大学高等数学 1_1 映射与函数.

合集下载

高数高等数学1.1映射与函数

高数高等数学1.1映射与函数
1 2 1 O 1 1 2 x
说明 (1) 分段函数对应不同的区间,函数有不同的表达式. (2) 分段函数表示一个函数,不是几个函数. (3) 分段函数的定义域是各分区间的定义域的并集.
1 例6 设 f ( x ) 2 1 解 f ( x) 2
0 x1
求 f ( x 2) .

2( x 2) 1, 0 x 2 1 f ( x 2) 4 ( x 2), 1 x 2 2
2 x 5, 2 x,
2 x 1 1 x 0
.
几个特殊的函数举例 (1)常函数
开区间
( a , b ) { x a x b}
o
闭区间
a
b
x
[a , b ] { x a x b }
o
a
b
x
半开区间
[a , b ) { x a x b}
( a , b] { x a x b }
无限区间
有限区间
称a, b为区间的端点, 称b-a为这些区间的长度.
1, 当 x > 0 0, 当x = 0
1 ,
1
当x<0
y4
3 2 1
o
-1
x
x sgn x x
(4)取整函数 y x
[x]表示不超过x 的最大整数
-4 -3 -2 -1 o -1 1 -2 -3 -4
2 3 4
x
(5)狄利克雷函数
y
1 1 当x是有理数时 • y D( x ) o• 0 当x是无理数时 无理数点
f (sin x ) (sin x )3 1

高等数学上册1.1 映射与函数

高等数学上册1.1 映射与函数
第一节 映射与函数
一、映 射
二、函 数
第一章 函数与极限
一、映射
1. 映射的概念
定义1
设 X 、Y 是两个非空集合, 若存在一个法则 , 使得对X中
每个元素, 按法则 , 在Y中有唯一确定的与之对应, 则称
为从 X 到 Y 的映射. 记作 : X→Y.

X
定义域
D =X
第一节 映射与函数



()


()=
若既是满射又是单射, 则称为双射或一一映射.
第一节 映射与函数
第一章 函数与极限
注 映射又称为算子, 在不同数学分支中有不同的名称.


Y
非空集X
上的泛函
数集Y
非空集X
上的变换
非空集Y
实数集X
上的函数
实数集Y
第一节 映射与函数
第一章 函数与极限
2. 逆映射与复合映射
注 分段函数是一个函数,不是多个函数.
第一节 映射与函数
第一章 函数与极限
2. 函数的几种特性
设函数 = () 的定义域为D , 且数集 ⊂ D 或区间 I ⊂ D .
(1) 有界性
∀ ∈ , ∃ > 0, 使 () ≤, 称 () 在上有界.否则称无界.
∀ > 0, ∃0 ∈ , 使|( 0)|≥M, 称() 在I上无界.
<0
第一章 函数与极限
例8 设为任一实数,不超过的最大整数称为的整数部分,记作[].
例如:
5
= 0,
7
阶梯曲线
2 = 1, [π] = 3, [−1] = −1, [−3.5] = −4.
求函数 = [] 的定义域和值域并画图.

大学高等数学 1_1 映射与函数

大学高等数学  1_1 映射与函数

Page 13
2. 逆映射与复合映射 (1) 逆映射的定义 定义5 定义 若映射 使 称此映射 f −1为 f 的逆映射 . 习惯上 , y = f (x), x ∈D 的逆映射记成
D
f
f −1
为单射, 为单射 则存在一新映射 其中
f (D)
y = f (x) , x ∈ f (D)
例如, 例如 映射 其逆映射为
Page 10
对映射 为满射; 引例2, 若 f ( X ) = Y, 则称 f 为满射 引例 3
X

f
Y = f (X )

