画图法解鸡兔同笼 ppt课件
合集下载
鸡兔同笼PPT课件
腿/条…………源自…………鸡兔同笼,有17个头,42条腿,鸡、 兔各多少只?
小明的储蓄罐里有1角和5角的硬币共27 枚,价值5.1元,1角和5角的硬币各有多 少枚?
硬币总/枚 1 角/ 枚 5角/枚 总价值/元
……
……
……
……
用大小卡车往城市运29吨蔬菜,大 卡车每辆每次运5吨,小卡车每辆每次运 3吨,大小卡车各用几辆能一次运完?
鸡兔同笼
大约一千五百年前,我国古代数学 名著《孙子算经》中记载了一道数学趣 题,这就是著名的“鸡兔同笼”问题。
今有雉兔同笼,上有三 十五头,下有九十四足, 问雉兔各几何?
意思是: 笼子里有若干只鸡和兔。从上 面数,有35个头从下面数,有 94只脚。鸡和兔各有几只?
鸡兔同笼,有20个头,54只脚,鸡 兔各多少只?
先假设鸡 和兔各占一半, 再列表。 头 /个 20 20 20 鸡 /只 10 兔/只 10 脚 /只 60
12
13
8
7
56 54
13只鸡,7只兔。
用画图的 方法试一试。
… 先画20个圆圈表示20个头。
再为每条动物画两只只脚,20 … 只动物只用完40只脚,还多出 14只脚。
… 把剩下的14只脚用完,要给其
解:设有x只兔,那么就有(20-x)只鸡。 鸡兔共有54只脚,就是: 4x+2(20-x)= 54 2x+40 = 54 2x = 14 x=7 20-7=13(只) 答:免有7只,鸡有13只。
鸡兔同笼,有17个 头,42只脚。鸡、兔各有 多少只?
想一想
请利用表格解答下列各题。
头/个
鸡/只
兔/只
从有1只鸡开始一个一个地试,把试的结果列成表格。 头 /个 20 20 20 20 … 20 鸡 /只 1 2 3 4 … 兔 /只 19 18 17 16 … 脚 /只 78 76 74 72 …
鸡兔同笼ppt免费课件
05
如何教授鸡兔同笼问题
教授给小学生的方法
1 2
3
故事化教学
将鸡兔同笼问题转化为一个有趣的故事,通过故事情节引导 学生进入问题情境,增加学习的趣味性。
实物演示
准备一些小玩具或道具,模拟鸡和兔子的数量及动作,帮助 学生直观理解问题。
画图法
教会学生使用简单的图形和线条表示鸡和兔子,通过画图来 理解数量关系。
$number {01}
鸡兔同笼问题
目录
• 鸡兔同笼问题简介 • 鸡兔同笼问题的解决方法 • 鸡兔同笼问题的变种与扩展 • 鸡兔同笼问题的实际应用 • 如何教授鸡兔同笼问题 • 鸡兔同笼问题的趣味性和挑战性
01
鸡兔同笼问题简介
起源与背景
01
鸡兔同笼问题起源于中国古代的 数学趣题,最早的记录可以追溯 到《孙子算经》等古代数学著作 。
例如,题目中给出笼子里有35个头和80只脚,我们可以假设所有的动物都是鸡,那么应该有35只鸡和0只兔,但是这样就会 有70只脚而不是80只脚,所以我们需要增加兔子的数量来使得脚的数量符合题目要求。通过调整我们可以得出实际的鸡和兔 的数量。
03
鸡兔同笼问题的变种与扩展
多个笼子的问题
多个笼子的情况
当有多个笼子,每个笼子里有不 同种类的动物和不同数量的腿时 ,需要分别对每个笼子进行推理 和计算,最后汇总结果。
系统分析
在科学研究和工程领域,系统分析是非 常重要的一环。解决鸡兔同笼问题所使 用的逻辑推理和系统分析方法,可以应 用于更复杂的工程系统和科学问题。
VS
优化问题
在解决优化问题时,我们常常需要设定一 些条件并求解满足这些条件的解。鸡兔同 笼问题的解决方法可以提供一种有效的思 路和方法来解决这类优化问题。
《鸡兔同笼》3种方法PPT课件
根据个人习惯选择
不同人对于方法的偏好不同,可以根据自己的习惯和喜好选择合适 的方法。
根据难度要求选择
如果要求解题步骤简洁易懂,建议选择假设法或方程组法;如果要 求解题步骤详细完整,建议选择代数法。
实际应用案例
鸡兔总数为10只,总腿数为26 只,使用代数法可以列出方程组
求解。
鸡兔总数为15只,总腿数为40 只,使用假设法先假设全部为鸡,
02
03
场景1
当问题中存在多个未知数, 且已知条件可以建立等式 关系时,可以使用方程法 求解。
场景2
