《分段函数》函数的概念与性质PPT
函数的表示图像分段函数省公开课一等奖全国示范课微课金奖PPT课件
三.翻折变换
1、上翻
保留f(x)在x轴上方图象,
y=f(x)图象
y= f(x) 图象
将x轴下方图象翻到x轴上方
2、左翻
保留f(x)在y轴右边图象,
y=f(x)图象
y=f( x ) 图象
将y轴右边图象翻到y轴左边
f (x) x2 2x 3, f ( x ) x 2 2 x 3
第13页
例5.请画出下列函数的图像:y 1 , y x 1, y 1 , y x . x x x 1 x 1
如,坐标平面内的所有点组成的集合为 A,所有 的有序数对组成的集合为
B x, y | x R, y R.
让每一点与其坐标对应,则 A中每一个元素 点, 在B中都有惟一元素 有序数对 与之对应.
函数是映射, 但映射不一定是函数 .
第15页
例1 下图所示的对应中, 哪些是A到B的映射 ?
a1
1.2.2 函数表示 阅读书本第21页例5与例6. 一.分断函数定义:
一个函数在自变量不一样取值范围内 对应法则有所不一样(解析式不一样).
分段函数不能认为是几个函数合并.
例题巩固
例1.已知函数f
(x)
x,
x2
x 0, , x 0,
试求f
(2)与f
(
f
(2))的值.
f (2) 2, f ( f (2)) 4.
1
o
1
x
一、平移变换 1、左右平移:
y=f(x)图象
a>0时,向左平移 a 个单位
y=f(x+a)图象
a<0时,向右平移 a 个单位
第9页
例2.已知函数y f (x) x2请画出它的图像, 并用它的图像进行变换得出下列函数的图像:
(完整版)分段函数及函数的性质知识梳理
分段函数及函数的性质分段函数概念 在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示的函数叫做分段表示的函数,简称分段函数.定义域 分段函数的定义域是自变量的各个不同取值范围的并集 函数值 求分段函数的函数值()0f x 时,应该首先判断0x 所属的取值范围,然后再把0x 代入到相应的解析式中进行计算.注意 分段函数在整个定义域上仍然是一个函数,而不是几个函数,只不过这个函数在定义域的不同范围内有不同的对应法则,需要用相应的解析式来表示.分段函数的作图 因为分段函数在自变量的不同取值范围内,有着不同的对应法则,所以作分段函数的图像时,需要在同一个直角坐标系中,要依次作出自变量的各个不同的取值范围内相应的图像,从而得到函数的图像. 例1 设函数()221,0,,0.x x y f x x x -⎧⎪==⎨>⎪⎩„(1)求函数的定义域; (2)求()()()2,0,1f f f -的值.(3)作出函数图像.1.设函数 ()221,20,1,0 3.x x y f x x x +-<⎧⎪==⎨-<<⎪⎩„(1)求函数的定义域; (2)求()()()2,0,1f f f -的值. (3)作出函数图像.2.设函数()41,20,1,0 3.x x f x x --<⎧=⎨-<<⎩„(1)求函数的定义域; (2)求()2(0)(1)f f f -,,; (3)作出函数图像.3 .()⎩⎨⎧>-≤+=,0,2,0,12x x x x x f 若()2f f ⎡⎤⎣⎦= . 4.已知⎩⎨⎧<+≥-=)6()2()6(5)(x x f x x x f ,则f(3)为( ) A 2 B 3 C 4 D 5函数的性质 1 单调性概念 函数值随着自变量的增大而增大(或减小)的性质叫做函数的单调性.1 即对于任意的()12,,x x a b ∈,当12x x <时,都有()()12f x f x <成立.这时把函数()f x叫做区间(),a b 内的增函数,区间(),a b 叫做函数()f x 的增区间.2 即对于任意的()12,,x x a b ∈,当12x x <时,都有()()12f x f x >成立.这时函数()f x 叫做区间(),a b 内的减函数,区间(),a b 叫做函数()f x 的减区间.3 如果函数()f x 在区间(),a b 内是增函数(或减函数),那么,就称函数()f x 在区间(),a b 内具有单调性,区间(),a b 叫做函数()f x 的单调区间.例 判断函数42y x =-的单调性1. 已知函数f ( x )=x 2+ax +b ,且对任意的实数x 都有f (1+x )=f (1-x ) 成立。
函数完整版PPT课件
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程
北师大版高中数学必修第一册 第二章 2-2《分段函数》课件PPT
+ = 1,
= −1,
解得ቊ
= 2,
= 2.
∴左侧射线对应的函数解析式为y=-x+2(x≤1).
同理,当x≥3时,对应的函数解析式为y=x-2(x≥3).
再设抛物线对应的二次函数解析式为y=a(x-2)2+2(1<x<3,a<0).
∵点(1,1)在抛物线上,∴a+2=1,∴a=-1.
2.已知函数值求自变量的值的步骤
(1)先确定所求自变量的值可能存在的区间及其对应的函数解析式.
(2)再将函数值代入不同的解析式中.
(3)通过解方程求出自变量的值.
(4)检验所求的值是否在所讨论的区间内.
延伸探究
在本例已知条件下,若f(x)>0,求x的取值范围.
