10-2恒定电流和恒定电场电动势解读

合集下载

高二物理:恒定电流知识点归纳

高二物理:恒定电流知识点归纳

高二物理:恒定电流知识点归纳一、电流1. 电流的形成:电荷的定向移动形成电流只要导线两端存在电压,导线中的自由电子就在电场力的作用下,从电势低处向电势高处定向移动,移动的方向与导体中的电流方向相反.导线内的电场是由电源、导线等电路元件所积累的电荷共同形成的,导线内的电场线保持和导线平行。

2. 电流的宏观表达式:I=q/t,适用于任何电荷的定向移动形成的电流。

3. 电流的微观表达式:I=nqvS(n为单位体积内的自由电荷个数,S为导线的横截面积,v为自由电荷的定向移动速率)。

二、电动势1. 物理意义:表示电源把其它形式的能(非静电力做功)转化为电能的本领大小。

电动势越大,电路中每通过1C电量时,电源将其它形式的能转化成电能的数值就越多。

2. 定义:在电源内部非静电力所做的功W与移送的电荷量q的比值,叫电源的电动势,用E 表示。

定义式为:E = W/q。

【关键一点】①电动势的大小由电源中非静电力的特性(电源本身)决定,跟电源的体积、外电路无关。

②电动势在数值上等于电源没有接入电路时,电源两极间的电压。

③电动势在数值上等于非静电力把1C电量的正电荷在电源内从负极移送到正极所做的功。

3. 电源(池)的几个重要参数①电动势:它取决于电池的正负极材料及电解液的化学性质,与电池的大小无关。

②内阻(r):电源内部的电阻。

③容量:电池放电时能输出的总电荷量.其单位是:A·h,mA·h。

【关键一点】对同一种电池来说,体积越大,容量越大,内阻越小。

三、部分电路欧姆定律1. 内容:导体中的电流跟导体两端电压成正比,跟导体的电阻成反比.2. 公式:3. 适用条件:金属导电或电解液导电、不适用气体导电.4. 图像【关键一点】I-U 曲线和U-I 曲线的区别:对于电阻一定的导体,图中两图都是过原点的直线,I-U图像的斜率表示电阻的倒数,U-I图像的斜率表示电阻。

还要注意:当考虑到电阻率随温度的变化时,电阻的伏安特性曲线是一条曲线。

高中物理恒定电流知识点总结

高中物理恒定电流知识点总结

高中物理恒定电流知识点总结高中物理恒定电流知识点总结物理学是研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的自然科学。

店铺准备了高二物理上册恒定电流知识点,具体请看以下内容。

一、电源和电流1、电流产生的条件:(1) 导体内有大量自由电荷(金属导体——自由电子;电解质溶液——正负离子;导电气体——正负离子和电子)(2) 导体两端存在电势差(电压)(3) 导体中存在持续电流的条件:是保持导体两端的电势差。

2电流的方向电流可以由正电荷的定向移动形成,也可以是负电荷的定向移动形成,也可以是由正负电荷同时定向移动形成。

习惯上规定:正电荷定向移动的方向为电流的方向。

说明:(1)负电荷沿某一方向运动和等量的正电荷沿相反方向运动产生的效果相同。

金属导体中电流的方向与自由电子定向移动方向相反。

(2)电流有方向但电流强度不是矢量。

(3)方向不随时间而改变的电流叫直流;方向和强度都不随时间改变的电流叫做恒定电流。

通常所说的直流常常指的是恒定电流。

二、电动势1.电源(1)电源是通过非静电力做功把其他形式的能转化为电势能的装置。

(2)非静电力在电源中所起的作用:是把正电荷由负极搬运到正极,同时在该过程中非静电力做功,将其他形式的能转化为电势能。

【注意】在不同的电源中,是不同形式的能量转化为电能。

2.电动势(1)定义:在电源内部,非静电力所做的功W与被移送的电荷q的比值叫电源的电动势。

(2)定义式:E=W/q(3)物理意义:表示电源把其它形式的能(非静电力做功)转化为电能的本领大小。

电动势越大,电路中每通过1C电量时,电源将其它形式的能转化成电能的数值就越多。

【注意】:① 电动势的`大小由电源中非静电力的特性(电源本身)决定,跟电源的体积、外电路无关。

②电动势在数值上等于电源没有接入电路时,电源两极间的电压。

③电动势在数值上等于非静电力把1C电量的正电荷在电源内从负极移送到正极所做的功。

恒定电流的基本概念.

恒定电流的基本概念.

