统计学原理 抽样推断及参数估计

合集下载

统计学 任务一八 抽样推断

统计学 任务一八 抽样推断

31
抽样平均误差
㈢影响抽样误差的主要因素
1.样本容量n。样本容量大小与抽样误差成反比。当 n=N,无抽样误差。此表明,若条件许可应尽量扩容。
2.总体各单位标志变异程度。如总体标准差σ或总体方 差 。标志变异程度大小与抽样误差成正比。当σ=0, 无抽样误差2 。
3.抽样组织形式。类型抽样和等距抽样的抽样误差较小, 整群抽样误差较大。实践中,可利用抽样误差的大小 来检验组织方式的有效性。
差的影响(对抽中群作全面调查,无抽样误差)。 因此群的划分,要尽量缩小群间的差异,加大群 内的差异。 由于样本单位过分集中在少数样本群,同样条件 下抽样误差较大。欲不扩大误差,则需要增加一 些样本群。
21
抽样组织形式
㈣等距抽样——机械抽样
等距抽样是先将总体单位按某一标志顺序排队,再按固 定顺序和相等距离(间隔k)抽取样本单位。
13
◎抽样方法
2.不重复抽样(不回置抽样)从总体中每次抽 取一个单位进行观察,登记后不再放回总体中, 依此直至抽取n 个单位。
不重复抽样的特点:
⑴ n次抽取实质上等于一次同时抽取n个单位; ⑵ n次抽取相互不独立(对下次抽取有影响); ⑶每个总体单位在各次被抽中的概率不同,即1~n次分
别是1/N,1/N-1,1/N-2,…,1/N-n+1,但在每次抽 取时机会仍然均等; ⑷每个总体单位不会被重复抽中。

(n-1)k nk
22
分任务二 抽样误差
抽样误差的概念 抽样平均误差 抽样极限误差与概率度
一.抽样误差的概念
抽样误差是一种调查误差。如前所述:
调 登记性误差 普遍存在可以防止


系统性误差
差 代表性误差

抽样分布、参数估计和假设检验

抽样分布、参数估计和假设检验

抽样分布一、抽样分布的理论及定理 (一) 抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为n 的若干个样本,对每一样本可计算其k 统计量,而k 个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。

(二) 中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。

1.如果总体呈正态分布,则从总体中抽取容量为n 的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。

2.从总体中抽取容量为n 的一切可能样本时,所有样本均数的均数(X μ)等于总体均数(μ)即μμ=X3.从总体中抽取容量为n 的一切可能样本时,所有样本均数的标准差(X σ)等于总体标准差除以样本容量的算数平方根,即n X σσ=中心极限定理在统计学中是相当重要的。

因为许多问题都使用正态曲线的方法。

这个定理适于无限总体的抽样,同样也适于有限总体的抽样。

中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数X μ与样本标准差X σ)的计算方法。

(三)抽样分布中的几个重要概念1.随机样本。

统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(random sample )。

所谓随机样本是指按照概率的规律抽取的样本,2.抽样误差。

从总体中抽取容量为n 的k 个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。

3.标准误。

样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE 或Xσ表示。

根据中心极限定理其标准差为n X σσ=正如标准差越小,数据分布越集中,平均数的代表性越好。

教育与心理统计学 第四章 抽样理论与参数估计考研笔记-精品

教育与心理统计学  第四章 抽样理论与参数估计考研笔记-精品

第四章抽样理论与参数估计第一节抽样理论的基本知识分层抽样,又叫分层随机抽样,这种抽样方法是按照总体已有的某些特征,承认总体中已有的差异,按差异将总体分为几个不同的部分,每一部分称为一个层,在每一个层中实行简单随机抽样。

它充分利用了总体的已知信息,因而是一种非常适用的抽样方法,其样本代表性及推论的精确性一般优于简单随机抽样。

分层的原则是层与层之间的变异越大越好,各层内的变异要小。

试述分层抽样的原则和方法?分层抽样是按照总体上已有的某些特征,将总体分成几个不同部分,在分别在每一部分中随机抽样。

分层的总的原则是:各层内的变异要小,而层与层之间的变异越大越好。

在具体操作中,没有一成不变的标准,研究人员可根据研究需要依照多个分层标准,视具体情况而定。

⑷两阶段随机抽样两阶段随机抽样首先将总体分成M个部分,每一部分叫做一个"集团"(或"群"),第一步从M个集团中随机抽取m个"集团”作为第一阶段样本,第二步是分别从所选取的m个"集团”中抽取个体(g构成第二阶段样本。