X
Y
为单射; 引例2 则称 f 为单射 引例 既是满射又是单射, 若 f 既是满射又是单射 则称 f 为双射 或一一映射 或一一映射. 引例2 引例
Page 11
例1. 海伦公式 (满射 满射) 满射 如图所示, 例2. 如图所示 对应阴影部分的面积 则在数集 满射) 满射 自身之间定义了一种映射 (满射 如图所示, 例3. 如图所示 则有
为奇函数 .
Page 23
(4) 周期性
∀x ∈D, ∃l > 0, 且 x ± l ∈D, 若
一般指最小正周期 则称 f (x)为周期函数 , 称 l 为周期 ( 一般指最小正周期 ).
y
π −2π −
o π 2π x
周期为 周期函数不一定 不一定存在最小正周期 注: 周期函数不一定存在最小正周期 . 例如, 例如 常量函数 f (x) = C 狄里克雷函数
Page 4
半开区间 [ a , b ) = { x a ≤ x < b } ( a , b ] = {x a < x ≤ b} 无限区间 [ a , + ∞ ) = { x a ≤ x } (−∞ , b ] = { x x ≤ b }

《高等数学》第一节:映射与函数

《高等数学》第一节:映射与函数
[1,1] [ 0, ]
[

, ] 2 2
y
y tan x 定义域 (,) y x 值域 ( 2 , 2 ) 2 y arctan x

2


2
0

2
x
| arctanx |
定义域 (,)

2

2
y
y x
0
2
y arc cot x x
x
shx e e 双曲正切 thx x chx e e x 反双曲正切
1 1 x y arthx ln . 2 1 x
(3)非初等函数 狄利克雷函数、 取整函数、 分段函数等
练习
[ x] (1) f ( x )定义域为 (0,1),求 g( x ) f ( )的定义域 . x D { x R | x 1且x 2,3,}.
cos

,
(2)初等函数
由常数和基本初等函数经过有限次四则运算和 有限次的函数复合步骤所构成并可用一个式子表示 的函数,称为初等函数.
例3:双曲函数与反双曲函数 双曲函数 反双曲函数
e x e x 双曲正弦 shx 2 e x e x 双曲余弦 chx 2
x
反双曲正弦 y arshx ln( x x 2 1) 反双曲余弦 y archx ln( x x 2 1)
高 等 数 学
研究对象 研究内容 研究工具
上册 极限
一元函数 微分学与积分学 函数 微分方程 空间解析几何与向量代数 多元函数 微分学与积分学 下册 无穷级数
高 等 数 学
应用
用哪个? 条件?
不合条件, 改造!

青岛理工大学高等数学练习教程答案

青岛理工大学高等数学练习教程答案

第一章 函数与极限 第一节 映射与函数选择题1.已知函数)(x f 的定义域是()+∞∞-,,满足)()()(y f x f y x f +=+则)(x f 是( ) A.奇函数 B.偶函数 C.非奇非偶 D.不能确定2.已知2x e x f =)(()[]x x φf -=1,且()0x ≥φ,()=x φ( )A.()x -1ln 1<xB.()x -1ln 0≤xC.()x -1ln 1-<xD.()x -1ln 0x <3.设2211x x x x f +=⎪⎭⎫ ⎝⎛+,则()=x f ( )A.22-xB.22+xC.2-xD.x xx 1122-+4.已知21x y --=直接函数的反函数是21x y --=,则直接函数的定义域是( )A.()01,-B.[]11,-C.[]01,-D.[]10, 5.()x e x x x f cos sin = ()+∞<<∞-x 是( )A.有界函数B.单调函数C.周期函数D.偶函数6.设()x f 与()x g 分别为定义在()+∞∞-,上的偶函数与奇函数,则()()x g f 与()()x f g 分别( )A.都是偶函数B.都是奇函数C.是奇函数与偶函数D.是偶函数与奇函数7.设()⎩⎨⎧>+≤=0022x x x x x x f ,则( )A.()()⎩⎨⎧>+-≤-=-0022x xx x x x f B.()()⎩⎨⎧>-≤+-=-022x xx x x x f C.()⎩⎨⎧>-≤=-0022x x x x x x f D.()⎩⎨⎧>≤-=-0022x xx x x x f8.()x f y =的定义域是[]11,-,则()()a x f a x f y -++=的定义域是( ) 其中10≤≤aA.[]11+-,a aB.[]11+---a ,aC.[]11-+-,a aD.[]11+--a ,a9.函数()x f y =与其反函数()x f y 1-=的图形对称于直线( ) A.0=y B.0=x C.x y = D.x y -= 答案ABACD ADDC 练习题1.设()x x f y +==11,求()[]x f f解:()[]x f f xxx++=++=21111121-≠-≠,x x 2.指出下列两个函数是否相同,并说明理由 (1)()1+=x x f ()()21x x g += (2)()x x f =,()()x x g arcsin sin =(3)()xx x f =,()xx x g 2=解:(1)不同,对应法则不同(2)不同,定义域不同()x f 的是()+∞<<∞-x ,()x g 的是[]11,- (3)相同,定义域和对应法则都相同3.若()⎩⎨⎧≥<=02x xx xx f ,求()[]x f f 解:()[]()()()[]()()()[]⎩⎨⎧≥<=⎩⎨⎧≥<=00022x x f x x f x f x f x f x f x f f 4.(2001数学二考研题)()⎩⎨⎧>≤=1011x x x f ,则()[]x f f 解()[]()()()()∞+∞-∈≤⎩⎨⎧>≤=,x x f x f x f x f f 1111而5.()⎩⎨⎧<<-≤≤==012102x x x x x f y 求()1+x f解()()()()()⎩⎨⎧-<<-+≤≤-+=⎩⎨⎧<+<-+≤+≤+=+1212011011121101122x x x x x x x x x f6.设()x F 是定义在关于原点对称的某数集X 上的函数,证明()x F 必可表示成一个偶函数与一奇函数之和。

