高数上册第一章映射与函数
高数高等数学1.1映射与函数
说明 (1) 分段函数对应不同的区间,函数有不同的表达式. (2) 分段函数表示一个函数,不是几个函数. (3) 分段函数的定义域是各分区间的定义域的并集.
1 例6 设 f ( x ) 2 1 解 f ( x) 2
0 x1
求 f ( x 2) .
解
2( x 2) 1, 0 x 2 1 f ( x 2) 4 ( x 2), 1 x 2 2
2 x 5, 2 x,
2 x 1 1 x 0
.
几个特殊的函数举例 (1)常函数
开区间
( a , b ) { x a x b}
o
闭区间
a
b
x
[a , b ] { x a x b }
o
a
b
x
半开区间
[a , b ) { x a x b}
( a , b] { x a x b }
无限区间
有限区间
称a, b为区间的端点, 称b-a为这些区间的长度.
1, 当 x > 0 0, 当x = 0
1 ,
1
当x<0
y4
3 2 1
o
-1
x
x sgn x x
(4)取整函数 y x
[x]表示不超过x 的最大整数
-4 -3 -2 -1 o -1 1 -2 -3 -4
2 3 4
x
(5)狄利克雷函数
y
1 1 当x是有理数时 • y D( x ) o• 0 当x是无理数时 无理数点
f (sin x ) (sin x )3 1
高等数学上册1.1 映射与函数
一、映 射
二、函 数
第一章 函数与极限
一、映射
1. 映射的概念
定义1
设 X 、Y 是两个非空集合, 若存在一个法则 , 使得对X中
每个元素, 按法则 , 在Y中有唯一确定的与之对应, 则称
为从 X 到 Y 的映射. 记作 : X→Y.
X
定义域
D =X
第一节 映射与函数
()
()=
若既是满射又是单射, 则称为双射或一一映射.
第一节 映射与函数
第一章 函数与极限
注 映射又称为算子, 在不同数学分支中有不同的名称.
Y
非空集X
上的泛函
数集Y
非空集X
上的变换
非空集Y
实数集X
上的函数
实数集Y
第一节 映射与函数
第一章 函数与极限
2. 逆映射与复合映射
注 分段函数是一个函数,不是多个函数.
第一节 映射与函数
第一章 函数与极限
2. 函数的几种特性
设函数 = () 的定义域为D , 且数集 ⊂ D 或区间 I ⊂ D .
(1) 有界性
∀ ∈ , ∃ > 0, 使 () ≤, 称 () 在上有界.否则称无界.
∀ > 0, ∃0 ∈ , 使|( 0)|≥M, 称() 在I上无界.
<0
第一章 函数与极限
例8 设为任一实数,不超过的最大整数称为的整数部分,记作[].
例如:
5
= 0,
7
阶梯曲线
2 = 1, [π] = 3, [−1] = −1, [−3.5] = −4.
求函数 = [] 的定义域和值域并画图.
《高等数学》第一节:映射与函数
[
, ] 2 2
y
y tan x 定义域 (,) y x 值域 ( 2 , 2 ) 2 y arctan x
2
2
0
2
x
| arctanx |
定义域 (,)
2
2
y
y x
0
2
y arc cot x x
x
shx e e 双曲正切 thx x chx e e x 反双曲正切
1 1 x y arthx ln . 2 1 x
(3)非初等函数 狄利克雷函数、 取整函数、 分段函数等
练习
[ x] (1) f ( x )定义域为 (0,1),求 g( x ) f ( )的定义域 . x D { x R | x 1且x 2,3,}.
cos
,
(2)初等函数
由常数和基本初等函数经过有限次四则运算和 有限次的函数复合步骤所构成并可用一个式子表示 的函数,称为初等函数.
例3:双曲函数与反双曲函数 双曲函数 反双曲函数
e x e x 双曲正弦 shx 2 e x e x 双曲余弦 chx 2
x
反双曲正弦 y arshx ln( x x 2 1) 反双曲余弦 y archx ln( x x 2 1)
高 等 数 学
研究对象 研究内容 研究工具
上册 极限
一元函数 微分学与积分学 函数 微分方程 空间解析几何与向量代数 多元函数 微分学与积分学 下册 无穷级数
高 等 数 学
应用
用哪个? 条件?
不合条件, 改造!
高数0101映射与函数
U (a , ) { x a x a } (a , a ).
a
a
o
a
x
点a的去心邻域, 记作 U (a , ) { x 0 x a }.
a
左 邻域 :
a
a
y x2 1
x0 x0
y 2x 1
分段点 连结点
三、函数的几何特性
1 函数的有界性:
设X D, 若M 0, 使得对 x X , 有 f ( x ) M 成立,
则称函数f ( x )在X上有界, 否则称无界. 上界, 下界
y M y=f(x) o x 有界 X M y
求反函数的步骤
y f ( x) x f 1 ( y) y f 1 ( x).
2 反函数、复合函数
反函数 复合函数 设有函数链 y f (u ), u D1 ① ②
且 g ( D) D 1
则
称为由①, ②确定的复合函数 , u 称为中间变量. 注意: 构成复合函数的条件 g ( D) D 1 不可少.
• 函数的表示方法: 公式法 表格法 图示法
单值函数与多值函数:
已知x 2 y 2 1表示xoy坐标平面上的单位圆 , 由方程x 2 y 2 1可解出 y 1 x 2
问y与x的关系怎么称呼?
按定义, 函数是单值函数, 类似地, 称此处y与x处的关系为多值函数.
单值函数与多值函数: 如果给定一个法则,当自变量在定义域内 任取一个数值时,对应的函数值不总是唯一的, 称这种法则确定了一个多值函数.
例如, 函数链 : y arcsinu , 可定义复合函数
高数课件映射与函数
3
图像和原像的关系
图像和原像之间存在一对多或多对一的关系,取决于映射的特性。
函数的定义和性质
什么是函数?
函数是一种特殊的映射,它 将定义域中的每个元素映射 到值域中唯一的元素。
函数的性质
函数具有单调性、有界性和 奇偶性等重要性质,可应用 于各个领域。
示例
举例说明具体函数的定义和 性质,在实际问题中的应用。
映射与函数的关系
1 映射与函数的相同点
映射和函数都是描述元素之间的对应关系,具有相似的数学概念和性质。
2 映射与函数的不同点
映射是一个更普遍的概念,而函数是一种特殊的映射。
3 映射与函数的交叉应用
通过具体案例来展示映射和函数在高等数学中的应用。
映射与函数在高数中的应用
微积分
映射和函数是微积分中研究函数 极限、导数和积分等重要工具。
高数课件映射与函数
欢迎来到高数课件映射与函数的世界!本课程将带你深入了解映射和函数的 定义、性质以及它们在高等数学中的应用。准备好开始探索吧!