≥ 2,
0 ≤ < 2,
< 0,
可得到以下函数解析式y=
4,10 < ≤ 15,∈N+ ,
5,15 < ≤ 19,∈N+ .
根据这个函数解析式,可画出函数图象,如图所示.
典例剖析
例
分段函数的理解与应用
如图所示,已知底角为45°的等腰梯形ABCD,底边BC长为7 cm,腰长为2 2 cm,
当垂直于底边BC(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l
第二章
§2
函 数
2.2
函数的表示法
第2课时
分段函数
学习目标
1.了解分段函数的概念.
2.会求分段函数的函数值,能画出分段函数的图象.
3.能在实际问题中列出分段函数,并能解决有关问题.
核心素养:数学抽象、直观想象、数学建模
函数的概念及其表示(课时4 分段函数及其应用)高一数学课件(人教A版2019必修第一册)
[解析] 当 时, ,可排除 ,C.又当 时, ,排除D.故选B.
4.函数 的定义域为___________________,值域为________________.
探究1 分段函数求值
问题1:.集合 , , 中的有理数都对应 中的元素0,无理数都对应 中的元素1,这一对应是函数吗?
[答案] 各段定义域的并集即分段函数的定义域,各段值域的并集即分段函数的值域.
新知生成
1.分段函数的定义若函数 , ,对于自变量 在 中不同的___________,有着不同的___________,则称这样的函数为分段函数.
取值范围
对应关系
2.分段函数的三要点
(1)分段函数是一个函数,切不可把它看成是几个函数.分段函数在书写时用大括号把各段函数合并写成一个函数的形式,并且必须指明各段函数自变量的取值范围.
(1)设在 俱乐部租一块场地开展活动 小时的收费为 元,在 俱乐部租一块场地开展活动 小时的收费为 元,试求 与 的解析式.
(2)该企业选择哪家俱乐部比较划算,为什么?
[解析] (1)由题意知, , , (2)①当 时,令 ,解得 ,即当 时, ,当 时, ,当 时, .②当 时, .故当 时,选A俱乐部划算,当 时,两家俱乐部一样划算,当 ,选B俱乐部划算.
(2)一个函数只有一个定义域,分段函数的定义域只能写成一个集合的形式,不能分开写成几个集合的形式.
(3)求分段函数的值域,应先求出各段函数在对应自变量的取值范围内的函数值的集合,再求出它们的并集.
新知运用
例1 已知函数 设 ,则 ( ).A. B. C. D.
A
[解析] , ,故选A.
[答案] 能.
情境设置
问题2:.画出函数 的图象.
高数数学必修一《3.1.2.2分段函数念》教学课件
跟踪训练2
(1)函数f(x)=x+
x x
的图象是(
)
答案:B
(2)已知函数f(x)的图象如图所示,在区间[0,4]上是抛物线的一段, 求f(x)的解析式.
题型 3 分段函数的实际应用 例3 “活水围网”养鱼技术具有养殖密度高、经济效益好的特
点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,把每 尾鱼的平均生长速度v(单位:千克/年)表示为养殖密度x(单位:尾/立 方米)的函数.当0<x≤4时,v的值为2;当4<x≤20时,v是关于x的一 次函数.当x=20时,因缺氧等原因,v的值为0.
【即时练习】
1.判断正误(正确的画“√”,错误的画“×”)
(1)分段函数由几个函数构成.( × )
(2)分段函数有多个定义域.( × )
(3)函数f(x)=ቊ−xx,,xx
≤ ≥
00,是分段函数.(
×
)
2.已知f(x)=ቊ−x2x,,xx
≤ >
00,则f(-3)=(
A.-3
B.3
C.-9
答案:B
第2课时 分段函数
预学案
共学案
预学案
分段函数❶ 1.分段函数的定义 在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应 关系,这样的函数通常叫做分段函数. 2.分段函数的定义域、值域 分段函数是一个函数,其定义域、值域分别是各段函数的定义域、 值域的___并_集____;各段函数的定义域的交集是___空_集____. 3.分段函数的图象 分段函数有几段,它的图象就由几条曲线组成.在同一直角坐标系 中,根据每段的定义区间和表达式依次画出图象,要注意每段图象的 端点是空心点还是实心点,将每段图象组合到一起就得到整个分段函 数的图象.
高考数学微专题4 分段函数(含有绝对值的函数)的图象与性质 课件
实数 m 的最小值为( )
27 A. 8
29 B. 8
13 C. 4
15 D. 4
【思路分析】 根据已知计算出 f(x)=21n[1-|2x-(2n+1)|]≤21n,画出
图象,计算 f(x)=332,解得 x=289,从而求出实数 m 的最小值.
内容索引
【解析】 由题意,得当 x∈[1,2)时,f(x)=12×f(x-1)=12(1-|2x-3|); 当 x∈[2,3)时,f(x)=12f(x-1)=14(1-|2x-5|);…,可得在区间[n,n+1)(n ∈Z)上,f(x)=21n[1-|2x-(2n+1)|]≤21n,所以当 n≥4 时,f(x)≤332.作出函 数 y=f(x)的图象,如图所示,当 x∈72,4时,由 f(x)=18(1-|2x-7|)=332, 解得 x=289,则 m≥289,所以实数 m 的最小值为289.