物理意义
①反映导体的伏安特 性 1 ②k= R
3. 运用伏安特性曲线求电阻应注意的问题
(1)如图 7-1-3 所示,非线性元件的 I-U Un 图线是曲线,导体电阻 Rn= ,即电阻等 In 于图线上点(Un,In)与坐标原点连线的斜率 的倒数,而不等于该点切线斜率的倒数.
图7-1-3
1 (2)I-U 图线中的斜率 k= ,斜率 k 不能理解为 k=tan α R (α 为图线与 U 轴的夹角),因坐标轴的单位可根据需要人为 规定,同一电阻在坐标轴单位不同时倾角 α 是不同的.
3.电流的大小—电流强度(简称电流).
(1)
q I 定义式: t
说明:在电解液导电时,是正负离子向相反 方向定向移动形成电流,在用公式I = q/t计算电流 强度时q应引起注意.
(2)宏观决定式: I=U/R
(3)微观决定式: I=nqSv
说明: ①n为单位体积内的自由电子个数,S为导线的横截 面积,v为自由电子的定向移动速率. ②金属导电的微观解释中,有三个速率不可混淆: a.自由电子热运动的平均速率. b.自由电子定向移动的速率.定向移动速率 约 10 - 5m/s ,远小于自由电子热运动的平均速率 105m/s,更小于电场的传播速率3×108m/s, c.电场的传播速率.(等于光速) ③公式只适用于金属导体,千万不要到处套用.
说明:理解导线中的电场时要注意:
①产生稳恒电流的电路中的电场是合电场 (E).它由两部分组成:一是电源的电场(E0);二是 导线两侧的堆积电荷的电场(E′).
②稳恒电流的电路中的电场是恒定电场,因 为电路中的电荷分布是稳定的,但不是静态的绝对 稳定,而是动态稳定.就电路中任一微元来讲,流 走多少电荷,就补充等量的电荷,所以由电荷形成 的电场也是稳定的.

恒定电流恒定电流基本概念

恒定电流恒定电流基本概念

问 (1)当接通几只电热器时,实际使用的电热器 都正常工作?
(2)当接通几只电热器时,发电机输出功率最大? (3)当接通几只电热器时,电热器组加热物体最快?
(4)当接通几只电热器时,电阻 R1R2 上消耗功
率最大? (5)当接通几只电热器时,实际使用的每只电热器
中电流最大?
(四)串联电路与并联电 路的特征
U
g
;
n U总 (Rg R分压)
Ug
Rg
∴ R分 (n 1)Rg
(3)使用:并联在被测电路两点间.
电流从“+”流入,“-”接线柱流
出理. 想
相当于 RV 断路;
实际 相当于已知电压的大电阻
准确度
(4)读00 ~~数13V:5V
0.1V 0.5V
估计到
电场力对移动电荷做的功
单位 V(伏特)1V=1J/C
V
通 路

U内 U端 ,
Ir内 U端

量度式 等于内外电压之和
U AB IRAB U内 Ir内(纯电阻)

路 时
U端(可用 直测)
实 验
测路端电压:电源外部电流由U高 U低 测内电压:电源内部电流由U低 U高 ε为标量:内部电流方向为电动势
的方向.
(四)、电功、电热、电功率
物理量
电功W
电热Q
电功率P
物理意义 能量转化
电流通过电路的功, 即电荷定向移动电 场力的功
电流通过导体 电阻时的功
表征电流做功 快慢的物理量,
即电流的功与
消耗电能转化为 消耗电能转
其它能(内能、机 械能、化学能)
化为内能
做功所用的时 间的比值

电磁学第四章恒定电流和电路

电磁学第四章恒定电流和电路

电磁学第四章恒定电流和电路前三章讨论了静电场,场源电荷相对于观察者是静止不动的。

从本章起讨论电荷运动时引起的有关现象。

若电荷作有规则的定向运动就会形成电流,要维持电流的存在,必须要有相应的电场,所以本章主要讨论恒定电流和电场,并引入许多重要的物理概念。

§ 4.1恒定电流一、电流、电流强度、电流密度导体放在静电场中时,导体中的自由电子在外电场作用下发生定向运动,当导体内部场强为零时,定向运动停止。

若能使内部场强不为零,定向运动就会持续下去,这时,在导体中就有电流产生。

1、电流(1)定义:带电粒子(在外电场作用下)作宏观的定向运动便形成电流(叫做电流)本章只讨论:导体内部的电流。

(2)载流子:导体中的能在电场力作用下发生定向运动的带电粒子叫做该导体的载流子,它们是形成电流的内在因素。

不同性质的导体有不同的载流子:金属导体的载流子是自由电子,酸、碱、盐的水溶液中的载流子:是正负离子等。

(3)电流的方向正电荷运动的方向为电流的方向。

结论:A :导体中电流的方向总是沿着电场方向,从高电势处指向低电势处;B :导体中的载流子为负电荷(自由电子),此时可以把电流等效为等量的正电荷沿负电荷的反方向运动形成。