高等数学映射与函数

高等数学映射与函数

A ( r )13
4、函数值
值与之相对应, 则称此值为 y f x 在 x0 处的函数值
记为: f x0 或
y 当 x 在D内取定一个数值 x0时, f x 有确定的 f x x x 0
x x0 f x0
y
f x
x x0
当 x 取遍 D 内的各个数值时, 对应的函数值的全体
f (x) f (x)
在 [ a, b ] 上为有界函数. 在 [ a, b ] 上为无界函数. y

M f x M 有界函数必介于直线 y M 与 y M 之间。
f ( x) M
yM
a
0
b
y M
17
x
说明: 还可定义有上界、有下界、无界。
有时还要用到有上界或有下界。如果存在常数M(N),
或当 f ( x) 0 (或 f ( x) 0) 时,判别
f ( x2 ) / f ( x1 ) 1 (或 1) 。
例如
f x x
2
+ 在 0, 内是单调增函数。 - 0 在 ,内是单调减函数。
在 , 内不是单调函数。 - +
这说明:有时一个函数在整个区间D不是单调的, 而将D分成几个小区间, 却在每个小区间上是单调的, 这需要分别讨论。
x x

x ar xar
x
ar
a
ar
10
二、函数 1、函数的定义 设 x 与 y 是两个变量,当 x 在一定范围D内任取定一 数值时, y 按照一定的法则总有确定的数值与它对应。
y 则称 y 是 x 的函数。 x为自变量; 为因变量, D为定义域。 记为 y f ( x) , x D

高等数学第一章函数与极限第一节映射与函数.ppt

高等数学第一章函数与极限第一节映射与函数.ppt

f ( x ) g f ( x ) e
e1 e0 e 1
| x |1 e | x |1 | x | 1 1 | x |1 1 | x |1 e | x |1
18
复合次序不同 ,结果不相同 .
高 等 数 学 PPT 课件
第 一 章
教材 : 同济 高等数学 第五版
欢迎您加入本课堂,希望 您刻苦学习,努力争取最优异 的成绩。
2
第一章
第一节
函数与极限
映射与函数
3
一 . 邻域 : U ( a ,) x x a


x a x a
( 取整函数) 3 ) .y int( x ) ( x 1 ,x ] 上的整数
x 1 int( x ) x
6, 例 . int( 5 . 6 )
( 6 . 6 , 5 . 6 ]
int( 3 . 8 ) 3 ,
int( 0 . 4 ) 0 ,
int( 5 ) 5 ,
2 2 2 2 2 ch x 1 . ch 2 x ch x sh x 1 2 sh x x x y y x x y y e e e e e e e e sh x ch y ch x sh y 2 2 2 2 x yx y x y x yx y x yx y x y e e e e e e e e 4 4 x y x y 2 e 2 e sh ( x y ) 14 4




9
以上五类函数称为基本 初等函数 . (P 17 )
要熟练掌握基本初等函 数的图形 ,有界性 ,单调性 , 奇偶性 , 周期性 , 定义域 , 值域等 .

