人教版七年级数学下册实数2课件
合集下载
人教版《实数》优秀课件初中数学ppt
品比赛,小红很高兴,他 想裁出一块面积为25dm2 的正方形画布,画上自己 的得意之作参加比赛,这 块正方形画布的边长应取 多少?你能帮小明算一算 吗?
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
人教版七年级数学下册 (平方根)实数课件教学(第2课时)
(2)因为6>4,所以 6 > 2,所以
61 >
21 =1.5.
2
2
归纳 比较数的大小,先估计其算术平方根的近似值
例3 小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积 为300cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正 在发愁.你能帮小丽算出她能用这块纸片裁出符合要求的纸片吗?
能否用两个面积为 1 dm2 的小正方形拼成一个面积为 2 dm2 的 大正方形?
如图,把两个小正方形分别沿对角线剪开,将所得的 4 个直角 三角形拼在一起,就得到一个面积为 2 dm2 的大正方形.
你知道这个大正方形的边长是多少吗?
解:设大正方形的边长为 x dm,则 x2 = 2.
由算术平方根的意义可知
直线平行.
3.互如相果平两行 条直线都与第三条直线平行,那么这两 条直线也
.
[检测]
1.在同一平面内,不是重合( 的两)条直线的位置关C系
A.平行或垂直
B.相交或垂直
C.平行或相交
D.不能确定
2.下列说法正确D的是 ( ) A.不相交的两条线段是平行线
B.不相交的两条直线是平行线
C.不相交的两条射线是平行线
按键顺序:
a=
注意:不同的计算器的按键方式可能有所差别
例4 用计算器求下列各式的值: 3136=
2=
利用计算器计算下表中的算术平方根,并将计算结果填在表中,你 发现了什么规律?你能说出其中的道理吗?
… 0.062 5 0.625 6.25
62.5
… 0.25 0 6 2.5
7.906
625
第 五
相交线与平行线
人教版七年级下数学《平方根》实数PPT教学课件
学校要举行美术作品比赛,小美想裁出一块面积为9 dm2的正方形画布,临摹自己的最喜欢的作品参加比赛, 这块正方形画布的边长应取多少?
你一定会算出边长应取3 dm. 说一说,你是怎样算出来的? 因为32=9,所以这个正方形 画布的边长应取3 dm.
课程讲授
1 算术平方根
填表:
正方形的 面积/dm2
1
课程讲授
2 估算算术平方根
如此进行下去,可以得到 2 的更精确的近似值. 事实 上, 2 =1. 414 213 562 373…,它是一 个无限不循环 小数. 实际上,许多正有理数的算术平方根(例如 3, 5, 7 等)都是无限不循环小数.
小数位数无限,且小数部分 不循环的小数称为无限不循 环小数.
… 0.062 5 0.625 6.25 62.5 625 6 250 62 500 … … 0.25 0.790 6 2.5 7.906 25 79.06 250 …
课程讲授
3 用计算器求一个正数的算术平方根
归纳小结:被开方数的小数点向右每移动 位,它的算2术平方 根的小数点就向右移动 位;被开方数的小数点向1左每移动 位,
(5) x (6) x2 (7) x2 1 (8) 1
x1
x2
(9) x 2 4 2x
第六章 实 数
6.1 平方根
第1课时
新知导入 课程讲授
随堂练习 课堂小结
知识要点
1.算术平方根 2.估算算术平方根
3.用计算器求一个正数的算术平方根
新知导入
试一试:根据所学知识,试着解决下列问题.
课程讲授
1 算术平方根
例 求下列各数的算术平方根:
(1)100;
(2)49 ; 64
(3)0.000 1.
你一定会算出边长应取3 dm. 说一说,你是怎样算出来的? 因为32=9,所以这个正方形 画布的边长应取3 dm.
课程讲授
1 算术平方根
填表:
正方形的 面积/dm2
1
课程讲授
2 估算算术平方根
如此进行下去,可以得到 2 的更精确的近似值. 事实 上, 2 =1. 414 213 562 373…,它是一 个无限不循环 小数. 实际上,许多正有理数的算术平方根(例如 3, 5, 7 等)都是无限不循环小数.
小数位数无限,且小数部分 不循环的小数称为无限不循 环小数.
… 0.062 5 0.625 6.25 62.5 625 6 250 62 500 … … 0.25 0.790 6 2.5 7.906 25 79.06 250 …
课程讲授
3 用计算器求一个正数的算术平方根
归纳小结:被开方数的小数点向右每移动 位,它的算2术平方 根的小数点就向右移动 位;被开方数的小数点向1左每移动 位,
(5) x (6) x2 (7) x2 1 (8) 1
x1
x2
(9) x 2 4 2x
第六章 实 数
6.1 平方根
第1课时
新知导入 课程讲授
随堂练习 课堂小结
知识要点
1.算术平方根 2.估算算术平方根
3.用计算器求一个正数的算术平方根
新知导入
试一试:根据所学知识,试着解决下列问题.
