上拉电阻下拉电阻,耦合电容和退耦电容的总结

合集下载

下拉电阻和上拉电阻的作用

下拉电阻和上拉电阻的作用

下拉电阻和上拉电阻的作用1.下拉电阻的作用:下拉电阻是将电路接地的电阻,其主要作用有以下几点:(1)保持逻辑低电平:在数字电路中,逻辑低电平常用0V表示。

当系统处于空闲状态时,下拉电阻将电路拉低到0V,确保所有未接入时电路处于逻辑低电平状态。

这样可以避免电路的未定义状态,确保电路的稳定性和可靠性。

(2)电路的信号接地:下拉电阻将电路接地,起到信号处理的接地作用,避免由于信号耦合引起的干扰和噪声。

(3)承担输出电阻:在一些电路中,下拉电阻也会作为输出电阻存在,通过控制下拉电阻的阻值来调节电路的输出电阻。

(4)限制电流:下拉电阻可以限制电路中的电流大小,保护电路和元器件不受损坏。

(5)消除漂移:在一些传感器电路中,由于工作环境和元器件特性的影响,电路可能会产生输出漂移,通过使用下拉电阻可以消除这种漂移效应。

2.上拉电阻的作用:上拉电阻是将电路接向电源的电阻,其主要作用有以下几点:(1)保持逻辑高电平:在数字电路中,逻辑高电平常用VDD电压表示。

当系统处于空闲状态时,上拉电阻将电路拉高到VDD电压,确保所有未接入时电路处于逻辑高电平状态。

这样可以避免电路的未定义状态,确保电路的稳定性和可靠性。

(2)电路的信号接电源:上拉电阻将电路接向电源,起到信号处理的接入电源的作用,提供稳定的电源电压,避免由于电源波动引起的干扰和噪声。

(3)承担输入电阻:在一些电路中,上拉电阻也会作为输入电阻存在,通过控制上拉电阻的阻值来调节电路的输入电阻。

(4)限制电流:上拉电阻可以限制电路中的电流大小,保护电路和元器件不受损坏。

(5)提供信号源:在一些传感器电路中,通过使用上拉电阻作为信号源,可以提供稳定的电压信号输出。

综上所述,下拉电阻和上拉电阻在电子电路中有着不同的作用。

它们通过控制电路的电平状态、接地或接电源、控制电流大小等方式,对信号进行稳定和控制。

在数字电路中,下拉电阻和上拉电阻常用于控制逻辑门的输入和输出电平状态,确保电路的稳定工作;在模拟电路中,它们常用于限流、输入输出电阻调节、电路信号源等方面。

上拉电阻和下拉电阻的原理以及部分应用总结

上拉电阻和下拉电阻的原理以及部分应用总结

上拉电阻和下拉电阻的原理以及部分应用总结推荐图中上下两个电阻分别为下拉电阻和上拉电阻,上拉就是将A点的电位拉高,下拉就是将A点的电位拉低,图中的12k有些是没有画出来的,或者是没有的.他们的作用就是在电路驱动器关闭时,给该节点一个固定的电平.上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS 电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC门电路必须加上拉电阻,才能使用。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1k到10k之间选取。

对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。

以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。

2.下级电路的驱动需求。

同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。

3.高低电平的设定。

不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。

以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。

电阻之上拉电阻与下拉电阻详解(转)

电阻之上拉电阻与下拉电阻详解(转)

电阻之上拉电阻与下拉电阻详解(转)上拉(Pull Up )或下拉(Pull Down)电阻(两者统称为“拉电阻”)最基本的作⽤是:将状态不确定的信号线通过⼀个电阻将其箝位⾄⾼电平(上拉)或低电平(下拉),⽆论它的具体⽤法如何,这个基本的作⽤都是相同的,只是在不同应⽤场合中会对电阻的阻值要求有所不同,从⽽也引出了诸多新的概念,本节我们就来⼩谈⼀下这些内容。