高等数学---映射与函数

高等数学---映射与函数

A {a1 , a2 ,, an }
描述法 M { x x所具有的特征}
N , N , Z , Q, R, R* , R
2
映射与函数
(6)关系 子集 ( 包含 ), A B : x A x B; 相等, A B : A B, 且 B A ;
不含任何元素的集合称为空集, 记作 , 规定空集为任何集合的子集. 2.集合的运算
对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有
(x1) < (x2) (或(x1) > (x2) )
则称函数 f ( x )在区间 I上是 单调增加(或单调减少).
y
y f ( x)
y
f ( x2 )
y f ( x)
f ( x1 )
f ( x2 )
f ( x1 )
第一节 映射与函数
基本概念
函数概念 函数的特性 反函数 小结 作业 思考题
1
第一章 函数与极限
映射与函数
一、集合
1.集合概念
(1)定义 具有某种特定性质的事物的总体称为集合.
组成这个集合的事物称为该集合的元素.
(2)有限集和无限集
(3)符号
a M , a M.
(4)表示 列举法 (5)常用集合
o
x1
x2
I
x
o
x1
x2
I
x
注意 函数的单调性是一个与自变量取值范围有关的相对 30 性概念.
映射与函数
(3)函数的奇偶性 定义 设D关于原点对称, 对于x D, 有
f (-x) = f (x) (或f (-x) = - f (x) )
则称 f (x) 为偶函数(或奇函数).

高数课件-映射与函数

高数课件-映射与函数

义的一切实数组成的合集,这种定义域称为函数的自然定义域。在这种约定之下,一
般的用算是表达的函数可用“y=∱(x)”表达,而不必再出Df。
例如,函数y=
1- x 2 的定义域是封闭间 -1,1 ,函数y=
1 的定义域是开区间 1- x2
(-1,1)。
表示函数的主要方法有三种:表格法、图形法、解析法(公 式法)。其中,用图形法表下)的像,并记作∱(χ),即
y=∱(χ), 而元素χ称为元素y(在映射∱下)的一个原像;集合X称为映射∱的定义域,记作Df, 即Df=X;X中所有元素的像所组成的集合称为映射∱的值域,记作Rf或者∱(χ),即
Rf=∱(X)= f(x) I χ∈X
在上述映射的定义中,需要注意的是:
映 射

主讲人: 日期 :
函 数
第一节 映射与函数
映射是现代数学中的一个基本概念,而函数是微积分的研究对象,也是映射的一 种。本节主要介绍映射、函数及有关概念,函数的性质与运算等。
一.映射
1.映射概念 定义 设X、Y是两个非空集合,如果存在一个法则∱,使得对X中的每个元素χ,按法则∱, 在Y中有唯一确定的元素y与之对应,那么称∱为从X到Y的映射,记作
由复合映射的定义可知,映射ℊ和∱构成复合映射的条件是:ℊ的值域Rg必须包含 在∱的定义域内,即Rg⊂Df,否则,不能构成复合映射。由此可以知道,映射ℊ和∱的复 合是有顺序的,∱∘ℊ有意义并不表示ℊ∘∱也有意义。即使∱∘ℊ与ℊ∘∱都有意义,复合映 射∱∘ℊ与ℊ∘∱也未必相同。
例4
设有映射ℊ:R→ -1,1 ,对每个x∈R,ℊ(x)=sinx;映射∱: -1,1 → 0,1 , 对每个 u∈ -1,1 ,∱(u)= 1- u2,则映射ℊ和∱构成的复合映射∱∘ℊ:R→ 0,1

