人教版八年级数学专题复习两个等腰直角三角形共点专题
人教版八年级体育专题复习 两个等腰直角三角形共点专题

人教版八年级体育专题复习两个等腰直
角三角形共点专题
人教版八年级体育专题复:两个等腰直角三角形共点专题
介绍
本文档是关于人教版八年级体育专题复的内容,主题是两个等腰直角三角形共点专题。
目标
通过本专题复,学生应能够掌握以下内容:
1. 理解等腰直角三角形的定义和性质;
2. 掌握两个等腰直角三角形共点的相关知识;
3. 能够在解决问题时应用相关的定理和公式。
复内容
在本专题复中,学生将重点研究以下内容:
等腰直角三角形
等腰直角三角形是指具有两个边长度相等,且有一个直角的三角形。
- 定义:等腰直角三角形的两条直角边是相等的;
- 性质:等腰直角三角形的两边长度相等,角度为90度。
两个等腰直角三角形共点
两个等腰直角三角形共点是指这两个三角形有一个顶点是重合的。
- 通过共点,可以进行更多的推理和计算;
- 可以利用共点和等腰直角三角形的性质解决相关问题。
总结
通过本专题复,学生将对等腰直角三角形及其共点有更深入的理解,并能够应用这些知识解决问题。
希望同学们在复过程中能够掌握重点,巩固基础,为后续研究打下良好的基础。
参考资料
- 人教版八年级体育教材。
人教版数学八年级上册 综合专题2—全等三角形手拉手模型

长线交 CE 于 F 点.
证明重要结论:
C
① △ABD≌△ACE;
FD
② BD = CE;
③ BD 的延长线 BF⊥CE;
EA
B
解:∵△ABC、△ADE 都是等腰直角三角形, ∴ AB = AC,AD = AE. 在△ABD 和△ACE 中,
∴ △ABD≌△ACE(SAS). ∴ BD = CE. ∴ ∠ABD = ∠ACE. ∵ ∠BDC = ∠ABD + ∠BAC
E
① △ABD≌△ACE
② BD = CE
③ ∠BFC = ∠BAC = ∠DAE B
F D G
C
解:∵△ABC、△ADE 都是等腰三角形,
∴ AB = AC,AD = AE.
又∵∠BAC = ∠DAE,
A
∴∠BAC + ∠CAD =∠DAE +∠CAD,
即∠BAD = ∠CAE.
在△ABD 和△ACE 中
BE 交于点 O,AD 与 BC 交于点 P,BE 与 CD 交于点
Q,连接 PQ,则有以下五个结论: B ① AD = BE; ② PQ∥AE;
③ AP = BQ; ④ DE = DP;
⑤∠AOB = 60°.
P
OD Q
其中正确的结论有__①__②__③__⑤___.
A
C
E
=∠ACE + ∠BFC, ∴ ∠BFC = ∠BAC = 90°. ∴ BF⊥CE.
C FD
EA
B
练一练
2. 如图,△ABC、△ADE 都是等腰直角三角形,
∠BAC = ∠DAE = 90°,连接 BD、CE 交于点 F.
(1) 求证:BD = CE; (2) 求证:BD⊥CE. C
第12章全等三角形重难点专题1手拉手模型(分层练习)八年级数学上册(人教版)原卷版

第13章全等三角形专题1:手拉手模型
分层练习
1.如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,AE与BD交于点F.
(1)求证:AE=BD;
(2)求∠AFD的度数.
1.在学习全等三角形知识时、教学兴趣小组发现这样一个模型:它是由两个
共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一
对全等三角形.通过资料查询,他们得知这种模型称为“手拉手模型” 兴趣小
组进行了如下探究:
(1)如图1,两个等腰三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE,连接BD、CE、如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是“手拉手模型”,在这个模型中,和△ADB全等的三角形是,此时BD和CE的数量关系是;
(2)如图2,两个等腰直角三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE=90°,连接BD,CE,两线交于点P,请判断线段BD和CE的数量关系和位置关系,并说明理由;
(3)如图3,已知△ABC,请完成作图:以AB、AC为边分别向△ABC外作等边△ABD和等边△ACE(等边三角形三条边相等,三个角都等于60°),连接BE,CD,两线交于点P,并直接写出线段BE和CD的数量关系及∠PBC+∠PCB的度数.
1.若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90∘,点A,D,E在同一条直线上,CM为
△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.。
人教版八年级上册数学等腰三角形知识点及对应练习(附参考解析)

等腰三角形一、知识梳理:专题一:等腰三角形概念及性质;等腰三角形的判定.二、考点分类考点一:等腰三角形的概念有两边相等的三角形是等腰三角形。
【类型一】利用等腰三角形的概念求边长或周长【例1】如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cm B.12cm C.15cm或12cm D.15cm解析:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15(cm).故选D.方法总结:在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.考点二:等腰三角形的性质1、等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).2、解题方法:设辅助未知数法与拼凑法.3、重要的数学思想方法:方程思想、整体思想和转化思想.【类型一】利用“等边对等角”求角度【例2】等腰三角形的一个内角是50°,则这个三角形的底角的大小是()A .65°或50° B.80°或40° C .65°或80° D.50°或80°解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论.【类型二】 利用方程思想求等腰三角形角的度数【例3】 如图①,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数.解析:设∠A =x ,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.解:设∠A =x .∵AD =BD ,∴∠ABD =∠A =x .∵BD =BC ,∴∠BCD =∠BDC =∠ABD +∠A=2x .∵AB =AC ,∴∠ABC =∠BCD =2x .在△ABC 中,∠A +∠ABC +∠ACB =180°,∴x +2x+2x =180°,∴x =36°,∴∠A =36°,∠ABC =∠ACB =72°.方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x .① ②【类型三】 利用“等边对等角”的性质进行证明【例4】 如图②,已知△ABC 为等腰三角形,BD 、CE 为底角的平分线,且∠DBC =∠F ,求证:EC ∥DF .解析:先由等腰三角形的性质得出∠ABC =∠ACB ,根据角平分线定义得到∠DBC =12∠ABC ,∠ECB =12∠ACB ,那么∠DBC =∠ECB ,再由∠DBC =∠F ,等量代换得到∠ECB =∠F ,于是根据平行线的判定得出EC ∥DF .证明:∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB .又∵BD 、CE 为底角的平分线,∴∠DBC =12∠ABC ,∠ECB =12∠ACB ,∴∠DBC =∠ECB .∵∠DBC =∠F ,∴∠ECB =∠F ,∴EC ∥DF .方法总结:证明线段的平行关系,主要是通过证明角相等或互补.【类型四】 利用等腰三角形“三线合一”的性质进行证明【例5】 如图①,点D 、E 在△ABC 的边BC 上,AB =AC .(1)若AD =AE ,求证:BD =CE ;(2)若BD =CE ,F 为DE 的中点,如图②,求证:AF ⊥BC .解析:(1)过A 作AG ⊥BC 于G ,根据等腰三角形的性质得出BG =CG ,DG =EG 即可证明;(2)先证BF =CF ,再根据等腰三角形的性质证明.证明:(1)如图①,过A 作AG ⊥BC 于G .∵AB =AC ,AD =AE ,∴BG =CG ,DG =EG ,∴BG-DG =CG -EG ,∴BD =CE ;(2)∵BD =CE ,F 为DE 的中点,∴BD +DF =CE +EF ,∴BF =CF .∵AB =AC ,∴AF ⊥BC .方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.【类型五】 与等腰三角形的性质有关的探究性问题【例6】 如图①,已知△ABC 是等腰直角三角形,∠BAC =90°,BE 是∠ABC 的平分线,DE⊥BC ,垂足为D .(1)请你写出图中所有的等腰三角形;(2)请你判断AD 与BE 垂直吗?并说明理由.(3)如果BC =10,求AB +AE 的长.解析:(1)由△ABC 是等腰直角三角形,BE 为角平分线,可证得△ABE ≌△DBE ,即AB =BD ,AE =DE ,所以△ABD 和△ADE 均为等腰三角形;由∠C =45°,ED ⊥DC ,可知△EDC 也符合题意;(2)BE 是∠ABC 的平分线,DE ⊥BC ,根据角平分线定理可知△ABE 关于BE 与△DBE对称,可得出BE ⊥AD ;(3)根据(2),可知△ABE 关于BE 与△DBE 对称,且△DEC 为等腰直角三角形,可推出AB +AE =BD +DC =BC =10.解:(1)△ABC ,△ABD ,△ADE ,△EDC .(2)AD 与BE 垂直.证明:由BE 为∠ABC 的平分线,知∠ABE =∠DBE ,∠BAE =∠BDE =90°,BE =BE ,∴△ABE ≌△DBE ,∴△ABE 沿BE 折叠,一定与△DBE 重合,∴A 、D 是对称点,∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB ,∴AE =DE .在Rt △ABE 和Rt △DBE 中,∵⎩⎪⎨⎪⎧AE =DE ,BE =BE ,∴Rt △ABE ≌Rt △DBE (HL),∴AB =BD .又∵△ABC 是等腰直角三角形,∠BAC =90°,∴∠C =45°.又∵ED ⊥BC ,∴△DCE 为等腰直角三角形,∴DE =DC ,∴AB +AE =BD +DC =BC=10.① ②考点三:等腰三角形的判定方法(1)根据定义判定;(2)两个角相等的三角形是等腰三角形.【类型一】 确定等腰三角形的个数 【例7】 如图②,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是∠ABC 、∠BCD 的角平分线,则图中的等腰三角形有( )A .5个B .4个C .3个D .2个解析:共有5个.(1)∵AB =AC ,∴△ABC 是等腰三角形;(2)∵BD 、CE 分别是∠ABC 、∠BCD的角平分线,∴∠EBC =12∠ABC ,∠ECB =12∠BCD .∵△ABC 是等腰三角形,∴∠EBC =∠ECB ,∴△BCE 是等腰三角形;(3)∵∠A =36°,AB =AC ,∴∠ABC =∠ACB =12(180°-36°)=72°.又∵BD 是∠ABC 的角平分线,∴∠ABD =12∠ABC =36°=∠A ,∴△ABD 是等腰三角形;同理可证△CDE 和△BCD 也是等腰三角形.故选A.方法总结:确定等腰三角形的个数要先找出相等的边和相等的角,然后确定等腰三角形,再按顺序不重不漏地数出等腰三角形的个数.【类型二】 在坐标系中确定三角形的个数【例8】 已知平面直角坐标系中,点A 的坐标为(-2,3),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .3个B .4个C .5个D .6解析:因为△AOP 为等腰三角形,所以可分三类讨论:(1)AO =AP (有一个).此时只要以A 为圆心AO 长为半径画圆,可知圆与y 轴交于O 点和另一个点,另一个点就是点P ;(2)AO=OP (有两个).此时只要以O 为圆心AO 长为半径画圆,可知圆与y 轴交于两个点,这两个点就是P 的两种选择;(3)AP =OP (一个).作AO 的中垂线与y 轴有一个交点,该交点就是点P 的最后一种选择.综上所述,共有4个.故选B. 方法总结:解决此类问题的方法主要是线段垂直平分线与辅助圆的灵活运用以及分类讨论时做到不重不漏.【类型三】 判定一个三角形是等腰三角形【例9】如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.解析:根据直角三角形两锐角互余求得∠ABE=∠ACD,然后根据三角形外角的性质求得∠CEF=∠CFE,根据等角对等边求得CE=CF,从而求得△CEF是等腰三角形.证明:∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的角平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.【类型四】等腰三角形性质和判定的综合运用【例10】如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.解析:(1)根据等边对等角可得∠B=∠C,利用“边角边”证明△BDE和△CEF全等,根据全等三角形对应边相等可得DE=EF,再根据等腰三角形的定义证明即可;(2)根据全等三角形对应角相等可得∠BDE=∠CEF,然后求出∠BED+∠CEF=∠BED+∠BDE,再利用三角形的内角和定理和平角的定义求出∠B=∠DEF.(1)证明:∵AB =AC ,∴∠B =∠C .在△BDE 和△CEF 中,∵⎩⎪⎨⎪⎧BD =CE ,∠B =∠C ,BE =CF ,∴△BDE ≌△CEF (SAS),∴DE =EF ,∴△DEF 是等腰三角形;(2)解:∵△BDE ≌△CEF ,∴∠BDE =∠CEF ,∴∠BED +∠CEF =∠BED +∠BDE .∵∠B +∠BDE =∠DEF +∠CEF ,∴∠B =∠DEF .∵∠A =50°,AB =AC ,∴∠B =12×(180°-50°)=65°,∴∠DEF =65°.方法总结:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.经典例题考点一:等腰三角形的概念【例1】等腰三角形的两边长分别为4和9,则这个三角形的周长为考点二:等腰三角形的性质【例3】已知等腰△ABC 中,AB=AC ,D 是BC 边上一点,连接AD ,若△ACD 和△ABD 都是等腰三角形,求∠C 的度数。
中考数学专题复习教案:共顶点的等腰三角形与全等