课程讲授
1 算术平方根
例 求下列各数的算术平方根:
(1)100;
(2)49 ; 64
(3)0.000 1.
七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)
18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫·托尔斯泰
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.
人教版七年级数学下册第第六章实数第2课 平方根(2)
3. (例2)填空: 1 =___1___, 100 =___1_0__, 10000 =__1_0_0__,0.01=___0_.1__, 0.0001 =_0_._0_1__.
规律总结:被开方数的小数点每移动2k位,它的算术平方根的 小数点就同方向移动____k____位.
4. (1)已知 5 =2.236,不用计算器求 500 =__2_2_._3_6__, 0.0005 =_0_._0_2_2_3_6_.
答:每块地砖的边长为0.3 m.
9.(例5)已知长方形的面积为60 cm2,长与宽的比为3∶2, 求这个长方形的长与宽. 解:设长方形的长为3x cm,则宽为2x cm,则
2x·3x=60, x2=10, x= 10 .
∴长方形的长为3 10 cm,宽为2 10 cm.
10. 小丽想在一块面积为36 cm2的正方形纸片上,沿着边的 方向裁出一块面积为30 cm2的长方形纸片,并且使它的长宽 的比为2∶1.问:小丽能否用这块正方形纸片裁出符合要求 的长方形纸片,为什么? 解:设宽为x cm,则长为2x cm,则
(3)∵268.96<270<272.25,
∴16.4< 270 <16.5.
20. 用一张面积为900 mm2的正方形纸片,能裁出一块面积 为600 mm2,长与宽的比为5∶3的长方形纸片吗?为什么?
解:设长为5x mm,宽为3x mm. 5x·3x=600, x2=40, x= 40 .
∵ 5 40 900 ,∴不能.
(2)若 3 =1.732,则 300 =__1_7_._3_2__, 30000 =__1_7_3_._2__, 0.0003 =_0_.0_1_7__3_2_.
若 a =1 732,则a≈_3_0_0_0__0_0_0.
人教版七年级数学下7.1.1有序实数对课件(共42张PPT)
(3)甲地距我市29km
如图,写出表示下列各点的有序数对:
如图,写出表示下列各点的有序数对:
或者老师说一个数对,请代表相应位置的人站起来。
如图,写出表示下列各点的有序数对:
下列关于有序数对的说法正确的是( )
5排8号 5排6号 在数轴上,确定一个点的位置需要几个数据呢?
问题⑴: 新学期开始,老师要重新调整学生的座位,老师如何描述才能让学生准确地找到自己的新座位呢?
的方式表示出图中“怪兽”经过的其他几个位置吗?
排5
(4,5) (5,5)
4
(5,4)
(7,4)
3
(3,3)
(4,3)
在生活中,确定物体的位置,还有
其他方法吗2? (1,2)(3,2)(7,3) (8,3)
1 (1,1)
列
1
2
3
4
5
6
7
8
如图( 1 , 3 )表示 第一列第三排,请用 彩笔把以下位置的五 角星涂上颜色。
(4 ,6)
(3 ,4)
(5 ,4)
设计图案
排 7 6
5
4
3
(2 ,2)
2
(4 ,2)
1
(6 ,2)
12
34
5
6
7列
神州飞船的发 射和回收都那么成 功 ,圆了几代中国 人的梦想,让全中 国人为之骄傲和自 豪!但是,同学们知 道我们的科学家是 怎样迅速地找到返 回舱着陆的位置的 吗?
神州飞船
这全依赖于 “GPS——卫星全球定位系统”
A.(7,4)
B.(4,7)
C.(7,5)
D.(7,6)
例1. 如图,点A表示3街与5大道的十字路口,点B 表示5街与3大道的十字路口,如果用(3,5)→(4,5) →(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么 你能用同样的方法写出由A到B的其他几条路径吗?
人教版七年级下册数学第六章实数课件:6.3 实数
正有理数
正实数
实数
正无理数
0 负实数
负有理数
负无理数
4.实数与数轴上的点是一一对应的.
教学课件 七年级数学下册(RJ)
第六章 实数
6.3 实根(2)
课前预习
带着问题自学课本P54“思考”
1.无理数也有相反数吗?怎么表示? 2.有绝对值吗?怎么表示? 3.有倒数吗?怎么表示?
探究新知
(1) 2的相反数是 ____2___ -π的相反数是____π_____ 0的相反数是____0_____
无理数的概念
所有的数都可以写成有限小数和无限循 环小数的形式吗?