1-1函数与映射

1-1函数与映射

在[1,+ ],有界;在(0, 1)无界。
2019年12月24日星期二
蚌埠学院 高等数学
18
2)单调性
设函数 f (x)的定义域为D, 区间I D,
如果对于区间 I 上任意两点 x1及 x2, 当 x1 x2时,
恒有 (1) f (x1) f (x2 ), 则称函数 f (x)在区间I上是单调增加的 ;
蚌埠学院 高等数学
21
设D关于原点对称 , 对于x D, 有
f (x) f (x) 称 f (x)为奇函数 ;
-x f (x)
y
y f (x)
f (x)
o
xx
奇函数
2019年12月24日星期二
蚌埠学院 高等数学
22
4)周期性 设函数f ( x)的定义域为D, 如果存在一个不为零的
y sin x2 y u u sin v v x2
或 y u u sin x 注:不是任何函数都可以复合成一个函数。 如: y u 与 u sin x 不能进行复合。
2019年12月24日星期二
蚌埠学院 高等数学
28
4. 函数的运算
和、差、积、商。 注:只有具备公共定义域的函数才能运算 。
y
y f (x)
f (x1)
f (x2 )
o
x
I
2019年12月24日星期二
蚌埠学院 高等数学
20
3)奇偶性
设D关于原点对称, 对于x D, 有 f ( x) f ( x) 称 f ( x)为偶函数;
y y f (x)
f (x)
f (x)
-x o x
x
偶函数

同济七版高等数学上册 大一上学期 映射与函数 ppt

同济七版高等数学上册 大一上学期 映射与函数 ppt

于是,
四. 初等函数
(1) 基本初等函数 常数函数、幂函数、指数函数、 对数函数、 三角函数、 反三角函数 (2) 初等函数
由常数及基本初等函数经过有限次四则运 算和复合步骤所构成 ,并可用一个式子表示 的函数 ,称为初等函数 .否则称为非初等函数 .
例如
y x3 5x2 1
y ex ex
(1,0)
(a 1)
4.三角函数
正弦函数 y sin x
余弦函数 y cos x
正切函数 y tan x 余切函数 y cot x
正割函数 y sec x 余割函数 y csc x
5.反三角函数 反正弦函数 y arcsin x 反余弦函数 y arccos x
反正切函数 y arctan x
③牢固掌握极限运算法则,极限的性质,尤其是函 数 极限的保号性质
④理解极限存在准则,熟记两个重要极限及其证明 方法,灵活地运用它们及各种变形公式求极限
⑤正确理解连续概念,理解间断点的分类
⑥理解初等函数的连续性,掌握闭区间上连续函数 的性质
第一节 映射与函数
一、集合 二、映射 三、函数
一、集合
1.集合: 具有某种特定性质的事物的总体. 组成这个集合的事物称为该集合的元素.
几个特殊的函数举例
y
(1) 符号函数
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
1
o
x
-1
x sgn x x
y
(2) 取整函数 y=[x]
4 3
[x]表示不超过 x 的最大整数
2
阶梯曲线
1 -4 -3 -2 -1 o -11 2 3 4 5 x

高等数学第一章习题集(函数与极限)

高等数学第一章习题集(函数与极限)

6
高等数学习题集
(5) lim 1 x 1 x ;
x0
x
(6)
lim
x1

x
1 1

3 x3 1


3.

lim
x

x2 1 x 1

ax

b


0,
求 a 和 b 的值.
7
高等数学习题集
§1.6 极限存在准则 两个重要极限
1. 选择题.
(1)
lim
x x0
f
(x )存在是
f (x) 在 x0 的某一去心领域内有界的______ 条件.
(2)
设函数
ax2 f (x)
2x 1
x 1, 且 lim f (x) 存在,则 a _____. x 1 x1
3* 根据函数极限的定义证明:
(1)
lim
x
1 x3 2x3
x x0
x x0
A) lim f x lim f x
x x0
x x0
C) lim f x 不一定存在 x x0
(2) lim x2 9 (
).
x3 x 3
).
B) lim f x lim f x
x x0
x x0
1 x sin x 1
(题集
§1.8 函数的连续性与间断点
1. 选择题.
(1) 设 f x 在 x x0 处 连 续 , 且 存 在 0 , 使 当 0 x x0 时 有 f x 0, 则
(
).
A) f x0 0