一般而言,两阶段抽样相对于简单随机抽样,标准误要大些,但是,两阶段抽样简便易行,节省经草贼,因而它是大规模调查研究中常被使用的抽样方法。

例如,如果我们要了解全国城市初中二年级学生的身高,第一步我们可以从全国几百个城市中随机抽取几十个城市作为第一阶段的样本。

第二步,在第一阶段随机抽取出来的城市中再随机抽取初中二年级的学生。

(二)非旃抽样非概率抽样不是完全按随机原则选取样本,有方便抽样、判断抽样。

方便抽样是由调查人员自由、方便地选择被调查者的非随机选样。

判断抽样是通过某些条件过滤,然后选择某些被调查者参与调查的抽样法。

当采取非概率抽样的方法选取样本时,研究者要说明采用此种方取样的原因以及对研究结果可能造成的影响。

第二节抽样分布[统计量分布、基本随机变量函数的分布]总体:又称母全体、全域,指具有某种特征的一类事物的全体。

统计学 第 6 章 抽样与参数估计

统计学  第 6 章   抽样与参数估计

第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。

统计学中的统计推断与统计决策

统计学中的统计推断与统计决策

统计学中的统计推断与统计决策统计学是一门研究数据收集、分析和解释的学科,它在决策过程中发挥着重要的作用。

在统计学中,统计推断和统计决策是两个关键概念。

本文将介绍统计推断和统计决策的概念及其在实际应用中的重要性。

一、统计推断统计推断是基于样本数据对总体进行推断或判断的方法和技术。

通过对样本数据进行收集、整理和分析,我们可以对整个总体做出推断并进行相关的分析。

统计推断主要包括参数估计和假设检验两个方面。

1. 参数估计在统计推断中,参数估计是对总体参数进行估计的过程。

通过从总体中抽取样本,并分析样本数据,我们可以根据样本数据推断出总体的未知参数。

常用的参数估计方法包括点估计和区间估计。

点估计是通过统计量来估计总体参数的方法。

例如,我们可以根据样本数据计算出样本均值作为总体均值的估计值。

而区间估计则是利用抽样分布来确定总体参数的一个区间范围。

比如,我们可以计算出一个置信区间,来估计总体均值的范围。

2. 假设检验假设检验是通过对样本数据进行统计推断,对总体参数的某个假设进行验证的方法。

假设检验的目标是判断样本数据是否支持或拒绝某个假设。

在假设检验中,我们首先提出一个原假设(H0)和一个备择假设(H1),然后利用样本数据计算一个统计量,并根据统计量的值做出判断。

若统计量的值落在拒绝域,则我们可以拒绝原假设。

否则,我们无法拒绝原假设。

二、统计决策统计决策是基于统计推断结果,做出决策或采取行动的过程。

统计决策的目标是根据推断结果,选择最合适的决策方案,并进行实施。

统计决策需要综合考虑推断的准确性、可靠性以及决策的风险与效益。

在统计决策中,我们通常会设定一些决策准则或阈值,用来判断推断结果的可接受性。

如果推断结果满足预先设定的准则,我们则可以采取相应的决策。

否则,我们需要重新评估推断结果,并调整决策方案。

统计决策在许多领域都有广泛的应用。

例如,在医学研究中,统计推断可以帮助医生判断治疗方法的有效性,并决定是否继续使用;在市场营销中,统计推断可以帮助企业预测市场需求,确定产品定价策略等。

《统计学原理》第5章:抽样推断

《统计学原理》第5章:抽样推断

σ
n )
抽样推断的基本原理
抽样推断的优良标准
设θ 为待估计的总体参数, θ为样本统计量,则 θ的优良标 准为: 1若 E(θ ) =θ ,则称 θ为 θ 的无偏估计量(无偏性)
更有效的估计量(有效性) 2若σθ1 < σθ2,则称θ1为比θ2
3若 越大σθ 越小,则称 θ 为θ 的一致估计量(一 致性)
即中选成分相同但中选顺序不同的视为同一样本
抽样推断的一般问题
抽样组织方式
简单随机抽样 类型抽样 整群抽样 等距抽样 多阶段抽样 多重抽样
抽样推断的一般问题
样本可能数目
按照一定的抽样方法和组织方式,从总体N中抽取n个 单位构成样本,一共可以抽出的不同样本的数量,一般 用M表示. 考虑顺序的不重复抽样 考虑顺序的重复抽样 不考虑顺序的不重复抽样 不考虑顺序的重复抽样
抽样推断的一般问题
全及总体指标:参数 (未知量) 统计推断 样本总体指标:统计量 (已知量)
抽样推断的一般问题
抽样推断的特点 按随机原则抽取样本 运用概率论的理论和方法,用样本指标来推断 总体指标。 推断的误差可以事先计算和控制。
抽样推断的一般问题
抽样推断的应用 无法或 很难进行全面调查而又需要了解 其全面情况时 某些可以采用全面调查的社会经济现象, 也可采用抽样推断。 可用于生产过程的质量控制 进行假设检验
抽样推断的基本原理
抽样推断的优良标准——有效性 中位数的抽样分布
9 8 7 6 5 4 3 2 1 0 -1 45 50 55 60 65 70 75
平均数的抽样 分布
E(x) =
E ( me ) =
e
σx <σm
抽样推断的基本原理