2、电流强度描述,电流的大小(1)定义:单位时间内通过导体任一横截面的电荷量,叫做该截面的电流强度。

(这里的截面可以推广到任意曲面)Aq表示为:I 二lim t >0-△t(2)电流强度I是反映导体中某一截面整体特征的标量。

A qI就某S面:1=三:平均地反映了S面的电流特征。

3、电流密度J(1)定义:导体中每一点的J的方向是该点正电荷运动方向(电场方向),J的大小等于过该点并与电流方向(正电荷运动方向)垂直的单位面积上的电流强度,写为:(2) J与I有不同:I是一个标量,描写导体中的一个面;J是矢量点函数,描写导体中的一个点。

(3) J与I的普遍关系只反映了J与I的特殊关系(要求面元与J垂直),下面推dS_导J与I的一般关系nJ在导体中某点处取一任意面元dS (dS与J并非垂直),面元dS的法线方向n?与该点的J夹角为二,则dS在与J垂直的平面上的投影为:dS〕二dScos^而dl 二JdS = JdScos^ (标量)二J r?d^ = J dS(二矢量点乘仍为标量)所以通过导体中任意曲面S的电流强度I与J的关系为:I 二J dSS此式说明:一曲面上的I是J对该曲面的通量(J通量)。

恒定电流相关知识点

恒定电流相关知识点

第二章恒定电流§1、基本概念和定律一、电流、电阻和电阻定律1.电流:电荷的定向移动形成电流.(1)形成电流的条件:内因是有自由移动的电荷,外因是导体两端有电势差.(2)电流强度:通过导体横截面的电量Q与通过这些电量所用的时间t的比值。

①I=Q/t;假设导体单位体积内有n个电子,电子定向移动的速率为V,则I=neSv;假若导体单位长度有N个电子,则I=Nev.②表示电流的强弱,是标量.但有方向,规定正电荷定向移动的方向为电流的方向.③单位是:安、毫安、微安1A=103mA=106μA2.电阻、电阻定律(1)电阻:加在导体两端的电压与通过导体的电流强度的比值.R=U/I,导体的电阻是由导体本身的性质决定的,与U.I无关.(2)电阻定律:导体的电阻R与它的长度L成正比,与它的横截面积S成反比. R=ρL/S(3)电阻率:电阻率ρ是反映材料导电性能的物理量,由材料决定,但受温度的影响.①电阻率在数值上等于这种材料制成的长为1m,横截面积为1m2的柱形导体的电阻.②单位是:Ω·m.3.半导体与超导体(1)半导体的导电特性介于导体与绝缘体之间,电阻率约为10-5Ω·m ~106Ω·m(2)半导体的应用:①热敏电阻:能够将温度的变化转成电信号,测量这种电信号,就可以知道温度的变化.②光敏电阻:光敏电阻在需要对光照有灵敏反应的自动控制设备中起到自动开关的作用.③晶体二极管、晶体三极管、电容等电子元件可连成集成电路.④半导体可制成半导体激光器、半导体太阳能电池等.(3)超导体①超导现象:某些物质在温度降到绝对零度附近时,电阻率突然降到几乎为零的现象.②转变温度(T C):材料由正常状态转变为超导状态的温度③应用:超导电磁铁、超导电机等二、部分电路欧姆定律1、导体中的电流I 跟导体两端的电压成正比,跟它的电阻R 成反比。

I=U/R2、适用于金属导电体、电解液导体,不适用于空气导体和某些半导体器件.3、导体的伏安特性曲线:研究部分电路欧姆定律时,常画成I ~U 或U ~I 图象,对于线性元件伏安特性曲线是直线,对于非线性元件,伏安特性曲线是非线性的.注意:①我们处理问题时,一般认为电阻为定值,不可由R=U/I 认为电阻R 随电压大而大,随电流大而小.②I 、U 、R 必须是对应关系.即I 是过电阻的电流,U 是电阻两端的电压.三、电功、电功率1.电功:电荷在电场中移动时,电场力做的功W =UIt ,电流做功的过程是电能转化为其它形式的能的过程.2.电功率:电流做功的快慢,即电流通过一段电路电能转化成其它形式能对电流做功的总功率,P=UI3.焦耳定律:电流通过一段只有电阻元件的电路时,在 t 时间内的热量Q=I 2Rt . 纯电阻电路中W =UIt=U 2t/R=I 2Rt ,P=UI=U 2/R=I 2R非纯电阻电路W =UIt ,P=UI4.电功率与热功率之间的关系纯电阻电路中,电功率等于热功率,非纯电阻电路中,电功率只有一部分转化成热功率. 纯电阻电路:电路中只有电阻元件,如电熨斗、电炉子等.非纯电阻电路:电机、电风扇、电解槽等,其特点是电能只有一部分转化成内能. 规律方法1.电功、电功率的计算(1)用电器正常工作的条件:①用电器两端的实际电压等于其额定电压.②用电器中的实际电流等于其额定电流.③用电器的实际电功率等于其额定功率.由于以上三个条件中的任何一个得到满足时,其余两个条件必定满足,因此它们是用电器正常工作的等效条件.灵活选用等效条件,往往能够简化解题过程.(2)用电器接入电路时:①纯电阻用电器接入电路中,若无特别说明,应认为其电阻不变.②用电器实际功率超过其额定功率时,认为它将被烧毁.§2、 串并联电路一、串联电路①电路中各处电流相同.I=I 1=I 2=I 3=……②串联电路两端的电压等于各电阻两端电压之和.U=U 1+U 2+U 3……③串联电路的总电阻等于各个导体的电阻之和,即R=R 1+R 2+…+R n ④串联电路中各个电阻两端的电压跟它的阻值成正比,即1212n n U U U I R R R === ⑤串联电路中各个电阻消耗的功率跟它的阻值成正比,即21212n n P P P I R R R === 二、并联电路①并联电路中各支路两端的电压相同.U=U 1=U 2=U 3……②并联电路子路中的电流等于各支路的电流之和I=I 1+I 2+I 3=……③并联电路总电阻的倒数等于各个导体的电阻的倒数之和。