当问题中存在多个变量, 且需要求解这些变量的具 体数值时,可以使用方程 法。
场景3
在数学、物理、工程等领 域中,当需要求解代数方 程时,可以使用方程法。
方程法的解题步骤
01
02
03
04
步骤1
根据题目的概率和统计问题
假设法可以用于解决多个未知数的方 程组问题,通过假设某个未知数为已 知数,简化问题。
假设法可以用于解决各种概率和统计 问题,例如假设检验、置信区间等, 通过假设某个条件或变量为已知数或 特定值,进行推理和计算。
解决最优化问题
假设法可以用于解决各种最优化问题, 例如最大值、最小值、最优解等,通 过假设某个变量为最优解,进行推理 和计算。
步骤2
根据题目的条件,建立等式关 系。
步骤3
解等式,求得未知数的值。
步骤4
对解进行验证,确保符合题目 的条件。
02
假设法
定义与特点
定义
假设法是一种通过假设某个条件或变 量,然后根据这个假设进行推理和计 算,最终得出结论的数学方法。
特点
假设法是一种非常灵活的数学方法, 可以用于解决各种不同的问题,特别 是那些难以直接计算的问题。
不同人对于方法的偏好不同,可以根据自己的习惯和喜好选择合适 的方法。
根据难度要求选择
如果要求解题步骤简洁易懂,建议选择假设法或方程组法;如果要 求解题步骤详细完整,建议选择代数法。
实际应用案例
鸡兔总数为10只,总腿数为26 只,使用代数法可以列出方程组
求解。
鸡兔总数为15只,总腿数为40 只,使用假设法先假设全部为鸡,
02
03
场景1
当问题中存在多个未知数, 且已知条件可以建立等式 关系时,可以使用方程法 求解。
场景2
当问题中存在多个变量, 且需要求解这些变量的具 体数值时,可以使用方程 法。
场景3
在数学、物理、工程等领 域中,当需要求解代数方 程时,可以使用方程法。
方程法的解题步骤
01
02
03
04
步骤1
根据题目的概率和统计问题
假设法可以用于解决多个未知数的方 程组问题,通过假设某个未知数为已 知数,简化问题。
假设法可以用于解决各种概率和统计 问题,例如假设检验、置信区间等, 通过假设某个条件或变量为已知数或 特定值,进行推理和计算。
解决最优化问题
假设法可以用于解决各种最优化问题, 例如最大值、最小值、最优解等,通 过假设某个变量为最优解,进行推理 和计算。
步骤2
根据题目的条件,建立等式关 系。
步骤3
解等式,求得未知数的值。
步骤4
对解进行验证,确保符合题目 的条件。
02
假设法
定义与特点
定义
假设法是一种通过假设某个条件或变 量,然后根据这个假设进行推理和计 算,最终得出结论的数学方法。
特点
假设法是一种非常灵活的数学方法, 可以用于解决各种不同的问题,特别 是那些难以直接计算的问题。
鸡兔同笼(共24张PPT)
5 3a 4b 7;
6 2x 10 0.
练一练:
2.如果方程 2 xm1 3 y 2mn 1 是二元一
次方程,那么m= 2 ,n= -3 .
方程 x+y=8 和 5x+3y=34中,x的含义相同吗?y呢?
x,y的含义分别相同,因而x,y必须同时满足方程 x+y=8 和
每张成人票5元,每 张儿童票3元.他们 到底去了几个成人、 几个儿童呢?
设他们中有 x个成人, y个儿童.由此你能得到 怎样的方程?
x y 8
和
5 x 3 y 34
想一想
x-y=2 x+y=8
x+1=2(y-1)
5x+ 3y=34
上面所列方程各含有几个未知数? 2个未知数 含有未知数的项的次数是多少? 次数是1
老牛驮的包裹数比小马驮的多2个,由此你能得到怎样的方程 呢? 老牛的包裹数-小马的包裹数=2个 x-y=2 若老牛从小马的背上拿来1个包裹,这时它们各有几个包裹?由 此你又能得到怎样的方程呢? 老牛的包裹+1=(小马驮的包裹数-1)×2 x+1=2(y-1)
昨天,我们8个人 去红山公园玩,买门 票花了34元.
解:设长为x厘米,宽为y厘米,则
{
解得
x-y=3 2(x+y)=14
x=5
{ y=2
当堂检测
1.在下列四组数值中,哪些是二元一次方程 的解?
x 3y 1
( A)
x 2, y 3;
(B)
(C)
x 10, y 3;
( D)
x 4, y 1; x 5, y 2.