映射的定义和性质
1 什么是映射?
映射是一个将一个集合中的每个元素映射到另一个集合中的元素的规则。
2 映射的性质
映射可以是单射、满射或双射,具有重要的代数和几何意义。
图论
映射和函数被广泛应用于图论中 的图的表示和性质研究。
最优化问题
映射和函数为解决最优化问题提 供了数学建模的基础。
ห้องสมุดไป่ตู้
什么是复合函数?
复合函数是将两个函数结合在 一起形成一个新的函数。
复合函数的性质
复合函数的定义域和值域取决 于两个函数的定义域和值域。
示例
通过具体的数学表达式和图形 展示复合函数的概念和性质。
高等数学第一章函数与极限第一节映射与函数.ppt
f ( x ) g f ( x ) e
e1 e0 e 1
| x |1 e | x |1 | x | 1 1 | x |1 1 | x |1 e | x |1
18
复合次序不同 ,结果不相同 .
高 等 数 学 PPT 课件
第 一 章
教材 : 同济 高等数学 第五版
欢迎您加入本课堂,希望 您刻苦学习,努力争取最优异 的成绩。
2
第一章
第一节
函数与极限
映射与函数
3
一 . 邻域 : U ( a ,) x x a
x a x a
( 取整函数) 3 ) .y int( x ) ( x 1 ,x ] 上的整数
x 1 int( x ) x
6, 例 . int( 5 . 6 )
( 6 . 6 , 5 . 6 ]
int( 3 . 8 ) 3 ,
int( 0 . 4 ) 0 ,
int( 5 ) 5 ,
2 2 2 2 2 ch x 1 . ch 2 x ch x sh x 1 2 sh x x x y y x x y y e e e e e e e e sh x ch y ch x sh y 2 2 2 2 x yx y x y x yx y x yx y x y e e e e e e e e 4 4 x y x y 2 e 2 e sh ( x y ) 14 4
9
以上五类函数称为基本 初等函数 . (P 17 )
要熟练掌握基本初等函 数的图形 ,有界性 ,单调性 , 奇偶性 , 周期性 , 定义域 , 值域等 .
高数课件-映射与函数
义的一切实数组成的合集,这种定义域称为函数的自然定义域。在这种约定之下,一
般的用算是表达的函数可用“y=∱(x)”表达,而不必再出Df。
例如,函数y=
1- x 2 的定义域是封闭间 -1,1 ,函数y=
1 的定义域是开区间 1- x2
(-1,1)。
表示函数的主要方法有三种:表格法、图形法、解析法(公 式法)。其中,用图形法表下)的像,并记作∱(χ),即
y=∱(χ), 而元素χ称为元素y(在映射∱下)的一个原像;集合X称为映射∱的定义域,记作Df, 即Df=X;X中所有元素的像所组成的集合称为映射∱的值域,记作Rf或者∱(χ),即
Rf=∱(X)= f(x) I χ∈X
在上述映射的定义中,需要注意的是:
映 射
与
主讲人: 日期 :
函 数
第一节 映射与函数
映射是现代数学中的一个基本概念,而函数是微积分的研究对象,也是映射的一 种。本节主要介绍映射、函数及有关概念,函数的性质与运算等。
一.映射
1.映射概念 定义 设X、Y是两个非空集合,如果存在一个法则∱,使得对X中的每个元素χ,按法则∱, 在Y中有唯一确定的元素y与之对应,那么称∱为从X到Y的映射,记作
由复合映射的定义可知,映射ℊ和∱构成复合映射的条件是:ℊ的值域Rg必须包含 在∱的定义域内,即Rg⊂Df,否则,不能构成复合映射。由此可以知道,映射ℊ和∱的复 合是有顺序的,∱∘ℊ有意义并不表示ℊ∘∱也有意义。即使∱∘ℊ与ℊ∘∱都有意义,复合映 射∱∘ℊ与ℊ∘∱也未必相同。
例4
设有映射ℊ:R→ -1,1 ,对每个x∈R,ℊ(x)=sinx;映射∱: -1,1 → 0,1 , 对每个 u∈ -1,1 ,∱(u)= 1- u2,则映射ℊ和∱构成的复合映射∱∘ℊ:R→ 0,1
1.1映射与函数 同济大学高数(第七版)上册
f ( x )
y
y f ( x)
y f ( x)
f ( x)
f ( x )
-x o x
f ( x)
x
o
x
x
2 (两边对折重合),如 y x
偶函数图形关于y轴对称
奇函数的图形关于原点对称
3 y x (一边旋转180度得到另一边),如
函数的奇偶性质:
(1)奇函数和偶函数的定义域必定是关于原点对称的; (2)两个偶函数的和、差、积、商仍是偶函数; (3)两个奇函数的和、差仍是奇函数,两个奇函数的积、商是偶函数; (4)奇函数与偶函数的积、商是奇函数; (5)奇函数与偶函数的代数和是非奇非偶函数, (6)任一定义在区间(-a,a)(a>0)上的函数可表示成一个奇函数与一个偶函数之和.
二、函数的概念及其几种特性
1.函数的概念
X 和Y , 若 x X , 按照某种对应法则 f , 对应 定义 设给定两个非空实数集 唯一确定的一个实数 y Y , 则称 f 是定义在X上的函数, 简记为y f ( x), 其中x为自变量, y为因变量.
X 称为函数f 的定义域, 记为D f , 数x对应的数f ( x)称为x的函数值, 函数值的集合称为函数 f 的值域, 记为R f .
x (, 1) (1, )
x [1,4) (4, )
例2 判断下列函数是否相同
(1) f ( x) x,
x (,); (2) f ( x) lg x 2 , g ( x) 2 lg x, g ( x) x 2 , x (,)
(1)表示不同的函数,因为它们的对应法则不同 . (2)表示不同的函数,因为它们的定义域不同 .
函数的单调性
高等数学-第一章-第一节-映射与函数
若函数
为单射, 则存在逆映射
称此映射 为 f 的反函数 .
习惯上,
的反函数记成
性质: 1) y=f (x) 单调递增 (减) 其反函数
且也单调递增 (减) .
2) 函数
与其反函数
的图形关于直线
对称 .
例如 , 指数函数 对数函数
它们都单调递增, 其图形关于直线
互为反函数 , 对称 .
