;③当小琪离学生公寓的距离为1km 时,他离开学生公寓的时间为___________min .(3)当092x ≤≤时,请直接写出y 关于x 的函数解析式.23.将一个矩形纸片OABC 放置在平面直角坐标系中,点(0,0)O ,点(3,0)A ,点(0,6)C ,点P 在边OC 上(点P 不与点O ,C 重合),折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且30OPQ ∠=︒,点O 的对应点O '落在第一象限.设OQ t =.(1)如图①,当1t =时,求O QA ∠'的大小和点O '的坐标;(2)如图②,若折叠后重合部分为四边形,,O Q O P ''分别与边AB 相交于点E ,F ,试用含有t 的式子表示O E '的长,并直接写出t 的取值范围;(3)若折叠后重合部分的面积为t 的值可以是___________(请直接写出两个不同的值即可).24.已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a >)的顶点为P ,与x 轴相交于点(1,0)A -和点B .(1)若2,3b c =-=-,①求点P 的坐标;②直线x m =(m 是常数,13m <<)与抛物线相交于点M ,与BP 相交于点G ,当MG 取得最大值时,求点M ,G 的坐标;(2)若32b c =,直线2x =与抛物线相交于点N ,E 是x 轴的正半轴上的动点,F 是y 轴的负半轴上的动点,当PF FE EN ++的最小值为5时,求点E ,F 的坐标.参考答案:1.B【分析】根据三角函数定义:正切=对边与邻边之比,进行求解.【详解】作一个直角三角形,∠C =90°,∠A =45°,如图:∴∠B =90°-45°=45°,∴△ABC 是等腰三角形,AC =BC ,∴根据正切定义,tan 1BC A AC∠==,∵∠A =45°,∴tan451︒=,故选 B .【点睛】本题考查了三角函数,熟练理解三角函数的定义是解题关键.2.B【分析】利用科学记数法的表示方式表示即可.【详解】解:5290000=2.910⨯.故选:B【点睛】此题考查科学记数法表示绝对值大于1的数.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 与小数点移动的位数相同.解题关键要正确确定a 的值以及n 的值.3.D【分析】根据轴对称图形的概念对各项分析判断即可得解.【详解】A .不是轴对称图形,故本选项错误;B .不是轴对称图形,故本选项错误;C .不是轴对称图形,故本选项错误;D .是轴对称图形,故本选项正确.故选:D .【点睛】本题考查轴对称图形,理解轴对称图形的概念是解答的关键.4.A【分析】画出从正面看到的图形即可得到它的主视图.【详解】解:几何体的主视图为:故选:A【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.5.C【分析】根据225296<<得到56<<,问题得解.【详解】解:225296<<,56∴<<,即在5和6之间.故选:C .的整数部分是解本题的关键.6.A【分析】利用同分母分式的加法法则计算,约分得到结果即可.【详解】解:1121222a a a a a +++==+++.故选:A .【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则.7.B【分析】将三点坐标分别代入函数解析式求出213x x x 、、,然后进行比较即可.【详解】将三点坐标分别代入函数解析式8y x=,得:182x =,解得1=4x;28-1x =,解得2=-8x ;384x =,解得3=2x ;∵-8<2<4,∴231x x x <<,故选: B .【点睛】本题考查反比例函数,关键在于能熟练通过已知函数值求自变量.8.D【分析】将243x x ++进行因式分解,243=(1)(3)x x x x ++++,计算出答案.【详解】∵243=(1)(3)x x x x ++++∴(1)(3)=0x x ++∴12=1=3x x --,故选:D .【点睛】本题考查解一元二次方程,解题的关键是熟练掌握因式分解法解一元二次方程.9.D【分析】利用HL 证明△ACO ≌△BCO ,利用勾股定理得到OC =4,即可求解.【详解】解:∵AB ⊥x 轴,∴∠ACO =∠BCO =90°,∵OA =OB ,OC =OC ,∴△ACO ≌△BCO (HL ),∴AC =BC =12AB =3,∵OA =5,∴OC=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.10.C【分析】根据旋转的性质,对每个选项逐一判断即可.【详解】解:∵将△ABM绕点A逆时针旋转得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故选项A不符合题意;∵△ABM≌△ACN,∴∠ACN=∠B,而∠CAB不一定等于∠B,∴∠ACN不一定等于∠CAB,∴AB与CN不一定平行,故选项B不符合题意;∵△ABM≌△ACN,∴∠BAM=∠CAN,∠ACN=∠B,∴∠BAC=∠MAN,∵AM=AN,AB=AC,∴△ABC和△AMN都是等腰三角形,且顶角相等,∴∠B=∠AMN,∴∠AMN=∠ACN,故选项C符合题意;∵AM=AN,而AC不一定平分∠MAN,∴AC与MN不一定垂直,故选项D不符合题意;故选:C.【点睛】本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.11.C【详解】由题意可知:0a b c ++=,()b a c =-+,b c a +=-,0a c << ,2a c a ∴+>,即()2b a c a =-+<-,得出20b a +<,故①正确;20b a +< ,∴对称轴012b x a=->, 0a >,01x x ∴<<时,y 随x 的增大而减小,0x x >时,y 随x 的增大而增大,故②不正确;22224()4()40b a b c b a a b a -+=-⨯-=+> ,∴关于x 的方程2()0ax bx b c +++=有两个不相等的实数根,故③正确.故选:C .【点睛】本题考查二次函数的图象与性质及一元二次方程根的判别式,解题的关键是熟练掌握二次函数的性质并能应用求解.12.8m 【分析】根据同底数幂的乘法即可求得答案.【详解】解:7178m m m m +⋅==,故答案为:8m .【点睛】本题考查了同底数幂的乘法,熟练掌握计算方法是解题的关键.13.18【分析】根据平方差公式即可求解.【详解】解:221)119118=-=-=,故答案为:18.【点睛】本题考查了平方差公式的应用,熟练掌握平方差公式的展开式是解题的关键.14.79【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有9个小球,其中绿球有7个,∴摸出一个球是绿球的概率是79,故答案为:79.【点睛】此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.15.1(答案不唯一,满足0b >即可)【分析】根据一次函数经过第一、二、三象限,可得0b >,进而即可求解.【详解】解:∵一次函数y x b =+(b 是常数)的图象经过第一、二、三象限,∴0b >故答案为:1答案不唯一,满足0b >即可)【点睛】本题考查了已知一次函数经过的象限求参数的值,掌握一次函数图象的性质是解题的关键.16【分析】连接FB ,作CG AB ⊥交AB 的延长线于点G .由菱形的性质得出60CBG DAB ∠=∠=︒,2AD AB BC CD ====,解直角BGC ∆求出CG =1BG =,推出FB 为ECG ∆的中位线,进而求出FB ,利用勾股定理求出AF ,再证明AEG ABF ∆∆ ,得出12AG GF AF ==.【详解】解:如图,连接FB ,作CG AB ⊥交AB 的延长线于点G .∵四边形ABCD 是边长为2的菱形,∴//AD BC ,2AD AB BC CD ====,∵60DAB ∠=︒,∴60CBG DAB ∠=∠=︒,∴sin 2CG BC CBG =⋅∠=,1cos 212BG BC CBG =⋅∠=⨯=,∵E 为AB 的中点,∴1AE EB ==,∴BE BG =,即点B 为线段EG 的中点,又∵F 为CE 的中点,∴FB 为ECG ∆的中位线,∴//FB CG,12FB CG ==,∴FB AB ⊥,即ABF ∆是直角三角形,∴AF ===在AED ∆和BGC ∆中,AD BC DAE CBG AE BG =⎧⎪∠=∠⎨⎪=⎩,‘∴AED BGC ∆≅∆,∴90AED BGC ∠=∠=︒,∴90AEG ABF ∠=∠=︒,又∵GAE FAB ∠=∠,∴AEG ABF ∆∆ ,∴12AG AE AF AB ==,∴12AG AF ==∴GF AF AG =-=..【点睛】本题考查菱形的性质,平行线的性质,三角函数解直角三角形,三角形中位线的性质,相似三角形的判定与性质等,综合性较强,添加辅助线构造直角BGC ∆是解题的关键.17.见解析【分析】(Ⅰ)根据勾股定理,从图中找出EF 所在直角三角形的直角边的长进行计算;(Ⅱ)由图可找到点Q,EQ BQ EF BF ====,即四边形EFBQ 是正方形,因为90BM BN MBN =∠=︒,,所以BQM BFN ∆≅∆,点M 在EQ 上,BM 、BN 与圆的交点为直径端点,所以EQ 与PD 交点为M ,通过BM 与圆的交点G 和圆心O 连线与圆相交于H ,所以H 在BN 上,则延长BH 与PF 相交点即为N .【详解】解:(Ⅰ)从图中可知:点E 、F 水平方向距离为3,竖直方向距离为1,所以EF ==,;(Ⅱ)连接AC ,与竖网格线相交于点O ,O 即为圆心;取格点Q (E 点向右1格,向上3格),连接EQ 与射线PD 相交于点M ;连接MB 与O 相交于点G ;连接GO 并延长,与O 相交于点H ;连接BH 并延长,与射线PF 相交于点N ,则点M ,N 即为所求,理由如下:连接,BQ BF由勾股定理算出BQ QE EF BF =====,由题意得90MQB QEF BFE QBF ∠=∠=∠=∠=︒,∴四边形BQEF 为正方形,在Rt BQM 和Rt BFN 中,BQ BF =,1tan tan 3QBA FBC ∠=∠= ,QBA FBC ∴∠=∠,AOG COH ∠=∠ ,AG CH ∴=,ABG HBC ∴∠=∠,MBQ NBF∴∠=∠()Rt BQM Rt BFN ASA ∴ ≌BM BN ∴=,90QBM MBF MBF FBN ∠+∠=∠+∠=︒90MBN ∴∠=,从而确定了点,M N 的位置.【点睛】本题考查作图,锐角三角函数、圆周角定理,三角形全等的判定及性质,解题的关键是掌握圆周角的定理.18.(1)1x ≥-(2)2x ≤(3)见解析(4)12x -≤≤【分析】(1)通过移项、合并同类项直接求出结果;(2)通过移项直接求出结果;(3)根据在数轴上表示解集的方法求解即可;(4)根据数轴得出原不等式组的解集.【详解】(1)解:移项得:21x x -≥-解得:1x ≥-故答案为:1x ≥-;(2)移项得:31x ≤-,解得:2x ≤,故答案为:2x ≤;(3)把不等式①和②的解集在数轴上表示出来:(4)所以原不等式组的解集为:12x -≤≤,故答案为:12x -≤≤.【点睛】本题考查解一元一次不等式组,熟练掌握解一元一次不等式组的一般步骤是解题的关键.19.(1)40,10(2)平均数是2,众数是2,中位数是2【分析】(1)根据参加2项的人数和所占百分比即可求得总人数,再利用频数总数×100%=百分比,即可求解.(2)根据平均数、众数及中位数的含义即可求解.【详解】(1)解:由图可得,参加2项的人数有18人,占总体的45%,参加4项的有4人,则184045%=(人),4100%10%40⨯=,故答案为:40;10.(2)平均数:1132183544240⨯+⨯+⨯+⨯=,∵在这组数据中,2出现了18次,出现的次数最多,∴这组数据的众数是2,∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是2,有2222+=,∴这组数据的中位数是2.则平均数是2,众数是2,中位数是2.【点睛】本题考查了条形统计图和扇形统计图,平均数、众数和中位数的求法,理解两个统计图中的数量关系是解题的关键.20.(1)45CAB ∠=︒,AC =(2)FD =【分析】(1)由圆周角定理得90ACB ∠=︒,由C 为 AB 的中点,得AC BC =,从而AC BC =,即可求得CAB ∠的度数,通过勾股定理即可求得AC 的长度;(2)证明四边形ECFD 为矩形,FD =CE =12CB ,由勾股定理求得BC 的长,即可得出答案.【详解】(1)∵AB 为O 的直径,∴90ACB ∠=︒,由C 为 AB 的中点,得AC BC =,∴AC BC =,得ABC CAB ∠=∠,在Rt ABC 中,90ABC CAB ∠+∠=︒,∴45CAB ∠=︒;根据勾股定理,有222AC BC AB +=,又6AB =,得2236AC =,∴AC =(2)∵FD 是O 的切线,∴OD FD ⊥,即90ODF ∠=︒,∵OD CB ⊥,垂足为E ,∴190,2CED CE CB ∠=︒=,同(1)可得90ACB ∠=︒,有90FCE ∠=︒,∴90FCE CED ODF ∠=∠=∠=︒,∴四边形ECFD 为矩形,∴FD CE =,于是12FD CB =,在Rt ABC 中,由6,2AB AC ==,得CB ==∴FD =.【点睛】本题是圆的综合题,考查了圆周角定理,切线的性质,等腰直角三角形的性质,垂径定理,勾股定理和矩形的判定和性质等,解题的关键是利用数形结合的思想解答此题.21.这座山AB 的高度约为112m【分析】在Rt PAB 中,·tan AB PA APB =∠,在Rt PAC △中,·tan AC PA APC =∠,利用AC AB BC =+,即可列出等式求解.【详解】解:如图,根据题意,324235BC APC APB ︒∠︒=∠==,,.在Rt PAC △中,tan AC APC PA ∠=,∴tan AC PA APC=∠.在Rt PAB 中,tan AB APB PA ∠=,∴tan AB PA APB=∠.∵AC AB BC =+,∴tan tan AB BC AB APC APB+=∠∠.∴()tan 32tan 35320.70112m tan tan tan 42tan 350.900.70BC APB AB APC APB ⋅∠⨯︒⨯==≈=∠-∠︒-︒-.答:这座山AB 的高度约为112m .【点睛】本题考查三角函数测高,解题的关键在运用三角函数的定义表示出未知边,列出方程.22.(1)0.8,1.2,2(2)①0.8;②0.25;③10或116(3)当012x ≤≤时,0.1y x =;当1282x <≤时, 1.2y =;当8292x <≤时,0.08 5.36y x =-【分析】(1)根据题意和函数图象,可以将表格补充完整;(2)根据函数图象中的数据,可以将各个小题中的空补充完整;(3)根据(2)中的结果和函数图象中的数据,可以写出当092x ≤≤时,y 关于x 的函数解析式.【详解】(1)由图象可得,在前12分钟的速度为:1.2÷12=0.1km/min,故当x =8时,离学生公寓的距离为8×0.1=0.8;在1282x ≤≤时,离学生公寓的距离不变,都是1.2km故当x =50时,距离不变,都是1.2km ;在92112x ≤≤时,离学生公寓的距离不变,都是2km ,所以,当x =112时,离学生公寓的距离为2km故填表为:离开学生公寓的时间/min585087112离学生公寓的距离/km 0.50.8 1.2 1.62(2)①阅览室到超市的距离为2-1.2=0.8km ;②小琪从超市返回学生公寓的速度为:2÷(120-112)=0.25km /min ;③分两种情形:当小琪离开学生公寓,与学生公寓的距离为1km 时,他离开学生公寓的时间为:1÷0.1=10min ;当小琪返回与学生公寓的距离为1km 时,他离开学生公寓的时间为:112+(2-1)÷{2÷(120-112)}=112+4=116min ;故答案为:①0.8;②0.25;③10或116(3)当012x ≤≤时,设直线解析式为y =kx ,把(12,1.2)代入得,12k =1.2,解得,k =0.1∴0.1y x =;当1282x <≤时, 1.2y =;当8292x <≤时,设直线解析式为y mx n =+,把(82,1.2),(92,2)代入得,82 1.2922m n m n +=⎧⎨+=⎩解得,0.085.36m n =⎧⎨=-⎩ ∴0.08 5.36y x =-,由上可得,当092x ≤≤时,y 关于x 的函数解析式为()0.10121.2(1282)0.08 5.36(8292)y x x y x y x x ⎧=≤≤⎪=<≤⎨⎪=-<≤⎩.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)60O QA ∠='︒,点O '的坐标为32⎛ ⎝(2)36O E t '=-,其中t 的取值范围是23t <<(3)3,103.(答案不唯一,满足3t ≤<【分析】(1)先根据折叠的性质得60O QA ∠='︒,即可得出30∠=︒'QO H ,作O H OA '⊥,然后求出O H '和OH ,可得答案;(2)根据题意先表示3=-QA t ,再根据12QA QE =,表示QE ,然后根据O E O Q QE =''-表示即可,再求出取值范围;(3)求出t =3时的重合部分的面积,可得从t =3之后重合部分的面积始终是再求出P 与C 重合时t 的值可得t 的取值范围,问题得解.【详解】(1)在Rt POQ △中,由30OPQ ∠=︒,得9060OQP OPQ ∠=-∠=︒︒.根据折叠,知PO Q POQ '△≌△,∴O Q OQ '=,60︒∠=∠='O QP OQP .∵180O QA O QP OQP ∠=︒--∠'∠',∴60O QA ∠='︒.如图,过点O′作O H OA '⊥,垂足为H ,则90O HQ ∠='︒.∴在Rt O HQ ' 中,得9030QO H O QA ∠=︒-'∠='︒.由1t =,得1OQ =,则1O Q '=.由1122'==QH O Q ,222'+='O H QH O Q得32=+=OH OQ QH ,'=O H∴点O '的坐标为32⎛ ⎝.(2)∵点(3,0)A ,∴3OA =.又OQ t =,∴3QA OA OQ t =-=-.同(1)知,'=O Q t ,60O QA ∠='︒.∵四边形OABC 是矩形,∴90OAB ∠=︒.在Rt EAQ △中,9030QEA EQA ∠=-∠=︒︒,得12QA QE =.∴22(3)62QE QA t t ==-=-.又O E O Q QE =''-,∴36O E t '=-.如图,当点O ′与AB 重合时,OQ OQ t '==,60A Q O '∠=︒,则30AO Q ∠='︒,∴12AQ t =,∴132t t +=,解得t =2,∴t 的取值范围是23t <<;(3)3,103.(答案不唯一,满足3t ≤<当点Q 与点A 重合时,3AO '=,30DA O '∠=︒,∴cos 30A O A D '==︒,则132A D P S =⨯⨯=V∴t =3时,重合部分的面积是从t =3之后重合部分的面积始终是当P 与C 重合时,OP =6,∠OPQ =30°,此时t =OP ·tan30°=由于P 不能与C 重合,故t <,所以3t ≤<【点睛】这是一道关于动点的几何综合问题,考查了折叠的性质,勾股定理,含30°直角三角形的性质,矩形的性质,解直角三角形等.24.(1)①(1,4)-;②点M 的坐标为(2,3)-,点G 的坐标为(2,2)-;(2)点5,07E ⎛⎫ ⎪⎝⎭和点200,21F ⎛⎫- ⎪⎝⎭;【分析】(1)①将b 、c 的值代入解析式,再将A 点坐标代入解析式即可求出a 的值,再用配方法求出顶点坐标即可;②先令y =0得到B 点坐标,再求出直线BP 的解析式,设点M的坐标为()2,23m m m --,则点G 的坐标为(,26)m m -,再表示出MG 的长,配方求出最值得到M 、G 的坐标;(2)根据32b c =,解析式经过A 点,可得到解析式:223y ax ax a =--,再表示出P 点坐标,N 点坐标,接着作点P 关于y 轴的对称点P ',作点N 关于x 轴的对称点N ',再把P '和N '的坐标表示出来,由题意可知,当PF FE EN ++取得最小值,此时5PF FE EN P N +=''+=,将字母代入可得:222294925P N P H HN a ''=+'+='=,求出a 的值,即可得到E 、F 的坐标;【详解】(1)①∵抛物线2y ax bx c =++与x 轴相交于点(1,0)A -,∴0a b c -+=.又2,3b c =-=-,得1a =.∴抛物线的解析式为2=23y x x --.∵2223(1)4y x x x =--=--,∴点P 的坐标为(1,4)-.②当0y =时,由2230x x --=,解得1213x x =-=,.∴点B 的坐标为(30),.设经过B ,P 两点的直线的解析式为y kx n =+,有30,4.k n k n +=⎧⎨+=-⎩解得2,6.k n =⎧⎨=-⎩∴直线BP 的解析式为26y x =-.∵直线x m =(m 是常数,13m <<)与抛物线2=23y x x --相交于点M ,与BP 相交于点G ,如图所示:∴点M 的坐标为()2,23m m m --,点G 的坐标为(,26)m m -.∴()222(26)2343(2)1MG m m m m m m =----=-+-=--+.∴当2m =时,MG 有最大值1.此时,点M 的坐标为(2,3)-,点G 的坐标为(2,2)-.(2)由(1)知0a b c -+=,又32b c =,∴2,3b a c a =-=-.(0)a >∴抛物线的解析式为223y ax ax a =--.∵2223(1)4y ax ax a a x a =--=--,∴顶点P 的坐标为(1,4)a -.∵直线2x =与抛物线223y ax ax a =--相交于点N ,∴点N 的坐标为(2,3)a -.作点P 关于y 轴的对称点P ',作点N 关于x 轴的对称点N ',如图所示:得点P '的坐标为(1,4)a --,点N '的坐标为(2,3)a .当满足条件的点E ,F 落在直线P N ''上时,PF FE EN ++取得最小值,此时,5PF FE EN P N +=''+=.延长P P '与直线2x =相交于点H ,则P H N H '⊥'.在Rt P HN ''△中,3,3(4)7P H HN a a a '==--='.∴222294925P N P H HN a ''=+'+='=.解得1244,77a a ==-(舍).∴点P '的坐标为161,7⎛⎫-- ⎪⎝⎭,点N '的坐标为122,7⎛⎫ ⎪⎝⎭.则直线P N ''的解析式为420321y x =-.∴点5,07E ⎛⎫ ⎪⎝⎭和点200,21F ⎛⎫- ⎪⎝⎭.【点睛】本题考查二次函数的几何综合运用,熟练掌握待定系数法求函数解析式、配方法求函数顶点坐标、勾股定理解直角三角形等是解决此类问题的关键.。