统计学第八章 抽样推断

统计学第八章 抽样推断


和P的使用及使用条件
(1)σ2取最大值;(2)P取接近于0.5的值
(3)可以用样本 s或2 代p替;(4)可以用估计值或实验值代替。
计算例题:
在10000只电池中,随机抽检1%的产品进行检查,检查结果如下:
电流强度 (安培) 4-4.5 4.5-5 5-5.5 5.5-6 6-6.5 6.5-7
2
f
P 2N 0 1 P 2 N1
f
N
P2N0 1 P2 N1 P2Q 1 P2 P
N
N
P2Q Q2P PQP Q PQ P1 P
例(1):已知某产品的合格率为95%,则其标准差为:
0.951 0.95 21.79%.
2、样本指标(统计量)
根据样本总体各单位的数量标志值或属性计算所得的指 标,称为样本指标。样本指标通常包括:
统计指标 抽样平均数 抽样成数 抽样平均数的标准差 抽样成数的标准差 抽样平均数的方差
抽样成数的方差
未分组资料
x x n
p n1 n
sx
xx 2
n
分组资料
x xf f
sx
x
2
x
f
f
sP p(1p)
s2
2
xx
x
n
sP2 p(1 p)
s2
2
xx f
x
f
四、抽样方法(P151)
(二)抽样极限误差的意义
(三)抽样极限误差的计算
平均数的抽样极限误差
Δx
t
μ x
成数的抽样极限误差
Δp
t
μ p
正态分布图示
68.27%
95.45%
99.73%

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断统计学是一门研究收集、分析和解释数据的学科,而抽样和抽样分布则是统计学中至关重要的概念。

本文将探讨统计学原理教案中的抽样和抽样分布,以揭示学生如何进行抽样和利用抽样分布进行推断。

首先,我们来理解抽样的概念。

在统计学中,抽样是指从总体中选择一部分个体进行观察和研究。

总体是指我们感兴趣的整体,而样本则是从总体中选取的一部分个体。

通过抽样,我们可以通过研究样本来推断总体的特征,这是由于抽样的随机性能够保证样本与总体的代表性。

接下来,让我们了解抽样的方法。

常见的抽样方法包括简单随机抽样、系统抽样、分层抽样和整群抽样等。

每种抽样方法都有其特点和适用范围。

简单随机抽样是一种随机选择样本的方法,每个个体被选择的概率相同。

系统抽样是按照一定的规律选择样本,例如每隔一定数量选择一个个体。

分层抽样是将总体分成若干层次,然后从每个层次中抽取样本。

整群抽样则是将总体分成若干群体,然后随机选择一些群体并全面调查其中的个体。

选择合适的抽样方法可以更好地保证样本的代表性和可靠性。

抽样之后,我们需要了解抽样分布的概念。

在统计学中,抽样分布是指根据大量抽样的结果所得到的分布。

常见的抽样分布包括正态分布、t分布和F分布等。

其中,正态分布是抽样分布的重要特例,它在许多情况下都可以作为近似的抽样分布来使用。

t分布则用于小样本情况下的推断,它相比于正态分布更为宽阔且更适用于样本数据较少的情况。

F分布常用于分析方差比较和回归模型中的显著性分析。

抽样分布的重要性在于它可以帮助我们进行推断。

根据抽样分布的性质,我们可以利用统计推断方法进行参数估计和假设检验。

参数估计是根据样本的统计量来估计总体的参数值,例如通过样本均值估计总体均值。

假设检验是用来判断总体参数是否在某个范围内或是否相等的统计方法。

通过抽样分布的理论知识,我们可以进行参数估计和假设检验,并对总体进行推断。

在统计学原理教案中,抽样和抽样分布是学生学习的重点内容。

经济应用统计学-第六章抽样推断

经济应用统计学-第六章抽样推断

非参数检验优缺点总结
• 易于理解和实现:非参数检验方法通常基于直观和易于理解的思想,计算和实现相对简单。
非参数检验优缺点总结
检验效能较低
与参数检验方法相比,非参数检 验方法的检验效能通常较低,即 当原假设为真时,非参数检验方 法更容易犯第二类错误(接受原 假设)。
对数据信息的利用不 充分
非参数检验方法通常只利用数据 的部分信息(如排序信息),而 忽略了数据的其他有用信息(如 数值大小),因此可能无法充分 利用数据信息。
两配对样本非参数检验
包括Wilcoxon 符号秩次检验、McNemar 检验 等方法,用于比较同一总体内两个配对样本的差 异是否显著。
两独立样本非参数检验
包括Mann-Whitney U 检验、Kruskal-Wallis H 检验等方法,用于比较两个独立样本所来自的 总体的分布位置或分布形状是否存在差异。
考虑样本量大小
在选择置信水平时,应充分考虑样本量的大小。当样本量较小时,应选择较低的置信水平以避免过大的估计误差;当 样本量较大时,可以选择较高的置信水平以获得更精确的估计结果。
参考相关文献或行业标准
在选择置信水平时,可以参考相关领域的文献或行业标准,了解通常采用的置信水平及其依据。这有助 于确保研究结果的可比性和可靠性。
04
假设检验原理与步骤
假设检验基本概念阐述
原假设与备择假设
原假设通常是研究者想要推翻的 假设,而备择假设则是研究者希 望证实的假设。
检验统计量与拒绝域
检验统计量是根据样本数据计算出 的用于检验原假设的统计量,而拒 绝域则是根据显著性水平和检验统 计量的分布确定的,当检验统计量 落入拒绝域时,我们拒绝原假设。
单侧检验
当研究者对备择假设的方向有明确预期时,即备择假设只可能大于或小于原假设时,应选择单侧检验 。例如,在比较两种药物疗效的研究中,如果研究者预期新药疗效优于旧药,则应选择单侧检验。