共顶点的等腰三角形与全等(专题复习)一、内容和内容解析1.内容基于全等三角形和轴对称两部分内容基础上的共顶点等腰三角形与全等的综合理解与运用.2.内容解析本节课是在学生已经学习了第十一章三角形、第十二章全等三角形和第十三章轴对称这三章内容知识的基础上,进一步综合探究具有某种特殊位置关系的等腰三角形的相关内容——共顶点的等腰三角形与全等.全等三角形的几种判定方法及全等三角形对应边、对应角的相关性质是解决本节知识的一个关键突破点,预证两条线段和两条边相等,就需要将其置于两个全等的三角形中;复杂图形中的基本图形也为求角的度数提供了简洁的思路方法;特殊的等腰三角形即等边三角形的相关概念、性质和判定方法也为本节内容的解决提供了有利条件,借助于特殊角60度构造等边三角形,将不在同一直线上的线段转化到同一线段中,这也提供了多种添加辅助线的方法;同时,根据旋转前后的两个三角形是全等三角形,为本节知识的变式提供了思路,可以从多种不同形式中让学生去探究其中变与不变的因素;将等边三角形置于平面直角坐标系的背景下,借助于直角三角形中,含30度角所对的直角边等于斜边的一半解决相关变式问题.从等边三角形到等腰三角形的相关探索与运用体现了由特殊到一般的思想.二、目标和目标解析1.目标(1)能根据共顶点的等腰三角形找出全等三角形.(2)能利用等边三角形的性质和判定进行综合运用.(3)结合全等和等腰三角形的相关知识,在具体几何题目中,总结基本图形,归纳几何结题策略.2.目标解析达成目标(1)的标志是:学生能从共顶点的两个等腰三角的复杂图形中发现三角形全等的条件.达成目标(2)的标志是:学生能借助于全等三角形的对应边、对应角和两个三角形面积求线段的等量关系、角的度数和证明两个三角形面积相等,推出对应的高也相等,利用角的内部到角的两边距离相等的点在这个角的角平分线上,证得一条线段为一个角的角平分线,同时,学生还能熟练掌握预证两条线段相等,则需将两条线段置于两个全等的三角形中解决问题.达成目标(3)的标志是:学生能在求证一条线段为一个角的角平分线时,通过向角的两边作双垂线,利用双垂线所在的两个三角形全等使问题得到解决;学生还能在求线段和差关系时,借助于60度角,构造等边三角形,将不在同一直线上的线段转化到同一线段中解决相关问题,让学生学会添加不同的辅助线,真正体会了截长补短的意义.三、教学问题诊断分析学生由于添加辅助线的经验不足,对于任何需要添加的辅助线,如何添加,添加的理由是什么,如何描述辅助线仍然没有规律性了解.例如:在“求线段和差关系”的证明中,由于题中60度角比较多,学生如果以不同的角为出发点构造等边三角形,所得到的辅助线也不尽相同,这样,有学生就会很茫然,为什么我的辅助线会和其他同学不同这样的疑问,包括作完辅助线后,我到底将哪条线段进行了平移,接下来该证明哪两条线段相等这些问题.事实上,添加辅助线、描述辅助线本身就是一项探究性活动,是获得证明所采取的一种尝试,有可能成功,有可能失败;对于变式训练,旋转前后哪些量变了,哪些量保持不变,这些都是学生存在困惑的地方.基于以上分析,确定本节课的教学难点为:线段和差关系中辅助线的添加描述和对于旋转问题,能够明确变与不变的元素.四、教学过程设计引言我们前面系统学习了三角形的全等和轴对称的相关知识,相信大家对其都有所理解和掌握.今天,让我们继续探究这两部分内容的综合应用.1. 复习巩固问题1 判定两个三角形全等的方法有哪些?等边三角形有哪些性质?等边三角形有哪些判定? 师生活动:学生回顾旧知,充分掌握判定三角形全等的五种方法、等边三角形的性质和判定.设计意图:复习三角形全等的五种方法、等边三角形的性质和判定,为本节课的学习打下基础.问题2 你能分别找出以下列图形中的全等三角形吗?(1)若△ABD 和△AEC 均为等边三角形,请找出下列各图形中的全等三角形.(2)若△ABD 和△AEC 均为等腰三角形,其中AB=AD ,AC=AE ,∠BAD=∠CAE ,请找出下列各图形中的全等三角形.师生活动:学生尝试找出以上图形当中的全等三角形,教师给与适当评价设计意图:让学生直观了解共顶点的等边或等腰三角形几种常见的摆放位置,通过寻找这些图形中的全等三角形,为下面设置的探究学习提供了有利条件.2. 探究学习问题3 如图,已知A 是线段BC 上一点,分别以AB 、AC 为边在同侧作等边△ABD 和△AEC.(1)填空:BE= ,∠ABE= ,∠DFB= °.(2)求证: AF 平分∠BFC.(3)求证: AF +DF=BF.师生活动:学生独立思考,发现问题,相互交流,小组间相互补充,派学生代表讲解思路,同学间相互补充,教师再此过程中关注学生能否从不同角度解决问题.设计意图:从特例出发,让学生经历发现结论,说明论证过程,体会相关知识的运用.追问1:还有不同方法解决(2)吗?你的理由是什么?师生活动:教师提出问题,学生独立思考,小组讨论交流,学生代表汇报交流结果,教师点拨,师生共同总结(2)的不同解法.追问2:你们解决(3)的方法一致吗?还有不同见解吗?师生活动:教师提出问题,学生思考,交流讨论,学生代表发表意见,教师点拨.追问3:想要解决(3),你思考问题的出发点在哪?师生活动: 学生独立思考,对教师提出的问题发表自己的见解,教师给与充分的肯定与鼓励.追问4:若BE 、AD 交于点M ,CD 、AE 交于点N ,链接MN ,你还能在图形中找出其他的全等三角形吗?△AMN 是什么三角形?MN 与BC 有怎样的位置关系?师生活动:教师增加新条件,并提出问题,学生独立思考并一一作答,学生间相互评价补充,教师最后点评并适当总结,给与恰当评价.问题4 如图,若将上题中的等边△AEC 绕点A 都还成立?请说明理由.师生活动:教师提出问题,学生独立思考并相互补充,给出结论,说明原因,教师给与评价与鼓励.设计意图:通过旋转变换,让学生体会几何图形的多变,在其过程中体会变与不变元素,抓住本质特征,从而形成解决问题的能力. 问题5 如图,若将上题中的等边△ABD 和△AEC 改为等腰△ABD 和△AEC ,其中AD=AB ,AE=AC , ∠BAD=∠EAC=a. 上述结论是否都还成立?请说明理由.师生活动:教师提出问题,学生思考并作答,说明其原因.设计意图:拓展问题的研究范围,将问题一般化,让学生经历3. 微课展示4. 巩固应用1. 已知△ABC 和△AEF ,AB=AC ,AE=AF ,∠BAC=∠EAF ,BE 、CF 交于M ,连接MA.(1)如图1,若∠BAC=60°,则△BAE ≌ ;∠CMB= .图1B图2图3BC (2)如图2,若∠BAC=90°,则∠CMB= .(3)如图3,若∠BAC=a, 直接写出∠AME 的度数(用含a 的式子表示).师生活动:学生独立完成,教师巡视,指导,师生共同评价.设计意图:巩固加深对探究学习中(1)-(3)问题的认识,再次体会由特殊到一般的探讨问题的过程.2. 如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B(a,b)且a 、b 满足(20b +-=,D 为y 轴上一动点,以AD 为边作等边△ADC ,CB 交y 轴于E.(1)如图1,求点A 的坐标.(2)如图2,D 为y 轴正半轴上一点,C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点坐标是否变化,若不变,求M 点的坐标,若变化,说明理(3)如图3,D 在y 轴负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点在y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连BE ,试求CE ,OD ,AE 三者的数量关系,并证明你的结论.师生活动:用平面直角坐标系中直角的特征,用 30设计意图:直角解决问题,(3)通过有梯度的练习,有利于提高学生综合运用条件推理的能力.5.小结教师与学生一起回顾本节课所学的内容,并请学生回答以下问题:(1)本节课解决共顶点的等腰三角形与全等问题关键是什么?(2)本节课解决一条线段为一个角的角平分线的方法有几种?(3)本节课解决线段之间的和差关系的方法是什么?(4)本节课的探究学习用到了什么思想方法?设计意图:让学生自由发表自己的看法,教师从知识内容、学习过程和思想方法三个方面进行引导. 归纳知识,小结方法,使学生建构自己的知识体系.培养学生合作交流的习惯。
人教版数学八年级下册小专题(十) 运用分类讨论求解等腰三角形相关的多解问题

小专题(十)运用分类讨论求解等腰三角形相关的多解问题类型1针对腰长和底边长进行分类方法归纳:在解答已知等腰三角形边长的问题时,当题目中的条件没有指明已知的这条边是腰长还是底边长时,就要分类讨论,按腰和底边两种情况分类.若涉及边的长度,应运用三角形的三边关系进行辨别取舍.1.(武汉中考)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是(A)A.5 B.6 C.7 D.82.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有(B)A.7个B.6个C.5个D.4个3.若实数x,y满足|x-5|+y-10=0,则以x,y的值为边长的等腰三角形的周长为25.类型2针对顶角和底角进行分类方法归纳:对于等腰三角形,只要已知它的一个内角的度数,就能算出其他两个内角的度数,如果题中没有确定这个内角是顶角还是底角,就要分两种情况来讨论.在分类时要注意:三角形的内角和等于180°;等腰三角形中至少有两个角相等.4.等腰三角形有一个角为52°,它的一条腰上的高与底边的夹角为多少度?解:①若已知的这个角为顶角,则底角的度数为(180°-52°)÷2=64°,故一腰上的高与底边的夹角为26°;②若已知的这个角为底角,则一腰上的高与底边的夹角为38°.故所求的一腰上的高与底边的夹角为26°或38°.5.如果等腰三角形中的一个角是另一个角度数的一半,求该等腰三角形各内角的度数.解:设∠A ,∠B ,∠C 是该等腰三角形的三个内角,且∠A =12∠B. 设∠A =x °,则∠B =2x °.①若∠B 是顶角,则∠A ,∠C 是底角,于是有∠C =∠A =x °.∵∠A +∠B +∠C =180°,∴x +2x +x =180.解得x =45,故∠A =∠C =45°,∠B =90°;②若∠B 是底角,∵∠A ≠∠B ,∴∠A 是顶角,∠C =∠B =2x °.∵∠A +∠B +∠C =180°,∴x +2x +2x =180.解得x =36,故∠A =36°,∠B =∠C =72°.综上所述,等腰三角形的各内角分别为45°、45°、90°或36°、72°、72°.类型3 针对锐角、直角和钝角三角形进行分类方法归纳:根据等腰三角形顶角的大小可以将其分为锐角、直角或钝角三角形.不同的三角形其高、中线、垂直平分线的交点位置均不同,比如锐角三角形腰上的高的交点在这个三角形的内部;直角三角形腰上的高的交点为两直角边的交点;钝角三角形腰上的高的交点在这个三角形的外部,因此在解答时需要分类讨论.6.已知△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交成50°的角,求底角的度数.解:由题意可判断该三角形不可能是直角三角形,可能是锐角三角形或钝角三角形,故分两种情况讨论: ①如图1,垂直平分线DE 与腰AC 相交,且∠AED =50°,则∠A =40°,所以∠B =∠C =70°;②如图2,垂直平分线DE 与腰AC 的反向延长线相交,且∠AED =50°,则∠EAD =40°,∠BAC =140°,所以∠B =∠C =20°.综上可知,等腰三角形的底角为70°或20°.7.一个等腰三角形一边上的高等于另一边的一半,则等腰三角形底角的度数是多少?解:设∠A 为顶角,则∠ABC 、∠ACB 为底角.(1)若∠A 为锐角,如图1,作BD ⊥AC 于点D ,。
轴对称全章复习(三)八年级数学上(人教版)学习教案