2024年天津市中考数学试卷+答案解析

2024年天津市中考数学试卷+答案解析

2024年天津市中考数学试卷一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.计算的结果等于()A. B.0 C.3 D.62.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.估算的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为()A. B. C. D.6.的值等于()A.0B.1C.D.7.计算的结果等于()A.3B.xC.D.8.若点,,都在反比例函数的图象上,则,,的大小关系是()A. B. C. D.9.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳子长y尺,则可以列出的方程组为()A. B. C. D.10.如图,中,,,以点A为圆心,适当长为半径画弧,交AB于点E,交AC于点F;再分别以点E,F为圆心,大于的长为半径画弧,两弧所在圆的半径相等在的内部相交于点P;画射线AP,与BC相交于点D,则的大小为()A. B. C. D.11.如图,中,,将绕点C顺时针旋转得到,点A,B的对应点分别为D,E,延长BA交DE于点F,下列结论一定正确的是()A.B.C.D.12.从地面竖直向上抛出一小球,小球的高度单位:与小球的运动时间单位:之间的关系式是有下列结论:①小球从抛出到落地需要6s;②小球运动中的高度可以是30m;③小球运动2s时的高度小于运动5s时的高度.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题:本题共6小题,每小题3分,共18分。

2020年天津市中考数学试卷(含答案)

2020年天津市中考数学试卷(含答案)

2020年天津市中考数学试卷(含答案)一、选择题1. 计算30+(−20)的结果等于()A.10B.−10C.50D.−502. 2sin45∘的值等于()A.1B.√2C.√3D.23. 据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()A.0.586×108B.5.86×107C.58.6×106D.586×1054. 在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.5. 如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.6. 估计√22的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7. 方程组{2x+y=4,x−y=−1的解是()A.{x=1,y=2 B.{x=−3,y=−2C.{x=2,y=0 D.{x=3,y=−18. 如图,四边形OBCD是正方形,O,D两点的坐标分别是(0, 0),(0, 6),点C在第一象限,则点C的坐标是()A.(6, 3)B.(3, 6)C.(0, 6)D.(6, 6)9. 计算x(x+1)2+1(x+1)2的结果是()A.1x+1B.1(x+1)2C.1D.x+110. 若点A(x1, −5),B(x2, 2),C(x3, 5)都在反比例函数y=10x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x211. 如图,在△ABC中,∠ACB=90∘,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DEB.BC=EFC.∠AEF=∠DD.AB⊥DF12. 已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2, 0),其对称轴是直线x=12.有下列结论:①abc>0;①关于x的方程ax2+bx+c=a有两个不等的实数根;①a<−12.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题13.计算x+7x−5x的结果等于________.14.计算(√7+1)(√7−1)的结果等于________.15.不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是________.16.将直线y=−2x向上平移1个单位长度,平移后直线的解析式为________.17.如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为________.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上,且AB = 53.(1)线段AC的长等于________;(2)以BC为直径的半圆与边AC相交于点D,若P,Q分别为边AC,BC上的动点,当BP+PQ取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P,Q,并简要说明点P,Q的位置是如何找到的(不要求证明)________.三、解答题19.解不等式组{3x≤2x+1,①2x+5≥−1.②请结合题意填空,完成本题的解答.(1)解不等式①,得________;(2)解不等式①,得________;(3)把不等式①和①的解集在数轴上表示出来;(4)原不等式组的解集为________.20.农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm)进行了测量.根据统计的结果,绘制出如图的统计图①和图①.请根据相关信息,解答下列问题:(①)本次抽取的麦苗的株数为________,图①中m的值为________;(①)求统计的这组苗高数据的平均数、众数和中位数.21.在圆O中,弦CD与直径AB相交于点P,∠ABC=63∘.(1)如图①,若∠APC=100∘,求∠BAD和∠CDB的大小;(2)如图①,若CD⊥AB,过点D作圆O的切线,与AB的延长线相交于点E,求∠E的大小.22.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45∘,∠ABC=58∘.根据测得的数据,求AB的长(结果取整数).参考数据:sin58∘≈0.85,cos58∘≈0.53,tan58∘≈1.60.23.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(1)填表:(2)填空:①食堂到图书馆的距离为________km;①小亮从食堂到图书馆的速度为________km/min;①小亮从图书馆返回宿舍的速度为________km/min;①当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为________min.(3)当0≤x≤28时,请直接写出y关于x的函数解析式.24.将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0, 0),点A(2, 0),点B在第一象限,∠OAB=90∘,∠B=30∘,点P在边OB上(点P不与点O,B重合).(①)如图①,当OP=1时,求点P的坐标;(①)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且OQ=OP,点O的对应点为O′,设OP=t.①如图①,若折叠后△O′PQ与△OAB重叠部分为四边形,O′P,O′Q分别与边AB相交于点C,D,试用含有t的式子表示O′D的长,并直接写出t的取值范围;①若折叠后△O′PQ与△OAB重叠部分的面积为S,当1≤t≤3时,求S的取值范围(直接写出结果即可).25.已知点A(1, 0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(①)当a=1,m=−3时,求该抛物线的顶点坐标;(①)若抛物线与x轴的另一个交点为M(m, 0),与y轴的交点为C,过点C作直线1平行于x轴,E是直线1上的动点,F是y轴上的动点,EF=2√2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;①取EF的中点N,当m为何值时,MN的最小值是√22参考答案:一、1-5 ABBCD 6-10 BADAC 11-12 DC二、13.3x 14.6 15.3816.y =−2x +1 17.32 18.√13 三、19.x ≤1x ≥−3(3)不等式①和①的解集在数轴上表示为:−3≤x ≤1 20.25,24(2)平均数是:x ¯=13×2+14×3+15×4+16×10+17×625=15.6,众数是16, 中位数是(16)21.解:(1)① ∠APC 是△PBC 的一个外角, ① ∠C =∠APC −∠ABC =100∘−63∘=37∘. 由圆周角定理得:∠BAD =∠C =37∘,∠ADC =∠ABC =63∘. ① AB 是圆O 的直径, ① ∠ADB =90∘,① ∠CDB =∠ADB −∠ADC =90∘−63∘=27∘.(2)连接OD ,如图,① CD⊥AB,① ∠CPB=90∘,① ∠PCB=90∘−∠ABC=90∘−63∘=27∘.① DE是圆O的切线,① DE⊥OD,① ∠ODE=90∘.① ∠BOD=2∠PCB=54∘,① ∠E=90∘−∠BOD=90∘−54∘=36∘.22.AB的长约为160m.如图,过点A作AD⊥BC,垂足为D,① ∠ACB=45∘,① AD=CD,设AB=x,在Rt△ADB中,AD=AB⋅sin58∘≈0.85x,BD=AB⋅cos58∘≈0.53x,又① BC=221,即CD+BD=221,① 0.85x+0.53x=221,解得,x≈160,23.0.2,0.7,10.3,0.06,0.1,6或62(3)由图象可得,当0≤x≤7时,y=0.1x;当7<x≤23时,y=0.7;当23<x≤28时,设y=kx+b,则{23k+b=0.7, 28k+b=1,解得:{k=0.06,b=−0.68.即当23<x≤28时,y=0.06x−0.68.综上所述,当0≤x≤28时,y关于x的函数解析式为y={0.1x(0≤x≤7), 0.7(7<x<23),0.06x−0.68(23<x≤28).24.(1)如图①中,过点P作PH⊥OA于H.① ∠OAB=90∘,∠B=30∘,① ∠BOA=90∘−30∘=60∘,① ∠OPH=90∘−60∘=30∘,① OP=1,① OH=12OP=12,PH=OP⋅cos30∘=√32,① P(12, √32).(2)①如图①中,由折叠可知,△O′PQ ≅△OPQ , ① OP =O′P ,OQ =O′Q , ① OP =OQ =t , ① OP =OQ =O′P =O′Q , ① 四边形OPO′Q 是菱形, ① QO′ // OB , ① ∠ADQ =∠B =30∘, ① A(2, 0),① OA =2,QA =2−t ,在Rt △AQD 中,DQ =2QA =4−2t , ① O′D =O′Q −QD =3t −4, ① 43<t <(2)①①当点O′落在AB 上时,重叠部分是△PQO′,此时t =23,S =√34×(23)2=√39, 当23<t ≤2时,重叠部分是四边形PQDC ,S =√34t 2−√38(3t −4)2=−7√38t 2+3√3t −2√3,当x =√32×(−7√38)=127时,S 有最大值,最大值=4√34, 当t =1时,S =√34,当t =3时,S =12×12×√32=√38, 综上所述,√38≤S ≤4√37. 25.(1)当a =1,m =−3时,抛物线的解析式为y =x 2+bx −(3) ① 抛物线经过点A(1, 0), ① 0=1+b −3, 解得b =2,① 抛物线的解析式为y =x 2+2x −(3) ① y =x 2+2x −3=(x +1)2−4, ① 抛物线的顶点坐标为(−1, −4).(2)①① 抛物线y =ax 2+bx +m 经过点A(1, 0)和M(m, 0),m <0, ① 0=a +b +m ,0=am 2+bm +m ,即am +b +1=(0) ① a =1,b =−m −(1)① 抛物线的解析式为y =x 2−(m +1)x +m .根据题意得,点C(0, m),点E(m +1, m),过点A 作AH ⊥l 于点H ,由点A(1, 0),得点H(1, m).在Rt △EAH 中,EH =1−(m +1)=−m ,HA =0−m =−m , ① AE =√EH 2+HA 2=−√2m , ① AE =EF =2√2,① −√2m =2√2,解得m =−(2)此时,点E(−1, −2),点C(0, −2),有EC =(1)① 点F 在y 轴上,① 在Rt △EFC 中,CF =√EF 2−EC 2=√7.① 点F 的坐标为(0, −2−√7)或(0, −2+√7).①由N 是EF 的中点,得CN =12EF =√2.根据题意,点N 在以点C 为圆心、√2为半径的圆上, 由点M(m, 0),点C(0, m),得MO =−m ,CO =−m , ① 在Rt △MCO 中,MC =√MO 2+CO 2=−√2m . 当MC ≥√2,即m ≤−1时,满足条件的点N 在线段MC 上. MN 的最小值为MC −NC =−√2m −√2=√22,解得m =−32;当MC <√2,即−1<m <0时,满足条件的点N 落在线段CM 的延长线上,MN 的最小值为NC −MC =√2−(−√2m)=√22, 解得m =−12. ① 当m 的值为−32或−12时,MN 的最小值是√22.。

天津中考数学试卷及答案

天津中考数学试卷及答案

2021年天津市初中毕业生学业考试试卷数学本试卷分为第一卷〔选择题〕、第二卷〔非选择题〕两局部。

第一卷第1页至第3页,第二卷第4页至第8页。

试卷总分值120分。

考试时间100分钟。

答卷前,考生务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡〞上,并在规定位置粘贴考试用条形码。

答题时,务必将答案涂写在“答题卡〞上,答案答在试卷上无效。

考试结束后,将本试卷和“答题卡〞一并交回。

祝各位考生考试顺利!第一卷〔选择题共30分〕考前须知:每题选出答案后,用2B铅笔把“答题卡〞上对应题目的答案标号的信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。

一、选择题:本大题共10小题,每题3分,共30分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕sin30︒的值等于〔A〕12〔B2〔C3〔D〕1〔2〕以下图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为〔A〕〔B〕〔C〕〔D〕〔3〕上海世博会是我国第一次举办的综合类世界博览会.据统计自2021年5月1日开幕至5月31日,累计参观人数约为8 030 000人,将8 030 000用科学记数法表示应为〔A〕480310⨯〔B〕580.310⨯〔C〕68.0310⨯〔D〕70.80310⨯〔4〕在一次射击比赛中,甲、乙两名运发动10次射击的平均成绩都是7环,其中甲的成绩的方差为1.21,乙的成绩的方差为3.98,由此可知〔A〕甲比乙的成绩稳定〔B〕乙比甲的成绩稳定〔C〕甲、乙两人的成绩一样稳定〔D〕无法确定谁的成绩更稳定〔5〕右图是一个由4个相同的正方体组成的立体图形,它的三视图为〔A 〕 〔B 〕〔C 〕 〔D 〕 〔6〕以下命题中正确的选项是〔A 〕对角线相等的四边形是菱形 〔B 〕对角线互相垂直的四边形是菱形 〔C 〕对角线相等的平行四边形是菱形〔D 〕对角线互相垂直的平行四边形是菱形〔7〕如图,⊙O 中,弦AB 、CD 相交于点P , 假设30A ∠=︒,70APD ∠=︒,那么B ∠等于〔A 〕30︒〔B 〕35︒ 〔C 〕40︒ 〔D 〕50︒〔8〕比拟2,5,37的大小,正确的选项是〔A 〕3257<< 〔B 〕3275<< 〔C 〕3725<< 〔D 〕3572<<〔9〕如图,是一种古代计时器——“漏壶〞的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.假设用x 表示时间,y 表示壶底到水面的高度,下面的图象适合表示一小段时间内y 与x 的函数关系的是〔不考虑水量变化对压力的影响〕第〔5〕题第〔7〕题BCA DPO〔A 〕 〔B 〕〔C 〕 〔D 〕〔10〕二次函数2y ax bx c =++(0a ≠)的图象如下图,有以下结论:①240b ac ->; ②0abc >; ③80a c +>; ④930a b c ++<. 其中,正确结论的个数是〔A 〕1 〔B 〕2 〔C 〕3〔D 〕4x第〔9〕题OxOxyOxO第〔10〕题yxO 1x = 1-2-2021年天津市初中毕业生学业考试试卷数 学第二卷〔非选择题 共90分〕考前须知:用黑色墨水的钢笔或签字笔将答案写在“答题卡〞上。

天津市中考数学试卷及答案(Word解析版)

天津市中考数学试卷及答案(Word解析版)