同济大学数学系高等数学第6版笔记和课后习题答案

同济大学数学系高等数学第6版笔记和课后习题答案

第1章函数与极限1.1 复习笔记一、映射与函数1.集合(1)集合概念集合(简称集)是指具有某种特定性质的事物的总体,组成这个集合的事物称为该集合的元素(简称元)。

常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合的元素。

如果a是集合A的元素,就说a属于A,记作a∈A;如果a不是集合A的元素,就说a不属于A,记作a A。

一个集合,若它只含有有限个元素,则称为有限集;不是有限集的集合称为无限集。

(2)表示集合的方法通常有以下两种:①列举法,就是把集合的全体元素一一列举出来表示;②描述法,若集合M是由具有某种性质P的元素x的全体所组成的,就可表示成M={x|具有性质P}。

(3)常见的集合①空集,指不包含任何元素的集合,记为φ;②非负整数集,全体非负整数即自然数的集合,记作N,即N={0,1,2,…,n,…};③正整数集,全体正整数的集合,记作,即={1,2,3,…,n,…};④整数集,全体整数的集合,记作Z,即Z={…,-n,…,-2,-1,0,1,2,…,n,…};⑤有理数集,全体有理数的集合,记作Q,即Q={∈z,q∈且P与q互质};⑥实数集,全体实数的集合,记作R,R为排除数0的实数集,为全体正实数的集合。

(4)集合的关系①包含关系设A、B是两个集合,如果集合A的元素都是集合B的元素,则称A是B的子集,记作A B(读作A包含于B)或B A(读作B包含A)。

规定空集φ是任何集合A的子集,即φA。

若且,则称A是B的真子集,记作(读作A真包含于B)。

②等价关系若集合A与集合B互为子集,即A B且B A,则称集合A与集合B相等,记作A=B。

(5)集合的运算①并、交、差a.并集设A、B是两个集合,由所有属于A或者属于B的元素组成的集合,称为A与B的并集(简称并),记作,即。

b.交集由所有既属于A又属于B的元素组成的集合,称为A与B的交集(简称交),记作,即。

c.差集由所有属于A而不属于B的元素组成的集合,称为A与B的差集(简称差),记作A\B,即。

1-1第一节 映射与函数

1-1第一节 映射与函数
有限区间
学 数
高 等 数 学 电 子 教 案
无限区间:
[a, +∞) = {x a ≤ x}
(−∞, b) = {x x < b}
o
a
x
o
区间长度的定义:
学 数
b
x
两端点间的距离(线段的长度)称为区间的长度.
高 等 数 学 电 子 教 案 3、邻域 、
设a与δ 是两个实数 , 且δ > 0.
数集{x x − a < δ }称为点a的δ 邻域 ,
注:x(自变量), y(函数),f(对应规则), D(定义域), W(值域)这五个要素中, 定义域和对应规则是最重要的 两个要素. 如果两个函数的定义域相同,对应法则也相同, 则这两个函数是相同的。
学 数
高 等 数 学 电 子 教 案
注:1。在定义1中, 对于每一个x, 只能有一个y与它对应, 这种函数称为单值函数;否则为多值函数. 多值函数是一个x值对应二个或二个以上的y值. 2。函数的表示方法: 解析法(公式法),图象法和 列表法
注意:邻域总是开集。
学 数
高 等 数 学 电 子 教 案 二、映射 1、概念
设X,Y是两个非空集合,如果存在一个法则 f,使得对 X中每个元素x,按法则 f,在Y中有唯一确定的元素y与 之对应,则称f 为从X到Y的映射. 记作 f :X→Y . 其中y称为元素x(在映射f下)的像,记作f(x),即y=f(x)
学 数
元素x称为元素y(在映射f下)的原像 集合X称为映射f的定义域,记作Df ,即Df=X
高 等 数 学 电 子 教 案
X中所有元素的像所组成的集合称为映射 f 的值域,记作 Rf或 f(X),即 R f = f ( X ) = { f ( x) | x ∈ X }. 注: 1。构成映射的三个要素: 集合X,即定义域Df =X; 集合Y,即值域的范围:Rf ⊂ Y;