练习 如图,△ABC与△CDE均为等边三角形,连接
AE与BD.
求证:(2)AE与BD之间的夹角为60°.
A
分析:求两条线段的夹角,实际上
E
是求两条线段所在直线的夹角,因
此需要将BD延长与AE相交.
D
B
C
类型一 共顶点的等边三角形
练习 如图,△ABC与△CDE均为等边三角形,连接
AE与BD.
求证:(2)AE与BD之间的夹角为60°.
6M E
4 D
∴∠AMB=∠ACB=60°.
5
B
C
类型一 共顶点的等边三角形
A
A
E D
O
D
B
C
E
B
C
图形特征总结:这两个图形是由两个共顶点的等边
三角形构成,在相对位置变化的同时,始终存在一对 全等三角形.
知识回顾
等腰直角三角形有哪些性质? ①两直角边相等; ②顶角等于90°,底角等于45°; ③“三线合一”; ④轴对称图形,有1条对称轴.
B、C、E在一条直线上,连接AE、BD交于点O.
求证:(2)AE与BD 之间的夹角为60° .
A
证明: ∵△BCD≌△ACE (SAS), ∴ ∠ =∠ . ∵∠ =∠ +∠AOB=∠ +∠ACB, ∴∠AOB=∠ACB=60°.
B
D
O
12
C
E
类型一 共顶点的等边三角形
练习 如图,△ABC与△CDE均为等边三角形,连接
例 如图,△ABC和△CDE均为等边三角形,并且点
B、C、E在一条直线上,连接AE、BD交于点O.
求证:(1) AE=BD;
在△ BCD 和△ACE 中,
人教版八年级数学专题复习 两个等腰直角三角形共点专题

两个等腰直角三角形共点专题共锐角顶点直角开口方向相反基本方法:△EDB中与△ABC不共顶点B的那条线段DE平行移到另外等腰三角△ABC的底边BC的另一个点C处的CF。
典型例题同侧型:连接DC(不共顶点的两个底角点的连线),M是中点,求EM,AM的大小关系.方法:平移DE到CF,或倍长EM到MF思路:证明△AEB≌△AFC关键:证明∠ABE=∠ACF方法:∵DE⊥BE∴CG⊥BG∴∠ABE=∠ACF回头看:1.△ABC和△AEF是共直角顶点旋转2.四边形GBCA是共斜边的两个直角三角形共圆(外垂直)对侧型:四边形ABGC对角互补,共圆推广:两个等腰三角形,顶角互补也可以平移,或中线倍长提高.如图,在等腰Rt△ABC 与等腰Rt△DBE 中, ∠BDE=∠ACB=90°,且BE 在AB 边上,取AE 的中点F,CD 的中点G,连结GF.(1)FG 与DC 的位置关系是 ,FG 与DC 的数量关系是 ;(2)若将△BDE 绕B 点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.两个方法:已知:在△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM ,和CAN ,P 是边BC 的中点.求证:PM =PN正方形逆向15、请阅读下列材料问题:如图,在正方形ABCD 和平行四边形BEFG 中,点A 、B 、E 在同一条直线上,P 是线段DF 的中点,连接PG 、PC 。
探究:当PG 与PC 的夹角为多少度时,平行四边形BEFG 是正方形? 小聪同学的思路是:首先可以说明四边形BEFG 是矩形;然后延长GP 交DC 于点H ,构造全等三角形,经过推理可以探索出问题的答案。
请你参考小聪同学的思路,探究并解决这个问题。
(1)求证:四边形BEFG 是矩形;(2)PG 与PC 的夹角为多少度时?四边形BEFG 是正方形,请说明理由。
14、正方形ABCD 和正方形CEFG ,M 为AF 的中点,连接MD 、ME .⑴如图①,B 、C 、G 依次在同一条直线上,求证:△MDE 等腰直角三角形;⑵如图②,将正方形CEFG 绕顶点C 旋转45°.使B 、C 、F 依次在同一条直线上,则△MDE 的形状是 ⑶如图③、将正方形CEFG 任意旋转,设∠DC E=α°,猜想△MDE 的形状?写出你的结论并给予证明. 反开口,两个中点变一个中点再找关系19.如图,△ABO 与△CDO 均为等腰三角形,且∠BAO=∠DCO=90°,M 为BD 的中点,MN⊥AC,试探究MN 与AC 的数量关系,并说明理由。
2023年暑假新八年级数学预习专题7:等腰三角形(精讲教师版)

五、含 30°的直角三角形的性质定理 在直角三角形中,如果有一个锐角是 30°,那么它所对的直角边等于斜边 的一半.
攻略 1 判定等腰三角形的方法: 1.定义法:有两边相等的三角形是等腰三角形;
第 1页(共 15页)
三、等边三角形的性质 1.三边都相等的三角形叫等边三角形. 2.等边三角形三个内角都相等,并且每一个内角都等于 60°. 注意:①每条边上的中线、高线、所对角的角平分线互相重合(三线合一) ②等边三角形也是轴对称图形,它有三条对称轴,三线合一所在的直线即 为等边三角形的对称轴,对称轴的交点是等边三角形的中心点. 3.常见有关等边三角形的旋转题图形
第 2页(共 15页)
2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写 成“等角对等边”). 数学语言:在△ABC 中,∵∠B=∠C,∴AB=AC(等角对等边). 【注意】1.“等角对等边”不能叙述为:如果一个三角形有两个底角相等, 那么它的两腰也相等.因为在没有判定出它是等腰三角形之前,不能用“底 角”“腰”这些名词,只有等腰三角形才有“底角”“腰”. 2.“等角对等边”与“等边对等角”的区别:由两边相等得出它们所对的角相 等,是等腰三角形的性质;由三角形有两角相等得出它是等腰三角形,是 等腰三角形的判定. 攻略 2 判定等边三角形的方法: 1.定义法:三边都相等的三角形是等边三角形. 2.三个角都相等的三角形是等边三角形. 3.有一个角是 60°的等腰三角形是等边三角形. 攻略 3 一在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边 等于斜边的一半. 【注意】1.该性质是含 30°角的特殊直角三角形的性质,一般的直角三角 形或非直角三角形没有这个性质,更不能应用. 2.这个性质主要应用于计算或证明线段的倍分关系. 3.该性质的证明出自于等边三角形,所以它与等边三角形联系密切. 4.在有些题目中,若给出的角是 15°时,往往运用一个外角等于和它不相 邻的两个内角的和将 15°的角转化后,再利用这个性质解决问题.
2024年中考数学复习 模型构建专题:“手拉手”模型——共顶点的等腰三角形压轴题三种模型全攻略(原卷