天津市中考数学试卷一、选择题(共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(•天津)计算(﹣3)+(﹣9)的结果等于()A.12 B.﹣12 C.6D.﹣6考点:有理数的加法.分析:根据有理数的加法法则,先确定出结果的符号,再把绝对值相加即可.解答:解:(﹣3)+(﹣9)=﹣12;故选B.点评:本题考查了有理数的加法,用到的知识点是有理数的加法法则,比较简单,属于基础题.2.(3分)(•天津)tan60°的值等于()A.1B.C.D.2考点:特殊角的三角函数值.分析:根据记忆的特殊角的三角函数值即可得出答案.解答:解:tan60°=.故选C.点评:本题考查了特殊角的三角函数值,一些特殊角的三角函数值是需要我们熟练记忆的内容.3.(3分)(•天津)下列标志中,可以看作是中心对称图形的是()A.B.C.D.考点:中心对称图形分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D.点评:本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.(3分)(•天津)中国园林网4月22日消息:为建设生态滨海,天津滨海新区将完成城市绿化面积共8210 000m2,将8210 000用科学记数法表示应为()A.821×102B.82.1×105C.8.21×106D.0.821×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:8 210 000=8.21×106,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(•天津)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15,由此可知()A.(1)班比(2)班的成绩稳定B.(2)班比(1)班的成绩稳定C.两个班的成绩一样稳定D.无法确定哪班的成绩更稳定考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵(1)班成绩的方差为17.5,(2)班成绩的方差为15,∴(1)班成绩的方差>(2)班成绩的方差,∴(2)班比(1)班的成绩稳定.故选B.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(3分)(•天津)如图是由3个相同的正方体组成的一个立体图形,它的三视图是()A.B.C.D.考点:简单组合体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:所给图形的三视图是A选项所给的三个图形.故选A.点评:本题考查了几何体的三种视图,掌握定义是关键.7.(3分)(•天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形B.菱形C.正方形D.梯形考点:旋转的性质;矩形的判定.分析:根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.解答:解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF矩形.故选A.点评:本题考查了旋转的性质,矩形的判定,主要利用了对角线互相平分的四边形是平行四边形,有一个角是直角是平行四边形是矩形的判定方法,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.8.(3分)(•天津)正六边形的边心距与边长之比为()A.:3 B.:2 C.1:2 D.:2 考点:正多边形和圆.分析:首先根据题意画出图形,然后设六边形的边长是a,由勾股定理即可求得OC的长,继而求得答案.解答:解:如图:设六边形的边长是a,则半径长也是a;经过正六边形的中心O作边AB的垂线OC,则AC=AB=a,∴OC==a,∴正六边形的边心距与边长之比为:a:a=:2.故选B.点此题考查了正多边形和圆的关系.此题难度不大,注意掌握数形结合思想的应用.9.(3分)(•天津)若x=﹣1,y=2,则﹣的值等于()A.B.C.D.分式的化简求值.考点:先根据分式混合运算的法则把原式进行化简,再把x,y的值代入进行计算即可.分析:解解:原式=﹣答:===,当x=﹣1,y=2时,原式==.故选D.点本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.评:10.(3分)(•天津)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y 升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P 与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0B.1C.2D.3考函数的图象.分析:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,符合函数图象;③当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5,;当点P在CD上运动时,S△ABP不变,这段时间为4,;当点P在DA上运动时,S△ABP减小,这段时间为3,符合函数图象;解答:解:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,符合函数图象;③如图所示:当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5,;当点P在CD上运动时,S△ABP不变,这段时间为4,;当点P在DA上运动时,S△ABP减小,这段时间为3,符合函数图象;综上可得符合图中所示函数关系的问题情境的个数为2.故选C.点评:本题考查了函数的图象,解答本题需要同学们仔细分析所示情景,判断函数图象是否符合,要求同学们能将实际问题转化为函数图象,有一定难度.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(•天津)计算a•a6的结果等于a7.考点:同底数幂的乘法.专题:计算题.分析:利用同底数幂的法则计算即可得到结果.解答:解:a•a6=a7.故答案为:a7点评:此题考查了同底数幂的乘法运算,熟练掌握运算法则是解本题的关键.12.(3分)(•天津)一元二次方程x(x﹣6)=0的两个实数根中较大的根是6.考点:解一元二次方程-因式分解法.专计算题.分析:原方程转化为x=0或x﹣6=0,然后解两个一次方程即可得到原方程较大的根.解答:解:∵x=0或x﹣6=0,∴x1=0,x2=6,∴原方程较大的根为6.故答案为6.点评:本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.13.(3分)(•天津)若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则的取值范围是k>0.考点:一次函数图象与系数的关系.分析:根据一次函数图象所经过的象限确定k的符号.解答:解:∵一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,∴k>0.故填:k>0.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.14.(3分)(•天津)如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段AC=BD(答案不唯一).考点:全等三角形的判定与性质.专题:开放型.分析:利用“角角边”证明△ABC和△BAD全等,再根据全等三角形对应边相等解答即可.解答:解:∵在△ABC和△BAD中,,∴△ABC≌△BAD(AAS),∴AC=BD,AD=BC.故答案为:AC=BD(答案不唯一).点评:本题考查了全等三角形的判定与性质,是基础题,关键在于公共边AB的应用,开放型题目,答案不唯一.15.(3分)(•天津)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为55(度).考点:切线的性质.分析:首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.解答:解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,∴∠C=∠AOB=55°.故答案为:55.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.(3分)(•天津)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.考点:列表法与树状图法.专题:计算题.分析:先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.解答:解:如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为.点评:本题考查了列表法或树状图法:利用列表法或树状图法展示所有等可能的结果数n,再找出某事件所占有的结果数m,然后利用概率的概念求得这个事件的概率=.17.(3分)(•天津)如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为7.考点:相似三角形的判定与性质;等边三角形的性质.分析:先根据边长为9,BD=3,求出CD的长度,然后根据∠ADE=60°和等边三角形的性质,证明△ABD∽△DCE,进而根据相似三角形的对应边成比例,求得CE的长度,即可求出AE的长度.解答:解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC;∴CD=BC﹣BD=9﹣3=6;∴∠BAD+∠ADB=120°∵∠ADE=60°,∴∠ADB+∠EDC=120°,∴∠DAB=∠EDC,又∵∠B=∠C=60°,∴△ABD∽△DCE,则=,即=,解得:CE=2,故AE=AC﹣CE=9﹣2=7.故答案为:7.点评:此题主要考查了相似三角形的判定和性质以及等边三角形的性质,根据等边三角形的性质证得△ABD∽△DCE是解答此题的关键.18.(3分)(•天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(Ⅰ)△ABC的面积等于6;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.考点:作图—相似变换;三角形的面积;正方形的性质.专题:计算题.分析:(Ⅰ)△ABC以AB为底,高为3个单位,求出面积即可;(Ⅱ)作出所求的正方形,如图所示,画图方法为:取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求解答:解:(Ⅰ)△ABC的面积为:×4×3=6;(Ⅱ)如图,取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.故答案为:(Ⅰ)6;(Ⅱ)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求点评:此题考查了作图﹣位似变换,三角形的面积,以及正方形的性质,作出正确的图形是解本题的关键.三、解答题(共8小题,满分66分)19.(6分)(•天津)解不等式组.考点:解一元一次不等式组.专计算题.题:分析:分别解两个不等式得到x<3和x>﹣3,然后根据大于小的小于大的取中间确定不等式组的解集.解答:解:,解①得x<3,解②得x>﹣3,所以不等式组的解集为﹣3<x<3.点评:本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.20.(8分)(•天津)已知反比例函数y=(k为常数,k≠0)的图象经过点A(2,3).(Ⅰ)求这个函数的解析式;(Ⅱ)判断点B(﹣1,6),C(3,2)是否在这个函数的图象上,并说明理由;(Ⅲ)当﹣3<x<﹣1时,求y的取值范围.考点:待定系数法求反比例函数解析式;反比例函数的性质;反比例函数图象上点的坐标特征.分析:(1)把点A的坐标代入已知函数解析式,通过方程即可求得k的值.(Ⅱ)只要把点B、C的坐标分别代入函数解析式,横纵坐标坐标之积等于6时,即该点在函数图象上;(Ⅲ)根据反比例函数图象的增减性解答问题.解答:解:(Ⅰ)∵反比例函数y=(k为常数,k≠0)的图象经过点A(2,3),∴把点A的坐标代入解析式,得3=,解得,k=6,∴这个函数的解析式为:y=;(Ⅱ)∵反比例函数解析式y=,∴6=xy.分别把点B、C的坐标代入,得(﹣1)×6=﹣6≠6,则点B不在该函数图象上.3×2=6,则点C中该函数图象上;(Ⅲ)∵当x=﹣3时,y=﹣2,当x=﹣1时,y=﹣6,又∵k>0,∴当x<0时,y随x的增大而减小,∴当﹣3<x<﹣1时,﹣6<y<﹣2.点评:本题考查了反比例函数图象的性质、待定系数法求反比例函数解析式以及反比例函数图象上点的坐标特征.用待定系数法求反比例函数的解析式,是中学阶段的重点.21.(8分)(•天津)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次接受随机抽样调查的学生人数为50,图①中m的值是32;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.考点:条形统计图;用样本估计总体;扇形统计图;加权平均数;中位数;众数.分析:(1)根据条形统计图即可得出样本容量根据扇形统计图得出m的值即可;(2)利用平均数、中位数、众数的定义分别求出即可;(3)根据样本中捐款10元的人数,进而得出该校本次活动捐款金额为10元的学生人数.解答:解:(1)根据条形图4+16+12+10+8=50(人),m=100﹣20﹣24﹣16﹣8=32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为:16,∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:(15=15)=15;(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名.故答案为:50,32.点评:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.22.(8分)(•天津)已知直线I与⊙O,AB是⊙O的直径,AD⊥I于点D.(Ⅰ)如图①,当直线I与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线I与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.考点:切线的性质;圆周角定理;直线与圆的位置关系.分析:(Ⅰ)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案.解答:解:(Ⅰ)如图①,连接OC,∵直线l与⊙O相切于点C,∴OC⊥l,∵AD⊥l,∴OC∥AD,∴∠OCA=∠DAC,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°﹣∠B,∴∠AEF=∠ADE+∠DAE=90°+18°=108°,在⊙O中,四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°,∴∠B=180°﹣108°=72°,∴∠BAF=90°﹣∠B=180°﹣72°=18°.点评:此题考查了切线的性质、圆周角定理以及圆的内接四边形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.23.(8分)(•天津)天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).考点:解直角三角形的应用-仰角俯角问题.分析:首先根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,在Rt△ACD中,易求得BD=AD﹣AB=CD﹣112;在Rt△BCD中,可得BD=CD•tan36°,即可得CD•tan36°=CD﹣112,继而求得答案.解答:解:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,∵在Rt△ACD中,∠ACD=∠CAD=45°,∴AD=CD,∵AD=AB+BD,∴BD=AD﹣AB=CD﹣112(m),∵在Rt△BCD中,tan∠BCD=,∠BCD=90°﹣∠CBD=36°,∴tan36°=,∴BD=CD•tan36°,∴CD•tan36°=CD﹣112,∴CD=≈≈415(m).答:天塔的高度CD为:415m.点评:本题考查了仰角的知识.此题难度适中,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想与方程思想的应用.24.(8分)(•天津)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题题意,填写下表(单位:元)累计购物实际花费130 290 (x)在甲商场127 …在乙商场126 …(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?考一元一次不等式的应用;一元一次方程的应用.点:分析:(1)根据已知得出100+(290﹣100)×0.9以及50+(290﹣50)×0.95进而得出答案,同理即可得出累计购物x元的实际花费;(2)根据题中已知条件,求出0.95x+2.5,0.9x+10相等,从而得出正确结论;(3)根据0.95x+2.5与0.9x+10相比较,从而得出正确结论.解答:解:(1)在甲商场:100+(290﹣100)×0.9=271,100+(290﹣100)×0.9x=0.9x+10;在乙商场:50+(290﹣50)×0.95=278,50+(290﹣50)×0.95x=0.95x+2.5;(2)根据题意得出:0.9x+10=0.95x+2.5,解得:x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同,(3)由0.9x+10<0.95x+2.5,解得:x>150,0.9x+10>0.95x+2.5,解得:x<150,y B=0.95x+50(1﹣95%)=0.95x+2.5,正确;∴当小红累计购物大于150时上没封顶,选择甲商场实际花费少;当小红累计购物超过100元而不到150元时,在乙商场实际花费少.点评:此题主要考查了一元一次不等式的应用和一元一次方程的应用,此题问题较多且不是很简单,有一定难度.涉及方案选择时应与方程或不等式联系起来.25.(10分)(•天津)在平面直角坐标系中,已知点A(﹣2,0),点B(0,4),点E 在OB上,且∠OAE=∠0BA.(Ⅰ)如图①,求点E的坐标;(Ⅱ)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′.①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).考点:相似形综合题.分析:(Ⅰ)根据相似三角形△OAE∽△OBA的对应边成比例得到=,则易求OE=1,所以E(0,1);(Ⅱ)如图②,连接EE′.在Rt△A′BO中,勾股定理得到A′B2=(2﹣m)2+42=m2﹣4m+20,在Rt△BE′E中,利用勾股定理得到BE′2=E′E2+BE2=m2+9,则A′B2+BE′2=2m2﹣4m+29=2(m﹣1)2+27.所以由二次函数最值的求法知,当m=1即点E′的坐标是(1,1)时,A′B2+BE′2取得最小值.解答:解:(Ⅰ)如图①,∵点A(﹣2,0),点B(0,4),∴OA=2,OB=4.∵∠OAE=∠0BA,∠EOA=∠AOB=90°,∴△OAE∽△OBA,∴=,即=,解得,OE=1,∴点E的坐标为(0,1);(Ⅱ)①如图②,连接EE′.由题设知AA′=m(0<m<2),则A′O=2﹣m.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2﹣m)2+42=m2﹣4m+20.∵△A′E′O′是△AEO沿x轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=m.又BE=OB﹣OE=3,∴在Rt△BE′E中,BE′2=E′E2+BE2=m2+9,∴A′B2+BE′2=2m2﹣4m+29=2(m﹣1)2+27.当m=1时,A′B2+BE′2可以取得最小值,此时,点E′的坐标是(1,1).②如图②,过点A作AB′⊥x,并使AB′=BE=3.易证△AB′A′≌△EBE′,∴B′A=BE′,∴A′B+BE′=A′B+B′A′.当点B、A′、B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,∴==,∴AA′=×2=,∴EE′=AA′=,∴点E′的坐标是(,1).点评:本题综合考查了相似三角形的判定与性质、平移的性质以及勾股定理等知识点.此题难度较大,需要学生对知识有一个系统的掌握.26.(10分)(•天津)已知抛物线y1=ax2+bx+c(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:(Ⅰ)求y1与x之间的函数关系式;(Ⅱ)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).(1)求y2与x之间的函数关系式;(2)当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.x …﹣1 0 3 …y1=ax2+bx+c …0 0 …考点:二次函数综合题.专题:探究型.分析:(I)先根据物线经过点(0,)得出c的值,再把点(﹣1,0)、(3,0)代入抛物线y1的解析式即可得出y1与x之间的函数关系式;(II)先根据(I)中y1与x之间的函数关系式得出顶点M的坐标.①记直线l与直线l′交于点C(1,t),当点A′与点C不重合时,由已知得,AM与BP互相垂直平分,故可得出四边形ANMP为菱形,所以PA∥l,再由点P(x,y2)可知点A(x,t)(x≠1),所以PM=PA=|y2﹣t|,过点P作PQ⊥l于点Q,则点Q (1,y2),故QM=|y2﹣3|,PQ=AC=|x﹣1|,在Rt△PQM中,根据勾股定理即可得出y2与x之间的函数关系式,再由当点A与点C重合时,点B与点P重合可得出P 点坐标,故可得出y2与x之间的函数关系式;②据题意,借助函数图象:当抛物线y2开口方向向上时,可知6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),由于3>,所以不合题意,当抛物线y2开口方向向下时,6﹣2t<0,即t>3时,求出y1﹣y2的值;若3t﹣11≠0,要使y1<y2恒成立,只要抛物线方向及且顶点(1,)在x 轴下方,因为3﹣t<0,只要3t﹣11>0,解得t>,符合题意;若3t﹣11=0,y1﹣y2=﹣<0,即t=也符合题意.解解:(Ⅰ)∵抛物线经过点(0,),答:∴c=.∴y1=ax2+bx+,∵点(﹣1,0)、(3,0)在抛物线y1=ax2+bx+上,∴,解得,∴y1与x之间的函数关系式为:y1=﹣x2+x+;(II)∵y1=﹣x2+x+,∴y1=﹣(x﹣1)2+3,∴直线l为x=1,顶点M(1,3).①由题意得,t≠3,如图,记直线l与直线l′交于点C(1,t),当点A′与点C不重合时,∵由已知得,AM与BP互相垂直平分,∴四边形ANMP为菱形,∴PA∥l,又∵点P(x,y2),∴点A(x,t)(x≠1),∴PM=PA=|y2﹣t|,过点P作PQ⊥l于点Q,则点Q(1,y2),∴QM=|y2﹣3|,PQ=AC=|x﹣1|,在Rt△PQM中,∵PM2=QM2+PQ2,即(y2﹣t)2=(y2﹣3)2+(x﹣1)2,整理得,y2=(x﹣1)2+,即y2=x3﹣x+,∵当点A与点C重合时,点B与点P重合,∴P(1,),∴P点坐标也满足上式,∴y2与x之间的函数关系式为y2=x3﹣x+(t≠3);②根据题意,借助函数图象:当抛物线y2开口方向向上时,6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),∵3>,∴不合题意,当抛物线y2开口方向向下时,6﹣2t<0,即t>3时,y1﹣y2=﹣(x﹣1)2+3﹣[(x﹣1)2+]=(x﹣1)2+,若3t﹣11≠0,要使y1<y2恒成立,只要抛物线y=(x﹣1)2+开口方向向下,且顶点(1,)在x轴下方,∵3﹣t<0,只要3t﹣11>0,解得t>,符合题意;若3t﹣11=0,y1﹣y2=﹣<0,即t=也符合题意.综上,可以使y1<y2恒成立的t的取值范围是t≥.点评:本题考查的是二次函数综合题,涉及到待定系数法二次函数解的解析式、勾股定理及二次函数的性质,解答此类题目时要注意数形结合思想的运用.。

2020年天津市中考数学试卷-(含答案)

2020年天津市中考数学试卷-(含答案)