恒定电场

恒定电场

Fk 反抗 Fe
断路:
作用机理: 做功,
将其他形式能转变为电能
Fe


K

U
Fk Fe

Fe
Fk Fe
时平衡
R
外电路: Fe 作用,将 q由正极 负极
通路
内电路: Fk Fe 将 q 由负极 正极
Fk , Fe 共同作用形成持续电流 .
空间电荷分布不变(流入 = 流出),电场分布不变
一.
电流密度矢量
自由电子、正负离子、 载流子:
1. 电流的形成 传导电流 电流
电子—空穴对…
电场
位移电流
金属导电的经典解释: 电场中,自由电子除热运动外, 叠加定向加速运动.
频繁碰撞使加速运动间断进行, 其平均效果为定向匀速运动——漂移运动.
漂移速率 u: 比较
1)静电力所做总功为零; 2)非静电力所做总功为零; 3)静电力和非静电力做功代数和为零; 4)在电源内只有非静电力做功, 在外电路只有静电力做功。
三.
欧姆定律与焦耳定律的微分形式 欧姆定律 焦耳定律
积分形式 微分形式
U I R
电流密度
Q I 2 Rt;
热功率密度
P I 2R
j E
Fe

K

Fk Fe

Fe
R
试比较电源路端电压和电源电动势这两个概念
电源路端电压 电源电动势
比较
U
E e dl



E k dl


(经外电路)
(经内电路)
练习:
单位正电荷从电源正极出发,沿闭合回路一周, 又回到电源正极时,下列哪种说法正确?

恒定电流的电场

恒定电流的电场

26
27
28
29
30
说明分界面上电场强度的切向分量是连 续的。
17
电场方向的关系
18
19
20
21
22
3—5 恒定电场与静电场的比较
通过前面几节的讨论,我们发现导电媒 质中的恒定电场(电源外)与电介质中的静 电场(体电荷密度为0的区域)在许多方面 有相似之处。为了清楚起见,列表比较 如下。
23
24
25
4
J表示传导电流密度,如果所取的面积元的法线方向n0与电流方 向不垂直而成任意角度θ,则通过该面积元的电流是
通过导体中任意截面s的电流强度I与电流密度矢量J的关系是
电流密度矢量J在导体中各点有不同的方向和数值,从而构成一个 矢量场,称为电流场。这种场的矢量线称为电流线。电流线上每 点的切线方向就是该点的电流密度矢量J的方向。
面电流密度的方向仍然是正电荷运动的方向。为区别 起见,J又称为体电流密度。
6
3—2欧姆定律
实验证明,导体的温度不变时,通过一段导体的电流强度和导体 两端的电压成正比,这就是欧姆定律
式中的比例系数R称为导体的电阻,R只与导体的材料及几何尺寸 有关。由一定材料制成的、横截面均匀的线状导体的电阻只与导 体长度l成正比ห้องสมุดไป่ตู้与横截面积s成反比,即
电荷在电场作用下的宏观定向运动就形成电流。不随时间变化的电流称为 恒定电流(直流)。随时间变化的电流称为时变电流(交流).如果在一个导 体回路中有恒定电流,回路中必然有一个推动电荷流动的恒定电场.这 是静电场以外的又一种不随时间变化的电场。这个恒定电场是由电源产 生的。我们知道,在静电场中,导体内部的电场强度等于零,但通有恒 定电流的导体内部的电场强度却不等于零。因此,有关导体在静电场中 的一些结论,例如电力线必须与导体表面垂直,导体表面是一个等位面 等概念,在恒定电流的电场中是否仍然成立,就需要重新研究。