(2) 复合函数 — 复合映射的特例
例2. 如图所示,
对应阴影部分的面积
则在数集
自身之间定义了一种映射 (满射)
例3. 如图所示, 则有
(满射)
说明:
映射又称为算子. 在不同数学分支中有不同的惯用 名称. 例如,
X (≠ )
Y (数集) f 称为X 上的泛函
X (≠ )
X
f 称为X 上的变换
X (数集 或点集 )
R
f 称为定义在 X 上的为函数
当x= 0 当x< 0
例5. 求
解: 当 则
当 则
当 则
反函数
时, 时, 时,
的反函数及其定义域. 定义域为
课后小结
1. 集合及映射的概念 2. 函数的定义及函数的二要素
定义域 对应规律
3. 函数的特性
有界性, 单调性,
奇偶性, 周期性 4. 初等函数的结构
课后习题
1. 设
且
a, b, c 为常数, 且
2. 逆映射与复合映射 (1) 逆映射的定义 定义: 若映射
使
为单射, 则存在一新映射 其中
称此映射 为 f 的逆映射 . 习惯上 ,
的逆映射记成
例如, 映射
其逆映射为
(2) 复合映射 引例.
高数上册第一章第一节映射与函数一.ppt
一.区间和邻域
⑴【区间】是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
a,b R,且a b.
开区间 ( a , b ) x a x b
oa
b
x
闭区间 [ a , b ] x a x b
oa
b
x
半开区间 无限区间
有限区间
无限区间
oa
x
ob
x
区间长度的定义:
y (1)x a
• (0,1)
y ax (a 1)
3.【对数函数】 y loga x (a 0, a 1) y ln x
y log a x
(1,0)
•
(a 1)
y log 1 x
a
4.【三角函数】
正弦函数 y sin x
y sin x
余弦函数 y cos x
y cos x
【说明】通常 f 称为外层函数,g 称为内层函数.
2【注意】 1)构成复合函数的条件 g(D) D1 不可少.
(即:内层函数在复合函数定义域D内的值域g(D) 一定包含在外层函数的定义域D1内)
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
2)复合函数可以由两个以上的函数经过复合构成.
D : (,), 奇函数.
② 双曲余弦chx e x e x 2
D : (,), 偶函数.
y chx
y 1ex 2
y shx
y 1ex 2
③
双 曲 正 切 thx
shx chx
ex ex
ex ex
D : (,) 奇函数, 有界函数,
【双曲函数常用公式】
sh( x y) shxchy chxshy; ch( x y) chxchy shxshy; ch2 x sh2 x 1;
同济七版高等数学上册 大一上学期 映射与函数 ppt
于是,
四. 初等函数
(1) 基本初等函数 常数函数、幂函数、指数函数、 对数函数、 三角函数、 反三角函数 (2) 初等函数
由常数及基本初等函数经过有限次四则运 算和复合步骤所构成 ,并可用一个式子表示 的函数 ,称为初等函数 .否则称为非初等函数 .
例如
y x3 5x2 1
y ex ex
(1,0)
(a 1)
4.三角函数
正弦函数 y sin x
余弦函数 y cos x
正切函数 y tan x 余切函数 y cot x
正割函数 y sec x 余割函数 y csc x
5.反三角函数 反正弦函数 y arcsin x 反余弦函数 y arccos x
反正切函数 y arctan x
③牢固掌握极限运算法则,极限的性质,尤其是函 数 极限的保号性质
④理解极限存在准则,熟记两个重要极限及其证明 方法,灵活地运用它们及各种变形公式求极限
⑤正确理解连续概念,理解间断点的分类
⑥理解初等函数的连续性,掌握闭区间上连续函数 的性质
第一节 映射与函数
一、集合 二、映射 三、函数
一、集合
1.集合: 具有某种特定性质的事物的总体. 组成这个集合的事物称为该集合的元素.
几个特殊的函数举例
y
(1) 符号函数
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
1
o
x
-1
x sgn x x
y
(2) 取整函数 y=[x]
4 3
[x]表示不超过 x 的最大整数
2
阶梯曲线
1 -4 -3 -2 -1 o -11 2 3 4 5 x
高数第一章函数与极限知识点总结
1.2.1 数列极限的定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2
数列的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.7.2
...................................... 5
1.7.3
定 ......................................... 5
1.8 函数的
与
...................................... 5
1.8.1 函数的
映射的定义
映射 g
映射的
g 的值域 Rg
f f 的定
1
义域
Rg ∈ D f
则
映射 g f 的
义
g◦ f
义
义
映射 f ◦ g 与 g ◦ f
映射 的 f ◦g f ◦g 与 g◦ f
1.1.2 函数
函数的概念
定义 1.4. 设数集 D ∈ R,则称映射 f : D → R 为定 义在 D 上的函数,通常简记为 y = f (x),x ∈ D, 其中 x 称为自变量,y 称为因变量,D 称为定义 域,记作 D f , 即 D f = D。
). 如果
lim f (x) = a
x→x0
且 a > 0(或 a < 0), 所以 ∃(正整数 N), 当 n > N, 都有 xn > 0(或 xn < 0).
《高数映射与函数》课件
04
高数中的映射与函数
高数中的映射
映射的基本概念
映射是从一个集合到另 一个集合的对应关系, 它描述了元素之间的对 应关系。
映射的表示方法
通常使用箭头或等号来 表示映射关系,例如 f: A → B 表示从集合 A 到集合 B 的映射。
单射与满射
单射是指每个元素在集 合 A 中都有唯一的元素 与之对应,而满射则是 指集合 B 中的每个元素 都有至少一个元素与之 对应。
03
对应法则是函数的核心,它规定了输入集合中的每 一个元素如何与输出集合中的元素对应。
函数的性质
有界性
函数在某个区间上的取值范围是有限的。
单调性
函数在某个区间上随着自变量的增加,函数值也单调增加或减少。
周期性
函数在一定周期内的取值具有重复性。
可导性
函数在某一点的切线斜率存在。
函数的分类
代数函数
三角函数
答案4
函数的极限、连续性和可导性之 间的关系是密切相关的。极限存 在是连续的必要条件,连续是可 导的必要条件。一个函数在某点 可导,则一定在该点连续,同时 也存在极限。
THANKS FOR WATCHING
感谢您的观看
Байду номын сангаас
指数函数
对数函数
由代数方程定义的函数,如 多项式、分式、根式等。
与三角学相关的函数,如正 弦、余弦、正切等。
形如$a^x$的函数,其中 $a>0$且$aneq1$。
以数$a$的$n$次方等于$x$记 作$a^n=x$($a>0,a≠1$), 数$a$称为这函数的底数,$n$ 称为这函数的指数,作为表示 形式记作对数函数的自变量写
01
高数第一章 映射与函数
对应法则f
(
W
y f (x0 )
自变量 ) 因变量
数
极 约定: 定义域是自变量所能取的使算式有意义
限 的一切实数值.
连
续 例如,y 1 x2
D :[1,1]
例如,y 1 1 x2
D : (1,1)
- 15 -
第一节 映射与函数
如果自变量在定义域内任取一个数值时,对应 的函数值总是只有一个,这种函数又称为单值函数.