2020年天津市中考数学试卷第I 卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.2.本卷共12题,共36分.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算()3020+-的结果等于( ) A .10B .10-C .50D .50-2.2sin 45︒的值等于( ) A .1B.CD .23.据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为( ) A .80.58610⨯B .75.8610⨯C .658.610⨯D .558610⨯4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .5.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .6)A .3和4之间B .4和5之间C .5和6之间D .6和7之间7.方程组241x y x y +=⎧⎨-=-⎩,的解是( )A .12x y =⎧⎨=⎩B .32x y =-⎧⎨=-⎩C .20x y =⎧⎨=⎩D .31x y =⎧⎨=-⎩8.如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是( )A .()6,3B .()3,6C .()0,6D .()6,69.计算221(1)(1)x x x +++的结果是( ) A .11x + B .()211x + C .1 D .1x +10.若点()1,5A x -,()2,2B x ,()3,5C x 都在反比例函数10y x=的图象上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .231x x x <<C .132x x x <<D .312x x x <<11.如图,在ABC ∆中,90ACB ∠=︒,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点B 的对应点E 恰好落在边AC 上,点A 的对应点为D ,延长DE 交AB 于点F ,则下列结论一定正确的是( )A .AC DE =B .BC EF =C .AEFD ∠=∠D .AB DF ⊥12.已知抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点()2,0,其对称轴是直线12x =.有下列结论: ①0abc >②关于x 的方程2ax bx c a ++=有两个不等的实数根;③12a <-.其中,正确结论的个数是( ) A .0B .1C .2D .3第II 卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔). 2.本卷共13题,共84分.二、填空题(本大题共6小题,每小题3分,共18分) 13.计算75x x x +-的结果等于______.14.计算1)的结果等于_______.15.不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是_______.16.将直线2y x =-向上平移1个单位长度,平移后直线的解析式为______.17.如图,ABCD 的顶点C 在等边BEF ∆的边BF 上,点E 在AB 的延长线上,G 为DE 的中点,连接CG .若3AD =,2AB CF ==,则CG 的长为_______.18.如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点A ,C 均落在格点上,点B 在网格线上,且53AB =.(I )线段AC 的长等于______;(II )以BC 为直径的半圆与边AC 相交于点D ,若P ,Q 分别为边AC ,BC 上的动点,当BP PQ +取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P ,Q ,并简要说明点P ,Q 的位置是如何找到的(不要求证明)_______.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组321251x xx≤+⎧⎨+≥-⎩①②.请结合题意填空,完成本题的解答(I)解不等式①,得_______;(II)解不等式②,得_______;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为_______.20.农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm)进行了测量.根据统计的结果,绘制出如下的统计图①和图②.图①图②题请根据相关信息,解答下列问题:(I)本次抽取的麦苗的株数为_____,图①中m的值为_______;(II)求统计的这组苗高数据的平均数、众数和中位数.21.在O中,弦CD与直径AB相交于点P,63ABC∠=︒.图①图②(I)如图①,若100APC∠=︒,求BAD∠和CDB∠的大小;(II)如图②,若CD AB⊥,过点D作O的切线,与AB的延长线相交于点E,求E∠的大小.22.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得221BC m=,45ACB∠=︒,58ABC∠=︒.根据测得的数据,求AB的长(结果取整数).参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈.23.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题: (I )填表:(II )填空:①食堂到图书馆的距离为______km ;②小亮从食堂到图书馆的速度为______ /km min ;③小亮从图书馆返回宿舍的速度为______/km min ;④当小亮离宿舍的距离为0.6km 时,他离开宿舍的时间为______min . (III )当028x ≤≤时,请直接写出y 关于x 的函数解析式.24.将一个直角三角形纸片OAB 放置在平面直角坐标系中,点()0,0O ,点()2,0A ,点B 在第一象限,90OAB ∠=︒,30B ∠=︒,点P 在边OB 上(点P 不与点O ,B 重合).图① 图②(I )如图①,当1OP =时,求点P 的坐标;(II )折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且OQ OP =,点O 的对应点为O ',设OP t =.①如图②,若折叠后O PQ '∆与OAB ∆重叠部分为四边形,O P ',O Q '分别与边AB 相交于点C ,D ,试用含有t 的式子表示O D '的长,并直接写出t 的取值范围;②若折叠后O PQ '∆与OAB ∆重叠部分的面积为S ,当13t ≤≤时,求S 的取值范围(直接写出结果即可).25.已知点()1,0A 是抛物线2y ax bx m =++(a ,b ,m 为常数,0a ≠,0m <)与x 轴的一个交点. (I )当1a =,3m =-时,求该抛物线的顶点坐标;(II )若抛物线与x轴的另一个交点为(),0M m ,与y 轴的交点为C ,过点C 作直线l 平行于x 轴,E 是直线l 上的动点,F 是y 轴上的动点,EF =①当点E 落在抛物线上(不与点C 重合),且AE EF =时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是2?2020年天津市中考数学试卷答案1.A 2.B 3.B 4.C 5.D 6.B 7.A 8.D 9.A 10.C 11.D 12.C13.3x . 14.6 15.38 16.21y x =-+ 17.3218.(I)线段AC =(II )如图,取格点M ,N ,连接MN ,连接BD 并延长,与MN 相交于点B ';连接B C ',与半圆相交于点E ,连接BE ,与AC 相交于点P ,连接B P '并延长,与BC 相交于点Q ,则点P ,Q 即为所求.19.解:(I )1x ≤ (II )3x ≥-(III )(IV )31x -≤≤. 20.解:(I )25,24. (II )观察条形统计图,132143154161017615.6234106x ⨯+⨯+⨯+⨯+⨯==++++∴这组数据的平均数是15.6.在这组数据中,16出现了10次,出现的次数最多,∴这组数据的众数为16.将这组数据按从小到大的顺序排列,其中处于中间位置的数是16,∴这组数据的中位数为16.21.解:(I )APC ∠是PBC ∆的一个外角,63ABC ∠=︒,100APC ∠=︒,37C APC PBC ∴∠=∠-∠=︒在O 中,BAD C ∠=∠,37BAD ∴∠=︒.AB 为O 的直径,90ADB ∴∠=︒在O 中,63ADC BC ∠=∠=︒A , 又CDB ADB ADC ∠=∠-∠27CDB ∴∠=︒.(II )如图,连接ODCD AB ⊥ 90CPB ∴∠=︒9027PCB PBC ∴∠=︒-∠=︒在O 中,2BOD BCD ∠=∠,54BOD ∴∠=︒.DE 是O 的切线,OD DE ∴⊥,即90ODE ∠=︒. 90E EOD ∴∠=︒-∠ 36E ∴∠=︒22.解:如图,过点A 作AH CB ⊥,垂足为H . 根据题意,45ACB ∠=︒,58ABC ∠=︒,221BC =.在Rt CAH ∆中,tan AHACH CH∠=tan 45AHCH AH ∴==︒.在Rt BAH ∆中,tan AHACH CH∠=,tan 45AHCH AH ∴==︒在Rt BAH ∆中,tan AH ABH BH ∠=,sin AHABH AB∠= tan 58AH BH ∴=︒,sin 58AHAB =︒又CB CH BH =+,221tan 58AH AH ∴=+︒,可得221tan 581tan 58AH ⨯︒=+︒()221tan 58221 1.601601tan 58sin 58(1 1.60)0.85AB ⨯︒⨯∴=≈=+︒⋅︒+⨯答:AB 的长约为160m . 23.解:(I )0.5,0.7,1. (II )①0.3; ②0.06; ③0.1④6或62.(III )当07x ≤≤时,0.1y x = 当723x <≤时,0.7y =当2328x <≤时,0.060.68y x =-.24.解:(1)如图,过点P 作PH x ⊥轴,垂足为H ,则90OHP ∠=︒90OAB ∠=︒,30B ∠=︒, 9060BOA B ∴∠=︒-∠=︒9030OPH POH ∴∠=︒-∠=︒在Rt OHP ∆中,1OP =,1122OH OP ∴==,2HP ==.∴点P的坐标为12⎛ ⎝⎭.(II )①由折叠知,O PQ OPQ '∆≅∆,O P OP '∴=,O Q OQ '=又OQ OP t ==,O P Op OQ O Q t ''∴====∴四边形OQO P '为菱形.//QO OB '∴.可得30ADQ B ∠=∠=︒点()2,0A ,2OA ∴=.有2QA OA OQ t =-=-在Rt QAD ∆中,242QD QA t ==-O D O Q QD ''=-,34O D t '∴=-,其中t 的取值范围是423t <<.S ≤≤25.解:(1)当1a =,3m =-时,抛物线的解析式为23y x bx =+-.抛物线经过点()1,0A ,013b ∴=+-.解得2b =.∴抛物线的解析式为223y x x =+-.2223(1)4y x x x =+-=+-,∴抛物线的顶点坐标为()1,4--.(II)①抛物线2y ax bx m =++经过点()1,0A 和(),0M m ,0m <,0a b m ∴=++, 1a ∴=,1b m =--.∴抛物线的解析式为2(1)y x m x m =-++.根据题意,得点()0,C m ,点()1,E m m +. 过点A 作AH l ⊥于点H 由点()1,0A ,得点()1,H m .在Rt EAH ∆中,1(1)EH m m =-+=-,0HA m m =-=-,AE ∴==.AE EF ===.解得2m =-.此时,点()1,2E --,点()0,2C -,有1EC =. 点F 在y 轴上,∴在Rt EFC ∆中,CF =∴点F的坐标为(0,2-或(0,2-+.②由N 是EF的中点,得12CN EF == 根据题意,点N 在以点C为半径的圆上. 由点(),0M m ,点()0,C m ,得MO m =-,CO m =-∴在Rt MCO ∆中,MC =.当MC ≥,即1m ≤-时,满足条件的点N 落在线段MC 上,MN的最小值为MC NC -=-=解得32m =-;当MC <,即10m -<<时,满足条件的点N 落在线段CM 的延长线上,MN的最小值为()2NC MC -==, 解得12m =-∴当m 的值为32-或12-时,MN.。

2021年天津市中考数学试卷-(解析版)

2021年天津市中考数学试卷-(解析版)