【答案】 ABD
1234
内容索引
-x2+2, x≤1, 3. (2022 浙江卷)已知函数 f(x)=x+1x-1, x>1,
则 ff12=
________;若当 x∈[a,b]时,1≤f(x)≤3,则 b-a 的最大值是________.
1234
内容索引
【解析】 f12=-122+2=74,f74=74+47-1=3278,所以 ff12=3278.当 x≤1 时,由 1≤f(x)≤3,得 1≤-x2+2≤3,所以-1≤x≤1;当 x>1 时, 由 1≤f(x)≤3 可得 1≤x+1x-1≤3,所以 1<x≤2+ 3.综上,由 1≤f(x)≤3, 得-1≤x≤2+ 3,所以[a,b]⊆[-1,2+ 3],所以 b-a 的最大值为 3+
内容索引
人教版高中数学必修1《分段函数》PPT课件
()
解析:∵f(x)=|x-1|=x1- -1x, ,xx≥ <11, , 当 x=1 时,f(1)=0,可排除 A、C. 又 x=-1 时,f(-1)=2,排除 D. 答案:B
3.函数 y=x-2,2,x>x<0,0 的定义域为__________,值域为____________. 答案:(-∞,0)∪(0,+∞) {-2}∪(02],- 3∈(-2,2),-52∈(-∞,-2], 知 f(-5)=-5+1=-4,
f(- 3)=(- 3)2+2×(- 3)=3-2 3. ∵f-52=-52+1=-32,且-2<-32<2, ∴ff-52=f-32=-322+2×-32=94-3=-34. (2)当 a≤-2 时,a+1=3,即 a=2>-2,不合题意,舍去; 当-2<a<2 时,a2+2a=3,即 a2+2a-3=0. ∴(a-1)(a+3)=0,得 a=1 或 a=-3. ∵1∈(-2,2),-3∉(-2,2),∴a=1 符合题意;
答案:(-3,1)∪(3,+∞)
题型二 分段函数的图象 【学透用活】
[典例 2] (1)已知 f(x)的图象如图所示,求 f(x)的解析式. (2)已知函数 f(x)=1+|x|-2 x(-2<x≤2). ①用分段函数的形式表示函数 f(x); ②画出函数 f(x)的图象; ③写出函数 f(x)的值域.
x+2,x<0. 根据函数解析式作出函数图象,如图所示. 由图象可以看出,函数的值域为{y|y≤2}. 答案:{y|y≤2}
3.作出函数 f(x)=- x2-x-x-1,2,x≤--1<1,x≤2, x-2,x>2
的图象.
解:画出一次函数 y=-x-1 的图象,取(-∞,-1]上的一段;画出二次 函数 y=x2-x-2 的图象,取(-1,2]上的一段;画出一次函数 y=x-2 的图 象,取(2,+∞)上的一段,如图所示.
江苏省2020届高三数学二轮复习第21讲 与分段函数有关的取值范围问题(共21张PPT)
a-ex,x<1, 例题:(2018·苏州一模)已知函数 f(x)= x+4,x≥1, (e 是自然对数的底数).若函数 y
x =f(x)的最小值是 4,则实数 a 的取值范围为________________.
a-ex,x<1, 解析:如图,画出函数 f(x)= x+4,x≥1 的图象,可知,只需 a-ex 在(-∞,1)上的最
x 小值大于等于 4 即可,则 a-e≥4,所以,实数 a 的取值范围为[e+4,+∞).
2-|x-2|, 0≤x<4,
变式 1 已知函数 f(x)= 2x-2-3,
若存在 4≤x≤6,
x1,x2,当
0≤x1<4≤x2≤6
时,
f(x1)=f(x2),则 x1f(x2)的取值范围是________________.
ex
围为______________________.
解析:x≥0 时由 f(x)= x ,f′(x)=1-x,
ex
ex
所以 x=1 时,f(x)有极大值1, e
由图象知
f(x1)=f(x2)∈
0,1 e
,即
0<x1+2<1,
ee
所以-2e<x1<-1e,所以f(xx12)=f(xx11)=x1x+1 2e=1+e2x1∈(-1,0).
例 2 已知函数 f(x)=x2+a|lnx-1|(a>0). (1)当 a=1 时,求函数 f(x)在区间[1,e]上的最大值; (2)当 x∈[1,+∞)时,求 f(x)的最小值.