2 =1.41421356237309504880168… 3 5 =1.70997594667669698935310…
π=3.1415926535897932384626…
1.01001000100001…(两个1之间依次多一个0)
解:- 的相反数是 π -3.14的相反数是3.14-π
(2)指出 - 5 ,1- 3 3 分别是什么数的相反数;
(2)- 是 的相反数; 1- 是 -1 的相反数;
例题讲解
(3)求 3 64 的绝对值;
|
|=|-4|=4.
(4)已知一个数的绝对值是 3 ,求这个数。
绝对值为 的数是 或-
实数的运算
35
9
3 4
0.6
(6)实数集合: 9 3 5
0.6
3 4
3 9 3 0.13
64
0.6
3
3
4
0.13
3 9
64 3
3 9
实数课件人教版数学七年级下册[2]
12.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动), 圆上的一点由原点到达点O′,点O′所对应的数值是__π__.
13.有一个数值转换器,原理如下:当输入的 x 为 64 时,输出的 y 是 ___8______.
14.请将图中数轴上标有字母的各点与下列实数对应起来. 2 ,-0.5,- 3 , 5 ,π,3.
有限小数或无限循环小数
正无理数
无理数
无限不循环小数
负无理数
(2)按大小分:
正实数 实数 0
负实数
正有理数 正无理数
负有理数 负无理数
实数的分类有不同 的方法,但不论用 哪一种分类方法, 都要做到不重不漏.
(1)对实数进行分类时,某些数应先进行计算或化简, 然后根据最后结果进行分类,不能看到带根号的数, 就认为是无理数,不能看到有分数线的数,就认为 是有理数. (2)在实数范围内,一个数不是有理数, 那么它一定是无理数,反之亦成立.
④无理数一定都是实数.其中正确的有________.
有理数和无理数统称为实数.
整数、小数、分数、百分数. 12.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点O′,点O′所对应的数值是____.
无理数都是无限小数,但无限小数不一定是无理数,只有无限不循环小数才是无理数. 事实上,如果把整数看成小数点后是 0 的小数,那么任何一个有理数都可以写成有限小数或无限循环小数的形式.
巩固新知
把下列各数填在相应的大括号内.
非负整数:{ 整数:{ 负分数:{
…}; …}; …};
把下列各数填在相应的大括号内.
|a|>4
B.
(1)对实数进行分类时,某些数应先进行计算或化简,然后根据最后结果进行分类,不能看到带根号的数,就认为是无理数,不能看到有分数线的数,就认为是有理数.
第六章 实数(复习课件)七年级数学下册(人教版)
举一反三
【7-2】如图,用两个边长为 18cm的小正方形纸片拼成一个大的正方形纸
片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长
方形纸片长宽之比为3:2,且面积为30cm2?请说明理由.
解:不能.理由如下:因为大正方形纸片的面
积为( 18)2+( 18)2=36(cm2) ,
高频考点
高频考点七 实数的综合运用
(3)如果2+ 5的整数部分是a,小数部分是b,求出a-b的值.
(3)因为 4< 5< 9,即2< 5<3,
所以4<2+ 5<5,
所以2+ 5的整数部分为4,小数部分为2+ 5-4= 5-2,即a=4,b= 5-2,
所以a-b=4-( 5-2)= 6- 5.
举一反三
【7-1】若 2的整数部分为x,小数部分为y,则 2x-y的值是( C )
A.2 2-2
B.2
C.1
D. 2
【7-2】如图,用两个边长为 18cm的小正方形纸片拼成一个大的正方形纸
片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长
方形纸片长宽之比为3:2,且面积为30cm2?请说明理由.
0
一个,为负数
3
a
可以为任何数
知识梳理
四、实数及其运算
有理数包括整数和分数,它们都可以写成有限小数或者无限循环小数的形
式.
5 3 27 11 9
, , , , .
2 5 4 9 11
5
2.5
2
3
0.6
5
27
6.75
4
.
11
七年级数学人教版下册第六章6.3.1实数及其分类课件
101 001 000 1…(相邻两个1之间0的个数逐次加1), A.无理数包括正无理数、0和负无理数
正有理数
有
理
数
0
负 有 理 数
8, ,-4.
限小数或无限循环小数的形式.
正数:{ ,…};
∵
,∴
是有理数.∵
,
8, ,…};
合作探究
知识点 1 无理数
探究 我们知道有理数包括整数和分数,请把下列分数写成 小数的形式,你有什么发现?
3
2
(相邻两个1之间0的个数逐次加1), 3 9
,-
.