2021年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算()53-⨯的结果等于( )A. 2-B. 2C. 15-D. 15 【答案】C【分析】根据有理数的乘法法则运算即可求解.【详解】解:由题意可知:()5315-⨯=-,故选:C .【点睛】本题考查了有理数的乘法法则,属于基础题,运算过程中注意符号即可.2. tan 30︒的值等于( )A. B. 2 C. 1 D. 2【答案】A【分析】根据30°的正切值直接求解即可.【详解】解:由题意可知,tan 30︒=, 故选:A .【点睛】本题考查30°的三角函数,属于基础题,熟记其正切值即可.3. 据2021年5月12日《天津日报》报道,第七次全国人口普查数据公布,普查结果显示,全国人口共141178万人.将141178用科学记数法表示应为( )A. 60.14117810⨯B. 51.4117810⨯C. 414.117810⨯D. 3141.17810⨯ 【答案】B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:141178=1.41178×105,故选:B .【点睛】此题考查科学记数法的表示方法,关键是确定a 的值以及n 的值.4. 在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.【答案】A【分析】根据轴对称图形的概念对各项分析判断即可得解.【详解】A.是轴对称图形,故本选项符合题意;B.不是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项不符合题意;D.不是轴对称图形,故本选项不符合题意.故选A.【点睛】本题考查判断轴对称图形,理解轴对称图形的概念是解答的关键.5. 如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】D【分析】根据三视图中的主视图定义,从前往后看,得到的平面图形即为主视图.【详解】解:从正面看到的平面图形是3列小正方形,从左至右第1列有1个,第2列有2个,第3列有2个,故选:D.【点睛】本题主要考查了组合体的三视图,解题的关键是根据主视图的概念由立体图形得到相应的平面图形.6. 估算17值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】C【分析】估算无理数的大小. 【详解】因为2224(17)<5<,所以17的值在4和5之间.故选C .7. 方程组234x y x y +=⎧⎨+=⎩的解是( ) A. 02x y =⎧⎨=⎩B. 11x y =⎧⎨=⎩C. 22x y =⎧⎨=-⎩D. 33x y =⎧⎨=-⎩【答案】B【分析】直接利用加减消元法解该二元一次方程组即可. 【详解】234x y x y +=⎧⎨+=⎩①②, ②-①得:32x y x y +--=,即22x =,∴1x =.将1x =代入①得:12y +=,∴1y =.故原二元一次方程组的解为11x y =⎧⎨=⎩. 故选B .【点睛】本题考查解二元一次方程组.掌握解二元一次方程组的方法和步骤是解答本题的关键.8. 如图,ABCD 的顶点A ,B ,C 的坐标分别是()()()2,0,1,2,2,2---,则顶点D 的坐标是( )A. ()4,1-B. ()4,2-C. ()4,1D. ()2,1【答案】C 【分析】根据平行四边形性质以及点的平移性质计算即可.【详解】解:∵四边形ABCD 是平行四边形,点B 的坐标为(-2,-2),点C 的坐标为(2,-2),∴点B 到点C 为水平向右移动4个单位长度,∴A 到D 也应向右移动4个单位长度,∵点A 的坐标为(0,1),则点D 的坐标为(4,1),故选:C .【点睛】本题主要考查平行四边形的性质,以及平移的相关知识点,熟知点的平移特点是解决本题的关键.9. 计算33a b a b a b ---的结果是( ) A. 3B. 33a b +C. 1D. 6a a b- 【答案】A 【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】原式33a b a b-=-, 3()a b a b -=- 3=.故选A .【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键. 10. 若点()()()1235,,1,,5,A y B y C y -都在反比例函数5y x=-的图象上,则123,,y y y 的大小关系是( )A. 123y y y <<B. 231y y y <<C. 132y y y <<D. 312y y y <<【答案】B【分析】将A 、B 、C 三点坐标代入反比例函数解析式,即求出123、、y y y 的值,即可比较得出答案.【详解】分别将A 、B 、C 三点坐标代入反比例函数解析式得:1515y =-=-、2551y =-=-、3515y =-=-. 则231y y y <<.故选B .【点睛】本题考查比较反比例函数值.掌握反比例函数图象上的点的坐标满足其解析式是解答本题的关键.11. 如图,在ABC 中,120BAC ∠=︒,将ABC 绕点C 逆时针旋转得到DEC ,点A ,B 的对应点分别为D ,E ,连接AD .当点A ,D ,E 在同一条直线上时,下列结论一定正确的是( )A. ABC ADC ∠=∠B. CB CD =C. DE DC BC +=D. AB CD ∥【答案】D 【分析】由旋转可知120EDC BAC ∠=∠=︒,即可求出60ADC ∠=︒,由于60ABC ∠<︒,则可判断ABC ADC ∠≠∠,即A 选项错误;由旋转可知CB CE =,由于CE CD >,即推出CB CD >,即B 选项错误;由三角形三边关系可知DE DC CE +>,即可推出DE DC CB +>,即C 选项错误;由旋转可知DC AC =,再由60ADC ∠=︒,即可证明ADC 为等边三角形,即推出60ACD ∠=︒.即可求出180ACD BAC ∠+∠=︒,即证明//AB CD ,即D 选项正确;【详解】由旋转可知120EDC BAC ∠=∠=︒,∵点A ,D ,E 在同一条直线上,∴18060ADC EDC ∠=︒-∠=︒,∵60ABC ∠<︒,∴ABC ADC ∠≠∠,故A 选项错误,不符合题意;由旋转可知CB CE =,∵120EDC ∠=︒为钝角,∴CE CD >,∴CB CD >,故B 选项错误,不符合题意;∵DE DC CE +>,∴DE DC CB +>,故C 选项错误,不符合题意;由旋转可知DC AC =,∵60ADC ∠=︒,∴ADC 为等边三角形,∴60ACD ∠=︒.∴180ACD BAC ∠+∠=︒,∴//AB CD ,故D 选项正确,符合题意;故选D .【点睛】本题考查旋转的性质,三角形三边关系,等边三角形的判定和性质以及平行线的判定.利用数形结合的思想是解答本题的关键.12. 已知抛物线2y ax bx c =++(,,a b c 是常数,0a ≠)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.有下列结论:①0abc >;②关于x 的方程230ax bx c ++-=有两个不等的实数根;③7a b c ++>.其中,正确结论的个数是( )A. 0B. 1C. 2D. 3【答案】D【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可【详解】∵抛物线2y ax bx c =++(,,a b c 是常数,0a ≠)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.∴c =1>0,a -b +c = -1,4a -2b +c >1,∴a -b = -2,2a -b >0,∴2a -a -2>0,∴a >2>0,∴b =a +2>0,∴abc >0,∵230ax bx c ++-=,∴△=24(3)b a c --=28b a +>0,∴230ax bx c ++-=有两个不等的实数根;∵b =a +2,a >2,c =1,∴a +b +c =a +a +2+1=2a +3,∵a >2,∴2a >4,∴2a +3>4+3>7,故选D .【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算42a a a +-的结果等于_____.【答案】5a【分析】根据合并同类项的性质计算,即可得到答案.【详解】()424215a a a a a +-=+-=故答案为:5a .【点睛】本题考查了整式加减的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解.14. 计算1)的结果等于_____.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题你的关键.15. 不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____. 【答案】37【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是37, 故答案为37. 【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.16. 将直线6y x =-向下平移2个单位长度,平移后直线的解析式为_____.【答案】62y x =--【分析】直接根据“上加下减,左加右减”的平移规律求解即可.【详解】将直线y =-6x 向下平移2个单位长度,所得直线的解析式为y =-6x -2.故答案为y =-6x -2.【点睛】本题考查一次函数图象的平移变换.掌握其规律 “左加右减,上加下减”是解答本题的关键.17. 如图,正方形ABCD 的边长为4,对角线,AC BD 相交于点O ,点E ,F 分别在,BC CD 的延长线上,且2,1CE DF ==,G 为EF 的中点,连接OE ,交CD 于点H ,连接GH ,则GH 的长为________.【答案】13 【分析】先作辅助线构造直角三角形,求出CH 和MG 的长,再求出MH 的长,最后利用勾股定理求解即可.【详解】解:如图,作OK ⊥BC ,垂足点K ,∵正方形边长为4,∴OK =2,KC =2,∴KC =CE ,∴CH 是△OKE 的中位线 ∴112CH OK ==, 作GM ⊥CD ,垂足为点M ,∵G 点为EF 中点,∴GM 是△FCE 的中位线,∴112GM CE ==,()()1115412222MC FC CD DF ==+=⨯+=, ∴53122MH MC HC =-=-=, 在Rt △MHG 中,2222313122GH MH MG ⎛⎫=+=+= ⎪⎝⎭, 故答案为:132.【点睛】本题综合考查了正方形的性质、三角形中位线定理、勾股定理等内容,解决本题的关键是能作出辅助线构造直角三角形,得到三角形的中位线,利用三角形中位线定理求出相应线段的长,利用勾股定理解直角三角形等.18. 如图,在每个小正方形的边长为1的网格中,ABC 的顶点A ,C 均落在格点上,点B 在网格线上.(Ⅰ)线段AC 的长等于_____;(Ⅱ)以AB 为直径的半圆的圆心为O ,在线段AB 上有一点P ,满足AP AC =,请用无刻度...的直尺,在如图所示的网格中,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)_____.【答案】 (1). 5 (2). 见解析【分析】(Ⅰ)根据勾股定理计算即可;(Ⅱ)现将ACB△补成等腰三角形,然后构建全等三角形即可.【详解】解:(Ⅰ)∵每个小正方形的边长为1,∴22125AC=+=,故答案为:5;(Ⅱ)如图,取BC与网格线的交点D,则点D为BC中点,连接OD并延长,与半圆相交于点E,连接BE并延长,与AC的延长线相交于点F,则OE为BFA中位线,且AB AF=,连接AE交BC于点G,连接FG并延长,与AB相交于点P,因为FAP BAC≌,则点P即为所求.【点睛】本题主要考查复杂作图能力,勾股定理,中位线定理,全等三角形的判定和性质,等腰三角形的性质,平行线的性质等知识点,掌握以上知识点并与已知图形结合是解决本题关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19. 解不等式组43,65 3. xx x+≥⎧⎨≤+⎩①②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得_______________;(Ⅱ)解不等式②,得_______________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为___________.【答案】(Ⅰ)1x ≥-;(Ⅱ)3x ≤;(Ⅲ)把不等式①和②的解集在数轴上表示见解析;(Ⅳ)13x -≤≤.【分析】根据解一元一次不等式组的步骤和不等式组的解集在数轴上的表示方法即可解答. 【详解】(Ⅰ)解不等式43x +≥,得:1x ≥-. 故答案为:1x ≥-;(Ⅱ)解不等式653x x ≤+,得:3x ≤. 故答案为:3x ≤; (Ⅲ)在数轴上表示为:;(Ⅳ)原不等式的解集为13x -≤≤. 故答案为:13x -≤≤.【点睛】本题考查解一元一次不等式组和在数轴上表示不等式组的解集.掌握解一元一次不等式组的步骤是解答本题的关键.20. 某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月均用水量(单位:t ). 根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的家庭个数为________,图①中m 的值为_______; (Ⅱ)求统计的这组月均用水量数据的平均数、众数和中位数.【答案】(Ⅰ)50,20;(Ⅱ)这组数据的平均数是5.9;众数为6;中位数为6.【分析】(Ⅰ)利用用水量为5t 的家庭个数除以其所占百分比即可求出本次接受调查的家庭个数;利用用水量为6.5t 的家庭个数除以本次接受调查的家庭个数即得出其所占百分比,即得出m 的值.(Ⅱ)根据加权平均数的公式,中位数,众数的定义即可求出结果. 【详解】(Ⅰ)本次接受调查的家庭个数=85016%=, 由题意可知10100%%50m ⨯= , 解得20m =. 故答案为50,20. (Ⅱ)观察条形统计图, ∵58 5.512616 6.510745.950x ⨯+⨯+⨯+⨯+⨯==,∴这组数据的平均数是5.9.∵在这组数据中,6出现了16次,出现的次数最多, ∴这组数据的众数为6.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是6, 即有6662+=, ∴这组数据的中位数为6.【点睛】本题考查条形统计图与扇形统计图相关联,加权平均数,中位数以及众数.从条形统计图与扇形统计图中找到必要的数据和信息是解答本题的关键. 21. 已知ABC 内接于,,42O AB AC BAC =∠=︒,点D 是O 上一点.(Ⅰ)如图①,若BD 为O 的直径,连接CD ,求DBC ∠和ACD ∠的大小; (Ⅱ)如图②,若CD //BA ,连接AD ,过点D 作O切线,与OC 的延长线交于点E ,求E ∠的大小.【答案】(Ⅰ)48DBC ∠=︒,21ACD ∠=︒;(Ⅱ)36E ∠=︒.【分析】(Ⅰ)由圆周角定理的推论可知90BCD ∠=︒,42BDC BAC ∠=∠=︒,即可推出9048DBC BDC ∠=︒-∠=︒;由等腰三角形的性质结合三角形内角和定理可求出69ABC ACB ∠=∠=︒,从而求出21ACD BCD ACB ∠=∠-∠=︒.(Ⅱ)连接OD ,由平行线的性质可知42ACD BAC ∠=∠=︒.由圆内接四边形的性质可求出180111ADC ABC ∠=︒-∠=︒.再由三角形内角和定理可求出27DAC ∠=︒.从而由圆周角定理求出254DOC DAC ∠=∠=︒.由切线的性质可知90ODE ∠=︒.即可求出9036E DOE ∠=︒-∠=︒.【详解】(Ⅰ)BD 为O 的直径,∴90BCD ∠=︒.∵在O 中,42BDC BAC ∠=∠=︒, ∴9048DBC BDC ∠=︒-∠=︒; ∵42AB AC BAC =∠=︒,, ∴1180692()ABC ACB BAC ∠=∠=︒-∠=︒. ∴21ACD BCD ACB ∠=∠-∠=︒. (Ⅱ)如图,连接OD .∵CD BA ,∴42ACD BAC ∠=∠=︒.∵四边形ABCD 是圆内接四边形,69ABC ∠=︒, ∴180111ADC ABC ∠=︒-∠=︒.∴18027DAC ACD ADC ∠=︒-∠-∠=︒. ∴254DOC DAC ∠=∠=︒. ∵DE 是O 的切线,∴DE OD ⊥,即90ODE ∠=︒. ∴9036E DOE ∠=︒-∠=︒.【点睛】本题为圆的综合题.考查圆周角定理及其推论,等腰三角形的性质,三角形内角和定理,平行线的性质,圆的内接四边形的性质以及切线的性质.利用数形结合的思想以及连接常用的辅助线是解答本题的关键.22. 如图,一艘货船在灯塔C 的正南方向,距离灯塔257海里的A 处遇险,发出求救信号.一艘救生船位于灯塔C 的南偏东40︒方向上,同时位于A 处的北偏东60︒方向上的B 处,救生船接到求救信号后,立即前往救援.求AB 的长(结果取整数).参考数据:tan 400.84︒≈,3取1.73.【答案】AB 的长约为168海里.【分析】如图,过点B 作BH ⊥CA ,垂足为H ,解直角三角形即可 【详解】如图,过点B 作BH ⊥CA ,垂足为H .根据题意,60,40,257BAC BCA CA ∠=︒∠=︒=.∵在Rt BAH △中,tan BHBAH AH ∠=,cos AH BAH AB∠=, ∴tan 603,2cos60AHBH AH AH AB AH =⋅︒===︒. ∵在Rt BCH 中,tan BHBCH CH∠=,∴3tan 40tan 40BH AHCH ==︒︒. 又CA CH AH =+, ∴3257tan 40AHAH =+︒.可得257tan 403tan 40AH ⨯︒=+︒.∴2257tan 4022570.841681.730.843tan 40AB ⨯⨯︒⨯⨯=≈=++︒. 答:AB 的长约为168海里.【点睛】本题考查了解直角三角形的应用,构造高线构造出直角三角形,并灵活解之是解题的关键.23. 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km ,陈列馆离学校20km .李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5h 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离km y 与离开学校的时间h x 之间的对应关系.请根据相关信息,解答下列问题: (Ⅰ)填表离开学校的时间/h 0.1 0.5 0.8 1 3(Ⅱ)填空:①书店到陈列馆的距离为________km ; ②李华在陈列馆参观学的时间为_______h ;③李华从陈列馆回学校途中,减速前的骑行速度为______km/h ; ④当李华离学校的距离为4km 时,他离开学校的时间为_______h . (Ⅲ)当0 1.5x ≤≤时,请直接写出y 关于x 的函数解析式.【答案】(Ⅰ)10,12,20;(Ⅱ)①8;②3;③28;④15或316;(Ⅲ)当00.6x ≤≤时,20y x =;当0.61x <≤时,12y =;当1 1.5x <≤时,164y x =-.【分析】(Ⅰ)根据函数图象,利用待定系数法,分段写出函数解析式,根据表格中x ,代入相应的解析式,得到y ;(Ⅱ)①根据图象进行分析即可; ②根据图象进行分析即可;③根据4.55x <≤时的函数解析式可求;④分00.6x ≤≤和5 5.5x <≤两种情况讨论,将距离为4km 代入相应的解析式求出时间x ; (Ⅲ)根据函数图象,利用待定系数法,分段写出函数解析式即可. 【详解】对函数图象进行分析:①当00.6x ≤≤时,设函数关系式为y kx =,由图象可知,当x =0.6时,y =12, 则12=0.6k ,解得20k =∴当00.6x ≤≤时,设函数关系式为20y x = ②由图象可知,当0.61x <≤时,12y =③当1 1.5x <≤时,设函数关系式为y kx b =+,由图象可知,当x =1时,y =12;当x =1.5时,y =20,则121.520k b k b +=⎧⎨+=⎩ ,解得164k b =⎧⎨=-⎩∴当1 1.5x <≤时,设函数关系式为164y x =- ④由图象可知,当1.5 4.5x ≤≤时,20y =⑤当4.55x <≤时,设函数关系式为y kx b =+,由图象可知,当x =4.5时,y =20;当x =5时,y =6,则 4.52056k b k b +=⎧⎨+=⎩,解得28146k b =-⎧⎨=⎩∴当4.55x <≤时,设函数关系式为28146y x =-+⑥当5 5.5x <≤时,设函数关系式为y kx b =+,由图象可知,当x =5时,y =6;当x =5.5时,y =0,则565.50k b k b +=⎧⎨+=⎩,解得1266k b =-⎧⎨=⎩∴当5 5.5x <≤时,设函数关系式为1266y x =-+ (Ⅰ)∵当00.6x ≤≤时,函数关系式为20y x = ∴当x =0.5时,200.510y =⨯=.故第一空为10. 当0.61x <≤时,12y =.故第二空为12. 当1.5 4.5x ≤<时,20y =.故第二空为20.(Ⅱ)①李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆.由图象可知书店到陈列馆的距离2012=8-;②李华在陈列馆参观学习一段时间,然后回学校.由图象可知李华在陈列馆参观学的时间4.5 1.53-=;③当4.55x <≤时,设函数关系式为28146y x =-+,所以李华从陈列馆回学校途中,减速前的骑行速度为28;④当李华离学校的距离为4km 时,00.6x ≤≤或5 5.5x <≤ 由上对图象的分析可知:当00.6x ≤≤时,设函数关系式为20y x =令4y =,解得15x =当5 5.5x <≤时,设函数关系式为1266y x =-+ 令4y =,解得316x =∴当李华离学校的距离为4km 时,他离开学校的时间为15或316.(Ⅲ)由上对图象的分析可知: 当00.6x ≤≤时,20y x =;当0.61x <≤时,12y =; 当1 1.5x <≤时,164y x =-.【点睛】本题考查函数的图象与实际问题.解题的关键在于读懂函数的图象,分段进行分析. 24. 在平面直角坐标系中,O 为原点,OAB 是等腰直角三角形,90,OBA BO BA ∠=︒=,顶点()4,0A ,点B 在第一象限,矩形OCDE 的顶点7,02E ⎛⎫- ⎪⎝⎭,点C 在y 轴的正半轴上,点D在第二象限,射线DC 经过点B .(Ⅰ)如图①,求点B 的坐标;(Ⅱ)将矩形OCDE 沿x 轴向右平移,得到矩形O C D E '''',点O ,C ,D ,E 的对应点分别为O ',C ',D ,E ',设OO t '=,矩形O C D E ''''与OAB 重叠部分的面积为S .①如图②,当点E '在x 轴正半轴上,且矩形O C D E ''''与OAB 重叠部分为四边形时,D E ''与OB 相交于点F ,试用含有t 的式子表示S ,并直接写出t 的取值范围;②当5922t ≤≤时,求S 的取值范围(直接写出结果即可). 【答案】(Ⅰ)点B 的坐标为()2,2;(Ⅱ)①21717228S t t =-+-, t 的取值范围是1142t ≤<;②236388S ≤≤. 【分析】(I)过点B 作BH OA ⊥,垂足为H ,由等腰三角形的“三线合一”性质得到122OH OA ==,再由∠BOH =45°得到△OBH 为等腰直角三角形,进而2BH OH ==,由此求得B 点坐标;(II)①由平移知,四边形O C D E ''''矩形,得790,2O E D O E OE '''''∠=︒==,进而得到72FE OE t '==-',再由重叠部分面积OAB FOE S S S '=-即可求解;②画出不同情况下重叠部分的图形,分5722t ≤≤和7922t <≤两种情况,将重叠部分的面积表示成关于t 的二次函数,再结合二次函数的最值问题求解.【详解】解:(I)如图,过点B 作BH OA ⊥,垂足为H .由点()4,0A ,得4OA =. ∵,90BO BA OBA =∠=︒,∴122OH OA ==.又∠BOH =45°,∴△OBH 为等腰直角三角形, ∴2BH OH ==. ∴点B 的坐标为()2,2.(II)①由点7,02E ⎛⎫- ⎪⎝⎭,得72OE =.由平移知,四边形O C D E ''''是矩形,得790,2O E D O E OE '''''∠=︒==. ∴72OE OO O E t '''='=--,90FE O ∠='︒.∵BO BA =,90OBA ∠=︒, ∴45BOA BAO ∠=∠=︒. ∴9045OFE BOA ∠=︒-∠='︒ ∴FOE OFE ∠=∠''.∴72FE OE t '==-'.∴2117222FOE SOE FE t '⎛⎫=⋅=- ⎪⎝'⎭'. ∴211742222OABFOE S SSt '⎛⎫=-=⨯⨯-- ⎪⎝⎭. 整理后得到:21717228S t t =-+-.当'O 与A 重合时,矩形O C D E ''''与OAB 重叠部分刚开始为四边形,如下图(1)所示:此时4OO t '==,当'D 与B 重合时,矩形O C D E ''''与OAB 重叠部分为三角形,接下来往右平移时重叠部分一直为三角形直到'E 与A 点重合,如下图(2)所示:此时''711222t OO DD ===+=, ∴t 的取值范围是1142t ≤<,故答案为:21717228S t t =-+-,其中:1142t ≤<;②当5722t ≤≤时,矩形O C D E ''''与OAB 重叠部分的面积如下图3所示:此时'4AO t =-,∠BAO =45°,'AO F 为等腰直角三角形,∴''4AO FO t , ∴22'111''(4)48222AO F S AO FO t t t , ∴重叠部分面积22'114(48)4422AOB AO F S S S t t t t , ∴S 是关于t 的二次函数,且对称轴为4t =,且开口向下,故自变量离对称轴越远,其对应的函数值越小,故将72t =代入,得到最大值217731()442228S, 将52t =代入, 得到最小值215523()442228S , 当7922t <≤时,矩形O C D E ''''与OAB 重叠部分的面积如下图4所示:此时''4'AO OA OO t FO =-=-=,7'''2OE EE EO t ME =-=-= 'AO F 和'OE M 均为等腰直角三角形,∴22'111''(4)48222AO F SAO FO t t t , 22'1171749''()222228OE M S OE ME t t t , ∴重叠部分面积222''1174915814(48)()222828AOB OE M AO F S S S S t t t t t t , ∴S 是关于t 的二次函数,且对称轴为154t =,且开口向下, 故自变量离对称轴越远,其对应的函数值越小,故将154t =代入,得到最大值21515158163()424816S , 将92t =代入, 得到最小值291598127()22288S , ∵272388,6331168, ∴S 的最小值为238,最大值为6316, 故答案为:2363816S ≤≤. 【点睛】本题考查了矩形的性质、坐标与图形性质、平移的性质、直角三角形的性质、二次函数的最值等问题,属于综合题,需要画出动点不同状态下的图形求解,本题难度较大,需要分类讨论.25. 已知抛物线22y ax ax c =-+(a ,c 为常数,0a ≠)经过点()0,1C -,顶点为D . (Ⅰ)当1a =时,求该抛物线的顶点坐标;(Ⅱ)当0a >时,点()0,1E a +,若DE =,求该抛物线的解析式;(Ⅲ)当1a <-时,点()0,1F a -,过点C 作直线l 平行于x 轴,(),0M m 是x 轴上的动点,()3,1N m +-是直线l 上的动点.当a 为何值时,FM DN +的最小值为,并求此时点M ,N 的坐标.【答案】(Ⅰ)抛物线的顶点坐标为(1,2)-;(Ⅱ)2112y x x =--或23312y x x =--;(Ⅲ)点M 的坐标为7,06⎛⎫- ⎪⎝⎭,点N 的坐标为11,16⎛⎫- ⎪⎝⎭ 【分析】(Ⅰ)结合题意,通过列一元一次方程并求解,即可得到抛物线的解析式,将解析式化为顶点式,即可得到答案(Ⅱ)根据题意,得抛物线的解析式为221y ax ax =--;根据抛物线对称轴的性质,计算得点D 的坐标为(1,1)a --;过点D 作DG y ⊥轴于点G ,根据勾股定理和一元二次方程的性质,得112a =,232a =,从而得到答案; (Ⅲ)当1a <-时,将点(1,1)D a --向左平移3个单位长度,向上平移1个单位长度得(2,)D a '--;作点F 关于x 轴的对称点F ',当满足条件的点M 落在线段F D ''上时,根据两点之间线段最短的性质,得FM DN +最小,结合题意,根据勾股定理和一元二次方程性质,得152=-a ,从而得直线F D ''的解析式,通过计算即可得到答案. 【详解】(Ⅰ)当1a =时,抛物线的解析式为22y x x c =-+.∵抛物线经过点(0,1)C -∴001c -+=-解得:1c =-∴抛物线的解析式为221y x x =--∵2221(1)2y x x x =--=--∴抛物线的顶点坐标为(1,2)-;(Ⅱ)当0a >时,由抛物线22y ax ax c =-+经过点(0,1)C -,可知1c =-∴抛物线的解析式为221y ax ax =--∴抛物线的对称轴为:1x =当1x =时,1y a =--∴抛物线的顶点D 的坐标为(1,1)a --;过点D 作DG y ⊥轴于点G在Rt DEG △中,1DG =,1(1)22EG a a a =+---=+, ∴22221(22)DE DG EG a =+=++在Rt DCG 中,1DG =,1(1)CG a a =----=, ∴22221DC DG CG a =+=+. ∵22DE DC =,即228DE DC =,∴()221(22)81a a ++=+ 解得:112a =,232a = ∴抛物线的解析式为2112y x x =--或23312y x x =--.(Ⅲ)当1a <-时,将点(1,1)D a --向左平移3个单位长度,向上平移1个单位长度得(2,)D a '--.作点F 关于x 轴的对称点F ',得点F '的坐标为(0,1)a - 当满足条件的点M 落在线段F D ''上时,FM DN +最小, 此时,210FM DN F D '='+=过点D 作D H y '⊥轴于点H在Rt FD H '中,2D H '=,(1)12F H a a a '=---=-, ∴22222(12)4F D F H D H a '-''=+=+. 又240F D ''=,即2(12)440a -+=. 解得:152=-a ,272a =(舍) ∴点F '的坐标为70,2⎛⎫- ⎪⎝⎭,点D 的坐标为52,2⎛⎫- ⎪⎝⎭. ∴直线F D ''的解析式为732y x =--. 当0y =时,76x =-. ∴76m =-,1136m += ∴点M 的坐标为7,06⎛⎫- ⎪⎝⎭,点N 的坐标为11,16⎛⎫- ⎪⎝⎭.。