【解答】 (1)当 a=1,x∈[1,e]时,f(x)=x2-lnx+1,
f′(x)=2x-1x≥f′(1)=1,
1+a,0<a≤2, 综上所述,函数 y=f(x)的最小值 ymin=3e22a,-a2a≥ln2a2e,2.2<a<2e2,
分段函数(共9张PPT)
(2)已知某户5月份的用水量为米3,求该用户5月 份的水费。
生活中的数学
【例 3】某医药研究所开发了一种新药,在实际验药时
发现,如果成人按规定剂量服用,那么每毫升血液中含
药量y(微克)随时间x(时)的变化情况如图所示 ,当成年人按规定剂量服药后。
Y(元) 跑步速度 y与时间 x的函数关系式是
例2、某供电公司为了鼓励居民用电,采用分段计费的方法来计算电费,月用电x(度)与相应电费y(元)之间的函数的 图象如图所示。 例1 小芳以200米/分的速度起跑后,先匀加速跑5分钟,每分提高速度20米/分,又匀速跑10分钟, 试写出这段时间里她的跑步速度y(米/分)随跑步时间 x(分)变化的函数关系式,并画出函数图象. (2)已知某户5月份的用水量为米3,求该用户5月份的水费。
例2、某供电公司为了鼓励居民用电,采用分段计费的方法来计算电费,月用电x(度)与相应电费y(元)之间的函数的 图象如图所示。
解:依题意得 { 例1 小芳以200米/分的速度起跑后,先匀加速跑5分钟,每分提高速度20米/分,又匀速跑10分钟, 试写出这段时间里她的跑步速度y(米/分)随跑步时间
s=10+6(x-5) (5<x≤10) x(分)变化的函数关系式,并画出函数图象.
化情况如图所示,当成年人按规定剂量服药后。
1 例2、某供电公司为了鼓励居民用电,采用分段计费的方法来计算电费,月用电x(度)与相应电费y(元)之间的函数的 图象如图所示。
(3)月用电量为260度时,应交电费多少元?
(2)当x≥100时求y与x之间的函数关系式; Y= x+20 3.写出每一段的函数解析式 5 例1 小芳以200米/分的速度起跑后,先匀加速跑5分钟,每分提高速度20米/分,又匀速跑10分钟, 试写出这段时间里她的跑步速度y(米/分)随跑步时间
2 第2课时 分段函数(共51张PPT)
探究点 3 分段函数的图象及应用
角度一 分段函数图象的识别
1,x>0,
(2020·潍坊高一检测)设 x∈R,定义符号函数 sgn x=0,x=0, 则 -1,x<0,
函数 f(x)=|x|sgn x 的图象大致是
()
x,x>0,
【解析】 函数 f(x)=|x|sgn x=0,x=0,故函数 f(x)=|x|sgn x 的图象为 y x,x<0,
答案:R [0,1]
探究点 2 分段函数求值问题
x+1,x≤-2,
已知函数 f(x)=x2+2x,-2<x<2,试求 2x-1,x≥2.
f(-5),f(-
3),ff-52的
值.
【解】 由-5∈(-∞,-2],- 3∈(-2,2),-52∈(-∞,-2],知 f(-5)=-5+1=-4, f(- 3)=(- 3)2+2(- 3) =3-2 3. 因为 f-25=-52+1=-32,
分段函数图象的画法 (1)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对 值符号,将函数转化为分段函数,然后分段作出函数图象. (2)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管 定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特 别注意接点处点的虚实,保证不重不漏.
x+1,-1≤x<0, 答案:f(x)=-x,0≤x≤1
x2-4,0≤x≤2, 5.已知函数 f(x)=2x,x>2. (1)求 f(2),f(f(2))的值; (2)若 f(x0)=8,求 x0 的值.
解:(1)因为 0≤x≤2 时,f(x)=x2-4, 所以 f(2)=22-4=0, f(f(2))=f(0)=02-4=-4. (2)当 0≤x0≤2 时,由 x20-4=8,得 x0=±2 3(舍去);当 x0>2 时,由 2x0=8, 得 x0=4.所以 x0=4.
湘教版高中数学《简单的分段函数》同步课件
8.函数f(x)与g(x)的定义域均为[m,n],它们的图象如下图所示,则不等式
f(x)>g(x)的解集是(
)
(A)[m,a)∪(b,e) (B)(a,c)∪(e,n]
(C) (b,c)∪[m,a] (D)(a,b)∪(c,e)
(第8题)
二
习题3.1
9.某农场种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿 市场售价与上市时间的关系可用如上图所示的一条折线表示,写出市场售价与时 间的函数解析式P= f(t).
若f(27)=1,求 f 3 的值.
14.如图,函数f(x)的图象是折线段ABC,其中点A,B,C的坐标分别为(0,4),
(2,0),(6,4),求f(f(f(2)))的值.
(第14题)
二
习题3.1
15.如图,四边形ABCD是边长为4的正方形,一个动点P从A点出发,沿着边 AB→BC→CD→DA运动,返回到点A后停止运动,设点P走过的路程为x.
(2)探索利用函数sign(x)把分段函数写成一个解析表达式的方法,并具体尝试 用一个表达式来写出上面第9题中的函数.
返 回 目 录
结束
一 简单的分段函数
练习 3. 一个质点沿直线运动.质点由静止匀加速T s后速度达到8m/s;然后质点以
恒定速度8m/s运动了5T s;之后质点在40s内匀减速到完全停下. (1)画出质点运动的速度时间图象; (2)已知质点总共运动的位移是600m,求T的值; (3)画出质点运动的加速度时间图象.
二
一 简单的分段函数
练习
1.作出下列函数的图象,并写出函数的值域:
(1)y=|x+3|;
(2)y=|x-2|-|x+2|.
x , x 2,
(人教a版)必修一同步课件:分段函数及映射
二、映射
非空
唯一确定 从集合A到集合B
思考:映射与函数有什么区别与联系?
提示:区别:映射中集合A,B可以是数集,也可以是其他集
合,函数中集合A,B必须是数集.