稳恒电流和稳恒电场讲解

稳恒电流和稳恒电场讲解
运动电荷在空间既产生电场又产生磁场 本章将从“场”的角度来认识 电路中涉及的基本物理量及基本规律
1
§1 电流密度 一、电流密度 二、电流线
2
一、电流密度 对大块导体不仅需用物理量电流强度来描述 还需建立电流密度的概念 进一步描述电流强度 的分布
例如:电阻法探矿
(图示)


3
电流密度定义式
J
I出
稳恒情况必 有 I入= I出
12
§3 欧姆定律的微分形式 一、欧姆定律的积分形式 二、欧姆定律的微分形式 三、稳恒电场
13
一、欧姆定律的积分形式
L
U IR U a b
S
aR
I
b
a
对一段均匀金属导体:
U
b
电阻 R L
S
电阻率
单位: m
1
电导:G 1 单位:
J E — 欧姆定律微分形式
上式对非均匀导体 非稳恒电流也成立 15
三、稳恒电场
1.稳恒电场
1)稳恒电路 导体内存在的电场
与稳恒电流密度关系:

J E 2)稳恒电场 由不随时间改变的电荷
分布产生

由稳恒条件决定: J dS 0
S
16
2.与静电场相同之处 1)电场不随时间改变 2)满足高斯定理 3)满足环路定理 是保守场
v
dS
ˆ P 处正电荷定向移动
速度方向上的单位矢量
5
二、电流线
为形象描写电流分布,引入“电流线”的概念
规定:
1)电流线上某点的切向
与该点
J
的方向一致;
J
P 电流线
2)电流线的密度等于 J,

电流密度

电流密度

§10-2 恒定电流和恒定电场 电动势
1. 恒定电流
(1)恒定电流: 电流场中每一点电流密度的大小和方 )恒定电流: 向均不随时间改变的电流。 向均不随时间改变的电流。 维持恒定电流的条件: 维持恒定电流的条件:
dq =0 dt
意义: 意义:空间各点的电荷 分布不随时间改变。 分布不随时间改变。
根据电流连续性方程得
热功率密度:单位时间、单位体积内的焦耳热。 热功率密度:单位时间、单位体积内的焦耳热。 单位时间内电场力对一个自由电子做功
v v v v F ⋅ v = − eE ⋅ v
个自由电子, 设单位体积内有 n 个自由电子,则单位时间内的总功
由 和
r v jr = − nev v j = σE
v v p = − neE ⋅ v
σ
σ
v Bv v ⋅ dl − ∫ Ek ⋅ dl
A
电源放电时,电流密度与积分方向相反; 电源放电时,电流密度与积分方向相反;电源 充电时,电流密度与积分方向相同, 充电时,电流密度与积分方向相同,且
v v I ∫A E ⋅ dl = VA − VB A ε , Ri C R v Cv v Bv ∫A Ek ⋅ dl = ∫A Ek ⋅ dl = −ε 电源放电 r I j= I S A ε , Ri C R 代入上式, 代入上式,则
几种典型的电流分布
粗细均匀的 金属导体
粗细不均匀 半球形接地电 同轴电缆中的漏 的金属导线 极附近的电流 电流
电阻法勘探矿藏时的电流
3、电流强度与电流密度的关系 、
在导体中任取一截面元 v dS,设该处电荷密度为ρ, ,设该处电荷密度为ρ v 运动速度为 。
v en
dS θ
v v dq = ρdV = ρv dt ⋅ dS v r v v = ( ρv ) ⋅ dSdt = j ⋅ dSdt

恒定电场的基本原理

恒定电场的基本原理

2020/8/9
19
工程电磁场
1.局外场
要维持导电媒质中的恒定电流,
就必须有恒定的电场强度。
(克服运动中的阻力)
在电场的作用下,
正自由电荷沿电场强度方向运动。
(负自由电荷沿相反方向运动)
2020/8/9
20
工程电磁场
由电荷产生的电场称为库仑电场。
在一个闭合回路中
库仑电场的电场强度 EC 的闭合线积分为零。
2020/8/9
10
工程电磁场
如果面的宽度也可以忽略,
则可以认为电流在线上运动,形成线电流。
如图所示,线上的电流,
其运动方向由线的走向
完全限定,
因此只需要确定其大小,
密度为 的线电荷
以速度 v 沿线运动形成线电流 I ,定义 I v 。
2020/8/9
11
工程电磁场
I v dl dl dq dt dt dt
2020/8/9
24
工程电磁场
衡量电源将其他能量转换为电能的能力,
将单位正电荷从电源负极运动到正极,
局外力所做的功定义为电源的电动势,
用 e 表示。
a
e Ee • dl
b
可见 与 R 互为倒数。
2020/8/9
15
工程电磁场
上式称为欧姆定律 的微分形式 是导电媒质中恒定 电场的辅助方程。
若 不随电场强度方向改变而变化,
则称导电媒质为各 向同性媒质。
若 不随电场强度和电流密度量值变化,
则称导电媒质为线 性媒质。
2020/8/9
16
工程电磁场
若媒质中 处处相等,
2020/8/9
5
工程电磁场