统计学第5章抽样推断

统计学第5章抽样推断
就 是 由 样 本 指 标 直 接 代 替 全 及 指 标 , 不 考 虑
任 何 抽 样 误 差 因 素 。 即 用 x直 接 代 表 X , 用 p 直 接 代 表 P。
例 在 全 部 产 品 中 , 抽 取 100件 进 行 仔 细 检 查 , 得 到 平 均 重 量 x1002克 , 合 格 率 p98% , 我 们 直 接 推 断 全 部 产 品 的 平 均 重 量 X 1002克 , 合 格 率 P 98% 。
(1)
2
n
(1 )
12 2 (1
100
) 1.19 (千克 )
x
n
N
100 10000
(2) 若以概率 95.45%(t 2)保证,该农场 10000 亩小麦的平均
亩产量的可能范围为:
X : x 400 2 1.19 x
X (: 397 .62 ,402.38 ) (3) 若以概率 99.73%(t 3)保证,该农场 10000 亩小麦的平均
在重复抽样情况下:
p (1 p )
p
n
在不重复抽样情况下:
p (1 p ) n
(1 )
p
n
N

某玻璃器皿厂某日生产15000只印花玻璃 杯,现按重复抽样方式从中抽取150只进行 质量检验,结果有147只合格,其余3只为不 合格品,试求这批印花玻璃杯合格率(成数) 的抽样平均误差。
N15000n150
二、区间估计
根据样本指标和抽样误差去推断全及 指标的可能范围,它能说清楚估计的准 确程度和把握程度。
总体平均数和总体成数的估计
X :(x x, x x)
1的概率保证下:x tx
P:(pp, pp)
1的概率保证下: p tp

抽样分布与参数估计总结

抽样分布与参数估计总结

总体参数的估计区间,称为置信区间。
统计学原理
置信度
如果将构造置信区间的步骤重复多次,置信区
间中包含总体真值的次数所占的比例称为置信 水平(Confidence Level)。
也称为置信度或置信系数 (Confidence Coefficient)。
统计学原理
置信度与置信区间的关系
统计学原理
两个总体参数—比例之差
比例之差:大样本下,服从正态分布。 在估计时使用样本标准差替代。
统计学原理
两个总体的方差比
样本方差比的抽样分布为F分布 其中 第一自由度为n1-1,第二自由度为n2-1
2 s12 2 2 ~ F n1 1, n2 1 2 s2 1
统计学原理
例题:关于扑克牌的游戏
从一副扑克牌(52张)中,有放回地抽
出30张,其平均点数的分布规律如何?
如果以点数来赌胜负,什么区间的胜率
是95%?
统计学原理
统计学原理
第二节 参数估计
主要讨论总体平均数的 参数估计
统计学原理
参数估计的一般问题
参数估计:用样本统计量去估计总体的参
数。
统计学原理
计算结果
计算样本平均数:X=39.5 计算样本标准差:s=7.7736 令:总体标准差=样本标准差,计算抽样误差为
1.2956 95%置信度对应的T值为1.96 得总体平均数的置信区间为:
o 上限:39.5+1.96×1.2956=42.04 o 下限:39.5-1.96×1.2956=36.96
N=200时的抽样分布
Std. Dev = 2.23 Mean = 46.24 N = 200.00