如果拉电阻⽤于输⼊信号引脚,通常的作⽤是将信号线强制箝位⾄某个电平,以防⽌信号线因悬空⽽出现不确定的状态,继⽽导致系统出现不期望的状态,如下图所⽰:在实际应⽤中,10K欧姆的电阻是使⽤数量最多的拉电阻。

需要使⽤上拉电阻还是下拉电阻,主要取决于电路系统本⾝的需要,⽐如,对于⾼有效的使能控制信号(EN),我们希望电路系统在上电后应处于⽆效状态,则会使⽤下拉电阻。

假设这个使能信号是⽤来控制电机的,如果悬空的话,此信号线可能在上电后(或在运⾏中)受到其它噪声⼲扰⽽误触发为⾼电平,从⽽导致电机出现不期望的转动,这肯定不是我们想要的,此时可以增加⼀个下拉电阻。

⽽相应的,对于低有效的复位控制信号(RST#),我们希望上电复位后处于⽆效状态,则应使⽤上拉电阻。

⼤多数具备逻辑控制功能的芯⽚(如单⽚机、FPGA等)都会集成上拉或下拉电阻,⽤户可根据需要选择是否打开,STM32单⽚机GPIO模式即包含上拉或下拉,如下图所⽰(来⾃ST数据⼿册):根据拉电阻的阻值⼤⼩,我们还可以分为强拉或弱拉(weak pull-up/down),芯⽚内部集成的拉电阻通常都是弱拉(电阻⽐较⼤),拉电阻越⼩则表⽰电平能⼒越强(强拉),可以抵抗外部噪声的能⼒也越强(也就是说,不期望出现的⼲扰噪声如果要更改强拉的信号电平,则需要的能量也必须相应加强),但是拉电阻越⼩则相应的功耗也越⼤,因为正常信号要改变信号线的状态也需要更多的能量,在能量消耗这⼀⽅⾯,拉电阻是绝不会有所偏颇的,如下图所⽰:对于上拉电阻R1⽽⾔,控制信号每次拉低L都会产⽣VCC/R1的电流消耗(没有上拉电阻则电流为0),相应的,对于下拉电阻R2⽽⾔,控制信号每次拉⾼H也会产⽣VCC/R2R 电流消耗(本⽂假设⾼电平即为VCC)。