( a 0)
一
章 运算性质:
ab a b;
函
数 极 限
a a; bb
a b a b a b.
连 续
绝对值不等式:
x a (a 0)
a x a;
x a (a 0)
x a 或 x a;
- 12 -
第一节 映射与函数
二、函数概念
1 函数的定义
第一节 映射与函数
第一节 映射与函数
第 一 集合与映射
一 章
二
函数的概念
函 三 函数的几种特性
数 四 反函数与复合函数
极
限 五 初等函数
连 续
六
建立函数关系举例
-1-
第一节 映射与函数
一、集合与映射
1.集合
集合:具有某种特定性质的事物的总体.
第 一
组成这个集合的事物称为该集合的元素.
章
a A,
设D关于原点对称 , 对于x D, 有 f ( x) f ( x)
章
则称函数f ( x)为偶函数.
函
数
y y f (x)
极
限
连
续
f (x)
高等数学第一章第一节
第一章 函数与极限§1. 1 映射与函数教学建议:本节以讲授分段函数的复合、初等函数的分解为重点,集合部分可以不讲,或仅作简单回顾和介绍,映射部分少讲。
一、集合 1. 集合概念集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A , B , M 等表示. 元素: 组成集合的事物称为集合的元素. a 是集合M 的元素表示为a ∈M . 集合的表示:列举法: 把集合的全体元素一一列举出来. 例如A ={a , b , c , d , e , f , g }.描述法: 若集合M 是由元素具有某种性质P 的元素x 的全体所组成, 则M 可表示为 A ={a 1, a 2, ⋅ ⋅ ⋅, a n }, M ={x | x 具有性质P }.例如M ={(x , y )| x , y 为实数, x 2+y 2=1}. 几个数集:N 表示所有自然数构成的集合, 称为自然数集. N ={0, 1, 2, ⋅ ⋅ ⋅, n , ⋅ ⋅ ⋅}. N +={1, 2, ⋅ ⋅ ⋅, n , ⋅ ⋅ ⋅}. R 表示所有实数构成的集合, 称为实数集. Z 表示所有整数构成的集合, 称为整数集. Z ={⋅ ⋅ ⋅, -n , ⋅ ⋅ ⋅, -2, -1, 0, 1, 2, ⋅ ⋅ ⋅, n , ⋅ ⋅ ⋅}.Q 表示所有有理数构成的集合, 称为有理数集.},|{互质与且q p q Z p q p+∈∈=N Q子集: 若x ∈A , 则必有x ∈B , 则称A 是B 的子集, 记为A ⊂B (读作A 包含于B )或B ⊃A . 如果集合A 与集合B 互为子集, A ⊂B 且B ⊂A , 则称集合A 与集合B 相等, 记作A =B . 若A ⊂B 且A ≠B , 则称A 是B 的真子集, 记作A ≠⊂B . 例如, N ≠⊂Z ≠⊂Q ≠⊂R . 不含任何元素的集合称为空集, 记作∅. 规定空集是任何集合的子集. 2. 集合的运算设A 、B 是两个集合, 由所有属于A 或者属于B 的元素组成的集合称为A 与B 的并集(简称并), 记作A ⋃B , 即A ⋃B ={x |x ∈A 或x ∈B }.设A 、B 是两个集合, 由所有既属于A 又属于B 的元素组成的集合称为A 与B 的交集(简称交), 记作A ⋂B , 即A⋂B={x|x∈A且x∈B}.设A、B是两个集合, 由所有属于A而不属于B的元素组成的集合称为A与B的差集(简称差), 记作A\B, 即A\B={x|x∈A且x∉B}.如果我们研究某个问题限定在一个大的集合I中进行, 所研究的其他集合A都是I的子集. 此时, 我们称集合I为全集或基本集. 称I\A为A的余集或补集, 记作A C.集合运算的法则:设A、B、C为任意三个集合, 则(1)交换律A⋃B=B⋃A, A⋂B=B⋂A;(2)结合律(A⋃B)⋃C=A⋃(B⋃C), (A⋂B)⋂C=A⋂(B⋂C);(3)分配律(A⋃B)⋂C=(A⋂C)⋃(B⋂C), (A⋂B)⋃C=(A⋃C)⋂(B⋃C);(4)对偶律(A⋃B)C=A C⋂B C, (A⋂B)C=A C⋃B C.(A⋃B)C=A C⋂B C的证明:x∈(A⋃B)C⇔x∉A⋃B⇔x∉A且x∉B⇔x∈A C且x∈B C⇔x∈A C⋂B C, 所以(A⋃B)C=A C ⋂B C.直积(笛卡儿乘积):设A、B是任意两个集合, 在集合A中任意取一个元素x, 在集合B中任意取一个元素y, 组成一个有序对(x, y), 把这样的有序对作为新元素, 它们全体组成的集合称为集合A与集合B的直积, 记为A⨯B, 即A⨯B={(x, y)|x∈A且y∈B}.例如, R⨯R={(x, y)| x∈R且y∈R }即为xOy面上全体点的集合, R⨯R常记作R2.3. 区间和邻域有限区间:设a<b, 称数集{x|a<x<b}为开区间, 记为(a, b), 即(a, b)={x|a<x<b}.类似地有[a, b] = {x | a ≤x≤b }称为闭区间,[a, b) = {x | a≤x<b }、(a, b] = {x | a<x≤b }称为半开区间.其中a和b称为区间(a, b)、[a, b]、[a, b)、(a, b]的端点, b-a称为区间的长度.无限区间:[a, +∞) = {x | a≤x }, (-∞, b] = {x | x < b } , (-∞, +∞)={x | | x | < +∞}.区间在数轴上的表示:邻域: 以点a为中心的任何开区间称为点a的邻域, 记作U(a).设δ是一正数, 则称开区间(a-δ, a+δ)为点a的δ邻域, 记作U(a, δ), 即U(a, δ)={x | a-δ< x < a+δ}={x | | x -a |<δ}.其中点a 称为邻域的中心, δ 称为邻域的半径. 去心邻域U (a , δ):U (a , δ)={x |0<| x -a |<δ}二、映射1. 映射的概念 定义 设X 、Y 是两个非空集合, 如果存在一个法则f , 使得对X 中每个元素x , 按法则f , 在Y 中有唯一确定的元素y 与之对应, 则称f 为从X 到Y 的映射, 记作 f : X →Y ,其中y 称为元素x (在映射f 下)的像, 并记作f (x ), 即y =f (x ),而元素x 称为元素y (在映射f 下)的一个原像; 集合X 称为映射f 的定义域, 记作D f , 即 D f =X ;X 中所有元素的像所组成的集合称为映射f 的值域, 记为R f , 或f (X ), 即 R f =f (X )={f (x )|x ∈X }. 需要注意的问题:(1)构成一个映射必须具备以下三个要素: 集合X , 即定义域D f =X ; 集合Y , 即值域的范围: R f ⊂Y ; 对应法则f , 使对每个x ∈X , 有唯一确定的y =f (x )与之对应.(2)对每个x ∈X , 元素x 的像y 是唯一的; 而对每个y ∈R f , 元素y 的原像不一定是唯一的; 映射f 的值域R f 是Y 的一个子集, 即R f ⊂Y , 不一定R f =Y . 例1设f : R →R , 对每个x ∈R , f (x )=x 2.显然, f 是一个映射, f 的定义域D f =R , 值域R f ={y |y ≥0}, 它是R 的一个真子集. 