统计学课件:抽样推断

统计学课件:抽样推断

3.当总体X~N(, 2),从中抽取容量为n的样本,则
n
2
(n 1)s2
2
~
(2 n-1); 2
(xi x)2
i 1
2
~
(2 n-1)
4. 2—分布的性质 (1)分布可加性 若X ~ 2(n1),Y~ 2(n2 ), X,Y独立,则 X +Y ~ 2(n1+n2 ) (2)期望与方差 若X~ 2(n),则 E(X)= n,D(X)=2n
3、进行产品质量检验 4、进行假设检验
(一)总体和样本 1、总体 总体也称全及总体,指所有认识的研究对象全体,它是
有所研究范围内具有某种共同性质的全体单位所组成的 集合体。 一般用英文字母大写N来表示总体的单位数。 2、样本 样本又称子样,它是从全及总体中随机抽取出来,作为 代表这一总体的那部分单位组成的集合体。 一般用英文小写字母n来表示样本的单位数。
5. 分位点 设X ~ 2(n),若对于:0<<1,
存在 2 (n) 0 满足
P{X 2 (n)} ,
则称 2 (n) 为 2 (n) 分布的上分位点。
2
(n
)
(二)t 分布
若X 服从N (0,1),Y 服从自由度为n的 2分布, 且X 和Y 独立,则 X
Y /n 服从自由度为n的 t分布。
1、全及指标 根据各单位的标志值或标志属性计算的,反映总体
数量特征的综合指标称为全及指标,又称为参数。
设总体变量 X 为: X1, X 2 ,X N 则有:
X X XF N F
2 X X 2 X X 2 F
N
F
设总体 N 个单位,有 N1 个单位具有某种性质, N0 个单位不具有某种性质,

(抽样检验)抽样与参数估计最全版

(抽样检验)抽样与参数估计最全版

(抽样检验)抽样与参数估计最全版(抽样检验)抽样与参数估计抽样和参数估计推断统计:利⽤样本统计量对总体某些性质或数量特征进⾏推断。

从数据得到对现实世界的结论的过程就叫做统计推断(statisticalinference)。

这个调查例⼦是估计总体参数(某种意见的⽐例)的壹个过程。

估计(estimation)是统计推断的重要内容之壹。

统计推断的另壹个主要内容是本章第⼆节要介绍的假设检验(hypothesistesting)。

因此本节内容就是由样本数据对总体参数进⾏估计,即:学习⽬标:了解抽样和抽样分布的基本概念理解抽样分布和总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体⽐例和总体⽅差的区间估计第⼀节抽样和抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取壹部分元素(单位)进⾏调查,且根据样本数据所提供的信息来推断总体的数量特征。

总体(Population):调查研究的事物或现象的全体参数个体(Itemunit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Samplesize):样本中所含个体的数量壹般将样本单位数不少于三⼗个的样本称为⼤样本,样本单位数不到三⼗个的样本称为⼩样本。

壹、抽样⽅法及抽样分布1、抽样⽅法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每壹个样本都有相同的机会(概率)被抽中。

注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,⼜可分为重复抽样和不重复抽样。

⽽且,根据抽样中是否排序,所能抽到的样本个数往往不同。

②、分层抽样:总体分成不同的“层”(类),然后在每壹层内进⾏抽样③、整群抽样:将壹组被调查者(群)作为壹个抽样单位④、等距抽样:在样本框中每隔壹定距离抽选壹个被调查者(2)⾮概率抽样:不是完全按随机原则选取样本①、⾮随机抽样:由调查⼈员⾃由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择壹群特定数⽬、满⾜特定条件的被调查者2、抽样分布壹般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(samplingdistribution)。

统计学复习(抽样分布、参数估计、假设检验)

统计学复习(抽样分布、参数估计、假设检验)

两个样本均值之差的抽样分布 (1)如: ) 抽样
X1 − N(µ1,σ12 ), X2 − N(µ2 ,σ2 ),
2
则 x1 − x2 ) ~ N(µ1 − µ2 , (
σ12 σ22
n1 + n2
)
抽样
σ12 N1 − n1 σ22 N2 − n2 (x1 − x2 ) ~ N[(µ1 − µ2 , ( )+ ( )] n1 N1 −1 n2 N2 −1
对于无限总体, 对于无限总体, 一个估计 如果对任意 量如能完 ε>ˆ 0 满足条件 全地包含 LimP(|θn −θ |≥ ε ) = 0 未知参数 n→∞ 信息, 信息,即 则称 θˆ 是 θ 为充分量 的一致估计。 的一致估计。
点估计
常用的求点估计量的方法
用样本的数字特征 1.数字特征法: 1.数字特征法:当样本容量增大时 ,用样本的数字特征 数字特征法 去估计总体的数字特征。 去估计总体的数字特征。 例如,我们可以用样本平均数(或成数 和样本方差来估 例如,我们可以用样本平均数 或成数)和样本方差来估 或成数 计总体的均值(或比率 和方差。 或比率)和方差 计总体的均值 或比率 和方差。
样本均值的抽样分布(简称均值的分布) 样本均值的抽样分布(简称均值的分布) 抽样
均值µ=∑Xi/N 均值
均值 X = Σxi
n
样本均值是样本的函数, 故样本均值是一个统计量, 样本均值是样本的函数, 故样本均值是一个统计量, 统计量 统计量是一个随机变量 随机变量, 统计量是一个随机变量, 样本均值的概率分布称为 样本均值的抽样分布。 样本均值的抽样分布。
2
n
总体均值 (µ) )
X ± tα
2
( n −1 )