{
x=6 y=2
x=5 ,y =3 是否为方程 x+y =8
《鸡兔同笼》ppt课件
题的准确性和效率。
06 问题拓展与延伸
鸡兔同ห้องสมุดไป่ตู้问题变形
变形一
已知头数和腿数,求鸡兔各多少只。
变形二
已知鸡兔总数和腿数差,求鸡兔各多少只。
变形三
已知鸡兔互换后总腿数的变化,求鸡兔各多少只 。
其他类似数学问题介绍
百僧分馍问题
一百个和尚分一百个馒头,大和尚一人分三个,小和尚三 人分一个,正好分完。问大和尚和小和尚各有多少人?
01
02
03
04
城市规划
运用数学建模思想,可以合理 规划城市布局,优化交通网络
,提高城市运行效率。
经济学
数学建模在经济学中广泛应用 ,如预测市场趋势、分析消费 者行为、制定经济政策等。
工程学
在工程学中,数学建模可以帮 助工程师设计更稳定、更高效 的建筑结构、机械系统等。
医学
数学建模在医学领域也有应用 ,如预测疾病传播、分析药物
验证答案正确性
验证方法
将求得的鸡和兔的数量代入原方程组,检验是否满足题目条件。
注意事项
在验证答案时,要确保代入后的等式左右两边相等,否则需要重新检查求解过程。
05 图形法解题步骤与技巧
绘制图形表示鸡兔数量关系
绘制基本图形
用圆形表示动物头部,用 竖线表示动物身体,用两 条斜线表示鸡的脚,用四 条斜线表示兔的脚。
《鸡兔同笼》ppt课 件
目录
• 问题引入 • 解题思路与方法 • 假设法解题步骤与技巧 • 方程法解题步骤与技巧 • 图形法解题步骤与技巧 • 问题拓展与延伸
问题引入
01
古代数学问题
01
算术问题
古代数学问题多以算术为主,涉及整数、分数、比例等 计算。
06 问题拓展与延伸
鸡兔同ห้องสมุดไป่ตู้问题变形
变形一
已知头数和腿数,求鸡兔各多少只。
变形二
已知鸡兔总数和腿数差,求鸡兔各多少只。
变形三
已知鸡兔互换后总腿数的变化,求鸡兔各多少只 。
其他类似数学问题介绍
百僧分馍问题
一百个和尚分一百个馒头,大和尚一人分三个,小和尚三 人分一个,正好分完。问大和尚和小和尚各有多少人?
01
02
03
04
城市规划
运用数学建模思想,可以合理 规划城市布局,优化交通网络
,提高城市运行效率。
经济学
数学建模在经济学中广泛应用 ,如预测市场趋势、分析消费 者行为、制定经济政策等。
工程学
在工程学中,数学建模可以帮 助工程师设计更稳定、更高效 的建筑结构、机械系统等。
医学
数学建模在医学领域也有应用 ,如预测疾病传播、分析药物
验证答案正确性
验证方法
将求得的鸡和兔的数量代入原方程组,检验是否满足题目条件。
注意事项
在验证答案时,要确保代入后的等式左右两边相等,否则需要重新检查求解过程。
05 图形法解题步骤与技巧
绘制图形表示鸡兔数量关系
绘制基本图形
用圆形表示动物头部,用 竖线表示动物身体,用两 条斜线表示鸡的脚,用四 条斜线表示兔的脚。
《鸡兔同笼》ppt课 件
目录
• 问题引入 • 解题思路与方法 • 假设法解题步骤与技巧 • 方程法解题步骤与技巧 • 图形法解题步骤与技巧 • 问题拓展与延伸
问题引入
01
古代数学问题
01
算术问题
古代数学问题多以算术为主,涉及整数、分数、比例等 计算。
2.1数学广角——鸡兔同笼ppt课件
四、布置作业
作业:预习第104页,例1。
二、尝试探究,寻找方法
(一〕明确方法
问题:这道题怎么解决呢?
预设:画图法 枚举法 列表法 ……
二、尝试探究,寻找方法
(二〕独立思考,尝试探究
二、尝试探究,寻找方法
(三〕交流研讨,创新方法——化繁为简
问题:1. 同学们在解决这个问题时有什么感受呢? 预设:数据太大,画图解决耗费时间;
用枚举法解决可以,但感觉麻烦。
数学广角——鸡兔同笼
主题图
一、创设情境,理解题意
(一〕收集信息,明确条件问题
大约一千五百年前,我国古代数学名著<孙。
今有雉兔同笼,上有三十五头, 下有九十四足,问雉兔各几何?