对于R f 中的元素y , 除y =0外, 它的原像不是唯一的. 如y =4的原像就有x =2和x =-2两个. 例2设X ={(x , y )|x 2+y 2=1}, Y ={(x , 0)||x |≤1}, f : X →Y , 对每个(x , y )∈X , 有唯一确定的(x , 0)∈Y 与之对应.显然f 是一个映射, f 的定义域D f =X , 值域R f =Y . 在几何上, 这个映射表示将平面上一个圆心在原点的单位圆周上的点投影到x 轴的区间[-1, 1]上. (3) f :]2 ,2[ππ-→[-1, 1], 对每个x ∈]2,2[ππ-, f (x )=sin x .f 是一个映射, 定义域D f =]2,2[ππ-, 值域R f =[-1, 1].满射、单射和双射:设f 是从集合X 到集合Y 的映射, 若R f =Y , 即Y 中任一元素y 都是X 中某元素的像, 则称f 为X 到Y 上的映射或满射; 若对X 中任意两个不同元素x 1≠x 2, 它们的像f (x 1)≠f (x 2), 则称f 为X 到Y 的单射; 若映射f 既是单射, 又是满射, 则称f 为一一映射(或双射). 上述三例各是什么映射? 2. 逆映射与复合映射设f 是X 到Y 的单射, 则由定义, 对每个y ∈R f , 有唯一的x ∈X , 适合f (x )=y , 于是, 我们可定义一个从R f 到X 的新映射g , 即 g : R f →X ,对每个y ∈R f , 规定g (y )=x , 这x 满足f (x )=y . 这个映射g 称为f 的逆映射, 记作f -1, 其定义域1-f D =R f , 值域1-f R =X .按上述定义, 只有单射才存在逆映射. 上述三例中哪个映射存在逆映射? 设有两个映射g : X →Y 1, f : Y 2→Z ,其中Y 1⊂Y 2. 则由映射g 和f 可以定出一个从X 到Z 的对应法则, 它将每个x ∈X 映射成f [g (x )]∈Z . 显然, 这个对应法则确定了一个从X 到Z 的映射, 这个映射称为映射g 和f 构成的复合映射, 记作f o g , 即f og : X →Z ,(f o g )(x )=f [g (x )], x ∈X . 应注意的问题:映射g 和f 构成复合映射的条件是: g 的值域R g 必须包含在f 的定义域内, R g ⊂D f . 否则, 不能构成复合映射. 由此可以知道, 映射g 和f 的复合是有顺序的, f o g 有意义并不表示g o f 也有意义. 即使f o g 与g o f 都有意义, 复映射f o g 与g o f 也未必相同. 例4 设有映射g : R →[-1, 1], 对每个x ∈R , g (x )=sin x , 映射f : [-1, 1]→[0, 1], 对每个u ∈[-1, 1], 21)(u u f -=. 则映射g 和f 构成复映射f o g : R →[0, 1], 对每个x ∈R , 有 |cos |sin 1)(sin )]([))((2x x x f x g f x g f =-=== .三、函数 1. 函数概念定义 设数集D ⊂R , 则称映射f : D →R 为定义在D 上的函数, 通常简记为 y =f (x ), x ∈D ,其中x 称为自变量, y 称为因变量, D 称为定义域, 记作D f , 即D f =D . 应注意的问题:记号f 和f (x )的含义是有区别的, 前者表示自变量x 和因变量y 之间的对应法则, 而后者表示与自变量x 对应的函数值. 但为了叙述方便, 习惯上常用记号“f (x ), x ∈D ”或“y =f (x ), x ∈D ”来表示定义在D 上的函数, 这时应理解为由它所确定的函数f .函数符号: 函数y =f (x )中表示对应关系的记号f 也可改用其它字母, 例如“F ”, “ϕ”等. 此时函数就记作y =ϕ (x ), y =F (x ). 函数的两要素:函数是从实数集到实数集的映射, 其值域总在R 内, 因此构成函数的要素是定义域D f 及对应法则f . 如果两个函数的定义域相同, 对应法则也相同, 那么这两个函数就是相同的, 否则就是不同的.函数的定义域通常按以下两种情形来确定: 一种是对有实际背景的函数, 根据实际背景中变量的实际意义确定. 例如, 在自由落体运动中, 设物体下落的时间为t , 下落的距离为s , 开始下落的时刻t =0, 落地的时刻t =T , 则s 与t 之间的函数关系是221gt s =, t ∈[0, T ].这个函数的定义域就是区间[0, T ]; 另一种是对抽象地用算式表达的函数, 通常约定这种函数的定义域是使得算式有意义的一切实数组成的集合, 这种定义域称为函数的自然定义域. 在这种约定之下, 一般的用算式表达的函数可用“y =f (x )”表达, 而不必再表出D f .例如, 函数21x y -=的定义域是闭区间[-1, 1], 函数211xy -=的定义域是开区间(-1,1).求定义域举例:求函数412--=x xy 的定义域.要使函数有意义, 必须x ≠0, 且x 2 - 4≥0. 解不等式得| x |≥2.所以函数的定义域为D ={x | | x |≥2}, 或D =(-∞, 2]⋃[2, +∞]).单值函数与多值函数: 在函数的定义中,对每个x ∈D , 对应的函数值y 总是唯一的, 这样定义的函数称为单值函数. 如果给定一个对应法则, 按这个法则, 对每个x ∈D , 总有确定的y 值与之对应, 但这个y 不总是唯一的, 我们称这种法则确定了一个多值函数. 例如, 设变量x 和y 之间的对应法则由方程x 2+y 2=r 2 给出. 显然, 对每个x ∈[-r , r ],由方程x 2+y 2=r 2,可确定出对应的y 值, 当x =r 或x =-r 时, 对应y =0一个值; 当x 取(-r , r )内任一个值时, 对应的y 有两个值. 所以这方程确定了一个多值函数.对于多值函数, 往往只要附加一些条件, 就可以将它化为单值函数, 这样得到的单值函数称为多值函数的单值分支. 例如, 在由方程x 2+y 2=r 2给出的对应法则中, 附加“y ≥0”的条件, 即以“x 2+y 2=r 2且y ≥0”作为对应法则, 就可得到一个单值分支221)(x r x y y -==; 附加“y ≤0”的条件, 即以“x 2+y 2=r 2且y ≤0”作为对应法则, 就可得到另一个单值分支222)(x r x y y --==.表示函数的主要方法有三种: 表格法、图形法、解析法(公式法), 这在中学里大家已经熟悉. 其中, 用图形法表示函数是基于函数图形的概念, 即坐标平面上的点集 {P (x , y )|y =f (x ), x ∈D }称为函数y =f (x ), x ∈D 的图形. 图中的R f 表示函数y =f (x )的值域.例5 函数 y = 2. 其定义域为D =(-∞, ), 值域为R f ={2}图形为一条平行于x 轴的直线例6. 函数⎩⎨⎧<-≥==0 0||x x x x x y .