有理数:{ -7,0.32, 1 ,3.14·,0,…}; 2
3
无理数:{ 8 , 1 ,0.101 001 000 1…(相邻两个1 2
之间0的个数逐次加1), 3 9 ,- ,…}; 2
正实数:{ 0.32,1 3
,3.14·,
8
,
1 2
这样的无限不循环小数.
例1 下列各数:3.141 59, 3 8 ,0.131 131 113…(每相
邻两个3之间依次多1个1),-π,
2 5 ,
1 7
中,无
理数有( B )
A.1个
B.2个
C.3个
D.4个
导引:∵3.141 59是有限小数,∴3.141 59是有理数.
∵ 3 8 2 ,∴ 3 8 是有理数.∵ 25 5 ,
人教版数学七年级下册
第六章
6.3.1 实数及其分类
学习目标
1.了解无理数和实数的概念以及实数的分 类。
2.知道实数与数轴上的点具有一一对应的 关系。
复习导入
…};
(1)如图,OA=OB,数轴上点A对应的数是什么?它介
正有理数
有
理
数
0
负 有 理 数
8, ,-4.
限小数或无限循环小数的形式.
正数:{ ,…};
∵
,∴
是有理数.∵
,
8, ,…};
合作探究
知识点 1 无理数
探究 我们知道有理数包括整数和分数,请把下列分数写成 小数的形式,你有什么发现?
3
2
(相邻两个1之间0的个数逐次加1), 3 9
,-
.
有理数:{ -7,0.32, 1 ,3.14·,0,…}; 2
3
无理数:{ 8 , 1 ,0.101 001 000 1…(相邻两个1 2
之间0的个数逐次加1), 3 9 ,- ,…}; 2
正实数:{ 0.32,1 3
,3.14·,
8
,
1 2
这样的无限不循环小数.
例1 下列各数:3.141 59, 3 8 ,0.131 131 113…(每相
邻两个3之间依次多1个1),-π,
2 5 ,
1 7
中,无
理数有( B )
A.1个
B.2个
C.3个
D.4个
导引:∵3.141 59是有限小数,∴3.141 59是有理数.
∵ 3 8 2 ,∴ 3 8 是有理数.∵ 25 5 ,
人教版数学七年级下册
第六章
6.3.1 实数及其分类
学习目标
1.了解无理数和实数的概念以及实数的分 类。
2.知道实数与数轴上的点具有一一对应的 关系。
复习导入
…};
(1)如图,OA=OB,数轴上点A对应的数是什么?它介
2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)
6,
••
, 1. 2 3,
22 , 36
2
7
1.232232223 (两个3之间依次多一个 2)
有理数是:1.
•
2
•
3
22
,7
36
无理数是: 6
,,
2
1.232232223 ,(两个3之间依次多一个 2)
思考:无理数一般有哪些形式?
(1)像 7, 3, 12 的开不尽方的数是无理数。
020
002
000
02…是无
理数吗?
1.57079632679...
2
它们都是无限 不循环小数,
2.02002000200002…
是无理数
常见的一些无理数:
(1)含 π 的一些数;
(2)含开不尽方的数; (3)有规律但不循环的小数,如1.01001000100001…
例:判断下列数哪些是有理数?哪些是无理数?
人教版七年级数学 下册
6.3 实 数 第1课时 实数的概念
1.了解实数的意义,并能将实数按要求进 行准确的分类;
2.熟练掌握实数大小的比较方法;(重点) 3.了解实数和数轴上的点一一对应,能用 数轴上的点 表示无理数.(难点)
认真阅读课本中6.3 实数的 内容,完成下面练习并体验知 识点的形成过程。
• 这个矛盾说明, 2 不能写成分数的形式, 即 2 不是有理数。
• 实际上, 2 是无限不循环小数。
实数的概念:
在前面的学习中,我们知道,许多数的平方根和 立方根都是无限不循环小数,它们不能化成分数.我 们给无限不循环小数起个名字,叫“无理数”.有理 数和无理数统称为实数.
思考:
6.3.1实数-人教版七年级数学下册课件
你能求出下列各数的相反数、倒数和绝对值吗?
限 47 限 设点C表示的实数为x,则点A到点C的距离为-1-x,
5 . 8 7 5 2.会在实数范围内求一个数的相反数、倒数、绝对值.
小 8 循 思考: 是无理数吗?2.
反过来,数轴上的每一点都表示一个实数,即实数和数轴上的点是一一对应的。
数 环 ⑤无理数一定都带根号.
(√) (√) (√) (× ) (× ) (√) (× ) (√)
2、把下列各数分别填在相应的集合里
22 , 3.1415926, 7, 8, 3 2 , 0.6, 0,
7 36 ,
,
3
..