模型构建专题:“手拉手”模型【考点导航】目录【典型例题】【类型一共顶点的等边三角形】【类型二共顶点的等腰直角三角形】【类型三共顶点的一般等腰三角形】【典型例题】【类型一共顶点的等边三角形】1(2023·全国·八年级假期作业)如图所示,△ABC和△ADE都是等边三角形,且点B、A、E在同一直线上,连接BD交AC于M,连接CE交AD于N,连接MN.(1)求证:BD=CE;(2)求证:△ABM≌△ACN;(3)求证:△AMN是等边三角形.【变式训练】1(2023春·山西运城·八年级统考期中)如图,点C为线段AB上一点,△DAC、△ECB都是等边三角形,AE、DC交于点M,DB、EC交于点N,DB、AE交于点P,连接MN,下列说法正确的个数有个.①MN∥AB;②∠DPM=60°;③∠DAP=∠PEC;④△ACM≌△DCN;⑤若∠DBE=30°,则∠AEB=90°.2(2023秋·四川凉山·八年级统考期末)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.求证:(1)AD=BE;(2)△CPQ为等边三角形;3(2021春·广东佛山·八年级校考阶段练习)已知图1是边长分别为a和b a>b的两个等边三角形纸片ABC和三角形C DE叠放在一起(C与C 重合)的图形.(1)将△C DE绕点C按顺时针方向旋转30°,连接AD,BE.如图2:在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;(2)若将上图中的△C DE,绕点C按顺时针方向任意旋转一个角度α,连接AD、BE,如图3:在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论:(3)根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大,最大是多少?当α为多少度时,线段AD的长度最小,最小是多少?请直接写出答案.4(2023春·广东梅州·七年级校考期末)【初步感知】(1)如图1,已知ΔABC为等边三角形,点D为边BC上一动点(点D不与点B,点C重合).以AD为边向右侧作等边ΔADE,连接CE.求证:ΔABD≌ΔACE;【类比探究】(2)如图2,若点D在边BC的延长线上,随着动点D的运动位置不同,猜想并证明:①AB与CE的位置关系为:;②线段EC、AC、CD之间的数量关系为:;【拓展应用】(3)如图3,在等边ΔABC中,AB=3,点P是边AC上一定点且AP=1,若点D为射线BC上动点,以DP为边向右侧作等边ΔDPE,连接CE、BE.请问:PE+BE是否有最小值?若有,请直接写出其最小值;若没有,请说明理由.【类型二共顶点的等腰直角三角形】1(2023春·湖北黄冈·八年级统考期中)如图,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE= 90°.(1)【猜想】:如图1,点E在BC上,点D在AC上,线段BE与AD的数量关系是,位置关系是.(2)【探究】:把△DCE绕点C旋转到如图2的位置,连接AD,BE,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE绕点C在平面内自由旋转,若AC=5,CE=22,当A,E,D三点在同一直线上时,则AE的长是.【变式训练】1(2023·全国·九年级专题练习)如图,在等腰直角三角形ABC和DEC中,∠BCA=∠DCE=90°,点E在边AB上,ED与AC交于点F,连接AD.(1)求证:△BCE≌△ACD;(2)求证:AB⊥AD.2(2023春·八年级课时练习)(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为,AE、BD所在直线的位置关系为;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由.3(2023·山东枣庄·统考二模)感知:如图①,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE =90°,点B在线段AD上,点C在线段AE上,我们很容易得到BD=CE,不需证明.(1)探究:如图②,将△ADE绕点A逆时针旋转α(0<α<90°),连接BD和CE,此时BD=CE是否依然成立?若成立,写出证明过程;若不成立,说明理由.(2)应用:如图③,当△ADE绕点A逆时针旋转,使得点D落在BC的延长线上,连接CE.求:①∠ACE的度数;②若AB=AC=32,CD=3,则线段DE的长是多少?【类型三共顶点的一般等腰三角形】1(2023春·山东泰安·七年级校考开学考试)如图,△ABC与△CDE都是等腰三角形,AC=BC,CD= CE,∠ACB=∠DCE=42°,AD、BE相交于点M.(1)试说明:AD=BE;(2)求∠AMB的度数.【变式训练】1(2023秋·辽宁抚顺·八年级统考期末)如图,已知△ABC中,AB≠AC≠BC.分别以AB、AC为腰在AB左侧、AC右侧作等腰三角形ABD.等腰三角形ACE,连接CD、BE.(1)如图1,当∠BAD=∠CAE=60°时,①△ABD、△ACE的形状是;②求证:BE=DC.(2)若∠BAD=∠CAE≠60°,①如图2,当AB=AD,AC=AE时,BE=DC是否仍然成立?请写出你的结论并说明理由;②如图3,当AB=DB,AC=EC时,BE=DC是否仍然成立?请写出你的结论并说明理由.2(2023秋·全国·八年级专题练习)定义:顶角相等且顶点重合的两个等腰三角形叫做“同源三角形”,我们称这两个顶角为“同源角”.如图,△ABC和△CDE为“同源三角形”,AC=BC,CD=CE,∠ACB 与∠DCE为“同源角”.(1)如图1,△ABC和△CDE为“同源三角形”,试判断AD与BE的数量关系,并说明理由.(2)如图2,若“同源三角形”△ABC和△CDE上的点B,C,D在同一条直线上,且∠ACE=90°,则∠EMD =°.(3)如图3,△ABC和△CDE为“同源三角形”,且“同源角”的度数为90°时,分别取AD,BE的中点Q,P,连接CP,CQ,PQ,试说明△PCQ是等腰直角三角形.3(2023春·辽宁丹东·七年级统考期末)(1)如图1,两个等腰三角形△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE.则△ADB≌,此时线段BD和线段CE的数量关系式;(2)如图2,两个等腰直角三角形△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,连接BD,CE,两线交于点P,请判断线段BD和线段CE的关系,并说明理由;(3)如图3,分别以△ABC的两边AB,AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,两线交于点P.请直接写出线段BE和线段CD的数量关系及∠PBC+∠PCB的度数.模型构建专题:“手拉手”模型【考点导航】目录【典型例题】【类型一共顶点的等边三角形】【类型二共顶点的等腰直角三角形】【类型三共顶点的一般等腰三角形】【典型例题】【类型一共顶点的等边三角形】1(2023·全国·八年级假期作业)如图所示,△ABC和△ADE都是等边三角形,且点B、A、E在同一直线上,连接BD交AC于M,连接CE交AD于N,连接MN.(1)求证:BD=CE;(2)求证:△ABM≌△ACN;(3)求证:△AMN是等边三角形.【答案】(1)证明见解析(2)证明见解析(3)证明见解析【分析】(1)由已知条件等边三角形,可知AB=AC,AD=AE,∠BAC=∠DAE,进一步求证∠BAD=∠CAE,从而△ABD≌△ACE(SAS),所以BD=CE.(2)由(1)知△ABD≌△ACE,得∠ABM=∠CAN,由点B、A、E共线,得∠CAN=60°=∠BAC,进一步求证△ABM≌△ACN(ASA).(3)由△ABM≌△ACN,得AM=AN,而∠CAN=60°,所以△AMN是等边三角形.【详解】(1)∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE.在△ABD和△ACE中,AB=AC∠BAD=∠CAE AD=AE∴△ABD≌△ACE(SAS),∴BD=CE.(2)由(1)知△ABD≌△ACE,∴∠ABM=∠ACN.∵点B、A、E在同一直线上,且∠BAC=∠DAE=60°,∴∠CAN=60°=∠BAC.在△ABM和△ACN中,∠BAM=∠CAN AB=AC∠ABM=∠ACN∴△ABM≌△ACN(ASA).(3)由(2)知△ABM≌△ACN,∴AM=AN,∵∠CAN=60°,∴△AMN是等边三角形.【点睛】本题主要考查等边三角形的性质和判定、全等三角形判定和性质;将等边三角形的条件转化为相等线段和等角,选择合适的方法判定三角形全等是解题的关键.【变式训练】1(2023春·山西运城·八年级统考期中)如图,点C为线段AB上一点,△DAC、△ECB都是等边三角形,AE、DC交于点M,DB、EC交于点N,DB、AE交于点P,连接MN,下列说法正确的个数有个.①MN∥AB;②∠DPM=60°;③∠DAP=∠PEC;④△ACM≌△DCN;⑤若∠DBE=30°,则∠AEB=90°.【答案】①②③④⑤【分析】根据等边三角形的性质得到AC=CD,BC=CE,∠ACD=∠BCE=60°,得到∠ACE=∠BCE,∠DCE=60°,根据平行线的判定定理得到AD∥CE,根据平行线的性质得到∠DAP=∠PEC,故③正确;根据全等三角形的性质得到∠CAE=∠CDB,根据三角形的内角和得到∠DPM=∠ACM=60°,故②正确,推出△ACM≌△DCN,故④正确;根据全等三角形的性质得到CM=CN,得到△CMN是等边三角形,求得∠CMN=60°,根据平行线的判定定理得到MN∥AB,故①正确;根据三角形的内角和得到∠AEB= 90°.故⑤正确.【详解】解:∵△DAC 、△ECB 都是等边三角形,∴AC =CD ,BC =CE ,∠ACD =∠BCE =60°,∴∠ADC =∠DCE =60°,∴∠ACE =∠BCD ,∠DCE =60°,∴AD ∥CE ,∴∠DAP =∠PEC ,故③正确;在△ACE 与△BCD 中,AC =CD∠ACE =∠BCD CE =CB,∴△ACE ≌△BCD SAS ,∴∠CAE =∠CDB ,∵∠PMD =∠AMC ,∴∠DPM =∠ACM =60°,故②正确,在△ACM 与△DCN 中,∠CAM =∠CDNAC =CD ∠ACM =∠DCN =60°,∴△ACM ≌△DCN ,故④正确;∴CM =CN ,∴△CMN 是等边三角形,∴∠CMN =60°,∴∠CMN =∠ACD ,∴MN ∥AB ,故①正确;∵∠DBE =30°,∠BPE =∠APD =60°,∴∠AEB =90°.故⑤正确;故答案为:①②③④⑤.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,平行线的判定,熟练掌握全等三角形的判定和性质是解题的关键.2(2023秋·四川凉山·八年级统考期末)如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边△ABC 和等边△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ.求证:(1)AD =BE ;(2)△CPQ 为等边三角形;【答案】(1)见解析;(2)见解析.【分析】(1)由等边三角形的性质可知AC =BC ,CD =CE ,∠ACB =∠DCE =60°,从而可求出∠ACD =∠BCE ,即可利用“SAS ”证明△ADC ≌△BEC ,即得出AD =BE ;(2)由等边三角形的性质可知∠ACB =∠DCE =60°,AC =BC ,即可求证∠ACP =∠BCQ =60°.再根据△ADC ≌△BEC 可得出∠CAP =∠CBQ ,利用“ASA ”证明△APC ≌△BQC ,据此即可证明结论成立.【详解】(1)证明:∵△ABC 和△CDE 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∵∠ACD =∠ACB +∠BCD ,∠BCE =∠DCE +∠BCD ,∴∠ACD =∠BCE ,∴AC =BC∠ACD =∠BCE CD =CE,∴△ADC ≌△BEC (SAS ),∴AD =BE ;(2)证明:∵△ABC 和△CDE 是等边三角形,∴∠ACB =∠DCE =60°,AC =BC ,∴∠BCQ =180°-∠ACP -∠ECD =60°,∴∠ACP =∠BCQ =60°.∵△ADC ≌△BEC∴∠CAP =∠CBQ .∴∠CAP =∠CBQAC =BC∠ACP =∠BCQ∴△APC ≌△BQC ASA .∴CP =CQ ,又∵∠PCQ =60°,∴△CPQ 为等边三角形.【点睛】本题考查等边三角形的性质,全等三角形的判定和性质.熟练掌握全等三角形的判定条件是解题关键.3(2021春·广东佛山·八年级校考阶段练习)已知图1是边长分别为a 和b a >b 的两个等边三角形纸片ABC 和三角形C DE 叠放在一起(C 与C 重合)的图形.(1)将△C DE 绕点C 按顺时针方向旋转30°,连接AD ,BE .如图2:在图2中,线段BE 与AD 之间具有怎样的大小关系?证明你的结论;(2)若将上图中的△C DE ,绕点C 按顺时针方向任意旋转一个角度α,连接AD 、BE ,如图3:在图3中,线段BE 与AD 之间具有怎样的大小关系?证明你的结论:(3)根据上面的操作过程,请你猜想当α为多少度时,线段AD 的长度最大,最大是多少?当α为多少度时,线段AD 的长度最小,最小是多少?请直接写出答案.【答案】(1)BE =AD ,证明见解析(2)BE =AD ,证明见解析(3)当α为180度时,线段AD 的长度最大,最大值为a +b ;当α为0度或360度时,线段AD 的长度最小,最小值为a -b .【分析】(1)先由等边三角形判断出AC =BC ,CE =CD ,再由旋转判断出∠BCE =∠ACD ,进而判断出△BCE ≌△ACD ,即可得出结论;(2)同(1)的方法,即可得出结论;(3)当点D 在AC 的延长线上时,AD 最大,最大值为a +b ,当点D 在线段AC 上时,AD 最小,最小值为a -b ,即可得出结论.【详解】(1)解:BE =AD证明:∵点C 与C 1重合,△ABC 和△C 1DE ,∴△ABC 和△CDE 都是等边三角形,∴AC =BC ,CE =CD ,由旋转知,∠BCE =∠ACD =30°,在△BCE 和△ACD 中,BC =AC∠BCE =∠ACD CE =CD,∴△BCE ≌△ACD (SAS ),∴BE =AD ,(2)解:BE =AD ,证明:∵△ABC 和△CDE 都是等边三角形,∴AC =BC ,CE =CD ,由旋转知,∠BCE =∠ACD ,在△BCE 和△ACD 中,BC =AC∠BCE =∠ACD CE =CD,∴△BCE ≌△ACD (SAS ),∴BE =AD ;(3)解:当点D 在AC 的延长线上时,AD 最大,最大值为AC +CD =a +b ,如图,∴当α为180度时,线段AD 的长度最大,最大值为a +b ,当点D 在线段AC 上时,AD 最小,最小值为AC -CD =a -b ,如图,∴当α为0度或360度时,线段AD的长度最小,最小值为a-b.【点睛】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,判断出△BCE≌△ACD是解本题的关键.4(2023春·广东梅州·七年级校考期末)【初步感知】(1)如图1,已知ΔABC为等边三角形,点D为边BC上一动点(点D不与点B,点C重合).以AD为边向右侧作等边ΔADE,连接CE.求证:ΔABD≌ΔACE;【类比探究】(2)如图2,若点D在边BC的延长线上,随着动点D的运动位置不同,猜想并证明:①AB与CE的位置关系为:;②线段EC、AC、CD之间的数量关系为:;【拓展应用】(3)如图3,在等边ΔABC中,AB=3,点P是边AC上一定点且AP=1,若点D为射线BC上动点,以DP 为边向右侧作等边ΔDPE,连接CE、BE.请问:PE+BE是否有最小值?若有,请直接写出其最小值;若没有,请说明理由.【答案】(1)见解析(2)平行EC=AC+CD(3)有最小值,5【分析】(1)由ΔABC和ΔADE是等边三角形,推出AB=AC,AD=AE,∠BAC=∠DAE=60°,又因为∠BAC=∠DAE,则∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,从而利用“SAS”证明ΔABD≌ΔACE;(2)①由(1)得ΔABD≌ΔACE(SAS),得出∠B=∠ACE=60°,CE=BD,∠BAC=∠ACE,则AB∥CE;②因为CE=BD,AC=BC,所以CE=BD=BC+CD=AC+CD;(3)在BC上取一点M,使得DM=PC,连接EM,可证ΔEPC≌ΔEDM(SAS),EC=EM,求得∠CEM= 60°,得出ΔCEM是等边三角形,则∠ECD=60°,即点E在∠ACD角平分线上运动,在射线CD上截取CP =CP,当点E与点C重合时,BE+PE=BE+P E≥BP =5,进而解答此题.【详解】(1)证明:∵ΔABC和ΔADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC 即∠BAD=∠CAE在ΔABD和ΔACE中,AB=AC∠BAD=∠CAE AD=AE,∴ΔABD≌ΔACE(SAS);(2)平行,EC=AC+CD,理由如下:由(1)得ΔABD≌ΔACE(SAS),∴∠B=∠ACE=60°,CE=BD,∴∠BAC=∠ACE,∴AB∥CE,∵CE=BD,AC=BC,∴CE=BD=BC+CD=AC+CD;(3)有最小值,理由如下:如图,在射线BC上取一点M,使得DM=PC,连接EM,∵ΔABC和ΔDPE是等边三角形,∴PE=ED,∠DEP=∠ACB=60°,∴∠ACD=180°-∠ACB=180°-60°=120°,∴∠ACD+∠DEP=120°+60°=180°,由三角形内角和为180°,可知:∠PCE+∠CEP+∠EPC=180°,∠ECD+∠CDE+∠CED=180°,∴∠PCE+∠CEP+∠EPC+∠ECD+∠CDE+∠CED=360°,又∵∠PCE+∠ECD+∠CEP+∠CED=∠ACD+∠DEP=180°,∴∠EPC+∠CDE=360°-180°=180°,∵∠EDM+∠CDE=180°,∴∠EPC=∠EDM,在ΔEPC和ΔEDM中,PE=ED∠EPC=∠EDM PC=DM,ΔEPC≌ΔEDM(SAS),∴EC=EM,∠PEC=∠DEM,∵∠PEC+∠CED=∠DEP=60°,∴∠CEM=∠DEM+∠CED=60°,∴ΔCEM是等边三角形,∴∠ECD=60°,∠ACE=180°-∠ECD-∠ACB=180°-60°-60°=60°,即点E在∠ACD的角平分线上运动,在射线CD上截取CP =CP,连接EP ,在ΔCEP和ΔCEP 中,PC=P C∠PCE=∠P CE=60°CE=CE,ΔCEP≌ΔCEP (SAS),∴PE=P E,由三角形三边关系可知,BE+P E≥BP ,即当点E与点C重合,BE+P E=BP 时,PE+BE有最小值BP ,∵BP =BE+CP =BC+CP=3+2=5,∴BE+PE=BE+P E≥BP =5,∴BE+PE最小值为5.【点睛】本题考查三角形综合,全等三角形的判定,正确添加辅助线、掌握相关图形的性质定理是解题的关键.【类型二共顶点的等腰直角三角形】90°.(1)【猜想】:如图1,点E在BC上,点D在AC上,线段BE与AD的数量关系是,位置关系是.(2)【探究】:把△DCE绕点C旋转到如图2的位置,连接AD,BE,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE绕点C在平面内自由旋转,若AC=5,CE=22,当A,E,D三点在同一直线上时,则AE的长是.【答案】(1)BE=AD,BE⊥AD(2)成立,理由见解析(3)21+2或21-2【分析】(1)利用等腰直角三角形的性质得出AC=BC,EC=DC,再作差,得出BE=AD,再用∠ACB= 90°,即可得出结论;(2)先由旋转的旋转得出∠BCE=∠ACD,进而判断出△BCE≌△ACD SAS,得出BE=AD,∠CAD=∠CBE,AC与BE交于M,AD与BE交于N,利用全等的性质和对顶角相等进而得出∠MAN+∠AMN=90°,即可得出结论;(3)分两种情况,①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,求出CM=EM=12DE= 2,再用勾股定理求出AM,利用线段的加减即可得出结论;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,求出CM=EM=12DE=2,再由勾股定理求出根据勾股定理得,AN,利用线段的加减即可得出结论.【详解】(1)∵△ABC和△DCE都是等腰直角三角形,∴AC=BC,EC=DC,∴AC-DC=BC-EC,∴BE=AD,点E在BC上,点D在AC上,且∠ACB=90°,∴BE⊥AD,故:BE=AD,BE⊥AD;(2)成立;如图2,AC与BE交于M,AD与BE交于N,由题意可知:∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠CE,∴∠BCE=∠ACD,在△BCE与△ACD中:BC=AC∠BCE=∠ACD CE=CD∴△BCE≌△ACD SAS,∴BE=AD,∠CAD=∠CBE,又∵∠ACB=90°,∠BMC=∠AMN,在△ANM中,∴∠MAN+∠AMN=∠CBE+∠BMC=90°,∴∠ANM=90°,∴BE⊥AD,所以结论成立;(3)①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CM⊥AD,∴CM=EM=12DE=2,在Rt△ACM中,AC=5,∴AM=AC2-CM2=52-22=21,∴AE=AM-EM=21-2;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CN⊥AD,∴CN =NE =12DE =2,在Rt △ACN 中,AC =5,∴AN =AC 2-CN 2=52-22=21,∴AE =AN +NE =21+2,综上,AE 的长为21-2或21+2,故答案为:21-2或21+2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的性质,旋转的旋转,全等三角形的判定和性质,勾股定理,作出辅助线构造出直角三角形是解本题的关键.【变式训练】1(2023·全国·九年级专题练习)如图,在等腰直角三角形ABC 和DEC 中,∠BCA =∠DCE =90°,点E 在边AB 上,ED 与AC 交于点F ,连接AD .(1)求证:△BCE ≌△ACD ;(2)求证:AB ⊥AD .【答案】(1)见解析(2)见解析【分析】(1)根据∠BCA =∠DCE =90°,可得∠BCE =∠ACD ,再由等腰直角三角形的性质可得BC =AC ,CE =CD ,可证明△BCE ≌△ACD ,即可求证;(2)根据△BCE ≌△ACD ,可得∠B =∠CAD ,从而得到∠CAD +∠CAE =90°,即可求证.【详解】(1)证明:∵∠BCA =∠DCE =90°,∴∠BCE +∠ECA =∠ECA +∠ACD =90°,∴∠BCE =∠ACD ,∵△ABC 和△DEC 是等腰直角三角形,∴BC =AC ,CE =CD ,在△BCE 和△ACD 中,BC =AC∠BCE =∠ACD CE =CD,∴△BCE ≌△ACD SAS ;(2)证明:∵△BCE ≌△ACD ,∴∠B =∠CAD ,∵∠ACB =90°,∴∠B +∠CAE =90°,∴∠CAD +∠CAE =90°,即∠DAE =90°,∴AB ⊥AD .【点睛】本题主要考查了全等三角形的判定和性质,等腰直角三角形的性质,熟练掌握全等三角形的判定和性质,等腰直角三角形的性质是解题的关键.2(2023春·八年级课时练习)(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为,AE、BD所在直线的位置关系为;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB 的度数及线段CM,AD,BD之间的数量关系,并说明理由.【答案】(1)AE=BD,AE⊥BD;(2)∠ADB=90°,AD=2CM+BD;理由见解析【分析】(1)延长AE交BD于点H,AH交BC于点O.只要证明△ACE≌△BCD SAS,即可解决问题;(2)由△ACE≌△BCD,结合等腰三角形的性质和直角三角形的性质,即可解决问题.【详解】解:(1)如图1中,延长AE交BD于点H,AH交BC于点O,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE+∠ECB=∠BCD+∠ECB=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠CAE+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠CBD=90°,∴∠AHB=90°,∴AE⏊BD.故答案为:AE=BD,AE⏊BD.(2)∠ADB=90°,AD=2CM+BD;理由如下:如图2中,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴∠CDE=∠CED=45°,∴∠AEC=180°-∠CED=135°,由(1)可知:△ACE≌△BCD,∴AE=BD,∠BDC=∠AEC=135°,∴∠ADB=∠BDC-∠CDE=135°-45°=90°;在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DM=2CM,∴AD=DE+AE=2CM+BD.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.3(2023·山东枣庄·统考二模)感知:如图①,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B在线段AD上,点C在线段AE上,我们很容易得到BD=CE,不需证明.(1)探究:如图②,将△ADE绕点A逆时针旋转α(0<α<90°),连接BD和CE,此时BD=CE是否依然成立?若成立,写出证明过程;若不成立,说明理由.(2)应用:如图③,当△ADE绕点A逆时针旋转,使得点D落在BC的延长线上,连接CE.求:①∠ACE的度数;②若AB=AC=32,CD=3,则线段DE的长是多少?【答案】(1)BD=CE成立,证明见解析(2)①45° ②310【分析】(1)只需要利用SAS证明△ABD≌△ACE即可证明BD=CE;(2)①由等腰直角三角形的性质得到∠ABC=∠ACB=45°,再证明△ABD≌△ACE即可得到∠ABD=∠ACE=45°;②先由勾股定理得到BC=6,由全等三角形的性质得到∠ACE=∠ABD=45°,BD=CE,则∠BCE=90°,CE=9;则DE=CE2+CD2=310.【详解】(1)解:BD=CE成立,证明如下:∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,由旋转的性质可得∠BAD=∠CAE,∴△ABD≌△ACE SAS,∴BD=CE;(2)解:①∵△ABC和△ADE都是等腰直角三角形,∴∠ABC=∠ACB=45°,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,∠BAD=CAE,AD=AE,∴△ABD≌△ACE SAS,∴∠ABD=∠ACE=45°;②∵AB=AC=32,∴BC=AB2+AC2=6,∵△ACE≌△ABD,∴∠ACE=∠ABD=45°,BD=CE,∴∠BCE=∠ACB+∠ACE=90°,CE=BD=BC+CD=6+3=9;∴DE=CE2+CD2=92+32=310.【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,等腰直角三角形的性质,熟知全等三角形的性质与判定条件是解题的关键.【类型三共顶点的一般等腰三角形】1(2023春·山东泰安·七年级校考开学考试)如图,△ABC与△CDE都是等腰三角形,AC=BC,CD=CE,∠ACB=∠DCE=42°,AD、BE相交于点M.(1)试说明:AD=BE;(2)求∠AMB的度数.【答案】(1)见解析(2)42°【分析】(1)由“SAS”可证△ACD≌△BCE,可得BE=AD;(2)根据全等三角形的性质可得∠CAD=∠CBE,再利用三角形内角和定理计算∠AMB.【详解】(1)解:证明:∵∠ACB=∠DCE,∴∠ACD=∠BCE,在△ACD和△BCE中,CA=CB∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE;(2)∵△ACD≌△BCE,∴∠CAD=∠CBE,∵∠BAC+∠ABC=180°-42°=138°,∴∠BAM+∠ABM=∠BAC-∠CAD+∠ABC+∠CBE=∠BAC+∠ABC=138°,∴∠AMB=180°-138°=42°.【点睛】本题考查了全等三角形的判定和性质,三角形内角和,证明三角形全等是解题的关键.【变式训练】1(2023秋·辽宁抚顺·八年级统考期末)如图,已知△ABC中,AB≠AC≠BC.分别以AB、AC为腰在AB左侧、AC右侧作等腰三角形ABD.等腰三角形ACE,连接CD、BE.(1)如图1,当∠BAD=∠CAE=60°时,①△ABD、△ACE的形状是;②求证:BE=DC.(2)若∠BAD=∠CAE≠60°,①如图2,当AB=AD,AC=AE时,BE=DC是否仍然成立?请写出你的结论并说明理由;②如图3,当AB=DB,AC=EC时,BE=DC是否仍然成立?请写出你的结论并说明理由.【答案】(1)①等边三角形;②证明见解析(2)①成立,理由见解析;②不成立,理由见解析【分析】(1)①根据有一个内角是60度的等腰三角形是等边三角形即可求解;②根据等边三角形的性质可得AB=AD,AE=AC,∠DAB=∠CAE=60°,证明△BAE≌△DAC,根据全等三角形的性质即可证明;(2)①证明△BAE≌△DAC,根据全等三角形的性质即可得出结论;②根据已知可得△BAE与△DAC不全等,即可得出结论.【详解】(1)①∵△ABD是等腰三角形,△ACE是等腰三角形,∠BAD=∠CAE=60°∴△ABD、△ACE是等边三角形,故答案为:等边三角形.②证明:∵△ABD、△ACE是等边三角形,∴AB=AD,AE=AC,∠DAB=∠CAE=60°,∵∠DAC=∠DAB+∠BAC,∠BAE=∠CAE+∠BAC,∴∠DAC=∠BAE,在△BAE与△DAC中,∵AB=AD∠BAE=∠DAC AE=AC,∴△BAE≌△DAC SAS.∴BE=DC.(2)①当AB=AD,AE=AC时,成立.理由:如图,∵AB=AD,∠BAE=∠DAC,AE=AC,∴△BAE≌△DAC SAS,∴BE=DC;②当AB=DB,AC=EC时,不成立.理由:如图,∵∠BAD=∠CAE≠60°,∴AB=DB≠AD,AC=EC≠AE,∴△BAE与△DAC不全等,∴BE≠DC.【点睛】本题考查全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质等,熟练掌握全等三角形的判定与性质是解题的关键.2(2023秋·全国·八年级专题练习)定义:顶角相等且顶点重合的两个等腰三角形叫做“同源三角形”,我们称这两个顶角为“同源角”.如图,△ABC 和△CDE 为“同源三角形”,AC =BC ,CD =CE ,∠ACB 与∠DCE 为“同源角”.(1)如图1,△ABC 和△CDE 为“同源三角形”,试判断AD 与BE 的数量关系,并说明理由.(2)如图2,若“同源三角形”△ABC 和△CDE 上的点B ,C ,D 在同一条直线上,且∠ACE =90°,则∠EMD =°.(3)如图3,△ABC 和△CDE 为“同源三角形”,且“同源角”的度数为90°时,分别取AD ,BE 的中点Q ,P ,连接CP ,CQ ,PQ ,试说明△PCQ 是等腰直角三角形.【答案】(1)AD =BE ,详见解析(2)45(3)详见解析【分析】(1)由“同源三角形”的定义可证∠ACD =∠BCE ,然后根据SAS 证明△ACD ≌△BCE 即可;(2)由“同源三角形”的定义和∠ACE =90°可求出∠DCE =ACB =45°,由(1)可知△ACD ≌△BCE ,得∠ADC =∠BEC ,然后根据“8”子三角形即可求出∠EMD 的度数;(3)由(1)可知△ACD ≌△BCE ,可得∠CAQ =∠CBP ,BE =AD .根据SAS 证明△ACQ ≌△BCP ,可得CQ =CP ,∠ACQ =∠BCP ,进而可证结论成立.【详解】(1)AD =BE .理由:因为△ABC 和△CDE 是“同源三角形”,所以∠ACB =∠DCE ,所以∠ACD =∠BCE .在△ACD 和△BCE 中,AC =BC ,∠ACD =∠BCE ,CD =CE ,所以△ACD ≌△BCE SAS .所以AD =BE .(2)∵△ABC 和△CDE 是“同源三角形”,∴∠ACB =∠DCE .∵∠ACE =90°,∴∠DCE =ACB =45°.由(1)可知△ACD ≌△BCE ,∴∠ADC =∠BEC .∵∠MOE =∠COD ,∴∠EMD =∠DCE =45°.故答案为:45;(3)由(1)可知△ACD ≌△BCE ,所以∠CAQ =∠CBP ,BE =AD .因为AD ,BE 的中点分别为Q ,P ,所以AQ =BP .在△ACQ 和△BCP 中,CA =CB ,∠CAQ =∠CBP ,AQ =BP ,所以△ACQ ≌△BCP SAS ,所以CQ =CP ,∠ACQ =∠BCP .又因为∠BCP +∠PCA =90°,所以∠ACQ +∠PCA =90°.所以∠PCQ =90°,所以△PCQ 是等腰直角三角形.【点睛】本题考查了新定义,全等三角形的判定与性质,等腰直角三角形的判定,三角形内角和定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.3(2023春·辽宁丹东·七年级统考期末)(1)如图1,两个等腰三角形△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,连接BD ,CE .则△ADB ≌,此时线段BD 和线段CE 的数量关系式;(2)如图2,两个等腰直角三角形△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE =90°,连接BD ,CE ,两线交于点P ,请判断线段BD 和线段CE 的关系,并说明理由;(3)如图3,分别以△ABC 的两边AB ,AC 为边向△ABC 外作等边△ABD 和等边△ACE ,连接BE ,CD ,两线交于点P .请直接写出线段BE 和线段CD 的数量关系及∠PBC +∠PCB 的度数.【答案】(1)△AEC ,BD =CE ;(2)BD =CE 且BD ⊥CE ;(3)CD =BE ,∠PBC +∠PCB =60°【分析】(1)先判断出∠DAB =∠EAC ,进而判断出△ADB ≌△AEC ,即可得出结论;(2)先判断出△DAB ≌△EAC ,得出BD =CE ,∠DBA =∠ECA ,进而判断出∠DBC +∠ECB ,即可得出结论;(3)先判断出△ACD ≌△AEB ,得出CD =BE ,∠ADC =∠ABE ,进而求出∠BPD =60°,最后用三角形外角的性质,即可得出结论.【详解】解:(1)∵∠DAE =∠BAC ,∴∠DAE +∠BAE =∠BAC +∠BAE .即∠DAB =∠EAC ,在△ADB 和△AEC 中,AD =AE∠DAB =∠EAC AB =AC,∴△ADB ≌△AEC SAS ,∴BD =CE ,故答案为:△AEC ,BD =CE ;(2)BD =CE 且BD ⊥CE ;理由如下:∵∠DAE =∠BAC =90°,∴∠DAE +∠BAE =∠BAC +∠BAE .即∠DAB =∠EAC .在△DAB 和△EAC 中,AD =AE∠DAB =∠EAC AB =AC,∴△ADB ≌△AEC SAS ,∴BD =CE ,∠DBA =∠ECA ,∵∠ECA +∠ECB +∠ABC =90°,∴∠DBA +∠ECB +∠ABC =90°,即∠DBC +∠ECB =90°,∴∠BPC =180°-(∠DBC +∠ECB )=90°,∴BD ⊥CE ,综上所述:BD =CE 且BD ⊥CE ;(3)如图3所示,BE =CD ,∠PBC +∠PCB =60°,理由如下:∵△ABD 和△ACE 是等边三角形,∴AD =AB ,AC =AE ,∠ADB =∠ABD =∠BAD =∠CAE =60°,∴∠BAD +∠BAC =∠CAE +∠BAC ,∴∠CAD =∠EAB ,在△ACD 和△AEB 中,AD =AB ∠CAD =∠EAB AC =AE,∴△ACD ≌△AEB (SAS ),∴CD =BE ,∠ADC =∠ABE ,∴∠BPD =180°-∠PBD -∠BDP=180°-∠ABE -∠ABD -∠BDP=180°-∠ABD -∠ABE +∠BDP=180°-∠ABD -∠ADC +∠BDP=180°-∠ABD -∠ADB=60°,∴∠PBC +∠PCB =∠BPD =60°.【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,等腰直角三角形的性质,等边三角形的性质,三角形的内角和定理,三角形外角的性质,判断出△ADB ≌△AEC 是解本题的关键.。
【初中数学】人教版八年级上册专题训练(四) 等腰三角形问题中的分类讨论思想(练习题)