称为绝对值函数. 其定义域为D =(-∞, +∞), 值域为R f =[0, +∞). 例7. 函数⎪⎩⎪⎨⎧<-=>==01000 1sgn x x x x y .称为符号函数. 其定义域为D =(-∞, +∞), 值域为R f ={-1, 0, 1}.例8 设x 为任上实数. 不超过x 的最大整数称为x 的整数部分, 记作[ x ]. 函数y = [ x ]称为取整函数. 其定义域为D =(-∞, +∞), 值域为R f =Z .0]75[=, 1]2[=, [π]=3, [-1]=-1, [-3. 5]=-4.分段函数:在自变量的不同变化范围中, 对应法则用不同式子来表示的函数称为分段函数.例9. 函数⎪⎩⎪⎨⎧>+≤≤=1110 2x x x x y .这是一个分段函数, 其定义域为D =[0, 1]⋃(0, +∞)= [0, +∞). 当0≤x ≤1时, x y 2=; 当x >1时, y =1+x .例如2212)21(==f ; 2 1 2)1(==f ; f (3)=1+3=4. 2. 函数的几种特性(1)函数的有界性设函数f (x )的定义域为D , 数集X ⊂D . 如果存在数K 1, 使对任一x ∈X , 有f (x )≤K 1, 则称函数f (x )在X 上有上界, 而称K 1为函数f (x )在X 上的一个上界. 图形特点是y =f (x )的图形在直线y =K 1的下方.如果存在数K 2, 使对任一x ∈X , 有f (x )≥ K 2, 则称函数f (x )在X 上有下界, 而称K 2为函数f (x )在X 上的一个下界. 图形特点是, 函数y =f (x )的图形在直线y =K 2的上方.如果存在正数M , 使对任一x ∈X , 有| f (x ) |≤M , 则称函数f (x )在X 上有界; 如果这样的M 不存在, 则称函数f (x )在X 上无界. 图形特点是, 函数y =f (x )的图形在直线y = - M 和y = M 的之间.函数f (x )无界, 就是说对任何M , 总存在x 1∈X , 使| f (x ) | > M .例如(1)f (x )=sin x 在(-∞, +∞)上是有界的: |sin x |≤1.(2)函数x x f 1)(=在开区间(0, 1)内是无上界的. 或者说它在(0, 1)内有下界, 无上界.这是因为, 对于任一M >1, 总有x 1: 1101<<<M x , 使M x x f >=111)(,所以函数无上界.函数x x f 1)(=在(1, 2)内是有界的.思考题:设21)(xxx f +=,问)(x f 在),(+∞-∞界吗? (2)函数的单调性设函数y = f (x )的定义域为D , 区间I ⊂D . 如果对于区间I 上任意两点x 1及x 2, 当x 1<x 2时, 恒有f (x 1)< f (x 2), 则称函数f (x )在区间I 上是单调增加的.如果对于区间I 上任意两点x 1及x 2, 当x 1<x 2时, 恒有 f (x 1)> f (x 2), 则称函数f (x )在区间I 上是单调减少的.单调增加和单调减少的函数统称为单调函数. 函数单调性举例:函数y = x 2在区间(-∞, 0]上是单调增加的, 在区间[0, +∞)上是单调减少的, 在(-∞, +∞)上不是单调的. (3)函数的奇偶性设函数f (x )的定义域D 关于原点对称(即若x ∈D , 则-x ∈D ). 如果对于任一x ∈D , 有 f (-x ) = f (x ),则称f (x )为偶函数.如果对于任一x ∈D , 有 f (-x ) = -f (x ),则称f (x )为奇函数.偶函数的图形关于y 轴对称, 奇函数的图形关于原点对称, 奇偶函数举例:y =x 2, y =cos x 都是偶函数. y =x 3, y =sin x 都是奇函数, y =sin x +cos x 是非奇非偶函数. (4)函数的周期性设函数f (x )的定义域为D . 如果存在一个正数l , 使得对于任一x ∈D 有(x ±l )∈D , 且 f (x +l ) = f (x )则称f (x )为周期函数, l 称为f (x )的周期.周期函数的图形特点: 在函数的定义域内, 每个长度为l 的区间上, 函数的图形有相同的形状.3.反函数与复合函数 反函数:设函数f : D →f (D )是单射, 则它存在逆映射f -1: f (D )→D , 称此映射f -1为函数f 的反函数.按此定义, 对每个y ∈f (D ), 有唯一的x ∈D , 使得f (x )=y , 于是有 f -1(y )=x .这就是说, 反函数f -1的对应法则是完全由函数f 的对应法则所确定的. 例如, 函数y =x 3, x ∈R 是单射, 所以它的反函数存在, 其反函数为31y x =, y ∈R .由于习惯上自变量用x 表示, 因变量用因变量用表示, 于是y =x 3, x ∈R 的反函数通常写作31x y =, x ∈R .一般地, y =f (x ), x ∈D 的反函数记成y =f -1(x ), x ∈f (D ).若f 是定义在D 上的单调函数, 则f : D →f (D )是单射, 于是f 的反函数f -1必定存在, 而且容易证明f -1也是f (D )上的单调函数.相对于反函数y =f -1(x )来说, 原来的函数y =f (x )称为直接函数. 把函数y =f (x )和它的反函数y =f -1(x )的图形画在同一坐标平面上, 这两个图形关于直线y =x 是对称的. 这是因为如果P (a , b )是y =f (x )图形上的点, 则有b =f (a ). 按反函数的定义, 有a =f -1(b ), 故Q (b , a )是y =f -1(x )图形上的点; 反之, 若Q (b , a )是y =f -1(x )图形上的点, 则P (a , b )是y =f (x )图形上的点. 而P (a , b )与Q (b , a )是关于直线y =x 对称的. 复合函数:复合函数是复合映射的一种特例, 按照通常函数的记号, 复合函数的概念可如下表述.设函数y =f (u )的定义域为D 1, 函数u =g (x )在D 上有定义且g (D )⊂ D 1, 则由下式确定的函数y =f [g (x )], x ∈D称为由函数u =g (x )和函数y =f (u )构成的复合函数, 它的定义域为D , 变量u 称为中间变量. 函数g 与函数f 构成的复合函数通常记为g f , 即 (g f )=f [g (x )].与复合映射一样, g 与f 构成的复合函数g f 的条件是: 是函数g 在D 上的值域g (D )必须含在f 的定义域D f 内, 即g (D )⊂D f . 否则, 不能构成复合函数. 例如, y =f (u )=arcsin u , 的定义域为[-1, 1], 212)(x x g u -==在]1 ,23[]23 ,1[⋃--=D 上有定义, 且g (D )⊂[-1, 1], 则g 与f 可构成复合函数 212arcsin x y -=, x ∈D ;但函数y =arcsin u 和函数u =2+x 2不能构成复合函数, 这是因为对任x ∈R , u =2+x 2均不在y =arcsin u 的定义域[-1, 1]内.