统计学第四章抽样与参数估计

统计学第四章抽样与参数估计

疗效评价
通过参数估计和假设检验等方法,评价药物 的疗效和安全性。
案例三:工业生产过程质量控制
抽样检验计划制定
根据产品特性和质量要求,制定合适的抽样 检验计划。
不合格品控制
对不合格品进行统计分析和处理,找出原因 并采取措施加以改进。
过程能力分析
收集生产过程中的质量数据,进行过程能力 分析和参数估计。
抽样作用
通过样本信息推断总体特征,为决策提供依据。
抽样方法分类
随机抽样
按照随机原则从总体中抽取样本,每个个体 被抽中的概率相等。
系统抽样
按照某种规则从总体中抽取样本,如每隔一 定距离或时间抽取一个样本。
分层抽样
将总体分成若干层,然后从各层中随机抽取 样本。
整群抽样
将总体分成若干群,然后随机抽取若干群作 为样本。
05
案例分析:实际场景下抽样 与参数估计问题探讨
案例一:市场调查中消费者满意度测评
01
抽样方法选择
根据市场调查的目的和预算,选 择合适的抽样方法,如简单随机 抽样、分层抽样或整群抽样。
03
数据收集与处理
设计调查问卷,收集消费者满意 度数据,并进行数据清洗和整理

02
样本量确定
综合考虑调查的精度要求、总体 规模、抽样误差等因素,合理确
运用统计学方法进行假设检验和参数估计,验证研究假 设的可靠性。
THANKS
定样本量。
04
参数估计
运用统计学方法,对消费者满意 度进行参数估计,如计算满意度
均值、标准差等。
案例二:医学研究中药物疗效评价
试验设计
采用随机对照试验等方法,确保试验组和对 照组的可比性。
样本量计算