天津市东丽区2024届中考联考数学试卷含解析

天津市东丽区2024届中考联考数学试卷含解析

天津市东丽区2024届中考联考数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B.C.D.2.-4的绝对值是()A.4 B.14C.-4 D.143.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2 B.20πcm2C.10πcm2D.5πcm24.计算﹣2+3的结果是()A.1 B.﹣1 C.﹣5 D.﹣65.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h6.如图,若AB∥CD,CD∥EF,那么∠BCE=( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠17.若点A (a ,b ),B (1a,c )都在反比例函数y =1x 的图象上,且﹣1<c <0,则一次函数y =(b ﹣c )x +ac 的大致图象是( )A .B .C .D .8.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .6.06×104立方米/时B .3.136×106立方米/时C .3.636×106立方米/时D .36.36×105立方米/时9.下列运算正确的是( ) A .32()x =x 5 B .55()x x -=-C .3x ·2x =6xD .32x +2 35x 5x =10.如图,直线与y 轴交于点(0,3)、与x 轴交于点(a ,0),当a 满足时,k 的取值范围是( )A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=43,反比例函数y=kx的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于_____________.12.如图,点A在双曲线y=kx的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为_____.13.将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为_____.14.尺规作图:过直线外一点作已知直线的平行线.已知:如图,直线l与直线l外一点P.求作:过点P与直线l平行的直线.作法如下:(1)在直线l上任取两点A、B,连接AP、BP;(2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;(3)过点P、M作直线;(4)直线PM即为所求.请回答:PM平行于l的依据是_____.15.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:评价条数等级五星四星三星二星一星合计餐厅甲538 210 96 129 27 1000乙460 187 154 169 30 1000丙486 388 81 13 32 1000(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在________(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.16.把16a3﹣ab2因式分解_____.三、解答题(共8题,共72分)17.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.18.(8分)如图,AB为⊙O的直径,点E在⊙O上,C为BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若AD=2,AC=6,求AB的长.19.(8分)如图,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,点M为边BC上一动点,联结AM 并延长交射线DC于点F,作∠FAE=45°交射线BC于点E、交边DCN于点N,联结EF.(1)当CM:CB=1:4时,求CF的长.(2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域.(3)当△ABM∽△EFN时,求CM的长.20.(8分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若23DFFO,求证:CD=DH.21.(8分)某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端A处,测得仰角为45,再往建筑物的方向前进6米到达D处,测得仰角为60,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米,3 1.732≈,2 1.414)≈22.(10分)(1)计算:()212018839⎛⎫⨯-- ⎝-⎪⎭+ ;(2)解不等式组 :12(3),612.2x x x x ->-⎧⎪⎨->⎪⎩ 23.(12分)先化简,再求代数式(222311a a a --+-)÷11a +的值,其中a=2sin45°+tan45°. 24.如图,在平面直角坐标系中,矩形OCDE 的三个顶点分别是C (3,0),D (3,4),E (0,4).点A 在DE 上,以A 为顶点的抛物线过点C ,且对称轴x =1交x 轴于点B .连接EC ,AC .点P ,Q 为动点,设运动时间为t 秒.(1)求抛物线的解析式.(2)在图①中,若点P 在线段OC 上从点O 向点C 以1个单位/秒的速度运动,同时,点Q 在线段CE 上从点C 向点E 以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t 为何值时,△PCQ 为直角三角形?(3)在图②中,若点P 在对称轴上从点A 开始向点B 以1个单位/秒的速度运动,过点P 做PF ⊥AB ,交AC 于点F ,过点F 作FG ⊥AD 于点G ,交抛物线于点Q ,连接AQ ,CQ .当t 为何值时,△ACQ 的面积最大?最大值是多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C2、A【解题分析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【题目详解】根据绝对值的概念可得-4的绝对值为4.【题目点拨】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.3、C【解题分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C4、A【解题分析】根据异号两数相加的法则进行计算即可.【题目详解】解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.故选A.【题目点拨】本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.5、C【解题分析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到, 故选C . 6、D 【解题分析】先根据AB ∥CD 得出∠BCD=∠1,再由CD ∥EF 得出∠DCE=180°-∠2,再把两式相加即可得出结论. 【题目详解】 解:∵AB ∥CD , ∴∠BCD=∠1, ∵CD ∥EF , ∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1. 故选:D . 【题目点拨】本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补. 7、D 【解题分析】 将(),A a b ,1,B c a ⎛⎫⎪⎝⎭代入1y x =,得1a b ⨯=,11c a ⨯=,然后分析b c -与ac 的正负,即可得到()y b c x ac=-+的大致图象. 【题目详解】 将(),A a b ,1,B c a ⎛⎫⎪⎝⎭代入1y x =,得1a b ⨯=,11c a ⨯=,即1b a=,a c =. ∴2111c b c c c a c c--=-=-=.∵10c -<<,∴201c <<,∴210c ->. 即21c -与c 异号. ∴0b c -<. 又∵0ac >, 故选D .【题目点拨】本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出b c -与ac 的正负是解答本题的关键. 8、C 【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【题目详解】1010×360×24=3.636×106立方米/时, 故选C . 【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 9、B 【解题分析】根据幂的运算法则及整式的加减运算即可判断. 【题目详解】 A. ()23x =x 6,故错误;B. ()55x x -=-,正确; C. 3x ·2x =5x ,故错误; D. 32x +2 3x 不能合并,故错误, 故选B. 【题目点拨】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则. 10、C 【解题分析】解:把点(0,2)(a ,0)代入,得b=2.则a=,∵, ∴,解得:k≥2.故选C.【题目点拨】本题考查一次函数与一元一次不等式,属于综合题,难度不大.二、填空题(本大题共6个小题,每小题3分,共18分)11、﹣24【解题分析】分析:如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,由tan∠AOC=43可得OF=3x,由此可得OC=5x,从而可得OA=5x,由已知条件易证S菱形ABCO=2S△COD=40=OA·CF=20x2,从而可得,由此可得点C的坐标为(-,这样由点C在反比例函数的图象上即可得到k=-24.详解:如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,∵四边形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四边形AOED和四边形DECB都是平行四边形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=43,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:,∴OF=CF=∴点C的坐标为(-,∵点C在反比例函数kyx=的图象上,∴k=24-=-.故答案为:-24.点睛:本题的解题要点有两点:(1)作出如图所示的辅助线,设CF=4x,结合已知条件把OF和OA用含x的式子表达出来;(2)由四边形AOCB是菱形,点D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.12、16 3.【解题分析】由AE=3EC,△ADE的面积为3,可知△ADC的面积为4,再根据点D为OB的中点,得到△ADC的面积为梯形BOCA面积的一半,即梯形BOCA的面积为8,设A (x,kx),从而表示出梯形BOCA的面积关于k的等式,求解即可. 【题目详解】如图,连接DC,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1. ∴△ADC的面积为4.∵点A在双曲线y=kx的第一象限的那一支上,∴设A点坐标为(x,kx ).∵OC=2AB,∴OC=2x.∵点D为OB的中点,∴△ADC的面积为梯形BOCA面积的一半,∴梯形BOCA的面积为8.∴梯形BOCA的面积=11(2)3822k kx x xx x+⋅=⋅⋅=,解得16k3=.【题目点拨】反比例函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,同底三角形面积的计算,梯形中位线的性质.13、【解题分析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长则所得到的侧面展开图形面积.考点:勾股定理,圆锥的侧面积公式点评:解题的关键是熟记圆锥的侧面积公式:圆锥的侧面积底面半径母线.14、两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.【解题分析】利用画法得到PM=AB,BM=PA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PM∥AB.【题目详解】解:由作法得PM=AB,BM=PA,∴四边形ABMP为平行四边形,∴PM∥AB.故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.【题目点拨】本题考查基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的判定与性质.15、丙【解题分析】不低于四星,即四星与五星的和居多为符合题意的餐厅.【题目详解】不低于四星,即比较四星和五星的和,丙最多.故答案是:丙.【题目点拨】考查了可能性的大小和统计表.解题的关键是将问题转化为比较四星和五星的和的多少.16、a(4a+b)(4a﹣b)【解题分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【题目详解】解:16a3-ab2=a(16a2-b2)=a(4a+b)(4a-b).故答案为:a(4a+b)(4a-b).【题目点拨】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.三、解答题(共8题,共72分)17、(1)200;(2)见解析;(3)126°;(4)240人.【解题分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【题目详解】(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人, ∴喜欢社科类书籍的人数占了总人数的百分比为:24100×100%=12%, ∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.【题目点拨】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键18、(1)证明见解析(2)3【解题分析】(1)连接OC ,由C 为BE ∧的中点,得到12∠=∠,等量代换得到2ACO ∠=∠,根据平行线的性质得到OC CD ⊥,即可得到结论;(2)连接CE ,由勾股定理得到222CD AC AD -=,根据切割线定理得到2CD AD DE =⋅,根据勾股定理得到223CE CD DE =+=90ACB ∠=︒,即可得到结论.【题目详解】()1相切,连接OC ,∵C 为BE 的中点,∴12∠=∠,∵OA OC =,∴1ACO ∠=∠,∴2ACO ∠=∠,∴//AD OC ,∵CD AD ⊥,∴OC CD ⊥,∴直线CD 与O 相切;()2方法1:连接CE ,∵2AD =,6AC =, ∵90ADC ∠=, ∴222CD AC AD =-= ∵CD 是O 的切线,∴2CD AD DE =⋅,∴1DE =, ∴223CE CD DE =+=∵C 为BE 的中点, ∴3BC CE ==∵AB 为O 的直径,∴90ACB ∠=, ∴223AB AC BC =+=.方法2:∵DCA B ∠=∠,易得ADC ACB ∽, ∴AD AC AC AB=, ∴3AB =.【题目点拨】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.19、(1) CF=1;(2)y=22xx-,0≤x≤1;(3)CM=2﹣2.【解题分析】(1)如图1中,作AH⊥BC于H.首先证明四边形AHCD是正方形,求出BC、MC的长,利用平行线分线段成比例定理即可解决问题;(2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得AE EMEB EA=,推出AE2=EM•EB,由此构建函数关系式即可解决问题;(3)如图2中,作AH⊥BC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG.想办法证明CM=CN,MN=DN+HM即可解决问题;【题目详解】解:(1)如图1中,作AH⊥BC于H.∵CD⊥BC,AD∥BC,∴∠BCD=∠D=∠AHC=90°,∴四边形AHCD是矩形,∵AD=DC=1,∴四边形AHCD是正方形,∴AH=CH=CD=1,∵∠B=45°,∴AH=BH=1,BC=2,∵CM=BC=,CM∥AD,∴=,∴=,∴CF=1.(2)如图1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,∵∠AEM=∠AEB,∠EAM=∠B,∴△EAM∽△EBA,∴=,∴AE2=EM•EB,∴1+(1+y)2=(x+y)(y+2),∴y=,∵2﹣2x≥0,∴0≤x≤1.(3)如图2中,作AH⊥BC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG.则△ADN≌△AHG,△MAN≌△MAG,∴MN=MG=HM+GH=HM+DN,∵△ABM∽△EFN,∴∠EFN=∠B=45°,∴CF=CE,∵四边形AHCD是正方形,∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,∴△AHE≌△ADF,∴∠AEH=∠AFD,∵∠AEH=∠DAN,∠AFD=∠HAM,∴∠HAM=∠DAN,∴△ADN≌△AHM,∴DN=HM,设DN=HM=x,则MN=2x,CN=CM=x,∴x+x=1,∴x=﹣1,∴CM=2﹣.【题目点拨】本题考查了正方形的判定与性质,平行线分线段成比例定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质.熟练运用平行线分线段成比例定理是解(1)的关键;证明△EAM ∽△EBA 是解(2)的关键;综合运用全等三角形的判定与性质是解(3)的关键.20、(1)证明见解析;(2)34;(3)证明见解析. 【解题分析】(1)连接OA ,证明△DAB ≌△DAE ,得到AB =AE ,得到OA 是△BDE 的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF ∽△AOF ,根据相似三角形的性质得到CD =14CE ,根据等腰三角形的性质证明. 【题目详解】(1)证明:连接OA ,由圆周角定理得,∠ACB =∠ADB ,∵∠ADE =∠ACB ,∴∠ADE =∠ADB ,∵BD 是直径,∴∠DAB =∠DAE =90°,在△DAB 和△DAE 中, BAD EAD DA DABDA EDA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DAB ≌△DAE ,∴AB =AE ,又∵OB =OD ,∴OA ∥DE ,又∵AH ⊥DE ,∴OA ⊥AH ,∴AH 是⊙O 的切线;(2)解:由(1)知,∠E =∠DBE ,∠DBE =∠ACD ,∴∠E =∠ACD ,∴AE =AC =AB =1.在Rt△ABD中,AB=1,BD=8,∠ADE=∠ACB,∴sin∠ADB=68=34,即sin∠ACB=34;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=12 DE.∴△CDF∽△AOF,∴CD DFAO OF==23,∴CD=23OA=13DE,即CD=14CE,∵AC=AE,AH⊥CE,∴CH=HE=12 CE,∴CD=12 CH,∴CD=DH.【题目点拨】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.21、14.2米;【解题分析】Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根据CD=BC-BD可得关于AB 的方程,解方程可得.【题目详解】设AB x=米∵∠C=45°∴在Rt ABC中,BC AB x==米,60ADB∠=,又6CD=米,∴在Rt ADB 中Tan ∠ADB=AB BD , Tan60°=6x x -解得)114.2x =≈米 答,建筑物的高度为14.2米.【题目点拨】本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件.22、(1)(2)152x <<. 【解题分析】(1)根据幂的运算与实数的运算性质计算即可.(2)先整理为最简形式,再解每一个不等式,最后求其解集.【题目详解】(1)解:原式=1199+⨯=(2)解不等式①,得 5x <.解不等式②,得 12x >. ∴ 原不等式组的解集为152x << 【题目点拨】本题考查了实数的混合运算和解一元一次不等式组,熟练掌握和运用相关运算性质是解答关键.23、11a -,2. 【解题分析】先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【题目详解】解:原式()()()()()()21231,1111a a a a a a a ⎡⎤--=-⋅+⎢⎥+-+-⎢⎥⎣⎦()()()22231,11a a a a a --+=⋅++- 1,1a =-当2sin45tan45a =︒+︒211,==时原式2=== 【题目点拨】考查分式的混合运算,掌握运算顺序是解题的关键.24、(1)y =﹣x 2+2x+3;(2)当t =1511或t =913时,△PCQ 为直角三角形;(3)当t =2时,△ACQ 的面积最大,最大值是1.【解题分析】(1)根据抛物线的对称轴与矩形的性质可得点A 的坐标,根据待定系数法可得抛物线的解析式;(2)先根据勾股定理可得CE ,再分两种情况:当∠QPC =90°时;当∠PQC =90°时;讨论可得△PCQ 为直角三角形时t 的值;(3)根据待定系数法可得直线AC 的解析式,根据S △ACQ =S △AFQ +S △CPQ 可得S △ACQ =1FQ AD 2⋅=﹣14(t ﹣2)2+1,依此即可求解.【题目详解】解:(1)∵抛物线的对称轴为x =1,矩形OCDE 的三个顶点分别是C (3,0),D (3,4),E (0,4),点A 在DE 上,∴点A 坐标为(1,4),设抛物线的解析式为y =a (x ﹣1)2+4,把C (3,0)代入抛物线的解析式,可得a (3﹣1)2+4=0,解得a =﹣1. 故抛物线的解析式为y =﹣(x ﹣1)2+4,即y =﹣x 2+2x+3;(2)依题意有:OC =3,OE =4,∴CE =5,当∠QPC =90°时, ∵cos ∠QPC ==PC OC CQ CE,∴3325-=t t ,解得t =1511; 当∠PQC =90°时,∵cos ∠QCP ==CQ OC CP CE, ∴2335=-t t ,解得t =913. ∴当t =1511或 t =913时,△PCQ 为直角三角形; (3)∵A (1,4),C (3,0),设直线AC 的解析式为y =kx+b ,则有:k b 43k b 0+=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩.故直线AC 的解析式为y =﹣2x+2. ∵P (1,4﹣t ),将y =4﹣t 代入y =﹣2x+2中,得x =1+2t , ∴Q 点的横坐标为1+2t ,将x =1+2t 代入y =﹣(x ﹣1)2+4 中,得y =4﹣24t . ∴Q 点的纵坐标为4﹣24t , ∴QF =(4﹣24t )﹣(4﹣t )=t ﹣24t , ∴S △ACQ =S △AFQ +S △CFQ =12FQ•AG+12FQ•DG , =12FQ (AG+DG ), =12FQ•AD , =12×2(t ﹣24t ), =﹣14(t ﹣2)2+1, ∴当t =2时,△ACQ 的面积最大,最大值是1.【题目点拨】考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,矩形的性质,待定系数法求抛物线的解析式,待定系数法求直线的解析式,勾股定理,锐角三角函数,三角形面积,二次函数的最值,方程思想以及分类思想的运用.。

2020年天津市中考数学试题、试卷(解析版)

2020年天津市中考数学试题、试卷(解析版)