恒定电流一些定义

恒定电流一些定义

恒定电流(一)一、基本概念1.电流:通过导体横截面的电荷量跟所用时间的比值叫电流,表达式tq I =。

电流的单位:安培(A ),1A =1C/s ,常用单位还有毫安(mA )、微安(μA),1A=103mA=106μA 。

在国际单位制中,电流是一个基本物理量,其单位安培是基本单位之一。

电流的方向:规定正电荷定向移动的方向为电流方向。

在金属导体中,电流方向与电子定向移动的方向相反。

但电流是标量,电流的方向表示的是电流的流向,电流的叠加是求代数和,而不是矢量和。

电流的微观表达式:I n q vS =。

形成电流的条件:电荷的定向移动形成电流,条件是导体两端存在电势差 恒定电流:大小与方向都不随时间变化的电流。

2、电阻:反映导体对电流阻碍作用的大小。

表达式R=U/R .单位:欧姆,符号是Ω。

其物理意义是:某段导体加上1V 电压时,导体中的电流为1A ,则导体电阻为1Ω。

3、电动势物理意义:反映电源把其它形式的能量转化为电能本领的大小。

表达式:E=W/q ,它等于电源没接入电路时的路端电压。

单位:伏特(V ) 4、电功和电热(1)电功定义:导体中的恒定电场对自由电荷的静电力做功。

电流做功的过程就是电能转化为其它形式的能的过程。

电功计算公式:W=qU=IUt, 电流在一段电路上所做的功等于这段电路两端的电压U 、电路中的电流I 和通电时间t 三者的乘积。

电功的单位是焦耳,简称焦,符号是(J )。

(2)电热:电热是电路中的热现象(电流的热效应),是电能转化的一部分。

焦耳定律Q=I 2Rt是专门计算电热的实验定律,用Q=I 2Rt 来计算电热,不管是纯电阻电路还是非纯电阻电路,都是适用的。

5、电功率和热功率(1)、电功率:单位时间内电流所做的功。

W P U I t== 。

电功率的单位是瓦特,简称瓦,符号是(W )。

(2)、热功率:单位时间内的发热量通常称为热功率。

P=Q/t =I 2R 6、电功和电热的联系与区别(1)在纯电阻电路中,电能的减少全部转化为内能,电功与电热相等,电功率和热功率也相等。

恒定电流电动势ppt

恒定电流电动势ppt
物理意义
定义和物理意义
单位和量纲
伏特(V)
单位
伏特(V)或安培(A)×秒(s)
量纲
电路中的电动势是指电源内部非静电力克服电场力做功与电荷的比值,即电源内部非静电力移动单位电荷所做的功。
电路中的电动势与电源内阻、负载电阻、导线电阻等参数有关,可以通过电路分析方法进行计算求解。
电路中的电动势
恒定电流电路分析
注意:由于电源内阻的存在,直接测量法和间接测量法测量的结果会有一定的误差。
电动势测量实例
恒定电流电路中的能量转化
04
能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。
当能量从一种形式转换成另一种形式时,能量从一个物体传递到另一个物体时,能量的总量不变。
非静电力所做的功与通过的电量成正比,即:W_{非静电力}=Eq
电动势的产生机理
直接测量法
利用电压表直接测量电源两端的电压,即得到电动势。
间接测量法
测量电源在电路中产生的电流和电压,通过闭合电路欧姆定律计算电动势。
电动势的测量方法和原理
将电源接入一个已知电阻的电路中,测量电源两端的电压和电路中的电流,利用闭合电路欧姆定律计算电动势。
系统建模和仿真方法
研究方法及进展
技术发展趋势集成化:随着微纳制造技术的发展,恒定电流电动势技术正朝着集成化方向发展。智能化:随着人工智能技术的发展,恒定电流电动势技术正朝着智能化方向发展。高效化:为了提高传输效率,恒定电流电动势技术正朝着高效化方向发展。前景展望应用领域更加广泛:随着恒定电流电动势技术的不断发展,其应用领域将更加广泛。技术创新不断涌现:未来,恒定电流电动势技术将不断涌现出新的技术创新点。

第十七讲 电源和电流-新高二物理(解析版)

第十七讲 电源和电流-新高二物理(解析版)