统计推断的基本原理与应用

统计推断的基本原理与应用

统计推断的基本原理与应用统计学是一门研究人类社会现象的科学,它利用数学方法对种种社会现象进行描述、归纳和推断。

统计推断是统计学的一个重要构成部分,它是指在利用样本数据探究总体特征时,通过对样本数据的分析推断总体性质。

本文将从统计推断的基本原理和应用实例两方面阐述统计推断的意义和作用。

一、统计推断的基本原理1.总体与样本的概念统计推断的前提是要有总体和样本的概念。

总体指要研究的对象,样本则是总体的一个子集。

通常情况下,我们很难对总体进行全面的观察和测量,只能通过对样本进行观察和测量,从而推断出总体的性质。

2.抽样方法抽样方法是指从总体中随机抽取一定数量的样本。

常用的抽样方法有随机抽样、分层抽样、整群抽样、系统抽样等。

抽样是统计推断的基础,抽样方法的不同会直接影响到统计推断的结果。

3.统计量统计量是从样本中计算得到的统计量,反映总体性质的指标,例如平均数、方差、标准差等。

统计量的计算公式及其计算方法,直接决定了统计推断是否准确。

4.参数估计和假设检验参数估计是指根据样本数据估计总体参数的值,例如总体平均数、总体比例等。

常见的参数估计方法有点估计和区间估计。

假设检验则是在一定的显著性水平下,判断统计样本是否符合总体的假设。

常见的假设检验方法有单样本t检验、双样本t检验、方差分析、卡方检验等。

二、统计推断的应用实例统计推断的应用非常广泛,下面列举几个实际的例子。

1.医学研究医学研究是统计推断的典型应用之一。

例如,在药物临床试验中,通过对一定数量的患者进行抽样,比较治疗组和对照组的疗效表现,从而推断药物的疗效和安全性。

2.企业管理企业管理中,利用统计推断可以进行市场调查、品牌策划、客户分析等。

例如,利用市场调查的数据,可以对消费群体进行定位,为企业制定营销策略提供决策支持。

3.社会调查社会调查中,利用统计推断可以对群体的行为进行分析和预测。

例如,世界人口普查中统计了各国人口数量、年龄分布、教育程度、婚姻状况等因素,这些数据可以对各国的社会经济状况进行评估。

《统计学原理》第5章:抽样推断

《统计学原理》第5章:抽样推断
lim P( x X ) 1
n
抽样推断的基本原理
统计推断的理论基础—样本的概率分布
按一定方法随机抽取样本时,所有可能样本的 特征值及其所对应的概率分布情况
学生 A B C D E F G 成绩 30 40 50 60 70 80 90
按随机原则考虑顺序重复抽样抽选出4名学生。
抽样推断的一般问题
样本可能数目
按照一定的抽样方法和组织方式,从总体N中抽取n个 单位构成样本,一共可以抽出的不同样本的数量,一般 用M表示.
考虑顺序的不重复抽样 考虑顺序的重复抽样
M N! (N n)!
M Nn
不考虑顺序的不重复抽样 不考虑顺序的重复抽样
M N! n!(N n)!
全及指标与样本指标
•根据全及总体中各单位的标志值或标志属性计算得 来,反映总体某种特征的指标 •根据样本总体中各单位的标志值或标志属性计算得 来的综合指标.
抽样推断的一般问题
抽样方法
•重复抽样和不重复抽样
•考虑顺序的抽样和不考虑顺序的抽样
抽样推断的一般问题
抽样方法—重复抽样
从总体N个单位中随机抽取一个容量为n的样本,每 次抽取一个单位,把结果登记后再放回到总体中,重新 参加下一次的抽取.
抽出个体
登记特征
放回总体
继续抽取
抽样推断的一般问题
抽样方法—不重复抽样
从总体N个单位中随机抽取一个容量为n的样本, 每次抽取一个单位,把结果登记后不再放回到 总体参加下一次的抽取.
抽出 个体
登记 特征
继续 抽取
抽样推断的一般问题
抽样方法—考虑顺序的抽样
从总体N个单位中抽取n个单位构成样本,不但考虑样本 各单位成分的不同,而且还要考虑样本各单位的中选顺 序.

统计学原理任务七统计分析——抽样推断

统计学原理任务七统计分析——抽样推断
统计学原理
任务七

统计分析——抽样推断
掌握抽样推断基础知识 计算抽样误差 抽样估计 确定必要样本容量 认识抽样组织形式任务四 分任务五 分任务六
分任务一
掌握抽样推断基础知识
7.1
一、抽样推断的含义与作用
(一)抽样推断的含义 抽样推断是按照随机原则,从总体中抽出一 部分单位作为样本,对样本进行详细地调查 登记,并计算出样本指标数值,然后根据样 本指标数值对总体的数量特征(总体指标数 值)作出具有一定可靠程度的估计和判断的 一种统计分析方法。
7.1

三、抽样推断中的基本概念
(二)全及指标和抽样指标 1.全及指标 全及指标是指根据全及总体各个单位的标志值或标志特征计算的, 反映总体某一方面特征或属性的综合指标。由于全及总体是唯一 确定的,因而全及指标数值也是唯一确定的。
7.1

三、抽样推断中的基本概念
(二)全及指标和抽样指标 2.抽样指标 抽样指标是指由抽样总体各个单位标志值或标志特征计算的,反 映抽样总体某一方面特征或属性的综合指标。由于从一个全及总 体中可以抽出许多个样本,样本不同,抽样指标的数值也就可能 不同,所以抽样指标的数值不是唯一确定的。
7.2