2020年天津市中考数学试题、试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算30+(﹣20)的结果等于()A.10B.﹣10C.50D.﹣502.(3分)2sin45°的值等于()A.1B.√2C.√3D.23.(3分)据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()A.0.586×108B.5.86×107C.58.6×106D.586×105 4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.(3分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C .D .6.(3分)估计√22的值在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 7.(3分)方程组{2x +y =4,x −y =−1的解是( ) A .{x =1y =2 B .{x =−3y =−2 C .{x =2y =0 D .{x =3y =−18.(3分)如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C 的坐标是( )A .(6,3)B .(3,6)C .(0,6)D .(6,6) 9.(3分)计算x (x+1)2+1(x+1)2的结果是( ) A .1x+1 B .1(x+1) C .1 D .x +110.(3分)若点A (x 1,﹣5),B (x 2,2),C (x 3,5)都在反比例函数y =10x 的图象上,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 3<x 1<x 211.(3分)如图,在△ABC 中,∠ACB =90°,将△ABC 绕点C 顺时针旋转得到△DEC ,使点B 的对应点E 恰好落在边AC 上,点A 的对应点为D ,延长DE 交AB 于点F ,则下列结论一定正确的是( )A.AC=DE B.BC=EF C.∠AEF=∠D D.AB⊥DF 12.(3分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=12.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a<−12.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x+7x﹣5x的结果等于.14.(3分)计算(√7+1)(√7−1)的结果等于.15.(3分)不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)将直线y=﹣2x向上平移1个单位长度,平移后直线的解析式为.17.(3分)如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G 为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上,且AB=5 3.(Ⅰ)线段AC的长等于.(Ⅱ)以BC 为直径的半圆与边AC 相交于点D ,若P ,Q 分别为边AC ,BC 上的动点,当BP +PQ 取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P ,Q ,并简要说明点P ,Q 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组{3x ≤2x +1,①2x +5≥−1.②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得 ;(Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .20.(8分)农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm )进行了测量.根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为 ,图①中m 的值为 ;(Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.21.(10分)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.22.(10分)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.23.(10分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开宿舍的时25202330间/min离宿舍的距离/km0.2 0.7(Ⅱ)填空:①食堂到图书馆的距离为 km ;②小亮从食堂到图书馆的速度为 km /min ;③小亮从图书馆返回宿舍的速度为 km /min ;④当小亮离宿舍的距离为0.6km 时,他离开宿舍的时间为 min .(Ⅲ)当0≤x ≤28时,请直接写出y 关于x 的函数解析式.24.(10分)将一个直角三角形纸片OAB 放置在平面直角坐标系中,点O (0,0),点A (2,0),点B 在第一象限,∠OAB =90°,∠B =30°,点P 在边OB 上(点P 不与点O ,B 重合).(Ⅰ)如图①,当OP =1时,求点P 的坐标;(Ⅱ)折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且OQ =OP ,点O 的对应点为O ',设OP =t .①如图②,若折叠后△O 'PQ 与△OAB 重叠部分为四边形,O 'P ,O 'Q 分别与边AB 相交于点C ,D ,试用含有t 的式子表示O 'D 的长,并直接写出t 的取值范围;②若折叠后△O 'PQ 与△OAB 重叠部分的面积为S ,当1≤1≤3时,求S 的取值范围(直接写出结果即可).25.(10分)已知点A (1,0)是抛物线y =ax 2+bx +m (a ,b ,m 为常数,a ≠0,m <0)与x 轴的一个交点.(Ⅰ)当a =1,m =﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x 轴的另一个交点为M (m ,0),与y 轴的交点为C ,过点C 作直线1平行于x轴,E是直线1上的动点,F是y轴上的动点,EF=2√2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是√2 2?2020年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算30+(﹣20)的结果等于()A.10B.﹣10C.50D.﹣50【解答】解:30+(﹣20)=+(30﹣20)=10.故选:A.2.(3分)2sin45°的值等于()A.1B.√2C.√3D.2【解答】解:2sin45°=2×√22=√2.故选:B.3.(3分)据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()A.0.586×108B.5.86×107C.58.6×106D.586×105【解答】解:58600000=5.86×107,故选:B.4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.5.(3分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .【解答】解:从正面看有两列,左列底层一个小正方形,右列三个小正方形.故选:D .6.(3分)估计√22的值在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间【解答】解:∵√16<√22<√25,∴4<√22<5,故选:B .7.(3分)方程组{2x +y =4,x −y =−1的解是( ) A .{x =1y =2 B .{x =−3y =−2 C .{x =2y =0 D .{x =3y =−1【解答】解:{2x +y =4①x −y =−1②, ①+②得:3x =3,解得:x =1,把x =1代入①得:y =2,则方程组的解为{x =1y =2. 故选:A .8.(3分)如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C 在第一象限,则点C的坐标是()A.(6,3)B.(3,6)C.(0,6)D.(6,6)【解答】解:∵四边形OBCD是正方形,∴OB=BC=CD=OD,∠CDO=∠CBO=90°,∵O,D两点的坐标分别是(0,0),(0,6),∴OD=6,∴OB=BC=CD=6,∴C(6,6).故选:D.9.(3分)计算x(x+1)2+1(x+1)2的结果是()A.1x+1B.1(x+1)2C.1D.x+1【解答】解:原式=x+1(x+1)2=1x+1.故选:A.10.(3分)若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=10x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x2【解答】解:∵点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=10x的图象上,∴﹣5=10x,即x1=﹣2,2=10x,即x2=5;5=10x,即x3=2,∵﹣2<2<5,∴x1<x3<x2;故选:C.11.(3分)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DE B.BC=EF C.∠AEF=∠D D.AB⊥DF【解答】解:由旋转可得,△ABC≌△DEC,∴AC=DC,故A选项错误,BC=EC,故B选项错误,∠AEF=∠DEC=∠B,故C选项错误,∠A=∠D,又∵∠ACB=90°,∴∠A+∠B=90°,∴∠D+∠B=90°,∴∠BFD=90°,即DF⊥AB,故D选项正确,故选:D.12.(3分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=12.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a<−12.其中,正确结论的个数是()A.0B.1C.2D.3【解答】解:∵抛物线的对称轴为直线x=1 2,而点(2,0)关于直线x=12的对称点的坐标为(﹣1,0),∵c>1,∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=1 2,∴−b2a=12,∴b=﹣a>0,∴abc<0,故①错误;∵抛物线开口向下,与x轴有两个交点,∴顶点在x轴的上方,∵a<0,∴抛物线与直线y=a有两个交点,∴关于x的方程ax2+bx+c=a有两个不等的实数根;故②正确;∵抛物线y=ax2+bx+c经过点(2,0),∴4a+2b+c=0,∵b=﹣a,∴4a﹣2a+c=0,即2a+c=0,∴﹣2a=c,∵c>1,∴﹣2a>1,∴a <−12,故③正确, 故选:C .二、填空题(本大题共6小题,每小题3分,共18分) 13.(3分)计算x +7x ﹣5x 的结果等于 3x . 【解答】解:x +7x ﹣5x =(1+7﹣5)x =3x . 故答案为:3x .14.(3分)计算(√7+1)(√7−1)的结果等于 6 . 【解答】解:原式=(√7)2﹣12=7﹣1=6. 故答案是:6.15.(3分)不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是38.【解答】解:∵袋子中装有8个小球,其中红球有3个, ∴从袋子中随机取出1个球,则它是红球的概率是38.故答案为:38.16.(3分)将直线y =﹣2x 向上平移1个单位长度,平移后直线的解析式为 y =﹣2x +1 . 【解答】解:将直线y =﹣2x 向上平移1个单位,得到的直线的解析式为y =﹣2x +1. 故答案为y =﹣2x +1.17.(3分)如图,▱ABCD 的顶点C 在等边△BEF 的边BF 上,点E 在AB 的延长线上,G 为DE 的中点,连接CG .若AD =3,AB =CF =2,则CG 的长为32.【解答】解:∵四边形ABCD 是平行四边形, ∴AD =BC ,CD =AB ,DC ∥AB , ∵AD =3,AB =CF =2, ∴CD =2,BC =3, ∴BF =BC +CF =5,∵△BEF 是等边三角形,G 为DE 的中点, ∴BF =BE =5,DG =EG , 延长CG 交BE 于点H , ∵DC ∥AB , ∴∠CDG =∠HEG , 在△DCG 和△EHG 中, {∠CDG =∠HEGDG =EG ∠DGC =∠EGH, ∴△DCG ≌△EHG (ASA ), ∴DC =EH ,CG =HG , ∵CD =2,BE =5, ∴HE =2,BH =3,∵∠CBH =60°,BC =BH =3, ∴△CBH 是等边三角形, ∴CH =BC =3, ∴CG =12CH =32, 故答案为:32.18.(3分)如图,在每个小正方形的边长为1的网格中,△ABC 的顶点A ,C 均落在格点上,点B 在网格线上,且AB =53. (Ⅰ)线段AC 的长等于 √13 .(Ⅱ)以BC 为直径的半圆与边AC 相交于点D ,若P ,Q 分别为边AC ,BC 上的动点,当BP +PQ 取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P ,Q ,并简要说明点P ,Q 的位置是如何找到的(不要求证明) 取格点M ,N ,连接MN ,连接BD 并延长,与MN 相交于点B ′,连接B ′C ,与半圆相交于点E ,连接BE ,与AC 相交于点P ,连接B ′P 并延长,与BC 相交于点Q ,则点P ,Q 即为所求 .【解答】解:(Ⅰ)线段AC 的长等于2+22=√13;(Ⅱ)如图,取格点M ,N ,连接MN , 连接BD 并延长,与MN 相交于点B ′, 连接B ′C ,与半圆相交于点E ,连接BE ,与AC 相交于点P ,连接B ′P 并延长,与BC 相交于点Q , 则点P ,Q 即为所求.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程) 19.(8分)解不等式组{3x ≤2x +1,①2x +5≥−1.②请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得 x ≤1 ; (Ⅱ)解不等式②,得 x ≥﹣3 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来: (Ⅳ)原不等式组的解集为 ﹣3≤x ≤1 .【解答】解:(Ⅰ)解不等式①,得x ≤1;(Ⅱ)解不等式②,得x≥﹣3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣3≤x≤1.故答案为:x≤1,x≥﹣3,﹣3≤x≤1.20.(8分)农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm)进行了测量.根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为25,图①中m的值为24;(Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.【解答】解:(Ⅰ)本次抽取的麦苗有:2÷8%=25(株),m%=1﹣8%﹣12%﹣16%﹣40%=24%,故答案为:25,24;(Ⅱ)平均数是:x=13×2+14×3+15×4+16×10+17×625=15.6,众数是16,中位数是16.21.(10分)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.【解答】解:(1)∵∠APC是△PBC的一个外角,∴∠C=∠APC﹣∠ABC=100°﹣63°=37°,由圆周角定理得:∠BAD=∠C=37°,∠ADC=∠B=63°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=∠ADB﹣∠ADC=90°﹣63°=27°;(2)连接OD,如图②所示:∵CD⊥AB,∴∠CPB=90°,∴∠PCB=90°﹣∠ABC=90°﹣63°=27°,∵DE是⊙O的切线,∴DE⊥OD,∴∠ODE=90°,∵∠BOD=2∠PCB=54°,∴∠E=90°﹣∠BOD=90°﹣54°=36°.22.(10分)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.【解答】解:如图,过点A作AD⊥BC,垂足为D,∵∠ACB=45°,∴AD=CD,设AB=x,在Rt△ADB中,AD=AB•sin58°≈0.85x,BD=AB•cos58°≈0.53x,又∵BC=221,即CD+BD=221,∴0.85x+0.53x=221,解得,x≈160,答:AB的长约为160m.23.(10分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开宿舍的时25202330间/min0.20.50.70.71离宿舍的距离/km(Ⅱ)填空:①食堂到图书馆的距离为0.3km;②小亮从食堂到图书馆的速度为0.06km/min;③小亮从图书馆返回宿舍的速度为0.1km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为6或62min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.【解答】解:(Ⅰ)由图象可得,在前7分钟的速度为0.7÷7=0.1(km/min),故当x=2时,离宿舍的距离为0.1×2=0.2(km),在7≤x≤23时,距离不变,都是0.7km,故当x=23时,离宿舍的距离为0.7km,在28≤x≤58时,距离不变,都是1km,故当x=30时,离宿舍的距离为1km,故答案为:0.2,0.7,1;(Ⅱ)由图象可得,①食堂到图书馆的距离为1﹣0.7=0.3(km),故答案为:0.3;②小亮从食堂到图书馆的速度为:0.3÷(28﹣23)=0.06(km /min ), 故答案为:0.06;③小亮从图书馆返回宿舍的速度为:1÷(68﹣58)=0.1(km /min ), 故答案为:0.1; ④当0≤x ≤7时,小亮离宿舍的距离为0.6km 时,他离开宿舍的时间为0.6÷0.1=6(min ), 当58≤x ≤68时,小亮离宿舍的距离为0.6km 时,他离开宿舍的时间为(1﹣0.6)÷0.1+58=62(min ), 故答案为:6或62; (Ⅲ)由图象可得, 当0≤x ≤7时,y =0.1x ; 当7<x ≤23时,y =0.7; 当23<x ≤28时,设y =kx +b , {23k +b =0.728k +b =1,得{k =0.06b =−0.68, 即当23<x ≤28时,y =0.06x ﹣0.68;由上可得,当0≤x ≤28时,y 关于x 的函数解析式是y ={0.1x(0≤x ≤7)0.7(7<x <23)0.06x −0.68(23<x ≤28). 24.(10分)将一个直角三角形纸片OAB 放置在平面直角坐标系中,点O (0,0),点A (2,0),点B 在第一象限,∠OAB =90°,∠B =30°,点P 在边OB 上(点P 不与点O ,B 重合).(Ⅰ)如图①,当OP =1时,求点P 的坐标;(Ⅱ)折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且OQ =OP ,点O 的对应点为O ',设OP =t .①如图②,若折叠后△O 'PQ 与△OAB 重叠部分为四边形,O 'P ,O 'Q 分别与边AB 相交于点C ,D ,试用含有t 的式子表示O 'D 的长,并直接写出t 的取值范围;②若折叠后△O 'PQ 与△OAB 重叠部分的面积为S ,当1≤1≤3时,求S 的取值范围(直接写出结果即可).【解答】解:(Ⅰ)如图①中,过点P 作PH ⊥OA 于H .∵∠OAB =90°,∠B =30°,∴∠BOA =90°﹣30°=60°,∴∠OPH =90°﹣60°=30°,∵OP =1,∴OH =12OP =12,PH =OP •cos30°=√32,∴P (12,√32).(Ⅱ)①如图②中,由折叠可知,△O ′PQ ≌△OPQ ,∴OP =O ′P ,OQ =O ′Q ,∵OP =OQ =t ,∴OP =OQ =O ′P =O ′Q ,∴四边形OPO ′Q 是菱形,∴QO ′∥OB ,∴∠ADQ =∠B =30°,∵A (2,0),∴OA =2,QA =2﹣t ,在Rt △AQD 中,DQ =2QA =4﹣2t ,∵O ′D =O ′Q ﹣QD =3t ﹣4,∴43<t <2.②①当点O ′落在AB 上时,重叠部分是△PQO ′,此时t =23,S =√34×(23)2=√39, 当23<t ≤2时,重叠部分是四边形PQDC ,S =√34t 2−√38(3t ﹣4)2=−7√38t 2+3√3t ﹣2√3, 当x =√32×(−7√38)=127时,S 有最大值,最大值=4√34, 当t =1时,S =√34,当t =3时,S =12×12×√32=√38, 综上所述,√38≤S ≤4√37. 25.(10分)已知点A (1,0)是抛物线y =ax 2+bx +m (a ,b ,m 为常数,a ≠0,m <0)与x 轴的一个交点.(Ⅰ)当a =1,m =﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x 轴的另一个交点为M (m ,0),与y 轴的交点为C ,过点C 作直线1平行于x 轴,E 是直线1上的动点,F 是y 轴上的动点,EF =2√2.①当点E 落在抛物线上(不与点C 重合),且AE =EF 时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是√22? 【解答】解:(Ⅰ)当a =1,m =﹣3时,抛物线的解析式为y =x 2+bx ﹣3.∵抛物线经过点A (1,0),∴0=1+b ﹣3,解得b =2,∴抛物线的解析式为y=x2+2x﹣3.∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点坐标为(﹣1,﹣4).(Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=﹣m﹣1.∴抛物线的解析式为y=x2﹣(m+1)x+m.根据题意得,点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1﹣(m+1)=﹣m,HA=0﹣m=﹣m,∴AE=√EH2+HA2=−√2m,∵AE=EF=2√2,∴−√2m=2√2,解得m=﹣2.此时,点E(﹣1,﹣2),点C(0,﹣2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF=√EF2−EC2=√7.∴点F的坐标为(0,﹣2−√7)或(0,﹣2+√7).②由N是EF的中点,得CN=12EF=√2.根据题意,点N在以点C为圆心、√2为半径的圆上,由点M(m,0),点C(0,m),得MO=﹣m,CO=﹣m,∴在Rt△MCO中,MC=√MO2+CO2=−√2m.当MC≥√2,即m≤﹣1时,满足条件的点N在线段MC上.MN的最小值为MC﹣NC=−√2m−√2=√22,解得m=−3 2;当MC<√2,即﹣1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC﹣MC=√2−(−√2m)=√2 2,解得m=−1 2.∴当m的值为−32或−12时,MN的最小值是√22.。