联系:函数是特殊的映射,映射是函数的推广 .
【知识点拨】
1.对分段函数的认识
1 , x∈A,y∈B. x x
上述三个对应关系中,是映射的是______,是函数的是______.
【解析】1.选D.由函数的定义可知,对于A,0∈R,且|0|=0∉B,
ቤተ መጻሕፍቲ ባይዱ
故A不是A到B的函数;对于B,0∈Z,且02=0∉N*,故B不是A到B的函数
对于C,当x<0时,如-2∈Z,但
无意义,故 C不是A到B的 2
类型 一
分段函数求值问题
【典型例题】
x 2 1 ,x 1, 1.(2012·江西高考)设函数 f x 2 则f(f(3))=( ) ,x>1, x A.1 B.3 C. 2 D. 13 5 3 9 x, x 0, 2.(2013·温州高一检测)设函数 f x 若f(a)=4,则 2 x , x>0,
b b 可能对应集合N中的2或0,当 对 a a
b a
b =1,则b=2,此时M中有两个相同元素,不合适,故 a b b b=2应舍去,当 对应0时,则 =0,则b=0,此时M={0,1},符 a a
合题意,综上可知a=2,b=0,即a+b=2.
映射与函数的关系 【典型例题】 1.下列对应为A到B的函数的是( )
探究提示:
1.已知函数图象,一般用待定系数法求其函数解析式.
2.本题中由于不同里程内的计价标准不同,因此需建立分段
函数的表示法及分段函数
02 分段函数的概念与性质
分段函数的定义与表示方法
分段函数的定义
分段函数是一种在自变量的不同取值 范围内,对应不同的函数表达式的函 数。
分段函数的表示方法
通常使用大括号将各段的函数表达式 括起来,并在每一段前面标明自变量 的取值范围。
分段函数的性质
分段连续性
01
分段函数在其定义域内的每一段上都是连续的,但在某些点处
分段函数的单调性
01
分段函数的单调性需要分别考虑其各段的单调性。
02
如果分段函数在某一段内单调增加(或减少),则该函数在 该段内为增函数(或减函数)。
03
如果分段函数在其整个定义域内都是单调的,则该函数为全 局单调函数。
分段函数的奇偶性
分段函数的奇偶性需要分 别考虑其各段的奇偶性。
如果分段函数在其定义域 内关于y轴对称,则该函 数为偶函数。
税收制度
税收制度中的累进税率就是一种 典型的分段函数。根据不同的收 入区间,税率会有所不同,从而 形成了一个分段函数。
需求与供给
在经济学中,需求和供给曲线可 以表示为分段函数。这些曲线描 述了在不同价格水平下,消费者 和生产者的行为变化。
分段函数在工程学中的应用
控制系统
在控制工程中,分段函数常被用来描述系统的非线性特性。 例如,饱和环节、死区环节等都可以通过分段函数来表示。
现实世界中的许多系统都具 有复杂性和非线性特点,如 生态系统、社会经济系统等 。未来,分段函数将在复杂 系统的建模和分析中发挥更 大作用,需要发展更为精细 和高效的方法。
函数表示法与计 算机科学的结合
随着计算机科学的不断进步 ,函数表示法将与计算机科 学更加紧密地结合,如自动 微分、符号计算等技术的发 展将为函数表示法提供新的 思路和方法。
《函数的概念及其表示》函数的概念与性质PPT(第一课时函数的概念)
第三章 函数的概念与性质
(2)①定义域不同,f(x)的定义域为{x|x≠0},g(x)的定义域为 R. 不相等. ②对应关系不同,f(x)= 1x,g(x)= x.不是同一个函数. ③定义域、对应关系都相同.同一个函数. ④对应关系不同,f(x)=|x+3|,g(x)=x+3.不是同一个函数. 【答案】 (1)B (2)③
栏目 导引
第三章 函数的概念与性质
下列各组函数表示同一个函数的是( ) A.f(x)=x-,xx,≥x0<,0 与 g(x)=|x| B.f(x)=1 与 g(x)=(x+1)0 C.f(x)= x2与 g(x)=( x)2 D.f(x)=x+1 与 g(x)=xx2--11
栏目 导引
第三章 函数的概念与性质
栏目 导引
第三章 函数的概念与性质
判断两个函数为同一个函数应注意的三点 (1)定义域、对应关系两者中只要有一个不相同就不是同一个函 数,即使定义域与值域都相同,也不一定是同一个函数. (2)函数是两个非空数集之间的对应关系,所以用什么字母表示 自变量、因变量是没有限制的. (3)在化简解析式时,必须是等价变形.
(-∞,4).
栏目 导引
第三章 函数的概念与性质
已知全集 U=R,A={x|1<x≤3},则∁UA 用区间表示为 ________. 解析:∁UA={x|x≤1 或 x>3},用区间可表示为(-∞,1]∪(3, +∞). 答案:(-∞,1]∪(3,+∞)
栏目 导引
第三章 函数的概念与性质
下图中能表示函数关系的是________.
栏目 导引
第三章 函数的概念与性质
⑤若 f(x)是实际问题的解析式,则应符合实际问题,使实际问 题有意义. (2) 第 (1) 题 易 出 现 化 简 y = x + 1 - 1-x , 错 求 定 义 域 为 {x|x≤1},在求函数定义域时,不能盲目对函数式变形.