第十七讲 电源和电流【基础知识梳理】 知识点一、恒定电流 1.恒定电场(1)定义:由稳定分布的电荷所产生的稳定的电场.(2)形成:连接A 、B 导体的导线内的电场是由电源、导线等电路元件所积累的电荷共同形成的. (3)特点:任何位置的电荷分布和电场强度都不会随时间变化,基本性质与静电场相同. (4)适用规律:在静电场中所讲的电势、电势差及其与电场强度的关系同样适用于恒定电场. 2.恒定电流大小和方向都不随时间变化的电流. 3.电流概念(1)概念:电荷的定向移动形成电流. (2)物理意义:反映了电流的强弱程度.(3)符号及单位:符号是I ,单位有安培、毫安、微安(单位符号分别为A 、mA 、μA). (4)表达式:I =q t.(5)电流的方向:规定正电荷定向移动方向或负电荷定向移动的反方向为电流方向. (6)电流的微观表达式I =nqSv ①建立模型如图所示,AB 表示粗细均匀的一段导体,两端加一定的电压,导体中的自由电荷沿导体定向移动的速率为v .设导体的长度为L ,横截面积为S ,导体单位体积内的自由电荷数为n ,每个自由电荷的电荷量为q .②理论推导导体AB 中的自由电荷总数N =nLS 总电荷量Q =Nq =nLSq所有这些电荷都通过导体横截面所需要的时间t =L v根据公式I =q t可得,导体AB 中的电流I =Q t =nLSqLv=nqSv .③结论由此可见,从微观上看,电流决定于导体中单位体积内的自由电荷数、自由电荷的电荷量、自由电荷定向移动的速率以及导体的横截面积.(7) 自由电荷:金属中的自由电荷是电子;电解质溶液中的自由电荷是正、负离子。

知识点二、电源(1)形成持续电源的条件:有自由移动的电荷;有电势差。

自由电子在静电力作用下沿导线定向移动形成电流。

(2)电源的作用:通过“搬运”电荷,保持正、负极间有一定的电势差,从而保持电路中有持续的电流。

【模型考点剖析】 一、电流的理解和计算1.电流的方向:规定正电荷定向移动的方向为电流的方向,则负电荷定向移动的方向与电流的方向相反. 2.电流的定义式:I =qt .用该式计算出的电流是时间t 内的平均值.对于恒定电流,电流的瞬时值与平均值相等.3.电流是标量:虽然有方向,但它是标量,它遵循代数运算法则. 二、电流的微观表达式1.电流微观表达式I =nqvS 的理解(1)I =qt 是电流的定义式,I =nqvS 是电流的决定式,因此I 与通过导体横截面的电荷量q 及时间t 无关,从微观上看,电流决定于导体中单位体积内的自由电荷数n 、每个自由电荷的电荷量大小q 、定向移动的速率v ,还与导体的横截面积S 有关.(2)v 表示电荷定向移动的速率.自由电荷在不停地做无规则的热运动,其速率为热运动的速率,电流是自由电荷在热运动的基础上向某一方向定向移动形成的. 2.三种速率的比较(1)电子定向移动速率:也是公式I =neSv 中的v ,大小约为10-4 m/s.(2)电流的传导速率:就是导体中建立电场的速率,等于光速,为3×108 m/s.闭合开关的瞬间,电路中各处以光速建立恒定电场,电路中各处的自由电子几乎同时定向移动,整个电路也几乎同时形成了电流. (3)电子热运动速率:电子做无规则热运动的速率,大小约为105 m/s.由于热运动向各个方向运动的机会相等,故此运动不能形成电流. 【真题分项演练】1.(2020·浙江高考真题)国际单位制中电荷量的单位符号是C ,如果用国际单位制基本单位的符号来表示,正确的是( ) A .F V ⋅ B .A s ⋅C .J/VD .N m/V ⋅【答案】B 【解析】根据电荷量公式q =It 可知,电流I 的单位是A ,时间t 的单位是s ,故用国际单位制的基本单位表示电量的单位为A∙s ,故B 正确,ACD 错误。

10-2恒定电流和恒定电场电动势解读

10-2恒定电流和恒定电场电动势解读

非静电力仅存在于电源内部,可以用非静电场强 表示。 由电源电动势定义得
A
Ek
B Ek dl
Ek dl
电源外部无非静电力,则
A
B
电源不断消耗其它形式的能量克服静电力做功。
导体内恒定电场的建立
电源电路。 外电路:电源外部正负两 极之间的电路。
A
B
内外电路形成闭合电路时,正电荷由正极流出, 经外电路流入负极,又从负极经内电路流到正极, 形成恒定电流,保持了电流线的闭合性。
§10-2 恒定电流和恒定电场 电动势
1. 恒定电流
恒定电流: 电流场中每一点电流密度的大小和 方向均不随时间改变的电流。
维持恒定电流的条件: 空间各点的电荷分布分布不随时间改变。 即
dq 0 dt
根据电流连续性方程得
S dS 0