2024年天津市中考真题数学试卷含答案解析

2024年天津市中考真题数学试卷含答案解析

2024年天津市中考 数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算()33--的结果是( )A .6B .3C .0D .-6【答案】A【详解】试题解析:根据有理数减法法则计算,减去一个数等于加上这个数的相反数得:3-(-3)=3+3=6.故选A .2.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .【答案】B【分析】本题主要考查了简单组合体的三视图,根据主视图是指从正前方向看到的图形求解即可.【详解】解:由此从正面看,下面第一层是三个正方形,第二层是一个正方形(且在最右边),故选:B .3.估算 的值在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间【答案】C4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .【答案】C【分析】本题考查轴对称图形,掌握轴对称图形的定义:如果一个图形沿某一条直线对折,对折后的两部分是完全重合的,那么就称这样的图形为轴对称图形是解题的关键.【详解】解:A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选C .5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( )A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯61- 的值等于( )A .0B .1C 1D 17.计算3311x x x ---的结果等于( )A .3B .xC .1x x -D .231x -8.若点()()()123,1,,1,,5A x B x C x -都在反比例函数5y x=的图象上,则123,,x x x 的大小关系是( )A .123x x x <<B .132x x x <<C .321x x x <<D .213x x x <<∴10x <,∴132x x x <<.故选:B .9.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳子长y 尺,则可以列出的方程组为( )A . 4.50.51y x x y -=⎧⎨-=⎩B . 4.50.51y x x y -=⎧⎨+=⎩C . 4.51x y x y +=⎧⎨-=⎩D . 4.51x y y x +=⎧⎨-=⎩【答案】A【分析】本题考查的是二元一次方程组的应用.用一根绳子去量一根木条,绳子剩余4.5尺可知:绳子比木条长5尺得: 4.5y x -=;绳子对折再量木条,木条剩余1尺可知:绳子对折后比木条短1尺得:0.51x y -=;从而可得答案.【详解】解:由题意可得方程组为:4.50.51y x x y -=⎧⎨-=⎩,故选:A.10.如图,Rt ABC △中,90,40C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧,交AB于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC ∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为( )A .60B .65C .70D .75【答案】B11.如图,ABC 中,30B ∠= ,将ABC 绕点C 顺时针旋转60 得到DEC ,点,A B 的对应点分别为,D E ,延长BA 交DE 于点F ,下列结论一定正确的是( )A .ACB ACD ∠=∠B .AC DE ∥C .AB EF =D .BF CE⊥【答案】D【分析】本题考查了旋转性质以及两个锐角互余的三角形是直角三角形,平行线的判定,正确掌握相关性质内容是解题的关键.先根据旋转性质得60BCE ACD ∠=∠=︒,结合30B ∠= ,即可得证BF CE ⊥,再根据同旁内角互补证明两直线平行,来分析AC DE ∥不一定成立;根据图形性质以及角的运算或线段的运算得出A 和C 选项是错误的.【详解】解:记BF 与CE 相交于一点H ,如图所示:∵ABC 中,将ABC 绕点C 顺时针旋转60 得到DEC ,∴60BCE ACD ∠=∠=︒∵30B ∠=︒∴在BHC 中,18090BHC BCE B ∠=︒-∠-∠=︒∴BF CE⊥故D 选项是正确的,符合题意;设ACH x ∠=︒∴60ACB x ∠=︒-︒,∵30B ∠=︒∴()180306090EDC BAC x x ∠=∠=︒-︒-︒-︒=︒+︒∴9060150EDC ACD x x ∠+∠=︒+︒+︒=︒+︒∵x ︒不一定等于30︒∴EDC ACD ∠+∠不一定等于180︒∴AC DE ∥不一定成立,故B 选项不正确,不符合题意;∵6060ACB x ACD x ∠=︒-︒∠=︒︒,,不一定等于0︒∴ACB ACD ∠=∠不一定成立,故A 选项不正确,不符合题意;∵将ABC 绕点C 顺时针旋转60 得到DEC ,∴AB ED EF FD ==+∴BA EF>故C 选项不正确,不符合题意;故选:D12.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =-≤≤.有下列结论:①小球从抛出到落地需要6s ;②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度.其中,正确结论的个数是( )A .0B .1C .2D .3【答案】C【分析】本题考查二次函数的图像和性质,令0= 解方程即可判断①;配方成顶点式即可判断②;把2t =和5t =代入计算即可判断③.【详解】解:令0= ,则23050t t -=,解得:10t =,26t =,∴小球从抛出到落地需要6s ,故①正确;∵()223055345t t x =-=--+ ,∴最大高度为45m ,∴小球运动中的高度可以是30m ,故②正确;当2t =时,23025240=⨯-⨯= ;当5t =时,23055525=⨯-⨯= ;∴小球运动2s 时的高度大于运动5s 时的高度,故③错误;故选C .二、填空题13.不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为 .14.计算86x x ÷的结果为 .【答案】2x 【分析】本题考查同底数幂的除法,掌握同底数幂的除法,底数不变,指数相减是解题的关键.【详解】解:862x x x ÷=,故答案为:2x .15.计算)11的结果为 .【答案】10【分析】利用平方差公式计算后再加减即可.【详解】解:原式11110=-=.故答案为:10.【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则及平方差公式是解题的关键.16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第一、第三象限,则k 的值可以是 (写出一个即可).【答案】1(答案不唯一)【分析】根据正比例函数图象所经过的象限确定k 的符号.【详解】解: 正比例函数y kx =(k 是常数,0k ≠)的图象经过第一、三象限,0k ∴>.∴k 的值可以为1,故答案为:1(答案不唯一).【点睛】本题主要考查正比例函数图象在坐标平面内的位置与k 的关系.解答本题注意理解:直线y kx =所在的位置与k 的符号有直接的关系.0k >时,直线必经过一、三象限.0k <时,直线必经过二、四象限.17.如图,正方形ABCD 的边长为,AC BD 相交于点O ,点E 在CA 的延长线上,5OE =,连接DE .(1)线段AE 的长为 ;(2)若F 为DE 的中点,则线段AF 的长为 .∵F 为DE 的中点,A 为GD 的中点,∴AF 为DGE △的中位线,在Rt EAH △中,EAH DAC ∠=∠AH EH∴= 222AH EH AE +=,三、解答题18.如图,在每个小正方形的边长为1的网格中,点,,A F G 均在格点上.(1)线段AG 的长为 ;(2)点E 在水平网格线上,过点,,A E F 作圆,经过圆与水平网格线的交点作切线,分别与,AE AF 的延长线相交于点,,B C ABC △中,点M 在边BC 上,点N 在边AB 上,点P 在边AC上.请用无刻度的直尺,在如图所示的网格中,画出点,,M N P ,使MNP △的周长最短,并简要说明点,,M N P 的位置是如何找到的(不要求证明) .19.解不等式组213317x x x +≤⎧⎨-≥-⎩①②请结合题意填空,完成本题的解答.(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.【答案】(1)1x ≤(2)3x ≥-(3)见解析(4)31x -≤≤【分析】本题考查的是解一元一次不等式,解一元一次不等式组;(1)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案;(2)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案;(3)根据前两问的结果,在数轴上表示不等式的解集;(4)根据数轴上的解集取公共部分即可.【详解】(1)解:解不等式①得1x ≤,故答案为:1x ≤;(2)解:解不等式②得3x ≥-,故答案为:3x ≥-;(3)解:在数轴上表示如下:(4)解:由数轴可得原不等式组的解集为31x -≤≤,故答案为:31x -≤≤.20.为了解某校八年级学生每周参加科学教育的时间(单位:h ),随机调查了该校八年级a 名学生,根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a的值为______,图①中m的值为______,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为______和______;(2)求统计的这组学生每周参加科学教育的时间数据的平均数;(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9h的人数约为多少?【答案】(1)50,34,8,8(2)8.36(3)150人【分析】本题考查条形统计图、扇形统计图,用样本估计总体,众数、中位数、平均数,解答本题的关键是明确题意,利用数形结合的思想解答.(1)根据6h的人数和百分比可以求得本次接受调查的学生人数,再由总人数和8h的人数即可求出m;根据条形统计图中的数据,可以得到这50个样本数据的众数、中位数;(2)根据平均数的定义进行解答即可;(3)在所抽取的样本中,每周参加科学教育的时间是9h的学生占30%,用八年级共有学生数乘以30%即可得到答案.÷=(人),【详解】(1)解:36%50m=÷⨯=,%1750100%34%∴=,34m在这组数据中,8出现了17次,次数最多,∴众数是8,将这组数据从小到大依次排列,处于最中间的第25,26名学生的分数都是8,+÷=,∴中位数是(88)2821.已知AOB 中,30,ABO AB ∠=︒为O 的弦,直线MN 与O 相切于点C .(1)如图①,若AB MN ∥,直径CE 与AB 相交于点D ,求AOB ∠和BCE ∠的大小;(2)如图②,若,OB MN CG AB ⊥∥,垂足为,G CG 与OB 相交于点,3F OA =,求线段OF 的长.∴△AOB 中,A ABO ∠+∠又30ABO ∠=︒,1802AOB ABO ∴∠=︒-∠ 直线MN 与O 相切于点∵ 直线 MN 与 O ∴90OCM ∠=︒∵OC MN∴90OCM COB ∠=∠=22.综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图②,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45︒,测得桥塔底部A 的俯角(CDA ∠)为6︒,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31︒.(1)求线段CD 的长(结果取整数);(2)求桥塔AB 的高度(结果取整数).参考数据:tan310.6,tan60.1︒≈︒≈.23.已知张华的家、画社、文化广场依次在同一条直线上,画社离家0.6km ,文化广场离家1.5km .张华从家出发,先匀速骑行了4min 到画社,在画社停留了15min ,之后匀速骑行了6min 到文化广场,在文化广场停留6min 后,再匀速步行了20min 返回家.下面图中x 表示时间,y 表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(1)①填表:张华离开家的时间/min141330张华离家的距离/km 0.6②填空:张华从文化广场返回家的速度为______km /min ;③当025x ≤≤时,请直接写出张华离家的距离y 关于时间x 的函数解析式;(2)当张华离开家8min 时,他的爸爸也从家出发匀速步行了20min 直接到达了文化广场,那么从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是多少?(直接写出结果即可)【答案】(1)①0.15,0.6,1.5;②0.075;③当04x ≤≤时,0.15y x =;当419x <≤时,0.6y =;当1925x <≤时,0.15 2.25y x =-(2)1.05km【分析】本题考查了从函数图象获取信息,求函数的解析式,列一元一次方程解决实际问题,准确理解题意,熟练掌握知识点是解题的关键.(1)①根据图象作答即可;②根据图象,由张华从文化广场返回家的距离除以时间求解即可;③分段求解,04x ≤≤,可得出0.15y x =,当419x <≤时,0.6y =;当1925x <≤时,设次数的函数解析式为:y kx b =+,把()19,0.6,()25,1.5代入y kx b =+,用待定系数法求解即可.(2)先求出张华爸爸的速度,设张华爸爸距家km y ',则0.0750.6y x '=-,当两人相遇书时有600.1.005 2..2575x x --=,列一元一次方程求解即可进一步得出答案.【详解】(1)解:①画社离家0.6km ,张华从家出发,先匀速骑行了4min 到画社,∴张华的骑行速度为()0.640.15km /min ÷=,∴张华离家1min 时,张华离家0.1510.15km ⨯=,张华离家13min 时,还在画社,故此时张华离家还是0.6km ,张华离家30min 时,在文化广场,故此时张华离家还是1.5km .故答案为:0.15,0.6,1.5.②()1.5 5.1 3.10.075km /min ÷-=,故答案为:0.075.③当04x ≤≤时,张华的匀速骑行速度为()0.640.15km /min ÷=,∴0.15y x =;当419x <≤时,0.6y =;当1925x <≤时,设次数的函数解析式为:y kx b =+,把()19,0.6,()25,1.5代入y kx b =+,可得出:190.625 1.5k b k b +=⎧⎨+=⎩,解得:0.152.25k b =⎧⎨=-⎩,∴0.15 2.25y x =-,综上:当04x ≤≤时,0.15y x =,当419x <≤时,0.6y =,当1925x <≤时,0.15 2.25y x =-.(2)张华爸爸的速度为:()1.5200.075km /min ÷=,设张华爸爸距家km y ',则()0.07580.0750.6y x x =-=-',当两人从画社到文化广场的途中()0.6 1.5y <<两人相遇时,有600.1.005 2..2575x x --=,解得:22x =,∴()0.07580.0750.60.075220.6 1.05km y x x =-=-=⨯-=',故从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是1.05km .24.将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠== .(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围;②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).∵四边形OABC 是平行四边形,2,OC =∴23OC AB OA B AOC ====∠=∠,CB ,∵CH OA⊥∴30OCH ∠=︒此时AB与C O''的交点为E与A重合,OP 如图:当C'与点B重合时,此时AB与C O''的交点为E与B重合,OP=∴t的取值范围为35 22t<<;②如图:过点C作CH OA⊥由(1)得出()13C ,,60COA ∠=︒∴tan 60MP OP ︒=,3MP t =∴3MP t=当213t ≤<时,111222S O P OP MP t '==⨯=⨯()()1122S O P MC MP OP CM =+⨯''=+∴30>,S 随着t 的增大而增大∴在32t =时3333332222S =⨯-=-∵由①得出EO A ' 是等边三角形,EN AO⊥∴()11323222AN AO t t ==-=-',∴tan 3EAO '∠=,3EN AN=∴332EN t ⎛⎫=- ⎪⎝⎭()31333222S t AO BC MP t =--⨯+⨯=-''∴30-<,S 随着t 的增大而减小∴在51124t ≤≤时,则把51124t t ==,分别代入得出57333S =-⨯+=,113S =-⨯+25.已知抛物线()20y ax bx c a b c a =++>,,为常数,的顶点为P ,且20a b +=,对称轴与x 轴相交于点D ,点(),1M m 在抛物线上,1m O >,为坐标原点.(1)当11a c ==-,时,求该抛物线顶点P 的坐标;(2)当OM OP ==a 的值;(3)若N 是抛物线上的点,且点N 在第四象限,90MDN DM DN ∠=︒=,,点E 在线段MN上,点F 在线段DN 上,NE NF +=,当DE MF +a 的值.则901MHO HM ∠=︒=,在Rt MOH 中,由2HM 221312m ⎛⎫∴+= ⎪ ⎪⎝⎭.解得123322m m ==-,(舍)90DNK NDK MDH ∠∠∠=︒-=NDK DMH ∴≌△△.∴1DK MH ==,NK DH ==∴点N 的坐标为()2,1m -.在Rt DMN △中,DMN DNM ∠=∠。

2024年天津市中考数学试卷版,含答案

2024年天津市中考数学试卷版,含答案

2024年天津市中考数学试卷版,含答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 下列哪个数是负数?A. 5B. 0C. 3D. 82. 下列哪个数是偶数?A. 11B. 14C. 17D. 203. 下列哪个数是质数?A. 12B. 17C. 20D. 274. 下列哪个数是合数?A. 11B. 13C. 17D. 195. 下列哪个数是平方数?A. 16B. 18C. 20D. 226. 下列哪个数是立方数?A. 8B. 27C. 64D. 1257. 下列哪个数是无理数?A. √2B. √3C. √4D. √58. 下列哪个数是有理数?A. πB. eC. √2D. √39. 下列哪个数是整数?A. 3.14B. 5.67C. 8.910. 下列哪个数是分数?A. 0.25B. 0.5C. 0.75D. 111. 下列哪个数是正数?A. 3B. 0C. 3D. 812. 下列哪个数是负数?A. 5B. 0C. 3D. 813. 下列哪个数是偶数?A. 11B. 14C. 17D. 2014. 下列哪个数是质数?A. 12B. 17D. 2715. 下列哪个数是合数?A. 11B. 13C. 17D. 19二、判断题(每题1分,共20分)1. 0是正数。

2. 1是质数。

3. 2是偶数。

4. 3是合数。

5. 4是平方数。

6. 5是立方数。

7. 6是无理数。

8. 7是有理数。

9. 8是整数。

10. 9是分数。

11. 10是正数。

12. 1是负数。

13. 2是偶数。

14. 3是质数。

15. 4是合数。

16. 5是平方数。

17. 6是立方数。

18. 7是无理数。

19. 8是有理数。

20. 9是整数。

三、填空题(每空1分,共10分)1. 3的相反数是______。

2. 4的绝对值是______。

3. 5的平方是______。

4. 6的立方是______。

5. √9的值是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.已知一次函数的图象过点 与 ,则该函数的图象与 轴交点的坐标为__________ _.
15.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为 本,付款金额为 元,请填写下表:
x(本)
2
7
10
22
y(元)
16
16.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.
17.如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有_______个.
18.如图,有一个边长为5的正方形纸片 ,要将其剪拼成边长分别为 的两个小正方形,使得 .① 的值可以是________(写出一组即可);②请你设计一种具有一般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性:
19.(本小题6分)
解不等式组
20.(本小题8分)
已知图中的曲线是反比例函数 ( 为常数)图象的一支.
(Ⅰ)这个反比例函数图象的另一支在第几象限?常数 的取值范围是什么?
(Ⅱ)若该函数的图象与正比例函数 的图象在第一象内限的交点为 ,过 点作 轴的垂线,垂足为 ,当 的面积为4时,求点 的坐标及反比例函数的解析式.
如图①,要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?
分析:由横、竖彩条的宽度比为2∶3,可设每个横彩条的宽为 ,则每个竖彩条的宽为 .为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形 .
2.答案答在试卷上无效,每小题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.2sin 的值等于()
A.1B. C. D.2
21.(本小题8分)
有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.
(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果;
(Ⅱ)求摸出的两个球号码之和等于5的概率.
22.(本小题8分)
如图,已知 为 的直径, 是 的切线, 为切点,
A.8.5,8.5B.8.5,9C.8.5,8.75D.8.64,9
7.在 和 中, ,如果 的周长是16,面积是12,那么 的周长、面积依次为()
A.8,3B.8,6C.4,3D.4,6
8.在平面直角坐标系中,已知线段 的两个端点分别是 ,将线段 平移后得到线段 ,若点 的坐标为 ,则点 的坐标为()
(Ⅰ)求 的大小;
(Ⅱ)若 ,求 的长(结果保留根号).
23.(本小题8分)
在一次课外实践活动中,同学们要测量某公园人工湖两侧 两个凉亭之间的距离.现测得 m, m, ,请计算 两个凉亭之间的距离.
24.(本小题8分)
注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.
注意事项:
1.答第Ⅱ卷前,考生务必将密封线内的项目和试卷第3页左上角的“座位号”填写清楚.
2.第Ⅱ卷共8页,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔直接答在试卷上.
二、填空题:本大题共8小题,每小题3分,共24分,请将答案直接填在题中横线上.
11.化简: =.
12.若分式 的值为0,则 的值等于.
13.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形 的中点四边形是一个矩形,则四边形 可以是.
2.在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()
A.2个B.3个C.4个D.5个
3.若 为实数,且 ,则 的值为()
A.1B. C.2D.
4.边长为 的正六边形的内切圆的半径为()
A. B. C. D.
5.右上图是一根钢管的直观图,则它的三视图为()
A.B.C.D.
6.为参加20XX年“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m)为:8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是()
__________________________________________
_________________________________________
_________________________________________
三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程.
20XX年天津市初中毕业生学业考试试卷
数学
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第10页.试卷满分120分,考试时间100分钟.考试结束后,将试卷和答题卡一并交回.祝各位考生考试顺利!
第Ⅰ卷(选择题30分)
注意事项:
1.答第Ⅰ卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔填在“答题卡”上;用2B铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码.
结合以上分析完成填空:如图②,用含 的代数式表示:
=____________________________cm;
=____________________________cm;
矩形 的面积为_____________cm ;
A. B. C. D.
9.如图, 内接于 ,
若 ,则 的大小为()
A. B. C. D.
10.在平面直角坐标系中,先将抛物线 关于 轴作轴对称变换,再将所得的抛物线关于 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为()
A. B.
C. D.
20XX年天津市初中毕业生学业考试试卷
数学
第Ⅱ卷(非选择题 共90分)
相关文档
最新文档