最全讲解上下拉电阻

最全讲解上下拉电阻

1. 拉电流和灌电流电子元器件在广义上分为有源器件和无源器件。

有源器件需要电源(能量)才能实现其特定的功能,比如运算放大器在有输入信号的前提下,如果不提供电源,运算放大器无法实现其放大功能。

无源器件在工作时,不需要外加电源,只要输入信号就能正常工作,比如在信号线上串联33Ω的电阻,无论是否提供电源,只要有信号经过,电阻就能实现限流的作用。

通常定义流入器件的电流为正,流出器件的电流为负。

器件输入端有电流流进时,称为吸电流,属于被动;器件输出端有电流流出时,称为拉电流,属于主动;器件输出端有电流流入时,称为灌电流,属于被动。

下面以运算放大器工作为例。

对电源来说,运算放大器属于负载,电源提供电流让其正常工作,此时运算放大器在吸收电流。

对运算放大器来说,当它输出高电平,提供负载电流时,此时电流方向为负,称为拉电流;当它输出低电平,消耗负载电流,此时电流方向为正,称为灌电流。

2. 上/下拉电阻定义在电子元器件间中,并不存在上拉电阻和下拉电阻这两种实体的电阻,之所以这样称呼,原因是根据电阻不同使用的场景来定义的,其本质还是电阻。

就像去耦电容,耦合电容一样,也是根据其应用场合来取名,其本质还是电容。

上拉电阻的定义:在某信号线上,通过电阻与一个固定的高电平VCC相接,使其电压在空闲状态保持在VCC电平,此时电阻被称为上拉电阻。

同理,下拉电阻的定义:将某信号线通过电阻接在固定的低电平GND上,使其空闲状态保持GND电平,此时的电阻被称为下拉电阻。

如下图所示,R1为上拉电阻,R2为下拉电阻。

如果R1的阻值在上百K,能提供给信号线上负载电流非常小,对负载电容充电比较慢,此时电阻被称为弱上拉。

同理当下拉的电阻非常大时,导致下拉的速度比较缓慢,此时的电阻被称为弱下拉。

而当上下拉的电平可以提供较大的电流给芯片时,此时的电阻被称为是强上拉或强下拉。

3. 上/下拉电阻的应用根据上拉电阻和下拉电阻的含义,最常见的几种用法如下。

(1)用在OC/OD门所谓OC门就是Open Collector,集电极开路,如下图所示:所谓OD门就是Open Drain,漏极开路,如下图所示。

上拉与下拉电阻讲解

上拉与下拉电阻讲解

数字电路的应用中,时常会听到上拉电阻、下拉电阻这两个词,上拉电阻、下拉电阻在电路中起着稳定电路工作状恣的作用。

1.下拉电阻电路
图1-107所示是下拉电阻电路,这是数字电路中的反相器,输入端U通过下拉电阻R1接地,这样在没有高电平输入时,可以使输入端稳定地处于低电平状态,防止了可能出现的高电平干扰使反相器误动作。

如果没有下拉电阻Rl,反相器输入端悬空,为高阻抗,外界的高电平干扰很容易从输入端加入到反相器中,从而引起反相朝输出低电平方向翻转的误动作。

在接入下拉电阻R1后,电源电压为+5V时,下拉电阻Rl一般取值在100~470Ω,由于Rl阻值很小,所以将输入端的各种高电平干扰短接到地,达到抗干扰的目的。

2.上拉电阻电路
图1-108所示是上拉电阻电路,这是数字电路中的反相器,当反相器输入端U没有输入低电平时,上拉电阻R可以使反相器输入端稳
定地处于高电平状态,防止了可能出现的低电平干扰使反相器出现误动作。

如果没有上拉电阻Rl,反相器输入端悬空,KI661- KI662外界的低电平干扰很容易从输入端加入到反相器中,从而引起反相器朝输出高电平方向翻转的误动作。

在接入上拉电阻R1后,电源电压为+5V时,上拉电阻R1一般取值在4.7~10kΩ之间,上拉电阻Rl使输入端为高电平状态,没有足够的低电平融发,反相器不会翻转,达到抗干扰的目的。