1.652,
0.3131131113
有理数集合
无理数集合
4. 下列说法不正确的是 A.|3-π|= 3-π C.2的相反数是-2
|-π|=___π_____,|3-π|=__π_-__3___.
2.我们在有理数范围内学过的运算法则和运算律是 否在实数范围内还能继续用呢?
在实数范围内,相反数、倒数、绝对值的意义和有理 数范围内的相反数、倒数、绝对值的意义完全一样。
学以致用 知行并进
你能求出下列各数的相反数、 倒数和绝对值吗?
7.如图所示,数轴上A,B两点表示的数分别为-1 和 3 ,点B关于点A的对称点为C,求点C所表示的 实数.
解:∵数轴上A,B两点表示的数分别为-1和 3 , ∴点B到点A的距离为1+ 3 ,则点C到点A的距离为 1+ 3 , 设点C表示的实数为x,则点A到点C的距离为-1-x, ∴-1-x=1+ 3 , ∴x=-2- 3
02002000200002… 有理数和无理数统称为实数
它们都是无限不循环小数,是无理数
人教版初一数学 6.6.3 实数的概念 第2课时PPT课件
解:因为-( )=- , = ,
所以 的相反数是- ,绝对值是 .
探究新知
(3)1- 5;
解:因为-(1- 5)= 5-1, 1− 5 = 5-1,
所以1- 5的相反数是 5-1,绝对值是 5-1.
探究新知
(4)π-3.14.
解:因为-(π-3.14)=3.14-π,|π-3.14|=π-3.14,
学习重难点
学习重点:实数范围内相反数与绝对值的意义.
学习难点:实数的运算.
回顾复习
请说出有理数中的几个重要相关知识:
答:①相反数;②绝对值;③倒数.
导入新课(创设情境)
无理数也有相反数、绝对值、倒数吗?分别怎么表示?
答:在实数范围内,相反数、倒数、绝对值的意义
和有理数范围内的相反ຫໍສະໝຸດ 、倒数、绝对值的意义完全一样.
探究新知
学生活动一【一起探究】
思考:
(1) 2的相反数是 - 2 ,-π的相反数是 π
数是 0 ;
(2) 2 =
2 ,|-π|=
π ,|0|= 0 .
,0的相反
探究新知
归纳:数a的相反数是-a,这里a表示任意实数.
一个正实数的绝对值是它本身;一个负实数的绝
对值是它的相反数;0的绝对值是0.即设a表示一个实数,
第六章
实数
6.3 实数的概念
第2课时 实数的运算
学习目标
1.能借助数轴理解相反数和绝对值的意义,会求实数的
相反数、绝对值.体会“数形结合”的数学思想.
2.了解有理数范围内的运算法则、运算律、运算公式和
运算顺序在实数范围内同样适用,并能熟练运用运算法
则对实数进行运算,提高计算能力.
3.会进行实数的近似计算,解决实际问题,发展应用意识.
所以 的相反数是- ,绝对值是 .
探究新知
(3)1- 5;
解:因为-(1- 5)= 5-1, 1− 5 = 5-1,
所以1- 5的相反数是 5-1,绝对值是 5-1.
探究新知
(4)π-3.14.
解:因为-(π-3.14)=3.14-π,|π-3.14|=π-3.14,
学习重难点
学习重点:实数范围内相反数与绝对值的意义.
学习难点:实数的运算.
回顾复习
请说出有理数中的几个重要相关知识:
答:①相反数;②绝对值;③倒数.
导入新课(创设情境)
无理数也有相反数、绝对值、倒数吗?分别怎么表示?
答:在实数范围内,相反数、倒数、绝对值的意义
和有理数范围内的相反ຫໍສະໝຸດ 、倒数、绝对值的意义完全一样.
探究新知
学生活动一【一起探究】
思考:
(1) 2的相反数是 - 2 ,-π的相反数是 π
数是 0 ;
(2) 2 =
2 ,|-π|=
π ,|0|= 0 .
,0的相反
探究新知
归纳:数a的相反数是-a,这里a表示任意实数.
一个正实数的绝对值是它本身;一个负实数的绝
对值是它的相反数;0的绝对值是0.即设a表示一个实数,
第六章
实数
6.3 实数的概念
第2课时 实数的运算
学习目标
1.能借助数轴理解相反数和绝对值的意义,会求实数的
相反数、绝对值.体会“数形结合”的数学思想.
2.了解有理数范围内的运算法则、运算律、运算公式和
运算顺序在实数范围内同样适用,并能熟练运用运算法
则对实数进行运算,提高计算能力.
3.会进行实数的近似计算,解决实际问题,发展应用意识.
七年级数学下册《6.3 实数》课件
绝对值
代数意义
只有符号不同 的两个数
几何意义
复习导入
(1)2的相反数是 -2 , 的相反数是
.