恒定电流场中的电流线是无始无终的闭合曲线。
恒定电流
恒定电场也服从场强环流定律
非静电力仅存在于电源内部,可以用非静电场强 Ek
表示。 由电源电动势定义得
A
L Es dl 0
B Ek dl
Ek dl
电源外部无非静电力,则
导体内恒定电场的建立
电源的电动势
恒定电场也服从场强环流定律
L Es dl 0
导体内恒定电场的建立
电源的电动势
电源电动势
电源迫使正电荷dq从负极经电源内部移动到正 极所做的功为dA,电源的电动势为
dA dq
电源的电动势等于把单位正电荷从负极经内电 路移动到正极时所做的功,单位为伏特。 电源的电动势的方向规定:自负极经内电路指 向正极。

恒定电流和恒定电场.ppt

恒定电流和恒定电场.ppt

或者
VB VA RI
正负号规定:
1、若通过电阻的电流和积分路径方向相同,该电阻上的电 势降取“+”号,否则取“-”。
2、若电动势的指向和积分路径的方向相同,该电动势前取 “+”,否则取“-”号。
例题10-2
I
3 , Ri 4
1、求电路中的电流 2、电池A的端电压U12
B
2019/11/22
§10-2 恒定电流和恒定电场 电动势
• 恒定电流(Steady Current):导体内任一点的 的大 小和方向均不随时间改变的电流。
1.恒定条件
若电流场内 的大小和方向不随 t 变,则

要求空间电荷分布不随 t 变,即 dq 0
则在电流场内作一任意闭合 S 面,有 dt
2019/11/22
(2)不同处 : • 产生恒定电流的电荷是运动的(但电荷分布不随 t
变)。 • 恒定电场对运动的电荷要作功,恒定电场的存在,
总伴随着能量转移。 • 节 点 电 流 定 律 ( 基 尔 霍 夫 第 一 定 律 ) (Kirchhoff
first law)
2019/11/22
• 电动势(electromotive force简写作emf)
• 非静电力:电源内部都有非静电力(nonelectrostatic force);
• 非静电力使正电荷由负极经电源内部到达正极。
• 引入:非静电力场强:单位正电荷所受的非静电力
E非

F非 q
• 把电荷 q 由负极移向正极(经电源内部)非静电力作功
I
2019/11/22
F非
R
• 电动势:把单位正电荷经电源内部由负极移向正极过程 中,非静电力所作的功。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导体内恒定电场的建立
电源的电动势
电源电动势
电源迫使正电荷dq从负极经电源内部移动到正 极所做的功为dA,电源的电动势为
dA dq
电源的电动势等于把单位正电荷从负极经内电 路移动到正极时所做的功,单位为伏特。 电源的电动势的方向规定:自负极经内电路指 向正极。
导体内恒定电场的建立
电源的电动势
恒定电场也服从场强环流定律
非静电力仅存在于电源内部,可以用非静电场强 Ek
表示。 由电源电动势定义得
A
L Es dl 0
B Ek dl
Ek dl
电源外部无非静电力,则
导体内恒定电场的建立
电源的电动势
恒定电场也服从场强环流定律
L Es dl 0
§10-2 恒定电流和恒定电场 电动势
1. 恒定电流
恒定电流: 电流场中每一点电流密度的大小和 方向均不随时间改变的电流。
维持恒定电流的条件: 空间各点的电荷分布分布不随时间改变。 即
dq 0 dt
根据电流连续性方程得
S dS 0

恒定电流场中的电流线是无始无终的闭合曲线。
恒定电流
非恒定电流的例子:用导线连接的两个带电导体
VA A
VB
B
随着自由电荷的不断迁移,两导体上电荷量 逐渐减少,导体间电势差减小,导线中的电流逐 渐减小。
导体内恒定电场的建立
电源的电动势
2. 导体内恒定电场的建立 电源的电动势
在导体内形成恒定电流必须在导体内建立一个恒 定电场,保持两点间电势差不变。 把从B经导线到达A的 电子重新送பைடு நூலகம்B,就可以维 持A、B间电势差不变。 完成这一过程不能依靠 静电力,必须有一种提供非 静电力的装置,即电源。
A
B
电源不断消耗其它形式的能量克服静电力做功。
导体内恒定电场的建立
电源的电动势
内电路:电源内部正负两 极之间的电路。 外电路:电源外部正负两 极之间的电路。
A
B
内外电路形成闭合电路时,正电荷由正极流出, 经外电路流入负极,又从负极经内电路流到正极, 形成恒定电流,保持了电流线的闭合性。
非静电力仅存在于电源内部,可以用非静电场强 表示。 由电源电动势定义得
A
Ek
B Ek dl
Ek dl
电源外部无非静电力,则
相关文档
最新文档