人教版八年级上册专题训练(四)等腰三角形问题中的分类讨论思想(159)1.已知等腰三角形一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.2.已知一个等腰三角形一边上的高等于这边的一半,求这个三角形顶角的度数.3.等腰三角形的一个外角是60∘,则它的顶角的度数是4.若等腰三角形的周长为16,其中一边长为6,则另两边长为.5.若等腰三角形的一个外角等于110∘,则这个三角形的三个角分别为6.若实数x,y满足|x−4|+√y−8=0,则以x,y的值为边长的等腰三角形的周长为.7.等腰三角形一腰上的高与另一腰的夹角为48∘,则该等腰三角形的底角的度数为.8.在等腰三角形中,马彪同学做了如下探究:已知一个角是60∘,则另两个角是唯一确定的(60∘,60∘);已知一个角是90∘,则另两个角也是唯一确定的(45∘,45∘);已知一个角是120∘,则另两个角也是唯一确定的(30∘,30∘).由此马彪同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数是唯一确定的.马彪同学的结论是的(填“正确”或“错误”).9.等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若三角形ABC的边长为1,AE=2,求线段CD的长.10.一个等腰三角形的一个内角比另一个内角的2倍少30∘,求这个三角形的三个内角的度数.11.若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12B.9C.12或9D.9或712.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A,B,请在此点阵图中找一个阵点C,使得以点A,B,C为顶点的三角形是等腰三角形,则符合条件的点C有()A.3个B.4个C.5个D.6个13.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()A.1个B.2个C.3个D.4个参考答案1.【答案】:如图,在△ABC中,AB=AC,且AD=BD,设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则{x2+x=15,x 2+y=12,解得{x=10,y=7.(2)当AC+AD=12,BC+BD=15时,有{x2+x=12,x2+y=15,解得{x=8,y=11.且这两种情况下三角形的三边都符合三角形的三边关系,故这个三角形的三边长为10,10,7或8,8,11【解析】:解决此题,注意进行分类讨论.2.【答案】:(1)若这一边为底边,如图①,AB=AC,AD⊥BC,AD=BD=CD,则△ABD和△ACD均为等腰直角三角形,所以∠BAC=45∘+45∘=90∘;(2)若这一边为腰,①当顶角为锐角时,如图②,AB=AC,CD⊥AB,CD=12AB=12AC,则顶角∠A=30∘;②当顶角为钝角时,如图③,AB=AC,CD⊥AB交BA的延长线于点D,因为CD=12AB=1AC,2所以∠DAC=30∘,所以∠BAC=150∘.综上所述,这个等腰三角形的顶角度数为90∘或30∘或150∘.【解析】:解决此题,注意进行分类讨论.3.【答案】:120∘【解析】:等腰三角形的一个外角为60∘,则与它相邻的内角为120∘.因为三角形内角和为180∘,如果这个内角为底角,内角和将超过180∘,所以120∘的角只可能是顶角.故答案为120∘4.【答案】:6,4或5,5【解析】:若6为腰长,则底边长为4,三边长6,6,4可以构成三角形;若6为底边长,则腰长为5,三边长5,5,6也可以构成三角形.故答案为6,4或5,55.【答案】:70∘,55∘,55∘或70∘,70∘,40∘【解析】:当顶角的外角是110∘时,这个三角形的三个角为70∘,55∘,55∘;当底角的外角是110∘时,这个三角形的三个角为70∘,70∘,40∘.所以这个三角形的三个角为70∘,55∘,55∘或70∘,70∘,40∘6.【答案】:20【解析】:由|x−4|+√y−8=0,x−4≥0,√y−8≥0,可得x−4=0,√y−8=0,求解可得x=4,y=8,于是此等腰三角形的三边长为4,4,8或8,8,4.由于4+4=8,利用三角形的三边关系,可得4,4,8不符合题意,同理可得8,8,4符合题意,故等腰三角形的周长为8+8+4=207.【答案】:69∘或21∘【解析】:分两种情况讨论:①若∠A<90∘,如图(a)所示:∵BD⊥AC,∴∠A+∠ABD=90∘.∵∠ABD=48∘,∴∠A=90∘−48∘=42∘.∵AB=AC,∴∠ABC=∠C=12×(180∘−42∘)=69∘.②若∠A>90∘,如图(b)所示:同①可得:∠DAB=90∘−48∘=42∘,∴∠BAC=180∘−42∘=138∘.∵AB=AC,∴∠ABC=∠C=12×(180∘−138∘)=21∘.综上所述,等腰三角形底角的度数为69∘或21∘8.【答案】:错误【解析】:举一个反例即可.如当等腰三角形一个角的度数是50∘时,若这个50∘的角为顶角,则另两个角是65∘,65∘;若这个50∘的角是底角,则另一个底角为50∘,顶角为80∘.综上所述,另两个角是65∘,65∘或50∘,80∘.因此另两个角的度数不是唯一确定的.故马彪同学的结论是错误的9.【答案】:当E在线段BA的延长线上,D在线段BC的延长线上时,如图①所示,过点E作EF⊥BD,垂足为F,可得∠EFB=90∘.∵EC=ED,∴F为CD的中点,即CF=DF=12CD.∵△ABC为等边三角形,∴∠ABC=60∘,∴∠BEF=30∘.∵BE=AB+AE=1+2=3,∴FB=12EB=32,∴CF=FB−BC=12,∴CD=2CF=1.当E在线段AB的延长线上,D在线段CB的延长线上时,如图②所示,过点E作EF⊥BD,垂足为F,可得∠EFC=90∘. ∵EC=ED,∴F为CD的中点,即CF=DF=12CD.∵△ABC为等边三角形,∴∠ABC=∠EBF=60∘,∴∠BEF=30∘.∵BE=AE−AB=2−1=1,∴FB=12BE=12,∴CF=BC+FB=32,∴CD=2CF=3.综上,CD的长为1或3【解析】:解决此题,注意进行分类讨论.10.【答案】:设其中一角的度数为x∘,则另一角的度数为(2x−30)∘,则x+x+2x−30=180或x+2(2x−30)=180或x=2x−30,解得x=52.5或x=48或x=30,所以这个三角形三个内角的度数为52.5∘,52.5∘,75∘或48∘,66∘,66∘或30∘,30∘,120∘.【解析】:设其中一角的度数为x∘,则另一角的度数为(2x−30)∘, 则x+x+2x−30=180或x+2(2x−30)=180或x=2x−30, 解得x=52.5或x=48或x=30, 所以这个三角形三个内角的度数为52.5∘,52.5∘,75∘或48∘,66∘,66∘或30∘,30∘,120∘.11.【答案】:A【解析】:∵一个等腰三角形的两边长分别是2和5,∴当腰长为2时,则2+2<5,此时不成立,当腰长为5时,能组成三角形,则这个等腰三角形的周长为5+5+2=12. 故选A12.【答案】:C13.【答案】:D【解析】:如图,以点O为圆心,OA长为半径画弧,交x轴于点B,C;以点A为圆心,AO长为半径画弧,交x轴于一点D(点O除外),∴以OA为腰的等腰三角形有3个;当以OA为底时,作OA的垂直平分线,交x轴于一点,∴以OA为底的等腰三角形有1个.综上所述,符合条件的点P共有4个。
中考数学复习:专题4-16 双等腰直角三角形问题前解法分析