(2)-3的绝对值是 3 , 5.2的绝对值是 5. . 2
探究新知
有理数关于相反数和绝对值的意义同样适合于实数。
(1) 的相反数是
, 的相反数是 ,0的相反数是 0.
(2)
,
,
0.
-2 B -1
0
1A 2
典例解析 例1 计算下列各式的值:
(3) (1) (2)
根指数、被开方数都 分别相同的无理数要 合并.
典例解析
合并 算术平方根性质 乘法交换律、结合律
典例解析 例2 计算(结果保留小数点后两位):
计在算计过算程过中程比中结保果留要几求多 位小保数留呢一?位小数.
典例解析 例2 计算(结果保留小数点后两位):
人教版七年级数学下册
6.3 实 数
第2课时实数的运算
学习目标
1.会求实数的相反数、绝对值. 2.会对实数进行简单的运算.
复习导入 问题1 在有理数范围内,相反数的概念是什么?
有理数范围
相反数
代数意义
只有符号不同 的两个数
几何意义
复习导入 问题2 在有理数范围内,绝对值的概念是什么?
有理数范围
相反数
是
.
的数
3.
的绝对值 4
是
.
应用新知
例2 求下列各数的相反数和绝对值:
ห้องสมุดไป่ตู้
相反数
2
绝对值
2
探究新知
实数的运算法则和运算律
实数和有理数一样,也可以进行加、减、乘、除、乘方运算. 而且有理数的运算法则与运算律对实数仍然成立.
人教版七年级数学下册教学课件《实数》(第2课时)
(2)∵ 225 =15, ∴ 225 的相反数是-15,绝对值是15.
(3) 11 的相反数是- 11 ,绝对值是 11.
探究新知
6.3 实数
知识点 2 实数的运算
填空:设a,b,c是任意实数,则
(1)a+b = b+a (加法交换律); (2)(a+b)+c = a+(b+c) (加法结合律);
4. - 17是 17的相反数;2π-6.28的相反数是 6.28-2π.
课堂检测
5.计算:(1)1 3 3 (-4)3 3 3
1 3(- 4) 3
=-4 (2) (15)2 ( 15)2
=15-15 =0
6.3 实数
课堂检测
(3) (2)3 (2)2 2 (9)2 3 (8)2
探究新知
6.3 实数
实数的平方根与立方根的性质: 1.每个正实数有且只有两个平方根,它们互为相反数. 0的平方根是0. 2.在实数范围内,负实数没有平方根. 3.在实数范围内,每个实数有且只有一个立方根, 而且与它本身的符号相同.
此外,前面所学的有关数、式、方程的性质、法 则和解法,对于实数仍然成立.
=-8×2-9+4 =-21
(4) 225 196 3 64
=15-14+4 =5
6.3 实数
课堂检测
能力提升题
6.3 实数
3 的整数部分与小数部分的差是多少? (结果保留3位小数)
解: 整数部分:1
小数部分: 3-1
整数部分与小数部分的差是:
1-( 3-1) 2- 3 0.286
课堂检测
学习目标
6.3 实数
3. 掌握实数的运算法则,熟练地利用计算器去解 决有关实数的运算问题.
(3) 11 的相反数是- 11 ,绝对值是 11.
探究新知
6.3 实数
知识点 2 实数的运算
填空:设a,b,c是任意实数,则
(1)a+b = b+a (加法交换律); (2)(a+b)+c = a+(b+c) (加法结合律);
4. - 17是 17的相反数;2π-6.28的相反数是 6.28-2π.
课堂检测
5.计算:(1)1 3 3 (-4)3 3 3
1 3(- 4) 3
=-4 (2) (15)2 ( 15)2
=15-15 =0
6.3 实数
课堂检测
(3) (2)3 (2)2 2 (9)2 3 (8)2
探究新知
6.3 实数
实数的平方根与立方根的性质: 1.每个正实数有且只有两个平方根,它们互为相反数. 0的平方根是0. 2.在实数范围内,负实数没有平方根. 3.在实数范围内,每个实数有且只有一个立方根, 而且与它本身的符号相同.
此外,前面所学的有关数、式、方程的性质、法 则和解法,对于实数仍然成立.
=-8×2-9+4 =-21
(4) 225 196 3 64
=15-14+4 =5
6.3 实数
课堂检测
能力提升题
6.3 实数
3 的整数部分与小数部分的差是多少? (结果保留3位小数)
解: 整数部分:1
小数部分: 3-1
整数部分与小数部分的差是:
1-( 3-1) 2- 3 0.286
课堂检测
学习目标
6.3 实数
3. 掌握实数的运算法则,熟练地利用计算器去解 决有关实数的运算问题.