2019-2020学年新教材高中数学第三章函数的概念与性质3.1.2.2分段函数
第2课时 分段函数1.会用解析法及图象法表示分段函数.2.给出分段函数,能研究有关性质.3.对生活中的一些实例,会用分段函数表示.1.分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的对应关系的函数.2.分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.温馨提示:(1)分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.(2)分段函数的“段”可以是等长的,也可以是不等长的.如y=Error!其“段”是不等长的.(3)分段函数的图象要分段来画.1.某市空调公共汽车的标价按下列规则判定:①5千米以内,票价2元;②5千米以上,每增加5千米,票价增加1元(不足5千米的按5千米计算).已知两个相邻的公共汽车站间相距1千米,沿途(包括起点站和终点站)有11个汽车站.(1)从起点站出发,公共汽车的行程x(千米)与票价y(元)有函数关系吗?(2)函数的表达式是什么?(3)x与y之间有何特点?[答案] (1)有函数关系(2)y=Error!(3)x在不同区间内取值时,与y所对应的关系不同2.判断正误(正确的打“√”,错误的打“×”)(1)分段函数由几个函数构成.( )(2)函数f (x )=Error!是分段函数.( )(3)分段函数的图象不一定是连续的.( )(4)y =|x -1|与y =Error!是同一函数.( )[答案] (1)× (2)√ (3)√ (4)√题型一分段函数求值【典例1】 已知函数f (x )=Error!(1)求f (f (f (-2)))的值;(2)若f (a )=,求a .32[思路导引] 根据自变量取值范围代入对应解析式求值.[解] (1)∵-2<-1,∴f (-2)=2×(-2)+3=-1,∴f [f (-2)]=f (-1)=2,∴f (f (f (-2)))=f (2)=1+=.1232(2)当a >1时,f (a )=1+=,∴a =2>1;1a 32当-1≤a ≤1时,f (a )=a 2+1=,32∴a =±∈[-1,1];22当a <-1时,f (a )=2a +3=,32∴a =->-1(舍去).34综上,a =2或a =±.22(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求解.对于含有多层“f ”的问题,要按照“由内到外”的顺序,逐层处理.(2)已知函数值,求自变量的值时,要先将“f ”脱掉,转化为关于自变量的方程求解.[针对训练]1.设函数f (x )=Error!则f [f (3)]=( )A. B .3 C. D.1523139[解析] ∵f (3)=<1,23∴f [f (3)]=2+1=.(23)139[答案] D2.已知函数f (x )=Error!若f (x )=-3,则x =________.[解析] 若x ≤1,由x +1=-3得x =-4.若x >1,由1-x 2=-3得x 2=4,解得x =2或x =-2(舍去).综上可得,所求x 的值为-4或2.[答案] -4或2题型二分段函数的图象【典例2】 (1)作出下列分段函数的图象:①y =Error! ②y =|x +1|.(2)如图所示,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由B (起点)向点A (终点)运动.设点P 运动路程为x ,△ABP 的面积为y ,求:①y 与x 之间的函数关系式;②画出y =f (x )的图象.[思路导引] (1)利用描点法分段作图;(2)先依据x 的变化范围求出关系式.[解] (1)①函数图象如图1所示.②y =|x +1|=Error!,其图象如图2所示.(2)①y =Error!②分段函数图象的画法(1)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可.(2)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.[针对训练]3.已知函数f(x)的图象如图所示,求f(x)的解析式并写出f(x)的值域.[解] 由于f(x)的图象由两条线段组成,因此可设f(x)=Error!将点(-1,0),(0,1)代入f(x)=ax+b,点(1,-1)代入f(x)=cx可得f(x)=Error!由图象可得f(x)的值域为(-1,1).题型三分段函数的综合问题【典例3】 已知函数f(x)=|x-3|-|x+1|.(1)求f(x)的值域;(2)解不等式:f(x)>0;(3)若直线y=a与f(x)的图象无交点,求实数a的取值范围.[思路导引] 去掉绝对值符号,化简f(x),再分段求解.[解] 若x≤-1,则x-3<0,x+1≤0,f(x)=-(x-3)+(x+1)=4;若-1<x≤3,则x-3≤0,x+1>0,f(x)=-(x-3)-(x+1)=-2x+2;若x>3,则x-3>0,x+1>0,f(x)=(x-3)-(x+1)=-4.∴f(x)=Error!(1)-1<x≤3时,-4≤-2x+2<4.∴f(x)的值域为[-4,4)∪{4}∪{-4}=[-4,4].(2)f(x)>0,即Error!①或Error!②或Error!③解①得x≤-1,解②得-1<x<1,解③得x∈∅.所以f(x)>0的解集为(-∞,-1]∪(-1,1)∪∅=(-∞,1).(3)f(x)的图象如图:由图可知,当a∈(-∞,-4)∪(4,+∞)时,直线y=a与f(x)的图象无交点.[变式] 若a∈R,试探究方程f(x)=a解的个数.[解] 由例3(3)知y=f(x)的图象,作出直线y=a,可以看出:当a=±4时,y=a 与y=f(x)有无数个交点;当-4<a<4时,y=a与y=f(x)有且仅有一个交点;当a<-4或a>4时,y=a与y=f(x)没有交点.