一、创设情境,理解题意
(二〕理解题意
问题:说一说这道题的意思是什么。
笼子里有若干只鸡和兔。 从上面数,有35个头, 从下面数,有94只脚。 鸡和兔各有几只?
三、再次探究,积累经验
(一〕化繁为简,确定问题
问题:你觉得数据可以改为多少呢? 预设:
(1〕鸡兔同笼,从上面数有5个头, 从下面数,有14只脚,鸡和兔各有几只?
(2〕鸡兔同笼,从上面数有10个头, 从下面数,有24只脚,鸡和兔各有几只?
(3〕鸡兔同笼,从上面数有10个头, 从下面数,有36只脚,鸡和兔各有几只? ……
(三〕交流研讨,提升认识
问题:同学们在解决这个问题时有什么发现? 预设:2. 如果是5只鸡,就有10条腿。
三、再次探究,积累经验
(三〕交流研讨,提升认识
问题:同学们在解决这个问题时有什么发现?
预设:3. 每多一只鸡,就少两条腿;每多一只兔, 就多两条腿。
预设:4.
鸡 543210 兔 012345 脚 10 12 14 16 18 20
鸡兔同笼完整ppt课件
鸡兔同笼问题的介绍和 背景。
02
鸡兔同笼问题介绍
问题来源
中国古代数学问题
鸡兔同笼问题是中国古代著名的数学问题之一,最早见于《孙子 算经》。
现实生活中的应用
除了在数学领域,鸡兔同笼问题在现实生活中也有广泛应用,如 物流、经济等领域。
问题描述
笼子里的鸡和兔
一个笼子里有若干只鸡和兔,从上面数,有35个头,从下面数,有94只脚。问 笼中鸡和兔各有多少只?
鸡兔同笼完整ppt课件
目
CONTENCT
录
• 引言 • 鸡兔同笼问题介绍 • 假设法解题 • 方程法解题 • 图形法解题 • 多种方法比较与总结
01
引言
课件背景
鸡兔同笼问题是中国古代著名的数学问题之一,具 有悠久的历史和广泛的应用。
该问题涉及到方程式的建立和求解,是锻炼学生逻 辑思维和数学能力的好素材。
本课件旨在通过讲解鸡兔同笼问题的解法,帮助学 生掌握相关数学知识和方法。
课件目的
02
01
03
让学生了解鸡兔同笼问题的历史背景和现实意义。
帮助学生掌握方程式的建立和求解方法。
培养学生的逻辑思维和数学能力,提高学生的数学素 养。
课件内容概述
方程式的建立和求解方 法。
多种解法的比较和分析 。
相关数学知识和方法的 拓展和应用。
列表法
适用于数量较少,易于列出所有可能组合的 情况。
假设法
适用于可以通过合理假设简化问题的情况。
画图法
适用于形象直观,需要直观理解问题的情况 。
方程法
适用于需要精确计算,且具备一定数学基础 的情况。
总结与启示
不同方法各有优缺点,应根据 实际情况选择合适的方法。
鸡兔同笼优秀-完整版PPT课件.ppt
2 2 222 2 22
把1只鸡换成1只兔,脚数增加2只。
把1只兔换成1只鸡,脚数减少2只。
换进什么?换几只?
鸡只数 8
?
Байду номын сангаас
兔只数 0
?
脚总数 16
26
少10
兔只数:
1.笼子里有若干只鸡和兔。从上面数,有35
个头,从下面数,有94只脚。鸡和兔各有几
只?
假设全是鸡。
2.停车场上三轮车和小轿车共7辆,总共 有25个轮子。三轮车和小轿车各有多少辆?
笼子里有若干只鸡和兔。从上面数,有 8个头, 从下面数,有26只脚。鸡和兔各有几只?
你从几只开始猜,猜几次猜到结果?请把几次猜 得的数据填在表格中!
鸡 兔 脚
列表法
鸡8 7 6 5 4 3 2 1 0 兔0 1 2 3 4 5 6 7 8 脚 16 18 20 22 24 26 28 30 32
头戴大红帽, 鸡 身披五彩衣。 好像小闹钟, 清早催人起。
(打一动物)
一个动物长得美, 兔 两只耳朵三瓣嘴。 前腿短来后腿长, 赛起跑来最擅长。
(打一动物)
今有雉兔同笼, 化繁为简
上有三十五头,
下有九十四足,
问雉兔各几何?
雉:鸡
笼子里有若干只鸡和兔。从上面数,有385个头, 从下面数,有2964只脚。。鸡鸡和和兔兔各各有有几几只只??
3.六年1班一共有38人,共租8条船,每条 船都坐满了。大、小船各租了几条?