三、抽样平均误差
7.1
三、抽样推断中的基本概念



(三)样本容量和样本个数 1.样本容量 样本容量是指一个样本所包含的单位数,通常用小 写英文字母n表示。 2.样本个数 从总体N个单位中随机抽选n个单位构成样本,通常 有多种抽选方法,每一种抽选方法实际上是n个总体 单位的一种排列组合,一种排列组合便构成一个可 能的样本,n个总体单位的排列组合总数,称为样本 个数或者样本的可能数目,常用小写英文字母k表示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、影响抽样误差的主要因素
(一)样本单位数(样本容量n)的多少 (二)总体被研究标志变异程度(总体方差 σ2)的大小 (三)抽样组织方式 (四)抽样方法
三、抽样平均误差
(一)抽样平均误差的概念
抽样平均误差是指以全部可能样本指标为变
量,以总体指标为平均数计算得到的标准差,以
符号 ˆ 表示,通常以
x
抽样距离计算公式为:
k N n
[公式6—3]
图6—1 等距抽样示意图
(四)整群抽样
整群抽样也称集团抽样、区域抽样或分 群随机抽样,它是将总体各单位按时间或空 间形式划分成许多群,然后按纯随机抽样或 机械抽样方式从中抽取部分群,对中选群的 所有单位进行全面调查的抽样组织方式。
Mi
x
ij
x j1 (i 1,2,3, , r)
第六章 抽样推断及参数估计
内容提要 第一节 抽样调查的一般问题 第二节 抽样误差 第三节 总体指标的推断 第四节 必要抽样数目的确定 第五节 统计量及抽样分布
内容提要
本章主要阐述了抽样调查的概念、特 点、作用和几个基本概念;影响抽样误 差的主要因素;抽样调查几种主要组织 方式的抽样平均误差的计算;抽样估计 推断;点估计和区间估计;必要抽样数 目的确定。
三、抽样调查的组织方式
(一)简单随机抽样 简单随机抽样也叫纯随机抽样,它对总 体单位不作任何分类排队,而是直接从总体 中随机抽取一部分单位来组成样本的抽样组 织方式。 (1)抽签法。 (2)随机数字法。
(二)类型抽样
类型抽样又称分类抽样或分层抽样,它 是先将总体按某个主要标志进行分组(或分类 ),再按随机原则从各组中抽取样本单位的一 种抽样方式。
1.平均数的抽样平均误差
(1)重复抽样条件下:
x
2
n
n
n
n
(2)不重复抽样条件下:
[公式6—8]
x
2N n nN 1
当NБайду номын сангаас大时,
[公式6—9]
x
2
n
1
n N
[公式6—10]
[例6-1]为叙述简便起见,假设有10,20,30和40
四个数字组成一个总体,从中随机抽取两个数字作 为样本,求抽样平均误差。
X X 100 25
N
4
采取重复抽样
x xi 400 25 X 100 25
K
16
N
4
全部可能组成样本的标准差为 :
(二)抽样调查的作用
(1)用于不可能进行全面调查的无限总体。 (2)用于不可能进行全面调查而又需要了解全 面情况的现象。 (3)用于不必要进行全面调查的现象。 (4)用于对全面调查的资料进行评价与修正。 (5)用于工业生产过程的质量控制。
二、抽样调查中的几个基本概念 (一)全及总体和抽样总体 1.全及总体。全及总体简称总体或母体, 它是指所要调查研究对象的全体。 2.抽样总体。抽样总体简称样本或子样, 它是指在全及总体中按随机原则抽取的那部分 单位所构成的集合体。
代表性误差是用样本指标数值去推算总体指 标数值时,由于样本各单位的结构情况不 足以代表总体特征所产生的误差。
一、抽样误差的概念
调查误差又可分为:一是:没有遵循随 机原则,二是:即使遵守了随机原则,也会由于
被抽取的样本各种各样,导致样本内部各单位的分 布比例结构与总体实际分布状况有偶然性的差异, 从而使不同的随机样本得出不同的估计量,造成样 本指标数值与总体指标数值之间产生差距,如抽样 平均数与总体平均数的离差,抽样成数与总体成数 的离差等。这类误差通常称为抽样误差或随机误差。
代表平均数的抽样平均
误差,以 p 代表成数的抽样平均误差,以K代表
可能组成的样本总数。
(二)计算抽样平均误差的理论公式
根据抽样平均误差的概念可得其一般计算公式:
ˆ
即: x p
样本指标 总体指标2
可能组成的样本总数
x X 2
K
p P2
K
[公式8—6] [公式8—7]
(三)抽样平均误差的计算方法
第一节 抽样调查的一般问题
返回2
一、抽样调查的概念、特点与作用 (一)抽样调查的概念与特点
抽样调查又称抽样推断或抽样估计,它是 从总体中按随机原则抽取一部分单位进行观测, 并根据这部分单位的资料推断总体数量特征的 一种方法。
抽样调查具有下列三个主要特点: (1)按随机原则抽取调查单位。 (2)由部分推断全体。 (3)抽样误差可以事先计算并加以控制。
(二)总体指标和样本指标
1.总体指标。 总体指标也称为母体参数或全及指标,它 是根据全及总体各单位的标志值或标志特征计 算的,反映总体某种属性的综合指标。由于全 及总体是唯一确定的,根据全及总体计算的全 及指标也是唯一确定的。
2.样本指标。 样本指标也称样本统计量或抽样指标,它 是根据抽样总体各单位的标志值或标志特征计 算的综合指标。由于可以从一个全及总体中抽 取许多个不同的样本,不同的样本其分布结构 也会有差异,抽样指标的数值也就不同,所以 抽样指标的数值不是唯一确定的。
(1)等数分配类型抽样法。 (2)等比例类型抽样法。
ni
nNi N
(i 1,2, , k)
[公式6—1]
(3)不等比例类型抽样法。
n i
ii
n
i i [公式6—2]
(三)等距抽样
等距抽样也称机械抽样或系统抽样,它 是将总体各单位按某一标志顺序排列,然后 按固定顺序和相等距离或间隔抽取样本单位 的抽样组织方式。
农产量抽样调查,第一阶段是从省抽县,第二阶段 从中选县抽乡,第三阶段从中选乡抽村,再从村 抽地块,最后再从地块抽具体的样本点,以样本 点的实际资料来推算平均亩产和总产量。
第二节 抽样误差
一、抽样误差
调查误差是调查所获得的统计数据域调查总 体未知真实数据之间的差别,包括登记性 误差和代表性误差。
登记性误差是在调查过程中由于主观客观原 因引起的登记差错造成的误差。
i
Mi
r
xi Mi
x
i1 r
(i 1,2,3, , r)
Mi
i 1
[公式6—4] [公式6—5]
整群抽样的优点:易于组织,节省调查费用
缺点:调查的总体单位过于集中且在少数样 本群中。因此,在条件相同的情况下,整 群抽样的代表性低,通常需要扩大样本群 的数目来弥补这个缺点。
阶段抽样
阶段抽样也就是多级抽样,在抽样时先抽总体中某 种更大范围的单位,逐次类推,最后从更小范围 总体中抽选样本的基本单位,分阶段来完成抽样 的组织工作。
相关文档
最新文档