综上可知:当a=±4时,方程f(x)=a有无数个解.当-4<a<4时,方程f(x)=a有一个解.当a<-4或a>4时,方程f(x)=a无解.研究分段函数要牢牢抓住的2个要点(1)分段研究.在每一段上研究函数.(2)合并表达.因为分段函数无论分成多少段,仍是一个函数,对外是一个整体.[针对训练]4.已知f (x )=Error!(1)画出f (x )的图象;(2)若f (x )≥,求x 的取值范围;14(3)求f (x )的值域.[解] (1)利用描点法,作出f (x )的图象,如图所示.(2)由于f =,结合此函数图象可知,使f (x )≥的x 的取值范围是(±12)1414∪.(-∞,-12][12,+∞)(3)由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1.所以f (x )的值域为[0,1].题型四分段函数在实际问题中的应用【典例4】 某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15~20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y (℃)随时间x (h)变化的函数图象,其中AB 段是恒温阶段,BC 段是双曲线y =的一部分,请根据图k x 中信息解答下列问题:(1)求y 与x 的函数关系式;(2)大棚内的温度为18℃时是否适宜该品种蔬菜的生长?(3)恒温系统在一天内保持大棚里的适宜新品种蔬菜的生长温度有多少小时?[思路导引] 利用待定系数法求出x 在每一段上的解析式,再分段研究.[解] (1)设线段AD 的解析式为y =mx +n (m ≠0),将点A (2,20),D (0,10)代入,得Error!,解得Error!,∴线段AD 的解析式为y =5x +10(0≤x ≤2).∵双曲线y =经过B (12,20),k x ∴20=,解得k =240,k 12∴BC 段的解析式为y =(12≤x ≤24).240x 综上所述,y 与x 的函数解析式为:y =Error!.(2)当x =18时,y ==,由于<15,24018403403∴大棚内的温度为18℃时不适宜该品种蔬菜的生长.(3)令y =15,当0≤x ≤2时,解5x +10=15,得x =1,当12≤x ≤24时,解=15,得x =16.240x 由于16-1=15(小时),∴恒温系统在一天内保持大棚里的适宜新品种蔬菜的生长温度有15小时.对于应用题,要在分析题意基础上,弄清变量之间的关系,然后选择适当形式加以表示;若根据图象求解析式,则要分段用待定系数法求出,最后用分段函数表示,分段函数要特别地把握准定义域的各个“分点”.[针对训练]5.A ,B 两地相距150公里,某汽车以每小时50公里的速度从A 地到B 地,在B 地停留2小时之后,又以每小时60公里的速度返回A 地.写出该车离A 地的距离s (公里)关于时间t (小时)的函数关系,并画出函数图象.[解] (1)汽车从A 地到B 地,速度为50公里/小时,则有s =50t ,到达B 地所需时间为=3(小时).15050(2)汽车在B 地停留2小时,则有s =150.(3)汽车从B 地返回A 地,速度为60公里/小时,则有s =150-60(t -5)=450-60t ,从B 地到A 地用时=2.5(小时).15060综上可得,该汽车离A 地的距离s 关于时间t 的函数关系式为s =Error!函数图象如图所示.课堂归纳小结1.分段函数(1)分段是针对定义域而言的,将定义域分成几段,各段的对应关系不一样.(2)一般而言,分段函数的定义域部分是各不相交的,这是由函数定义中的唯一性决定的.(3)研究分段函数时,应根据“先分后合”的原则,尤其是作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象.2.与分段函数有关的实际问题要理解题意,合理引进变量,确定自变量分段的“段点”,注意在自变量分段的端点处要不重不漏.1.已知f (x )=Error!则f [f (-7)]的值为( )A .100B .10C .-10D .-100[解析] ∵f (-7)=10,∴f [f (-7)]=f (10)=10×10=100.[答案] A2.下列图形是函数y =x |x |的图象的是( )[解析] ∵f (x )=Error!分别画出y =x 2(取x ≥0部分)及y =-x 2(取x <0部分)即可.[答案] D3.函数f (x )=Error!的值域是( )A .RB .[0,2]∪{3}C .[0,+∞)D .[0,3][解析] 当0≤x ≤1时,0≤f (x )≤2,当1<x <2时,f (x )=2,当x ≥2时,f (x )=3.故0≤f (x )≤2或f (x )=3,故选B.[答案] B4.下图中的图象所表示的函数的解析式为( )A .y =|x -1|(0≤x ≤2)32B .y =-|x -1|(0≤x ≤2)3232C .y =-|x -1|(0≤x ≤2)32D .y =1-|x -1|(0≤x ≤2)[解析] 可将原点代入,排除选项A ,C ;再将点代入,排除D 项.(1,32)[答案] B5.设函数f (x )=Error!若f [f (a )]=2,则a =________.[解析] 当a ≤0时,f (a )=a 2+2a +2>0,f [f (a )]<0,显然不成立;当a >0时,f (a )=-a 2,f [f (a )]=a 4-2a 2+2=2,则a =±或a =0,故a =.22[答案] 2课后作业(十八)复习巩固一、选择题1.已知f (x )=Error!则f (-2)=( )A .2B .4C .-2D .2或4[解析] f (-2)=-(-2)=2,选A.[答案] A2.函数f (x )=|x -1|的图象是( )[解析] f (x )=|x -1|=Error!选B.[答案] B3.已知函数y =Error!使函数值为5的x 的值是( )A .