大船乘6人,小船乘4人
把1只鸡换成1只兔,脚数增加2只。
把1只兔换成1只鸡,脚数减少2只。
换进什么?换几只?
鸡只数 8
?
Байду номын сангаас
兔只数 0
?
脚总数 16
26
少10
兔只数:
1.笼子里有若干只鸡和兔。从上面数,有35
个头,从下面数,有94只脚。鸡和兔各有几
只?
假设全是鸡。
2.停车场上三轮车和小轿车共7辆,总共 有25个轮子。三轮车和小轿车各有多少辆?
笼子里有若干只鸡和兔。从上面数,有 8个头, 从下面数,有26只脚。鸡和兔各有几只?
你从几只开始猜,猜几次猜到结果?请把几次猜 得的数据填在表格中!
鸡 兔 脚
列表法
鸡8 7 6 5 4 3 2 1 0 兔0 1 2 3 4 5 6 7 8 脚 16 18 20 22 24 26 28 30 32
头戴大红帽, 鸡 身披五彩衣。 好像小闹钟, 清早催人起。
(打一动物)
一个动物长得美, 兔 两只耳朵三瓣嘴。 前腿短来后腿长, 赛起跑来最擅长。
(打一动物)
今有雉兔同笼, 化繁为简
上有三十五头,
下有九十四足,
问雉兔各几何?
雉:鸡
笼子里有若干只鸡和兔。从上面数,有385个头, 从下面数,有2964只脚。。鸡鸡和和兔兔各各有有几几只只??
3.六年1班一共有38人,共租8条船,每条 船都坐满了。大、小船各租了几条?
大船乘6人,小船乘4人
鸡兔同笼画图法ppt课件.ppt
例4
明明有5元和2元的人民币共7张, 共23元,那5元有几张?
7×2=14(元) 23-14=9(元)
zhì
今有雉兔同笼,上有三十五头,
下有九十四足,问雉兔各几何?
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
意思是:
笼子里有若干只鸡和兔.从上面 数,有35个头,从下面数,有94只脚. 鸡和兔各有几只?
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
鸡
兔 有5只
鸡 有3只
如果全是鸡,一共有多少条腿?
8×2=16(条)
其实是有几条腿呢?
26条
少了几条腿呢? 那就要添上这10条腿。
26-16=10(条)
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
例2
笼子里有若干只鹤和龟。从上 面数,有10个头,从下面数,有28条腿. 鹤和龟各有几只?
鸡兔同笼 画图法
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
例1
笼子里有若干只鸡和兔.从上面 数,有8个头,从下面数,有26条腿.鸡 和兔各有几只?
鸡
兔
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
明明有5元和2元的人民币共7张, 共23元,那5元有几张?
7×2=14(元) 23-14=9(元)
zhì
今有雉兔同笼,上有三十五头,
下有九十四足,问雉兔各几何?
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
意思是:
笼子里有若干只鸡和兔.从上面 数,有35个头,从下面数,有94只脚. 鸡和兔各有几只?
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
鸡
兔 有5只
鸡 有3只
如果全是鸡,一共有多少条腿?
8×2=16(条)
其实是有几条腿呢?
26条
少了几条腿呢? 那就要添上这10条腿。
26-16=10(条)
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
例2
笼子里有若干只鹤和龟。从上 面数,有10个头,从下面数,有28条腿. 鹤和龟各有几只?
鸡兔同笼 画图法
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
例1
笼子里有若干只鸡和兔.从上面 数,有8个头,从下面数,有26条腿.鸡 和兔各有几只?
鸡
兔
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
《鸡兔同笼》PPT课件
在数学中的应用
代数运算
鸡兔同笼问题可以通过代数运算进行求解,涉及到方程的建立和求解等数学知识。通过这类问题的训练, 可以提高学生的代数运算能力和数学思维能力。
数学建模
鸡兔同笼问题可以看作是一个简单的数学建模问题。在数学建模中,需要将实际问题抽象成数学模型,并 运用数学方法进行求解。通过鸡兔同笼问题的学习,可以引导学生初步了解数学建模的思想和方法。
方程法
一元一次方程
设鸡为x只,兔为y只。根据题目中给出的头数和脚数,可以列出一个包含x和y的一 元一次方程,然后解方程求出x和y的值。
二元一次方程组
同样地,也可以设鸡为x只,兔为y只,但是列出两个包含x和y的二元一次方程组。 通过解这个方程组,可以求出x和y的值。
列表法
逐一列举
根据题目中给出的头数和脚数的范围,可以逐一列举出所有可 能的鸡和兔的组合,并计算每种组合下的脚数。然后与实际脚 数进行比较,找出符合条件的组合。
示例
一个笼子里有鸡、兔和猪, 共有35个头和94只脚,求 鸡、兔和猪各有多少只?