上拉电阻和下拉电阻

上拉电阻和下拉电阻

上拉电阻和下拉电阻什么是上拉电阻和下拉电阻?在电子电路中,上拉电阻和下拉电阻是常用于控制和稳定电路的元件。

它们主要用于输入引脚的电平的控制,帮助确保信号稳定和可靠。

上拉电阻是指连接在信号引脚和正电源之间的电阻,用于将信号引脚的电平拉高。

当信号引脚未接外部信号时,上拉电阻会将引脚的电平拉高到正电源电平。

通常,上拉电阻的阻值比较大,一般在10kΩ到100kΩ之间。

下拉电阻则是连接在信号引脚和地之间的电阻,用于将信号引脚的电平拉低。

当信号引脚未接外部信号时,下拉电阻会将引脚的电平拉低到地电平。

下拉电阻的阻值与上拉电阻类似,通常也在10kΩ到100kΩ之间。

上拉电阻和下拉电阻的应用上拉电阻的应用上拉电阻常用于数字电路中的输入引脚。

在数字电路中,当输入引脚未连接外部信号时,它往往处于一个悬空状态,容易受到干扰而产生误判。

通过连接上拉电阻,可以确保输入引脚的电平稳定地被拉高到正电源电平,从而避免误判。

下拉电阻的应用下拉电阻同样常用于数字电路中的输入引脚。

当输入引脚未连接外部信号时,下拉电阻可以确保引脚电平稳定地被拉低到地电平,避免产生误判。

下拉电阻也常用于与上拉电阻配合使用,实现部分输入引脚上升沿和下降沿触发功能。

上拉电阻和下拉电阻的实现方式上拉电阻和下拉电阻可以通过不同的实现方式来实现。

软件实现在一些特定的矽晶管结构中,当将输入引脚设置为输入模式时,可以通过软件配置使其内部电路自带上拉电阻或下拉电阻。

这种方式可以减少外部电路元件的使用,但在某些情况下可能受到芯片设计限制。

外部电路实现在一些情况下,需要通过外部电路连接上拉电阻或下拉电阻。

上拉电阻和下拉电阻可以通过将电阻连接到信号引脚和正电源或地之间来实现。

这种方式更灵活,可以根据需要选择不同阻值的电阻,以满足特定的应用要求。

小结上拉电阻和下拉电阻是在电子电路中常用的元件,用于控制和稳定电路的输入引脚电平。

通过连接上拉电阻和下拉电阻,可以确保信号引脚的电平稳定地被拉高或拉低。

上拉电阻与下拉电阻的作用总结

上拉电阻与下拉电阻的作用总结

上拉电阻与下拉电阻的作用总结上拉电阻和下拉电阻是在数字电路中常见的两种电阻连接方式。

它们可以用来稳定信号的电平,防止信号出现浮动或者没有明确的电平状态。

本文将从原理、应用场景和作用三个方面来总结上拉电阻和下拉电阻的作用。

首先,我们来介绍上拉电阻和下拉电阻的原理。

上拉电阻是将电阻连接在输入信号线和电源电压之间,而下拉电阻是将电阻连接在输入信号线和地之间。

当信号线没有外部信号输入时,上拉电阻可以将信号线拉高到电源电压,下拉电阻可以将信号线拉低到地。

当外部信号输入时,上拉电阻会通过这个信号将信号线拉高或拉低,下拉电阻同样也会通过信号将信号线拉高或拉低。

通过这种方式,上拉电阻和下拉电阻可以稳定信号的电平。

接下来,我们来介绍上拉电阻和下拉电阻的应用场景。

上拉电阻常见于输入电路中,用来保持输入信号的默认状态为高电平。

例如,在数字电路中,当一个按钮没有被按下时,可以通过上拉电阻将输入信号线拉高到高电平,而当按钮被按下时,输入信号线会被按下按钮连接的地拉低到低电平。

这样可以避免因为按钮没有被按下造成的输入电路信号浮动。

下拉电阻则常见于输出电路中,用来保持输出信号的默认状态为低电平。

例如,在数字电路中,一个开关的引脚可以通过下拉电阻将默认状态设为低电平。

最后,我们来总结上拉电阻和下拉电阻的作用。

首先,上拉电阻和下拉电阻可以使信号的电平稳定。

它们可以保持信号的默认状态,防止信号因为缺乏明确的电平状态而造成误判。

其次,上拉电阻和下拉电阻可以减少信号的浮动。

当没有外部信号输入时,上拉电阻和下拉电阻可以将信号线拉高或拉低到确定的电平,从而降低信号的变化。

此外,上拉电阻和下拉电阻还可以提高电路的抗干扰能力。

它们可以阻止外界的干扰信号对电路的输入或输出信号产生影响。

总之,上拉电阻和下拉电阻是数字电路中常见的电阻连接方式。

它们可以稳定信号的电平,防止信号出现浮动或者没有明确的电平状态。

这对于保证电路的正确工作非常重要。

因此,在设计和使用数字电路时,需要合理选择上拉电阻和下拉电阻的数值和位置,以确保电路的稳定性和可靠性。

上拉电阻和下拉电阻的作用以及使用原则

上拉电阻和下拉电阻的作用以及使用原则

上拉电阻,下拉电阻的含义,作用及选用原则在数字电路中不用的输入脚都要接固定电平,通过1k电阻接高电平或接地。

1、定义:上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流弱强只是上拉电阻的阻值不同,没有什么严格区分对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。