在线MOOC教材《高等数学》教材课后习题参考解答

在线MOOC教材《高等数学》教材课后习题参考解答

第一本在线课程配套教材,“十三五”普通高等教育本科国家级规划教材,国防科技大学朱健民、李建平主编,高等教育出版社出版的 《高等数学》教材课后习题解答.这些课后习题都是非常经典的,学习高数课程应知应会,必须熟练掌握的基本典型练习题,不管是对于课程学习、还是考研、竞赛等相关内容的学习、复习、备考,都应该逐题过关!参考习题解答列表第一章 映射与函数习题1.1 《集合与映射》部分练习参考解答习题1.2 《函数》部分练习参考解答习题1.3 《曲线的参数方程与极坐标方程》部分练习参考解答第二章 数列极限与数值级数习题2.1 《数列极限的概念与性质》部分练习参考解答习题2.2 《数列收敛的判定方法》部分练习参考解答习题2.3 《数值级数的基本概念与性质》部分练习参考解答习题2.4-《同号级数的敛散性判别方法》部分习题参考解答习题2.5-《变号级数收敛性判别方法》部分习题参考解答第三章 函数极限与连续习题3.1-《函数极限的概念》部分习题参考解答习题3.2-《函数极限运算法则及存在性的判定准则》部分习题及参考解答 习题3.3-《无穷小的比较与渐近线》练习题及参考解答习题3.4-《函数的连续性与间断点》练习题及参考解答第四章 导数与不定积分习题4.1 《导数的概念及基本性质》练习题及参考解答习题4.2-《导数的计算》专题练习及参考解答习题4.3-《一元函数的微分》专题练习与参考解答习题4.4-《变化率与相关变化率》专题练习与参考解答习题4.5-《不定积分基本概念、性质和基本计算》专题练习与参考解答 第五章 导数的应用习题5.1-《极值与最优化》专题练习专题练习与参考解答习题5.2-《微分中值定理及其应用》专题练习专题练习与参考解答习题5.3-《泰勒公式及其应用》专题练习与参考解答习题5.4-《函数单调性与凹凸性及其应用》专题练习及参考解答习题5.5-《曲率》专题练习及参考解答第六章 定积分及其应用习题6.1-《定积分基本概念与性质》专题练习及参考解答习题6.2-《变限积分及其应用》专题练习及参考解答习题6.3-《不定积分与定积分》专题练习及参考解析习题6.4 -《定积分的应用》专题练习及其参考解析习题6.5 -《反常积分》专题练习及其参考解析第七章 常微分方程习题7.1-《微分方程的基本概念》专题练习与参考解答习题7.2-《一阶微分方程》专题练习及参考解答习题7.3 -《可降阶微分方程》专题练习及参考解答习题7.4 -《线性微分方程》专题练习及参考解答第八章 空间解析几何习题08-01 《向量及其运算》专题练习与参考解答习题08-02 《空间平面与直线》专题练习与参考解答习题08-03-《空间曲面及其方程》专题练习与参考解答习题08-04-《空间曲线及其方程》专题练习与参考解答第九章 向量值函数的导数与积分习题09-123-《向量值函数》专题练习与参考解析第十章 多元函数的导数及其应用习题10-01-《多元函数基本概念与性质》专题练习与参考解答习题10-02《偏导数与全微分》专题练习与参考解答习题10-03 《多元复合函数和隐函数求偏导》专题练习与参考解答习题10-04 《方向导数与梯度、泰勒公式》专题练习与参考解析习题10-05《多元函数的极值与最值》专题练习,知识点与典型习题视频解析 第十一章 重积分习题11-01 《重积分基本概念与性质》专题练习与参考解答习题11-02 《重积分直角坐标计算法》专题练习及典型习题视频解析习题11-03 《重积分的柱坐标、球坐标、换元法》专题练习与参考解答 习题11-04 《重积分的应用》专题练习与参考解答第十二章 曲线积分与曲面积分习题12-01《曲线积分的基本概念与计算》专题练习及参考解答习题12-02《格林公式、积分与曲线无关》专题练习与参考解答习题12-03 《曲面积分的基本概念、基本计算》专题练习与参考解答习题12-04 《高斯公式与斯托克斯公式》专题练习与参考解答第十三章 幂级数与傅里叶级数习题13-01《幂级数及其展开》专题练习与参考解答习题13-02 《傅里叶级数及其收敛性》内容总结、视频解析与专题练习。