不同数量级动物同笼问题
描述
笼子里的动物数量级相差 较大,例如鸡的数量远多 于兔。
解决方法
可以通过合理的估算和假 设,简化问题求解的难度。
示例
一个笼子里有大量的鸡和 少量的兔,共有1000个头 和2700只脚,求鸡和兔各 有多少只?
《鸡兔同笼》问题在现代教育中仍然具有重要意义,被广泛应用于小学数学、初中 数学等课程中。
课件目的
帮助学生理解《鸡兔同笼》问 题的背景、意义和解法,提高 学生的数学素养和解决问题的 能力。
通过对该问题的深入剖析和多 种解法的探讨,培养学生的数 学思维和创新能力。
引导学生体会数学在解决实际 问题中的应用价值,激发学生 学习数学的兴趣和动力。
人教版四年下数学第九单元《鸡兔同笼》课件
9 数学广角——鸡兔同笼
第1课时 鸡兔同笼
人教版数学四年级下册课件
复习导入
我国古代数学名著《孙子算经》中记载了一道数学趣 题——“鸡兔同笼”问题。
探索新知
解决“鸡兔同笼”问题
说一说这道题的意思是什么?
探索新知
这道题的意思就是: 笼子里有若干只鸡和兔。从上面数,有35个头, 从下面数,有94只脚。鸡和兔各有几只? 通过预习,你知道这道题怎么解决吗? 画图法、枚举法、列表法……
补充作业 请完成《,》的相关习题,.,。。
同学们在用以上方法解决这个问题时有什么感受呢?
探索新知
化繁为简: 笼子里有若干只鸡和兔。从上面数,有8个
头,从下面数,有26只脚。鸡和兔各有几只?
自主学习、小组交流: 1.用你喜欢的一种方法独立尝试解决这个问题。 2.在小组内把你的解决方法说给同学听一听。 3.选出小组优秀的同学代表本组进行汇报。
探索新知
方法三:假设法
假设笼子里都是兔。 (1)如果笼子里都是兔,就有 8×4=32 (只)脚,
比题目中多32-26=6 (只)脚。 (2)那么需要用鸡换兔,一只鸡比一只兔少2只
脚,有6÷2=3 (只)鸡。 (3)所以有8-3=5 (只)兔。
探索新知
回顾刚才的解法,“如果都是鸡”“如果都 是兔”与列表法有什么联系?
(选自《,》)
课堂总结
鸡兔同笼你了解了多少?
“鸡兔同笼”问题的解决方法:(假设法) 1.假设全是鸡:兔的只数=(实际脚数-2×鸡兔总
数)÷(4-2),鸡的只数=鸡兔总数-兔的只数。 2.假设全是兔:鸡的只数=( 4×鸡兔总数-实际
脚数)÷(4-2),兔的只数=鸡兔总数-鸡的只数。
课后作业
作 业 请完成教材对应练习。
第1课时 鸡兔同笼
人教版数学四年级下册课件
复习导入
我国古代数学名著《孙子算经》中记载了一道数学趣 题——“鸡兔同笼”问题。
探索新知
解决“鸡兔同笼”问题
说一说这道题的意思是什么?
探索新知
这道题的意思就是: 笼子里有若干只鸡和兔。从上面数,有35个头, 从下面数,有94只脚。鸡和兔各有几只? 通过预习,你知道这道题怎么解决吗? 画图法、枚举法、列表法……
补充作业 请完成《,》的相关习题,.,。。
同学们在用以上方法解决这个问题时有什么感受呢?
探索新知
化繁为简: 笼子里有若干只鸡和兔。从上面数,有8个
头,从下面数,有26只脚。鸡和兔各有几只?
自主学习、小组交流: 1.用你喜欢的一种方法独立尝试解决这个问题。 2.在小组内把你的解决方法说给同学听一听。 3.选出小组优秀的同学代表本组进行汇报。
探索新知
方法三:假设法
假设笼子里都是兔。 (1)如果笼子里都是兔,就有 8×4=32 (只)脚,
比题目中多32-26=6 (只)脚。 (2)那么需要用鸡换兔,一只鸡比一只兔少2只
脚,有6÷2=3 (只)鸡。 (3)所以有8-3=5 (只)兔。
探索新知
回顾刚才的解法,“如果都是鸡”“如果都 是兔”与列表法有什么联系?
(选自《,》)
课堂总结
鸡兔同笼你了解了多少?