2、为什么要使用拉电阻:一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。

数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似于一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:当一个接有上拉电阻的端口设为输如状态时,他的常态就为高电平,用于检测低电平的输入。

上拉电阻是用来解决总线驱动能力不足时提供电流的。

一般说法是拉电流,下拉电阻是用来吸收电流的,也就是灌电流。

3.上拉电阻的作用:1.当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2.OC门电路必须加上拉电阻,才能使用。

3.为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4.在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

同时管脚悬空就比较容易接受外界的电磁干扰(MOS器件为高输入阻抗,极容易引入外界干扰)。

PROTEUS上拉电阻总结

PROTEUS上拉电阻总结

上拉电阻下拉电阻总结(在Proteus看到的)分类:电路2007-10-14 14:11 1215人阅读评论(0) 收藏举报在上看到这篇文章,总结的不错,收藏。

上拉电阻下拉电阻的总结上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC门电路必须加上拉电阻,才能使用。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1k到10k之间选取。

对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。

以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。

2.下级电路的驱动需求。

同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。

3.高低电平的设定。

不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。

以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。

4.频率特性。

解读上拉电阻和下拉电阻

解读上拉电阻和下拉电阻

解读上拉电阻和下拉电阻1、电阻的作用(1) 接电组就是为了防止输入端悬空。

(2) 减弱外部电流对芯片产生的干扰。

(3) 保护CMOS内的保护二极管,一般电流不大于10mA。

(4) 上拉和下拉、限流。

(5) 改变电平的电位,常用在TTL-CMOS匹配。

(6) 在引脚悬空时有确定的状态(7) 增加高电平输出时的驱动能力。

(8) 为OC门提供电流2、上下拉电阻的定义上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流。

3、为什么要使用上下拉电阻(1) 一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。

(2) 数字电路有三种状态:高电平、低电平和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!(3) 一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的集电极,当集电极通过一个电阻和电源连接在一起的时候,该电阻成为集电极的上拉电阻,也就是说,如果该端口正常时为高电平,集电极通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平。

(4) 上拉电阻是用来解决总线驱动能力不足时提供电流的。

一般说法是拉电流,下拉电阻是用来吸收电流的,也就是灌电流。

4、上拉电阻(1) 当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

(2) OC门电路必须加上拉电阻,才能使用。

(3) 为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

(4) 在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

什么是上拉电阻,什么是下拉电阻.

什么是上拉电阻,什么是下拉电阻.

什么是上拉电阻,什么是下下拉电阻?它们有什么作用?(提示:如果图片显示不完整,请保存下来再看就行了。

A:如下图的两个 Bias Resaitor 电阻就是上拉电阻和下拉电阻。

图中,上部的一个Bias Resaitor 电阻因为是接地,因而叫做下拉电阻,意思是将电路节点A 的电平向低方向(地)拉;同样,图中,下部的一个Bias Resaitor 电阻因为是电源(正),因而叫做上拉电阻,意思是将电路节点A的电平向高方向(电源正)拉。

当然,许多电路中上拉下拉电阻中间的那个12k电阻是没有的或者看不到的。

我找来这个图是RS-485/RS-422总线上的,可以一下子认识上拉下拉的意思。

但许多电路只有一个上拉或下拉电阻,而且实际中,还是上拉电阻的为多。

上拉下拉电阻的主要作用是在电路驱动器关闭时给线路(节点)以一个固定的电平。

1 在RS-485总线中,它们的主要作用就是在线路所有驱动器都释放总线时让所有节点的A-B端电压在200mV或200mV以上(不考虑极性)。

不然,如果接收器输入端A和B间的电平低于±200mV(绝对值小于200mV,接收器输出的逻辑电平将被当作所传输数据的末位而被接收起来,这样显然是极容易产生通讯错误的。