-2B .2或-52C .2或-2D .2或-2或-52[解析] 当x ≤0时,令x 2+1=5,解得x =-2;当x >0时,令-2x =5,得x =-,不合题意,舍去.52[答案] A4.已知函数f (x )的图象是两条线段(如图所示,不含端点),则f 等于( )[f (13)]A .- B.1313C .- D.2323[解析] 由图可知,函数f (x )的解析式为f (x )=Error!∴f =-1=-,(13)1323∴f =f =-+1=.[f (13)](-23)2313[答案] B5.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水量不超过10立方米的,按每立方米m 元收费;用水量超过10立方米的,超过部分按每立方米2m 元收费.某职工某月缴水费16m 元,则该职工这个月实际用水量为( )A .13立方米B .14立方米C .18立方米D .26立方米[解析] 该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =Error!由y =16m ,可知x >10,令2mx -10m =16m ,解得x =13.[答案] A二、填空题6.已知函数f (x )=Error!,则不等式xf (x -1)≤1的解集为________.[解析] 原不等式转化为Error!或Error!解得-1≤x ≤1.[答案] [-1,1]7.函数f (x )=Error!的值域是________.[解析] 当0≤x ≤1时,0≤f (x )≤1;当1<x ≤2时,0≤f (x )<1.所以0≤f (0)≤1,即f (x )的值域为[0,1].[答案] [0,1]8.已知f (x )=Error!则f (-5)的值等于________.[解析] f (-5)=f (-5+2)=f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=2×1=2.[答案] 2三、解答题9.已知函数f (x )=Error!(1)求f 的值;[f (12)](2)若f (x )=,求x 的值.13[解] (1)因为f =-2=-,(12)|12-1|32所以f =f ==.[f (12)](-32)11+(-32)2413(2)f (x )=,若|x |≤1,则|x -1|-2=,1313得x =或x =-.10343因为|x |≤1,所以x 的值不存在;若|x |>1,则=,得x =±,符合|x |>1.11+x 2132所以若f (x )=,x 的值为±.13210.已知函数f (x )=1+(-2<x ≤2).|x |-x2(1)用分段函数的形式表示函数f (x );(2)画出函数f (x )的图象;(3)写出函数f (x )的值域.[解] (1)当0≤x ≤2时,f (x )=1+=1,x -x2当-2<x <0时,f (x )=1+=1-x .-x -x2所以f (x )=Error!(2)函数f (x )的图象如图所示.(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).综合运用11.设x ∈R ,定义符号函数sgn x =Error!则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x[解析] 由已知得,x sgn x=Error!而|x|=Error!所以|x|=x sgn x,故选D.[答案] D12.如图,抛物线y1=ax2与直线y2=bx+c的两个交点坐标分别为A(-2,4),B(1,1).记f(x)为max{y1,y2},则f(x)的解析式为( )[解析] 由y1=ax2过点B(1,1)得a=1,∴y=x2.由y2=bx+c过点A(-2,4),B(1,1),有Error!解得Error!∴y2=-x+2,结合图象可得.f (x )=Error!,选A.[答案] A13.已知f (x )=Error!则f +f 等于( )(-43)(43)A .-2 B .4 C .2 D .-4[解析] ∵f (x )=Error!∴f =f =f =f =f =×2=,f =2×=,(-43)(-43+1)(-13)(-13+1)(23)2343(43)4383∴f +f =+=4.(-43)(43)4383[答案] B 14.设函数f (x )=Error!若f (a )>1,则实数a 的取值范围是________.[解析] 当a ≥0时,f (a )=a -1>1,12解得a >4,符合a ≥0;当a <0时,f (a )=>1,无解.1a [答案] (4,+∞)15.若定义运算a ⊙b =Error!则函数f (x )=x ⊙(2-x )的值域为________.[解析] 由题意得f (x )=Error!画出函数f (x )的图象得值域是(-∞,1].[答案] (-∞,1]16.成都市出租车的现行计价标准是:路程在2 km 以内(含2 km)按起步价8元收取,超过2 km 后的路程按1.9元/km 收取,但超过10 km 后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85(元/km).(1)将某乘客搭乘一次出租车的费用f (x )(单位:元)表示为行程x (0<x ≤60,单位:km)的分段函数;(2)某乘客的行程为16 km ,他准备先乘一辆出租车行驶8 km 后,再换乘另一辆出租车完成余下行程,请问:他这样做是否比只乘一辆出租车完成全部行程更省钱?(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)[解] (1)由题意得,车费f(x)关于路程x的函数为:f(x)=Error!=Error!(2)只乘一辆车的车费为:f(16)=2.85×16-5.3=40.3(元);换乘2辆车的车费为:2f(8)=2×(4.2+1.9×8)=38.8(元).∵40.3>38.8,∴该乘客换乘比只乘一辆车更省钱.。