“鸡兔同笼”问题的解决方法:(假设法) 1.假设全是鸡:兔的只数=(实际脚数-2×鸡兔总
数)÷(4-2),鸡的只数=鸡兔总数-兔的只数。 2.假设全是兔:鸡的只数=( 4×鸡兔总数-实际
脚数)÷(4-2),兔的只数=鸡兔总数-鸡的只数。
课后作业
作 业 请完成教材对应练习。
鸡兔同笼PPT课件
该问题最早出现在中国古代的《孙子 算经》中,后来被广泛传播和应用, 成为数学和逻辑推理领域中的经典问 题。
问题的数学模型
假设鸡有 x 只,兔子有 y 只。
1. 鸡和兔子的头数总和: x + y = 总头数。
根据题目描述,我们可以 建立以下方程
2. 鸡和兔子的脚数总和: 2x + 4y = 总脚数。
特殊情况的处理
总结词
需要考虑特殊情况,如动物残疾、动 物种类不唯一等
详细描述
假设有1个笼子,里面装有鸡和兔。从 上面看有35个头,从下面看有94只脚 。但是有一只鸡的脚受伤了,只能算 半只脚。问鸡和兔各有多少只?
06
问题总结与反思
问题的历史和影响
鸡兔同笼问题是中国古代数学名题之一,最早出现在《孙子算经》中。 该问题具有很高的数学思维和逻辑推理价值,是中小学数学教育中的经典问题。
问题的起源和传播
鸡兔同笼问题的起源可以追溯到 古代中国,具体时间已不可考。
随着时间的推移,这个问题逐渐 传播到其他国家和地区,成为世 界范围内广为人知的数学问题。
现代的数学教育常常使用鸡兔同 笼问题来教授代数、算术和逻辑
推理等概念。
问题的重要性和意义
鸡兔同笼问题具有很高的教育价值, 它能够激发学生对数学的兴趣和好奇 心。
具体步骤包括:列方程、解方程、得出答案。方程法适用 于解决各种具有等量关系的问题,是数学中常用的一种方 法。
逻辑推理法
逻辑推理法是通过逻辑推理来解决问题的方法。在鸡兔同笼问题中,我们可以根 据题目给出的条件进行逻辑推理,得出答案。
具体步骤包括:分析问题、进行逻辑推理、得出答案。逻辑推理法适用于解决各 种具有逻辑关系的问题,是数学中常用的一种方法。
问题的数学模型
假设鸡有 x 只,兔子有 y 只。
1. 鸡和兔子的头数总和: x + y = 总头数。
根据题目描述,我们可以 建立以下方程
2. 鸡和兔子的脚数总和: 2x + 4y = 总脚数。
特殊情况的处理
总结词
需要考虑特殊情况,如动物残疾、动 物种类不唯一等
详细描述
假设有1个笼子,里面装有鸡和兔。从 上面看有35个头,从下面看有94只脚 。但是有一只鸡的脚受伤了,只能算 半只脚。问鸡和兔各有多少只?
06
问题总结与反思
问题的历史和影响
鸡兔同笼问题是中国古代数学名题之一,最早出现在《孙子算经》中。 该问题具有很高的数学思维和逻辑推理价值,是中小学数学教育中的经典问题。
问题的起源和传播
鸡兔同笼问题的起源可以追溯到 古代中国,具体时间已不可考。
随着时间的推移,这个问题逐渐 传播到其他国家和地区,成为世 界范围内广为人知的数学问题。
现代的数学教育常常使用鸡兔同 笼问题来教授代数、算术和逻辑
推理等概念。
问题的重要性和意义
鸡兔同笼问题具有很高的教育价值, 它能够激发学生对数学的兴趣和好奇 心。
具体步骤包括:列方程、解方程、得出答案。方程法适用 于解决各种具有等量关系的问题,是数学中常用的一种方 法。
逻辑推理法
逻辑推理法是通过逻辑推理来解决问题的方法。在鸡兔同笼问题中,我们可以根 据题目给出的条件进行逻辑推理,得出答案。
具体步骤包括:分析问题、进行逻辑推理、得出答案。逻辑推理法适用于解决各 种具有逻辑关系的问题,是数学中常用的一种方法。
鸡兔同笼ppt课件
自行车和三轮车共10辆,总共有26个轮子,自行车和三 轮车各有多少辆?
全是鹤:
龟: 鹤:
全是龟:
鹤: 龟:
列表法
所以有3只鸡,5只兔。87 654 301 Nhomakorabea234 5
16 18 20 22 24 26
兔子的数量
鸡的数量
全是鸡 兔: 鸡:
全是兔
鸡: 兔:
笼子里有若干只鸡和兔,从上面数, 有35个头,从下面数,有94只脚,鸡 兔各有几只?
有龟和鹤共40只,龟的腿和鹤的腿共 有112条。龟、鹤各有几只?