人教版七年级数学下册《平方根》实数PPT优质课件
第六章 实数
平方根
第1课时
学习目标
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平
方根的非负性;
2.了解开方与乘方互为逆运算,会求某些非负数的算术平方根;
新课导入
学校要举行美术作品比赛,小明很高兴,他想裁出一块面积为
25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正
是0.002,即 0.000004 0.002.
随堂练习
6.用大小完全相同的240块正方形地板砖,铺一间面积为60 m2的会
议室的地面,每块地板砖的边长是多少?
解:设每块地板砖的边长为x m.由题意得
1
240 x 2 60, x 2 .
4
1 1
x
0.5
4 2
故每块地板砖的边长是0.5 m.
方形画布的边长应取多少?你能帮小明算一算吗?
5 dm
因为 52=25
合作探究
新知一
什么是算术平方根
完成表1:
正方形的边长/dm
正方形的面积/dm2
1
1
3
9
6
2
5
36
4
25
4
16
你能从表1中各运算发现什么共同点吗
已知一个正数,求这个正数的平方
合作探究
完成表2:
正方形的面积/dm2
正方形的边长/dm
➢ 用计算器求解:
一般情况下按键顺序:
a
=
课堂总结
例1 估算 19 的值 ( D )
A.在1和2之间
B.在2和3之间
C.在3和4之间
D.在4和5之间
解析:因为42<19<52,所以4< 19 <5.
平方根
第1课时
学习目标
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平
方根的非负性;
2.了解开方与乘方互为逆运算,会求某些非负数的算术平方根;
新课导入
学校要举行美术作品比赛,小明很高兴,他想裁出一块面积为
25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正
是0.002,即 0.000004 0.002.
随堂练习
6.用大小完全相同的240块正方形地板砖,铺一间面积为60 m2的会
议室的地面,每块地板砖的边长是多少?
解:设每块地板砖的边长为x m.由题意得
1
240 x 2 60, x 2 .
4
1 1
x
0.5
4 2
故每块地板砖的边长是0.5 m.
方形画布的边长应取多少?你能帮小明算一算吗?
5 dm
因为 52=25
合作探究
新知一
什么是算术平方根
完成表1:
正方形的边长/dm
正方形的面积/dm2
1
1
3
9
6
2
5
36
4
25
4
16
你能从表1中各运算发现什么共同点吗
已知一个正数,求这个正数的平方
合作探究
完成表2:
正方形的面积/dm2
正方形的边长/dm
➢ 用计算器求解:
一般情况下按键顺序:
a
=
课堂总结
例1 估算 19 的值 ( D )
A.在1和2之间
B.在2和3之间
C.在3和4之间
D.在4和5之间
解析:因为42<19<52,所以4< 19 <5.
【新】人教版七年级数学下册第六章《 实 数》公开课课件.ppt
famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about. 。2020年12月15日星期二2020/12/152020/12/152020/12/15
【预习导学】
②用一张硬纸片前一个半径为1cm的小圆,计算圆的周长,周长是有理 数还是无理数?如何在数轴上表示圆的周长呢?
归纳总结:实数与数轴上的点是 一一对应的 ,即任何一个都可以用数轴上的一 个点来表示;反过来,数轴上的每一个点都表示一个实数。数轴上的任意两个 点,右边的点表示的数总比左边的点表示的数 大 。
1、有理数的运算法则及运算律同样适用于实数的运算;当 遇到无理数并需要求出结果的近似值时,应按照要求的精 确度用相应的近似有限小数去代替无理数,再进行计算。
9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/152020/12/15Tuesday, December 15, 2020
【预习导学】
一、自学指导 1、自学1:自学课本P53-54页,完成54页“探究”,掌握实数的相关概念,理解实数与
数轴上的点的对应关系,完成下列填空。5分钟 归纳总结: 有理数 和 无理数 统称实数。 实数按正负分可分为 正实数 、 0 、 负实数 。
点拨精讲:带根号的不一定都是无理数;所有的无限循环小数都可以化成分数。
解:没有最大的实数,没有最小的实数,绝对值最小的实数是0. 2、设a是最小的自然数,b是最大的负整数,c是绝对值最小的实数,求
【预习导学】
②用一张硬纸片前一个半径为1cm的小圆,计算圆的周长,周长是有理 数还是无理数?如何在数轴上表示圆的周长呢?