专题16 双等腰直角三角形问题前解法分析【专题综述】一个等腰直角三角形绕另一等腰直角三角形旋转,形成以双等腰直角三角形为背景的数学问题,在近年各地中考试卷中大量出现.本文拟通过对不同类型的双等腰直角三角形问题的剖析,找到某些共性,以达到帮助大家提高解题题能力的目的.【方法解读】一、共直角顶点的两个等腰直角三角形例1 (2016内蒙古呼和浩特市)已知,如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB 边上一点.(1)求证:△ACE ≌△BCD ; (2)求证:2222=CD AD DB .【举一反三】如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD=∠BGC . (1)求证:AD=BC ; (2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求AD:EF 的值.【来源】湖北武汉市硚口区六十中学2017年九年级数学中考模拟试卷二、共底角顶点的两个等腰直角三角形例2 如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.如图2,若∠MON=150°,求证:△ABR为等边三角形;(3)如图3,若△ARB∽△PEQ,求∠MON大小.【举一反三】已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.【来源】2013年初中毕业升学考试(湖南常德卷)数学(带解析)三、一直角顶点和一底角顶点重合的两个等腰直角三角形例3 如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量..及位置..关系,并证明你的猜想.【举一反三】如图△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,△DEA 绕点A旋转,边AD、AE 与BC分别与AD、AE相交于点F、G,CB=5.回答下列问题:(1)求证:△GAF∽△GBA;(2)求证:AF2=FG•FC;(3)设y=AF2+AG2,FG=x,求y与x的函数关系式;(不要求写出自变量的取值范围)(4)探究BF2、FG2、GC2之间的关系,证明你的结论.【来源】2016届江苏省南京市汇文中学九年级上学期期中数学试卷(带解析)四、一直角顶点和一底边中点重合的两个等腰直角三角形例4 (2016四川省资阳市)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE 是等腰直角三角形;②∠CDE=∠COE ;③若AC=1,则四边形CEOD 的面积为14;④22222AD BE OP DP PE +-=⋅,其中所有正确结论的序号是 .【举一反三】已知:△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,(1)如图,E ,F 分别是AB ,AC 上的点,且BE =AF ,求证:△DEF 为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变,那么,△DEF 是否仍为等腰直角三角形?证明你的结论.【来源】2012-2013年福建仙游承璜第二学校八年级上期末考试数学试题(带解析)【强化训练】1.如图,已知,△ABC 与△DCE 为一小一大的两个等腰直角三角形,顶点C 互相重合。
人教版八年级数学上册(RJ) 期末复习专题:三角形及其性质