数学广角 ----鸡兔同笼问题
《孙子算经》
今有雉兔同笼,上有三十五头,下有 九十四足,问雉兔几何?
雉:野鸡
笼子里有若干只鸡和兔,从上面数, 有35个头,从下面数,有94只脚,鸡 兔各有几只?
笼子里有若干只鸡和兔。从上面数,有8个头,从下 面数,有26只脚。鸡和兔各几只?
例1
笼子里有若干只鸡和兔。从上面数,有8个头,从下 面数,有26只脚。鸡和兔各几只?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一队猎人一队狗,两队并成一队走。 数头一共是十二,数腿一共四十二。 几个猎人几只狗?
鸡兔同笼不知数,三十六头笼中露。 数腿一共一百条,各有多少鸡和兔?
“鸡兔同笼”问题
精品资料
1只鸡有(1)个头,(2)条腿。
1只兔有( 1)个头,( 4)条腿。 4只鸡有(4)个头,( 8)条腿。 3只兔有(3)个头,(12)条腿。 3只兔的头数(= ) 3只鸡的头数 ( >、=或<) 1只兔比1只鸡多(2 )条腿。
笼子里有若干只鸡和兔。从 上面数,有8个头,从下面数, 有26条腿。鸡和兔各有几只?
鸡羊同院,头共7个,腿 共20条,求鸡与羊各有 多少只?
龟鹤同游,共10个头,28条腿。 求龟、鹤各有几只?
一队猎人一队狗,两队并成一队走。 数头一共是十二,数腿一共四十二。 几个猎人几只狗?
鸡信有封2里脚Βιβλιοθήκη ,的怪是兔2有元5和脚5。元共的8钞头票,,3共4脚8张。, 鸡34有元多,少你只能?算怪出兔信有封多里少2只元?和5元的钞 票各有多少张吗?
鸡 (2只脚)
怪兔 (5只脚)
2元钞票有2张,5元的钞票有6张
王老师带着36名同学去划船,共租了12 条船,恰好坐满,每条大船坐4人,每条 小船坐2人,问大船和小船各租了几条?
笼子里有若干只鸡和兔。 从上面数,有35个头,从 下面数,有96条腿。鸡和 兔各有几只?
今有雉(zhì)兔同笼,上 有三十五头,下有九十 四足,问雉兔各几何?
孙 子 算 经
翻译
笼子里有若干只鸡和兔。从上
面数,有 365个头,从下面数, 有1964条腿。鸡和兔各有几只?
笼子里若干只鸡和兔。从 上面数有6个头,从下面数 有16条腿。
摆一摆:鸡有几只,兔有几只?
一只鸡有2条腿, 一只兔有4条腿。
鸡兔同笼不知数,三十六头笼中露。 数腿一共一百条,各有多少鸡和兔?
“鸡兔同笼”问题
精品资料
1只鸡有(1)个头,(2)条腿。
1只兔有( 1)个头,( 4)条腿。 4只鸡有(4)个头,( 8)条腿。 3只兔有(3)个头,(12)条腿。 3只兔的头数(= ) 3只鸡的头数 ( >、=或<) 1只兔比1只鸡多(2 )条腿。
笼子里有若干只鸡和兔。从 上面数,有8个头,从下面数, 有26条腿。鸡和兔各有几只?
鸡羊同院,头共7个,腿 共20条,求鸡与羊各有 多少只?
龟鹤同游,共10个头,28条腿。 求龟、鹤各有几只?
一队猎人一队狗,两队并成一队走。 数头一共是十二,数腿一共四十二。 几个猎人几只狗?
鸡信有封2里脚Βιβλιοθήκη ,的怪是兔2有元5和脚5。元共的8钞头票,,3共4脚8张。, 鸡34有元多,少你只能?算怪出兔信有封多里少2只元?和5元的钞 票各有多少张吗?
鸡 (2只脚)
怪兔 (5只脚)
2元钞票有2张,5元的钞票有6张
王老师带着36名同学去划船,共租了12 条船,恰好坐满,每条大船坐4人,每条 小船坐2人,问大船和小船各租了几条?
笼子里有若干只鸡和兔。 从上面数,有35个头,从 下面数,有96条腿。鸡和 兔各有几只?
今有雉(zhì)兔同笼,上 有三十五头,下有九十 四足,问雉兔各几何?
孙 子 算 经
翻译
笼子里有若干只鸡和兔。从上
面数,有 365个头,从下面数, 有1964条腿。鸡和兔各有几只?
笼子里若干只鸡和兔。从 上面数有6个头,从下面数 有16条腿。
摆一摆:鸡有几只,兔有几只?
一只鸡有2条腿, 一只兔有4条腿。