归纳总结:实数与数轴上的点是 一一对应的 ,即任何一个都可以用数轴上的一 个点来表示;反过来,数轴上的每一个点都表示一个实数。数轴上的任意两个 点,右边的点表示的数总比左边的点表示的数 大 。
1、有理数的运算法则及运算律同样适用于实数的运算;当 遇到无理数并需要求出结果的近似值时,应按照要求的精 确度用相应的近似有限小数去代替无理数,再进行计算。
9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/152020/12/15Tuesday, December 15, 2020
【预习导学】
一、自学指导 1、自学1:自学课本P53-54页,完成54页“探究”,掌握实数的相关概念,理解实数与
数轴上的点的对应关系,完成下列填空。5分钟 归纳总结: 有理数 和 无理数 统称实数。 实数按正负分可分为 正实数 、 0 、 负实数 。
点拨精讲:带根号的不一定都是无理数;所有的无限循环小数都可以化成分数。
解:没有最大的实数,没有最小的实数,绝对值最小的实数是0. 2、设a是最小的自然数,b是最大的负整数,c是绝对值最小的实数,求
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
?
a
a?0
2) 对任何实数a,总有︱a︱_≥___0.
例题1
(1)分别写出 - 6 ,? ? 3.14 的相反数;
(2)指出 ? 5,1? 3各是什么数的相反数 (3)求 3 ?64的绝对值 (4)已知一个数的绝对值是 3 ,求这个数.
填空:
(1)?
(2)
(3)?
3 的相反数是___3_
?
的相反数是? ?
当堂检测
5计算
(1)
81 ? 3 - 27 ? (- 2 )2 3
(2)2 3 ? ( ? 4) 2 ? 2 3 ?
(3)
15 1 ? 3? ?
289? 3 ? 27
4 2 125
课堂小结
1实数的加、减、
乘、除、乘方和开
方运算2混合运算
中注意两点:一是 运算
运算顺序;二是灵
算术活运用运计算算律化简简化
? ? (1). 3 ? 2 - 2
(2).3 3 ? 2 3
二 实数的运算 当数从有理数扩充到实数以后,实数之间不仅
可以进行加、减、乘、除、乘方运算,又增加了 非负数的开平方运算,任意实数可以进行开立方 运算.进行实数运算时,有理数的运算法则及性质 等同样适用 . 实数的运算顺序 (1)先算乘方和开方 ;
6.3实数(2)
带着问题自学课本 54页“思考”
1.无理数也有相反数吗?怎么表示? 2.有绝对值吗?怎么表示?
大胆尝试,挑战自我
2 的相反数是_?____2__
? ? ? 的相反数是_______
0 0的相反数是 _______
2 ? ____2__ ? ? ? ___?___ 0 ? __0__
3
3
5 ? _____5______
(4)绝对值等于 ? 6 6 的数是 _________
抢答题
实力神枪手 ——看谁百发百中
1正实数的绝对值是 它本 ,0的绝对值是 0 ,
负实数的绝对值是 它身的相反数 .
2、? 3 的相反数是 3
p
,绝对值是
?
3
p
.
3、一个数的绝对值是
,则这个数是
2
2
.
4、绝Байду номын сангаас值等于 5 的数是 ? 5 。 、
1
A 3与
3
B 2 与 (? 2)2
C (? 1)2 与 3 ? 1 D 5与 ? 5
2、 5 ? 3 ? 2 ? 5 的值是( C )
A 5 B ?1 C 5? 2 5 D 2 5?5
3、绝对值小于 10 的所有整数是? 3、? 2、? 1、0 。
4、2 - 13 的相反数是 13 - 2 ,绝对值是 13 - 2。
(2)再算乘除,最后算加减 ;
(3)如果遇到括号,则先进行括号里的运算 .
练习:
(1)2 3 ? 3 2 ? 5 3 ? 3 2
(2) 3 ? 2 ? 3 ? 1 6
已知 a ? 5, b2 ? 7,且 a ? b ? a ? b
则 a ? b 的值为
。
刀牛试小
1、下列各数中,互为相反数的是( C )
合作学 习
请同学们总结有理数的运算律和运算法则
1.交换律 : 加法 a+b=b+a 乘法a×b=b ×a
2.结合律: 加法(a+b)+c=a+(b+c) 乘法(a×b)×c=a ×(b×c)
3.分配律: a× (b+c)= a ×b+ a×c 注:有理数的运算律和运算法则在实数范围内同样适用
例2.计算下列各式的值
平
方
根
立方
的
根的化简
化
简
相反 数
绝对 性质 值
分类
讨论
思想
思想
类比思想
P 课本 57第5,6题(必做)
(1)a是一个实数,它的相反数为 ? a ,
绝对值为 a
;
( 2) 正实数的绝对值是 它本身,0的绝对值是 0 , 负实数的绝对值是 它的相反数 .
一 在实数范围内,相反数、绝对值的意义和有 理数范围内的相反数、绝对值的意义完全一样。
2、绝对值性质及应用
? a a?0
? a ?? 0 a?0
? ?