专题三角形及其性质☞解读考点☞2年中考【题组】(崇左)如果一个三角形的两边长分别是2和5,则第三边可能是()1.A.2 B.3 C.5 D.8【答案】C.【解析】试题分析:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选C.考点:三角形三边关系.(来宾)如图,△ABC中,∠A=40°,点D为延长线上一点,且∠CBD=120°,2.则∠C=()A.40° B.60° C.80° D.100°【答案】C.【解析】试题分析:由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故选C.考点:三角形的外角性质.3.(柳州)如图,图中∠1的大小等于()A.40° B.50° C.60° D.70°【答案】D.考点:三角形的外角性质.4.(南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a (a>0)【答案】A.【解析】试题分析:A.∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B.∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C.∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D.∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.考点:三角形三边关系.5.(宿迁)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C. 7或9 D.9或12【答案】B.【解析】试题分析:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选B.考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.6.(雅安)已知等腰三角形的腰和底的长分别是一元二次方程的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.10【答案】B.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.分类讨论.7.(绵阳)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118° B.119° C.120° D.121°【答案】C.【解析】试题分析:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C 的平分线,∴∠CBE=∠ABC,∠BCD=∠BCA,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选C.考点:三角形内角和定理.8.(广州)已知2是关于x的方程的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10【答案】B.考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.9.(北海)三角形三条中线的交点叫做三角形的()A.内心 B.外心 C.中心 D.重心【答案】D.【解析】试题分析:三角形的重心是三角形三条中线的交点.故选D.考点:三角形的重心.10.(百色)下列图形中具有稳定性的是()A.正三角形 B.正方形 C.正五边形 D.正六边形【答案】A.【解析】试题分析:∵三角形具有稳定性,∴A正确,B.C、D错误.故选A.考点:三角形的稳定性.11.(百色)△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A.4 B.4或5 C.5或6 D.6【答案】B.【解析】试题分析:设长度为4、12的高分别是a,b边上的,边c上的高为h,△ABC的面积是S,那么a=,b=,c=,又∵a﹣b<c<a+b,∴,即,解得3<h<6,∴h=4或h=5,故选B.考点:1.一元一次不等式组的整数解;2.三角形的面积;3.三角形三边关系;4.综合题.12.(广安)下列四个图形中,线段BE是△ABC的高的是()A. B.C.D.【答案】D.考点:三角形的角平分线、中线和高.13.(宜昌)下列图形具有稳定性的是()A.正方形 B.矩形 C.平行四边形 D.直角三角形【答案】D.【解析】试题分析:直角三角形具有稳定性.故选D.考点:1.三角形的稳定性;2.多边形.14.(长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【答案】A.【解析】试题分析:为△ABC中BC边上的高的是A选项.故选A.考点:三角形的角平分线、中线和高.15.(鄂尔多斯)如图,A.B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是()A. B. C. D.【答案】A.考点:1.概率公式;2.三角形的面积.16.(淄博)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为()A. B. C. D.【答案】C.考点:1.相似三角形的判定与性质;2.三角形的面积;3.三角形中位线定理;4.综合题.17.(淮安)将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.【答案】75°.【解析】试题分析:如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB∥CD,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°,故答案为:75°.考点:1.三角形的外角性质;2.三角形内角和定理.18.(宜宾)如图,AB∥CD,AD与BC交于点E.若∠B=35°,∠D=45°,则∠AEC= .【答案】80°.考点:1.平行线的性质;2.三角形的外角性质.19.(巴中)若a、b、c为三角形的三边,且a、b满足,则第三边c的取值范围是.【答案】1<c<5.【解析】试题分析:由题意得,,,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.考点:1.三角形三边关系;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.(南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,20.∠B=40°,则∠ACE的大小是度.【答案】60.【解析】试题分析:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°,∵CE平分∠ACD,∴∠ACE=60°,故答案为:60.考点:三角形的外角性质.21.(佛山)各边长度都是整数、最大边长为8的三角形共有个.【答案】10.【解析】试题分析:∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;故各边长度都是整数、最大边长为8的三角形共有10个.故答案为:10.考点:三角形三边关系.(广东省)如图,△ABC三边的中线AD、BE、CF的公共点为G,若,22.则图中阴影部分的面积是.【答案】4.考点:1.三角形的面积;2.综合题.23.(长春)如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为.【答案】5.【解析】试题分析:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理.24.(昆明)如图,△ABC是等边三角形,高AD、BE相交于点H,BC=,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【答案】.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.25.(临沂)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD 与CE相交于点O,则= .【答案】2.【解析】试题分析:∵△ABC的中线BD、CE相交于点O,∴点O是△ABC的重心,∴=2.故答案为:2.考点:1.三角形的重心;2.相似三角形的判定与性质.26.(六盘水)如图,已知, l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.考点:1.平行线之间的距离;2.三角形的面积.27.(达州)化简,并求值,其中a与2、3构成△ABC 的三边,且a为整数.【答案】,1.【解析】试题分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到结果,把a的值代入计算即可求出值.考点:1.分式的化简求值;2.三角形三边关系.28.(青岛)【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1.综上所述,可得:表①【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)表②你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③【问题应用】:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了根木棒.(只填结果)【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型.【题组】1.(福建南平)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4 【答案】B.【解析】试题分析:根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可:A、1+1=2,不能组成三角形,故此选项错误;B、1+2>2,能组成三角形,故此选项正确;C、1+2=3,不能组成三角形,故此选项错误;D、1+2<4,能组成三角形,故此选项正确.故选B.考点:三角形的三边关系.2.(浙江台州)如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为()A.25cm B.50cm C.75cm D.100cm【答案】D.考点:三角形的中位线.3.(•北海)如图△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为()A.8 B.9 C.10 D.11【答案】C.【解析】试题分析:∵D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×5=10.故选C.考点:三角形中位线定理.4.(•营口)如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145° B.152° C.158° D.160°【答案】B.考点:翻折变换(折叠问题);三角形中位线定理.5.(•威海)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【答案】B.【解析】试题分析:根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB 再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.试题解析:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°-∠BAC-∠ABO=180°-70°-25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°-60°)=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°-70°)=55°,故D选项正确.故选B.考点:角平分线的性质;三角形内角和定理.6.(江苏淮安)若一个三角形三边长分别为2,3,x,则x的值可以为(只需填一个整数)【答案】4(答案不唯一).考点:三角形的三边关系.7、(广东广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是___________°.【答案】140..【解析】试题分析:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.考点:三角形的外角的性质.8.(湖北随州)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.【答案】75.【解析】试题分析:如答图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.考点:1.三角形内角和定理;2.对顶角的性质.☞考点归纳归纳 1:三角形的有关线段基础知识归纳:中线:连接一个顶点与它对边中点的线段,三角形的三条中线的交点叫做三角形的重心高线:从三角形一个顶点到它对边所在直线的垂线段.角平分线:一个内角的平分线与这个角的对边相交,顶点与交点之间的线段中位线:连接三角形两边中点的线段基本方法归纳:三角形的中位线平行线于第三边,且等于第三边的一半注意问题归纳:三角形的中线将三角形分成面积相等的两部分【例1】如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,若AB =4,BC=6,则DF=_____.【答案】1.考点:1.三角形中位线定理;2.等腰三角形的判定与性质.归纳 2:三角形的三边关系基础知识归纳:三角形两边的和大于第三边,两边的差小于第三边.基本方法归纳:三角形的三边关系是判断三条线段能否构成三角形的依据,并且还可以利用三边关系列出不等式求某些量的取值范围.注意问题归纳:三角形的三边关系是中考的热点问题之一,是解决三角形的边的有关问题的重要依据.【例2】已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【答案】B.考点:三角形三边关系.归纳 3:内角和定理基础知识归纳:三角形三个内角的和等于180°.基本方法归纳:在同一个三角形中,大边对大角,小边对小角.注意问题归纳:三角形的内角和定理是求三角形一个角的度数或证明角相等的重要工具.【例3】如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC 于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°【答案】C.【解析】试题分析:∵∠B=46°,∠C=54°,∴∠BAC=180°-∠B-∠C=180°-46°-54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选C.考点:平行线的性质;三角形内角和定理.归纳 4:三角形的外角基础知识归纳:(1)三角形的外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.基本方法归纳:三角形的外角等于与它不相邻的两个内角的和.注意问题归纳:三角形的外角是解决角的计算与角的大小比较的重要工具.【例4】如图,AB∥CD,AD与BC相交于点O,∠B=30°,∠D=40°,则∠AOC的度数为()A.60°B.70°C.80°D.90°【答案】B.考点:1.平行线的性质;2.三角形的外角性质.☞1年模拟1.(北京市平谷区中考二模)如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10° B.15° C.20° D.25°【答案】D.【解析】试题分析:根据平行线的性质及三角形的内角和定理,有图像可知∠1与∠2互余,因此∠2=90°-65°=25°.故选D.考点:1.平行线的性质;2.三角形内角和定理.2.(安徽省安庆市中考二模)如图所示,AB∥CD,∠D=26°,∠E=35°,则∠ABE的度数是()A.61° B.71° C.109° D.119°【答案】A .考点:1.平行线的性质;2.三角形的外角性质.3.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20° B.40° C.30° D.25°【答案】A.【解析】试题分析:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选A.考点:1.三角形的外角性质;2.平行线的性质.4.(广东省佛山市初中毕业班综合测试)如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为()A.120° B.135° C.150° D.180°【答案】D.考点:1.翻折变换(折叠问题);2.三角形内角和定理.5.(山东省济南市平阴县中考二模)如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为()A. B. C. D.【答案】A.【解析】试题分析:如图所示:延长AC交网格于点E,连接BE,∵AE=2,BE=,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴sinA=,故选A.考点:1.锐角三角函数的定义;2.三角形的面积;3.勾股定理;4.表格型.6.(山东省威海市乳山市中考一模)如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC= m2.【答案】4.考点:1.等腰三角形的判定与性质;2.三角形的面积.7.(四川省成都市外国语学校中考直升模拟)长为1、2、3、4、5的线段各一条,从这5条线段中任取3条,能构成钝角三角形的概率是.【答案】.【解析】试题分析:从长度分别为1,2,3,4,5的五条线段中,任取三条,所有的情况共有10种,其中,取出的三边能构成钝角三角形时,必须最大边的余弦值小于零,即:较小的两个边的平方和小于第三边的平方,故满足构成钝角三角形的取法只有:2、3、4 和2、4、5 两种,故取出的三条线段为边能构成钝角三角形的概率是.考点:1.列表法与树状图法;2.三角形三边关系.8.(广东省佛山市初中毕业班综合测试)如图,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=度.【答案】220.考点:1.三角形的外角性质;2.三角形内角和定理.9.(湖北省黄石市6月中考模拟)如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于的阴影三角形共有__________个.【答案】;6.【解析】试题分析:由题意得,△A2B1B2∽△A3B2B3,因此可知==,==,再由考点:1.相似三角形的判定与性质;2.平行线的性质;3.三角形的面积;4.规律型.。
人教版八年级数学专题复习 两个等腰直角三角形共点专题

人教版八年级数学专题复习两个等腰直角三角形共点专题本文介绍了两个等腰直角三角形共点的相关知识和解题方法。
基本方法:对于两个等腰直角三角形,如果它们共点,但顶点直角开口方向相反,可以通过平移其中一个三角形,使它们的底边重合,从而进行相关问题的求解。
典型例题:考虑同侧型问题,如图所示,在等腰直角三角形ABC和等腰直角三角形DEF中,连接DC,M是中点,求EM,AM的大小关系。
我们可以将DE平移到CF,或者将EM倍长到MF,然后证明△XXX≌△AFC,关键在于证明∠ABE=∠ACF。
由于DE⊥BE,CG⊥XXX,因此有∠ABE=∠ACF。
这样就可以得到EM=MF,AM=MC,即EM=AM/2.对于对侧型问题,如图所示,在两个等腰直角三角形ABC和AEF中,顶角互补,我们可以将AE平移到BC,或者将中线AF倍长到BC,从而进行相关问题的求解。
提高:考虑如图所示,在等腰直角三角形ABC和等腰直角三角形DBE中,且BE在AB边上,取AE的中点F,CD的中点G,连接GF。
我们需要探究FG与DC的位置关系和数量关系,以及△BDE绕B点逆时针旋转180°时,(1)中的结论是否仍然成立。
首先可以证明四边形BEFG是矩形,然后延长GP交DC于点H,构造全等三角形,经过推理可以得到FG与DC垂直且FG=DC/2.当且仅当FG=EF时,平行四边形BEFG是正方形,即△BDE绕B点逆时针旋转180°时,(1)中的结论仍然成立。
最后,我们还介绍了一个关于正方形的问题:如图所示,在正方形ABCD和平行四边形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG、PC。
我们需要探究当PG与PC的夹角为多少度时,平行四边形BEFG是正方形。
我们可以先证明四边形BEFG是矩形,然后延长GP交DC于点H,构造全等三角形,经过推理可以得到PG与PC的夹角为60°时,平行四边形BEFG是正方形。
人教版八年级美术专题复习 两个等腰直角三角形共点专题