同济7版高等数学精品智能课件-第1章-第1节-集合、映射、函数

同济7版高等数学精品智能课件-第1章-第1节-集合、映射、函数
例2 设 X = {(x , y) | x2 + y2 = 1},Y = {(x , 0) | |x| 1 },
f : XY,则对每个 (x , y) X,有唯一确定的(x , 0) Y 与之对应.显然f 是一个映射,定义域 Df = X ,值域 Rf = Y .在几何上,这个映射表示将平面上一个圆心在 原点的单位圆上的点投影到 x 轴上的区间 [ -1 , 1 ]上.
第一节 映射与函数
注意
(1) 映射 g 和 f 能构成复合映射的条件是:Rg Df . (2) 映射 g 和 f 构成复合映射是有顺序的,f g 有 意义时, g f 可能没意义,即使它们同时都有意义,但 不一定表示同一映射.
三、函数
第一节 映射与函数
1. 函数的概念
定义 设数集合 D R ,则称映射 f : D R为定义 在 D 上的函数,通常简记为
y
1 (x , y)
-1 O x 1 x -1 (x , -y)
第一节 映射与函数
例3

f
:
π 2
,
π 2
[1
,
1]
,
对每个
x
π 2
,
π 2
,
f (x) = sin x .则f 是一个映射,定义域
Df
π 2
,
π 2
,
y
值域 Rf = [ -1 , 1 ] .
1
π 2
f (x) = sin x
二、映射
第一节 映射与函数
1. 映射的概念
定义 设 X , Y 是两个非空集合, 若存在一个对应
规则 f , 使得 x X , 有唯一确定的 y Y 与之对应,
则称 f 为从 X 到 Y 的映射, 记作 f : X Y .

1-1 映射与函数

1-1 映射与函数

(四)教学目的
绪论 一、高等数学课程介绍
二、预备知识
绪论 一、高等数学课程介绍
二、预备知识
二、预备知识
逻辑符号 对任意的,对所有的,(Any) 存在一个,(Exist) 充要条件 A是B的充分条件,B是A的必要条件 A是B的充要条件 绝对值不等式

第一讲 映射与函数
映 射
特例
函 数
X
非空集X 非空集X
f
X上的泛函 X上的变换
Y
数集Y 非空集X 实数集Y
实数集X
X上的函数
概念
集 合 区 邻 间 域
映 射
构造
逆映射
函 数
逆映射
满射、单射和双射 若f是从集合X到集合Y的映射
f X Y
逆映射
满射、单射和双射 设f是从集合X到集合Y的映射 若
即Y中的任一元素y都是X中某元素的像,
函数的几种特性
2.函数的单调性
设函数f (x) 的定义域为D,区间 I D
如果对于区间I上的任意两点x1及x2,
y
当 x1 x2 时,恒有 f ( x1 ) f ( x2 )
那么称函数f (x)在区间I上是单调增加的 o 类似可定义函数f (x)在区间I上是单调减少的 单调增加和单调减少的函数统称为单调函数 x1 x2 x
(二)教学内容 (三)研究方法
(四)教学目的
极限方法
应用
切线、图形 、速度… 中值定理
面积、体积 、作功… 元素法 不定 积分 连续 定 积分 积分学 无穷 级数
微分学
导数
分析 引论
微分
极限
函数
空间解析几何
常微分 方程
多元函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档