思考题:设⎩⎨⎧>+≤-=⎩⎨⎧≥-<=0,20,2)(,0,0,)(2x x x x x g x x x x x f ,求)).(()),((x f g x g f 4. 函数的运算设函数f (x ), g (x )的定义域依次为D 1, D 2, D =D 1⋂D 2≠∅, 则我们可以定义这两个函数的下列运算:和(差)f ±g : (f ±g )(x )=f (x )±g (x ), x ∈D ; 积f ⋅g : (f ⋅g )(x )=f (x )⋅g (x ), x ∈D ;商g f : )()())((x g x f x g f =, x ∈D \{x |g (x )=0}.例11设函数f (x )的定义域为(-l , l ), 证明必存在(-l , l )上的偶函数g (x )及奇函数h (x ), 使得f (x )=g (x )+h (x ).分析 如果f (x )=g (x )+h (x ), 则f (-x )=g (x )-h (x ), 于是 )]()([21)(x f x f x g -+=, )]()([21)(x f x f x h --=.证 作)]()([21)(x f x f x g -+=, )]()([21)(x f x f x h --=, 则 f (x )=g (x )+h (x ),且 )()]()([21)(x g x f x f x g =+-=-,)()]()([21)]()([21)(x h x f x f x f x f x h -=---=--=-.5. 初等函数 基本初等函数:幂函数: y =x μ (μ∈R 是常数); 指数函数: y =a x (a >0且a ≠1);对数函数: y =log a x (a >0且a ≠1, 特别当a =e 时, 记为y =ln x ); 三角函数: y =sin x , y =cos x , y =tan x , y =cot x , y =sec x , y =csc x ; 反三角函数: y =arcsin x , y =arccos x , y =arctan x ,y =arccot x .初等函数:由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数, 称为初等函数. 例如 21x y -=, y =sin 2x , 2cotx y =等都是初等函数. 双曲函数:双曲正弦: 2sh xx e e x --=;双曲余弦: 2ch xx e e x -+=;双曲正切: xx xx e e e e x x x --+-==ch sh th .双曲函数的性质:sh(x +y )=sh x ⋅ch y ±ch x ⋅sh y ; ch(x ±y )=ch x ⋅ch y ±sh x ⋅sh y . ch 2x -sh 2x =1; sh2x =2sh x ⋅ch x ; ch2x =ch 2x +sh 2x .下面证明 sh(x +y )=sh x ⋅ch y +ch x ⋅sh y :2222sh ch ch sh yy x x y y x x e e e e e e e e y x y x -----⋅+++⋅-=+ 44)()(y x y x x y y x y x y x x y y x e e e e e e e e +---++---+--++-+-=)(sh 2)(y x e e y x y x +=-=+-+. 反双曲函数:双曲函数y =sh x , y =ch x (x ≥0), y =th x 的反函数依次为 反双曲正弦: y =arsh x ; 反双曲余弦: y =arch x ; 反双曲正切: y =arth x . 反双曲函数的表示达式:y =arsh x 是x =sh y 的反函数, 因此, 从 2yy e e x --=中解出y 来便是arsh x . 令u =e y , 则由上式有u 2-2x u -1=0.这是关于u 的一个二次方程, 它的根为 12+±=x x u .因为u =e y >0, 故上式根号前应取正号, 于是 12++=x x u .Oxyy =th x11 由于y =ln u , 故得)1ln(arsh 2++==x x x y .函数y =arsh x 的定义域为(-∞, +∞), 它是奇函数, 在区间(-∞, +∞)内为单调增加的. 类似地可得)1ln(arch 2-+==x x x y , xx x y -+==11ln 21arth .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(对应规则)
• 定义域
使表达式或实际问题有意义的自变量集合. 对实际问题, 书写函数时必须写出定义域;
π
对无实际背景的函数, 书写时可以省略定义域. • 对应规律 对应规律的表示方法: 解析法、图象法 、列表法 −1 例如, 反正弦主值 定义域 又如, 绝对值函数 定义域 值 域 值域
y
2
O 1x
1= 2
f (1) = 2 2
2
O
1
x
1 1+ , 0 <t <1 t f( 1)= t 2 , t ≥1 t
2. 函数的几种特性 设函数 y = f (x) , x ∈D , 且有区间 I ⊂ D . (1) 有界性 ∀x∈ D, ∃M > 0, 使 f (x) ≤ M, 称 f (x)为有界函数. ∀x∈ I , ∃M > 0, 使 f (x) ≤ M, 称 f (x) 在 I 上有界. 说明: 说明 还可定义有上界、有下界、无界 . (见 P11 ) (2) 单调性 ∀x1⋯2 ∈(x)当< x2时, 有上界 , x, f I, x1 M, 称 为有上界 y ≤
第一章 函数与极限
分析基础 函数 — 研究对象 极限 — 研究方法 连续 — 研究桥梁
第一章
第一节 映射与函数
一、集合 二、映射 三、函数
一、 集合
1. 定义及表示法
简称集 集
集合. 定义 1. 具有某种特定性质的事物的总体称为集合 集合 组成集合的事物称为元素 元素. 元素 元素 a 属于集合 M , 记作 a∈M. 元素 a 不属于集合 M , 记作 a∈ M ( 或 a∉M ) . 注: M 为数集
y = f (x), x ∈D
y Rf = f (D) = { y y = f (x), x ∈D} y
b C = { (x , y) y = f (x) , x∈D } O a x ( D=[ a, b] ) ⊂ D× f (D)
x
∀x∈D
(定义域)
f
y ∈Rf = f (D) = { y y = f (x), x∈D}
O −1
y = th x x
(4) 周期性
∀x∈D, ∃l > 0, 且 x ±l ∈D, 若
则称 f (x)为周期函数 , 称 l 为周期 ( 一般指最小正周期 ).
y
−2 π −π
O π 2π
x
周期为
周期为 π 例如, 常量函数 f (x) = C 狄利克雷函数
注: 周期函数不一定存在最小正周期 .