人教版八年级美术专题复习两个等腰直角三角形共点专题人教版八年级美术专题复——两个等腰直角三角形共点专题一、同一直线上三角形1. 等边三角形- 定义:三条边相等的三角形- 性质:- 三个内角都是 $60^{\circ}$- 三条中线、三条高线、三条角平分线、三条垂线均重合且互相垂直2. 等腰三角形- 定义:至少有两条边相等的三角形- 性质:- 两底角相等- 高、中线、角平分线都有特殊性质3. 直角三角形- 定义:拥有一个 $90^{\circ}$ 的内角的三角形- 性质:- 斜边是底边上的中线- 高、中线有特殊性质- 勾股定理:$a^2+b^2=c^2$(其中 $c$ 表示斜边)4. 等腰直角三角形- 定义:既是等腰三角形又是直角三角形的三角形- 性质:- 底角相等- 斜边是等腰三角形的中线- 高、中线有特殊性质- 勾股定理:$a^2+b^2=c^2$(其中 $c$ 表示斜边)二、两个等腰直角三角形共点专题- 题目描述:如图,在 $\triangle ABC$ 中,$AD \perp BC$ 于$D$,$BE \perp AC$ 于 $E$,$F$ 为 $DE$ 的中点,则 $\triangle ABE \cong \triangle ADF$- 证明:因为 $\triangle ABD$ 是等腰直角三角形,所以 $AD=BD$,$BD=CF$($BCDF$ 是正方形),所以 $AD=CF$。
又因为 $\angle BAE=\angle CAF$(两个直角三角形底角相等),而 $\angle AEB=\angle ADF=90^{\circ}$,所以 $\triangle ABE \cong\triangle ADF$($ASA$ 判定法)。
所以 $AE=AF$,即证毕。
人教版八年级上册数学解题技巧专题归纳

AB=AC
即∠QAB=∠PAC
∴△AQB≌△APC
另由旋转得AQ=AP
∴BQ=CP
三、翻折
如图所示,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的, 若∠BAC=150°,则∠θ的度数是_________.
A
E
D
1
2
B
C
在求三角形内外角时,经常遇到与直角三角形、平行线、折叠相关的 问题,此时需要根据直角三角形的性质、平行线的性质、折叠的性质推导 出与三角形相关的角,再根据三角形内角和定理、外角性质得出相关的角 的度数.
三角形全等证明的解题思路⑴
AD
BE
CF
AD
C
B
B
C
E
D
A
D D
E
全等三角形在位置上通常有着特殊的关系,可以用旋转、翻折、平移等 图形变换方式来描述,运用图形变换有利于找对应边和对应角,从而有助于 证明三角形全等.
⑵∠A=80°,∠B=∠C;
解: ⑵设∠B=x°,则∠C=x°, 根据三角形内角和定理得80+x+x=180, 解得x=50,所以∠B=∠C=50°.
例 ∠A ,∠B ,∠C是△ABC的三个内角,且分别满足下列条件,求∠A,∠B,∠C中未 知角的度数.
⑶∠A:∠B:∠C=2:3:4
解:⑶因为∠A+∠B+∠C=180°, 所以∠A=180°× 2 =40°, 234 ∠B=180°× 3 =60°, 234 ∠C=180°× 4 =80°. 234
⑴求证:MB=MD,ME=MF; ⑵当E、F两点移到如图所示的位置时,其它条件不变,上述结论能否成立?若 成立,请说明你的理由.
B
B
A E MF C A
人教版八年级上册13.3.1《等腰三角形》

《等腰三角形》◆教材分析本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。
◆教学目标【知识与能力目标】1、理解并掌握等腰三角形的性质。
2、会运用等腰三角形的概念和性质解决有关问题。
3、观察等腰三角形的对称性、发展形象思维。
4、探索等腰三角形的判定定理【过程与方法目标】1、通过实践、观察、证明等腰三角形的性质,培养学生的推理能力。
2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。
3、探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念【情感态度价值观目标】1、引导学生对图形的观察、发现,激发学生的好奇心和求知欲。
2、在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。
3、感受图形中的动态美、和谐美、对称美,感受合作交流带来的成功感,树立自信心。
4、通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力【教学重点】1、等腰三角形的概念和性质及其应用。
2、等腰三角形的判定定理及其应用【教学难点】1、等腰三角形的性质的证明。
2、探索等腰三角形的判定定理◆教学过程一、情景导入:师:日常生活中,我们会经常看到一些美丽的图案,其中一些是平面几何图形,接下来我们观察几幅图片,说一说你们看到了什么图形?(课件向学生展示平常见到的有关等腰三角形的图片)学生观察一组图片,回答问题。
【设计意图】使学生能从实际生活中抽象出等腰三角形,初步感知等腰三角形在实际生活中的广泛应用,用美丽的画面激发学生的求知欲。
培养学生勤观察,肯思考的学习习惯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两个等腰直角三角形共点专题
共锐角顶点直角开口方向相反
基本方法:
△ EDB 中与△ ABC 不共顶点B 的那条线段DE 平行移到另外等腰三角厶
典型例题
同侧型:
连接DC (不共顶点的两个底角点的连线 ),M 是中点,求EM,AM 的大小关系
方法:平移DE 到CF,或倍长
思路:证明△ AEB^A AFC
关键:证明/ ABE =/ ACF
方法:••• DEL BE
••• CGL BG •••/ ABE :/ ACF 1. △ ABC 和△ AEF 是共直角顶点旋转 四边形GBCA1共斜边的两个直角三角形共圆(外垂直)
四边形ABGC 对角互补,共圆
推广:两个等腰三角形,顶角互补也可以平移,或中线倍长
G
ABC 的底边BC 的另一个点C 处的CF 。
回头
看:
2.
EM 到 MF
A
A
提高 .
如图,在等腰 Rt △ ABC 与等腰 Rt △ DBE 中,/ BDE 2 ACB=90 ,且BE 在AB 边上,取AE 的中点F,CD 的中点 G,连结 GF.
(1) FG 与DC 的位置关系是
,FG 与DC 的数量关系是 ________________ ; (2) 若将△ BDE 绕B 点逆时针旋转180 °,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立?请 证明
你的结论•
两个方法:已知:在△ ABC 中,分别以AB AC 为斜边作等腰直角三角形 ABM 和CAN P 是边BC 的中点.求证:PM
=PN
正方形
逆向
15、请阅读下列材料问题:如图,在正方形
ABCD 和平行四边形 BEFG 中,点A 、B 、E 在同一条直线上,P 是线段DF 的中点,连接 PG PG 探究:当PG 与PC 的夹角为多少度时,平行四边形
BEFG 是正方形? 小聪同学的思路是:首先可以说明四边形
BEFG 是矩形;然后延长 GP 交DC 于点H,构造全等三角形,经过推理可以 探索出问题的答案。
请你参考小聪同学的思路,探究并解决这个问题。
(1) 求证:四边形 BEFG 是矩形;
(2) PG 与PC 的夹角为多少度时?四边形 BEFG 是正方形,请说明理由。
C
A
N
14、正方形ABCD和正方形CEFG M为AF的中点,连接MD ME
⑴如图①,B、C G依次在同一条直线上,求证:△ MDE等腰直角三角形;
⑵如图②,将正方形CEFG绕顶点C旋转45°.使B、C、F依次在同一条直线上,则△ MDE的形状是
圉③
反开口,两个中点变一个中点再找关系
19.如图,△ AB"A CD%为等腰三角形,且/ BAO=/ DCO=90 , M为BD的中点,MN L AC,试探究MN与AC的数量
直角坐标系中,点B( a, 0),点C (0, b),点A在第一象限•若a, b满足(a-t ) 2+|b-t|=0 (t >0).
(1)证明:OB=OC
(2)如图1,连接AB过A作ADL AB交y轴于D,在射线AD上截取AE=AB连接CE, F是CE的中点,连接AF, OA当点A在第一象限内运动(AD不过点C)时,证明:/ OAF的大小不变;
(3)如图2 , B'与B关于y轴对称,M在线段BC上 , N在CB的延长线上,且BM=NB,连接MN交x轴于点T,
反开口模六
在直角坐标系中,直线y = x+ 4
交
x轴于
A ,
交y轴于B, △ AEF为等腰Rt△ , / AEF= 90° ,连BF, M为BF中点.
(1) 连EM OM,问0M与EM的关系是,并证明;
⑵当厶AEF绕A点旋转如图位置时,EM与0M的关系是否变化,画图并说明理由;
(3) 若P为AB中点,G为第三象限内一点,且/ AG3 90° ,求GA+GO/G的值.
反开口模型把中线位长作出来了(平行四边形,也就隐含了中点)
已知△ ABC和厶ADE分别是以AB.AE为底的等腰直角三角形,以CE,CB为边作平行四边形CEHB连DC, CH.
(1) 如图(1),当D点在AB上时,则/ DEH的度数为______ ; CH与CD的数量关系是_________ ,并说明理由,
(2) 将图(1)中的△ ADE绕A点逆时针旋转45。
得图(2):则/ DEH的度数为___________, CH与CD之间的数量关系为
:-(O°<〉<45° )得图⑶,请探究CH与CD之间的数量关系,并给
(3) 将图(1)中的△ ADE绕A点顺时针旋转予
证明.
图
3
找隐性反开口模型
4、如图,ABCD、DFGE均为正方形,连AG,作AG的中点H,连BH。
(1)求BH : HE的值。
(2)当正方形ABCD绕点D旋转时,上述结论是否改变?画图,直接写出结论。
反开口
例1、如图,以△ ABC AB AC边构造等腰Rt△ ABD等腰Rt△ ACE M N、P分别是AD AE、BC中点,求线段PM PN的关系。
变式1:若P为DE中点,求线段BP、CP的关系;
变式2:若以△ ABC AB AC边为直角边构造Rt△ ABD Rt△ ACE且/ DAB=/ CAE=a , P为DE中点,求BP、CP的数量关系;
A
变式3:
若以△ ABC AB AC 边为斜边构造 Rt △ ABD Rt △ ACE 且/ DAB* CAE a , P 为BC 中点,求 DR EP 的数
曰.-V w 量天糸;
反开口
24.(本题10分)已知正方形 AEFG 勺边AE AG 分别在正方形 ABC 啲边AB AD 上。
点0为正方形 AEFG 勺对称中
心,点M 为CE 的中点,连OB MB
(1) 如图1,求F0 C0的值,并证明;
BC
(2) 求飘的值,并证明;
0B
(3) 将图1中的正方形 AEFG^点A 旋转180°至图2的位置,请直接写出 型 的值。
0B
反开口,一中点
1. 已知,DE=DA , CA=CB ,Z DAE= / CAB , D 、A 、B 在一条直线上.
(1) 如图 1, P 、M 、N 分别为 EB 、AD 、AC 的中点,/ BAE=120° ,
①求证:BE=2MN ; ②求/ PNM 的度数.
(2) 如图 2,点 P 、M 、N 分别为 CD 、AE 、AB 的中点,/ BAE=135° ,
①求/ MNP 的度数; ②求CD 的值.
BE
A
D
B P C
D C
反开口两中点
2. 如图,△ ACB、△ AED都为等腰直角三角形,/ AED = Z ACB = 90 :点D在AB上,连CE , M、N分别为BD、CE的
中点.
(1)①求证:MN = 2 CE;(提示:将MN构造为某三角形的中位线.)
②求证:MN丄CE.
(2)如图,将△ ADE绕A点逆时针旋转一个锐角,(1)中结论①和②是否仍成立,
并证明.
反开口,作了平行四边形后
19 .如图,△ ABC和厶ADE分别是以AB、AE为底的等腰直角三角形,点D在AB上,点E在AC上,以CE、CB
为边作□CEHB,连DC、BE.
(1)求证:HE=AC;
(2)探究:BE与CD之间的数量关系,并证明.
反开口和斜边中线,内垂直
2.如图1,正方形ABCDL 点M在AB上,点N在CD上,点P在BC上,MNLAP于E
(1)求证:AF=MN
(2)如图2,点F在MNh,若EF=EA连CF,点G为CF的中点,连DG 求证:DE = J2DG ;
3
(3)在(2)的条件下,若DA=DE且DN ,BM2,求DG的长.
2
⑶ 由DA=DE可得四点AEND共圆(未用)和Rt △ AEP,得TN=ND=1.5,边长为5
V M
C TN
反开口,求长度
24、(1) 将两块不全等的等腰Rt△ ABC和Rt△ AED如图1摆放,G为线段DC的中点,连接BG EG,求证:BG=EG, BGL EG;
(2) 将图1中厶AED绕点A顺时针旋转45° ,连接EB,再将△ AEB绕点E顺时针旋转90° ,至厶EDH处,连接BD CH, G为CD中点,连接BG EG.如图2,四边形BDHC是何种特殊四边形?写出你的结论,并说明理由;
(3) 图2中,若AE= 1 , EG= 3 2,求BD的长度。