O 12 3 4 x
3x +1, x <1 求 f [ f (x)]. , 例5. 设函数 f (x) = x ≥1 x , x 换为 f (x) 解:
3 f (x) +1, f (x) <1 f [ f (x)] = f (x) ≥1 f (x) ,
x <0
3(3x +1) +1
显然有下列关系 :
定义 3 . 给定两个集合 A, B, 定义下列运算: 并集 A∪ B = { x 交集 A∩ B = { x 差集 余集 直积 或 且 且 x∉B}
}
}
A∪ B
B A
A\ B A∩ B
A\ B = { x
c BA
= A\ B (其 B ⊂ A) 中
A× B = { (x, y) x∈ A, y∈B }
两个以上函数也可构成复合函数. 例如,
y = u , u ≥0 u = cot v , v ≠ k π (k = 0, ±1, ± 2,⋯ ) x v = , x ∈(−∞, + ∞) 2 可定义复合函数:
k ∈Z
约定: 约定 为简单计, 书写复合函数时不一定写出其定义域, 默认对应的函数链顺次满足构成复合函数的条件.
r
例3. 如图所示, 则有
(满射 满射) 满射
说明: 说明: 映射又称为算子. 在不同数学分支中有不同的惯用 名称. 例如, X (≠ ∅ ) X (≠ ∅ )
f f
Y (数集) X
f 称为X 上的泛函 f 称为X 上的变换 X
X (数集 或点集 )
f
R
f 称为定义在 X 上的函数
三、函数
1. 函数的概念 定义4. 定义 设数集 D ⊂ R, 则称映射 D 上的函数 , 记为 因变量 称为值域 函数图形: 函数图形 定义域 自变量 为定义在
反函数 y = 定义域为
( − ∞ , 1] ∪( 2, 2e]
内容小结
1. 集合及映射的概念 2. 函数的定义及函数的二要素 3. 函数的特性 4. 初等函数的结构 定义域 对应规律
有界性, 单调性, 奇偶性, 周期性
作业
P21 4 (5),(8) ,(10); 6; 8; 9; 13 ; 16; 17; 18
第二节
备用题
1. 设 a, b, c 为常数, 且 且 时 证明 为奇函数 . 其中
证: 令 t = 1 , 则 x = 1 , a f ( 1 ) + b f (t) = ct t t x 由 消去 f (1), 得
x
a f ( 1 ) + b f (x) = cx x
为奇函数 .
9x + 4 , x < 0
=
3x +1, 0 ≤ x <1
x, x ≥1
x2 , −1≤ x < 0 例6. 求 y = ln x , 0 < x ≤1 的反函数及其定义域. y 2ex−1, 1< x ≤ 2 2e 2 ∈(0, 1] , 解: 当 −1≤ x < 0 时, y = x 则 x = − y , y ∈(0, 1] 当 0 < x ≤1 时, y = ln x ∈( −∞, 0] , 2 1 则 x = ey , y ∈( − ∞, 0] 当 1< x ≤ 2 时, y = 2ex−1 ( 2, 2e] , −1O 1 2 x ∈ y 则 x =1+ ln 2 , y ∈( 2, 2e]
则
① ②
称为由①, ②确定的复合函数 , u 称为中间变量. , . 注意: 构成复合函数的条件 Rg ⊂ D f 不可少. 可定义复合函数 例如, 函数链 : y = arcsinu ,
u =1− x2 时, 虽不能在自然域 R下构成复合函数, 当改 , 但可定义复合函数 y = arcsin(1− x2), x ∈[−1 1]
x π x k π < ≤ k π+ 时, cot ≥ 0 2 2 2
4. 初等函数 (1) 基本初等函数 幂函数、 指数函数、 对数函数、 三角函数、 反三角函数 (2) 初等函数 由常数及基本初等函数 经过有限次四则运算和复合步 骤所构成 , 并可用一个式子表示的函数 , 称为初等函数 . 否则称为非初等函数 .
(2) 描述法: = { x x 所具有的特征 M
例: 整数集合 Z = { x x ∈N 或 − x∈N+ } p + 有理数集 Q = p∈Z, q∈N , p 与 q 互质 q 实数集合 R = { x x 为有理数或无理数 } 开区间 ( a , b ) = { x a < x < b } 闭区间 [ a , b ] = { x a ≤ x ≤ b }
−π 2
2 x , 0 ≤ x ≤1 例4. 已知函数 y = f (x) = 1+ x , x >1
写出 f (x) 的定义域及值域, 并求 f ( 1 )及 f ( 1 ). t 2 解: f (x) 的定义域 D =[0, + ∞) 值域
y
y =2 x
y =1+ x
f (D) =[0, + ∞)
对映射 满射; 满射 若 f (X) =Y, 则称 f 为满射
引例2, 引例 3
X
若 则称 f 为单射 单射; 单射
f
Y = f (X )
有
引例2 引例
X
Y
若 f 既是满射又是单射, 则称 f 为双射 或一一映射 一一映射. 双射 一一映射
引例2 引例
例1. 海伦公式
(满射 满射) 满射
例2. 如图所示, 对应阴影部分的面积 则在数集 自身之间定义了一种映射 (满射 满射) 满射
若 f (x1) < f (x2 ), 称 f (x) 为 I 上的 有下界 ⋯, M ≤ f (x), 称 为有下界 单调增函数 ; ) M 若对任意正数 M , 均存在 x∈ D, 使 O f (xx1 >x2 , x 若 f (x1) > f (x2 ), 称 f (x) 为 I 上的 则称 f ( x ) 无界 无界. 单调减函数 .
(3) 奇偶性
∀x∈D, 且有 − x∈D,
若 若 则称 f (x) 为偶函数; 则称 f (x) 为奇函数.
y
说明: 说明 若 f (x) 在 x = 0 有定义 , 则当
−x O
y x e
xx
f (x) 为奇函数 必有 f (0) = 0. 奇函数时, 奇函数
例如,
ex + e−x y = f (x) = 偶函数 2 记 = ch x 双曲余弦
X
f
Y
元素 y 称为元素 x 在映射 f 下的像, 记作 y = f (x). 像 元素 x 称为元素 y 在映射 f 下的原像 . 原像 集合 X 称为映射 f 的定义域 ; 定义域 Y 的子集 Rf = f (X ) ={ f (x) x∈ X } 称为 f 的 值域 . 注意: 注意 1) 映射的三要素— 定义域 , 对应规则, 值域. 2) 元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一.