2 最容易见到的上拉电阻应当是NE555电路7脚作为输出用的时候。

实际上,它和一个三极管的C极或MOS管的D极有一个电阻接到电源+上是一样道理的。

它的作用就是:当管子(晶体管或MOS管)输入关断电平时,C极或D极有一个高电平(空载时约等于电源电压);当管子(晶体管或MOS管)输入导通电平时,C极或D极将与电源地(-)接通,因而有一个低电平。

理想的应为0V,但因为管子有导通电阻,因而有一定的电压,不同的管子可能不一样,相同的管子也可能因参数差异而小有差别,即便是真正的金属接触的电源开关,也是有接触电阻/导通压降(虽然不同电流下压降不同)的;仅仅就导通而言,对于不同系列的集成电路来说,因为应用对象不同,导通后的输出电压有不同的规定,典型是TTL电平和CMOS电平的不同。

什么是退耦电容-什么是耦合电容?一文带你读懂耦合与退耦

什么是退耦电容-什么是耦合电容?一文带你读懂耦合与退耦

什么是退耦电容?什么是耦合电容?一文带你读懂耦合与退耦什么是电容?什么是去耦电路?指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。

是指对电源采取进一步的滤波措施,去除两级间信号通过电源互相干扰的影响。

耦合常数是指耦合电容值与第二级输入阻抗值乘积对应的时间常数。

有三个目的:1.将电源中的高频纹波去除,将多级放大器的高频信号通过电源相互串扰的通路切断。

2.大信号工作时,电路对电源需求加大,引起电源波动,通过退耦降低大信号时电源波动对输入级/高电压增益级的影响;3.形成悬浮地或是悬浮电源,在复杂的系统中完成各部分地线或是电源的协调匹有源器件在开关时产生的高频开关噪声将沿着电源线传播。

去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。

摘引自伦德全《电路板级的电磁兼容设计》一文,该论文对噪声耦和路径、去耦电容和旁路电容的使用都讲得不错。

请参阅。

干扰的耦合方式干扰源产生的干扰信号是通过一定的耦合通道对电控系统发生电磁干扰作用的。

干扰的耦合方式无非是通过导线、空间、公共线等作用在电控系统上。

分析下来主要有以下几种。

直接耦合:这是干扰侵入最直接的方式,也是系统中存在最普遍的一种方式。

如干扰信号通过导线直接侵入系统而造成对系统的干扰。

对这种耦合方式,可采用滤波去耦的方法有效地抑制电磁干扰信号的传入。

公共阻抗耦合:这也是常见的一种耦合方式。

常发生在两个电路的电流有共同通路的情况。

公共阻抗耦合有公共地和电源阻抗两种。

防止这种耦合应使耦合阻抗趋近于零、使干扰源和被干扰对象间没有公共阻抗。

电容耦合:又称电场耦合或静电耦合,是由于分布电容的存在而产生的一种耦合方式。

电磁感应耦合:又称磁场耦合。

是由于内部或外部空间电磁场感应的一种耦合方式,防止这种耦合的常用方法是对容易受干扰的器件或电路加以屏蔽。

辐射耦合:电磁场的辐射也会造成干扰耦合,是一种无规则的干扰。

这种干扰很容易通过电源线传到系统中去。

上拉电阻电路和下拉电阻电路

上拉电阻电路和下拉电阻电路

上拉电阻电路和下拉电阻电路数字电路的应用中,时常会听到上拉电阻、下拉电阻这两个词,上拉电阻、下拉电阻在电路中起着稳定电路工作状恣的作用。

1.下拉电阻电路图1-107所示是下拉电阻电路,这是数字电路中的反相器,输入端U通过下拉电阻R1接地,这样在没有高电平输入时,可以使输入端稳定地处于低电平状态,防止了可能出现的高电平干扰使反相器误动作。

如果没有下拉电阻Rl,反相器输入端悬空,为高阻抗,外界的高电平干扰很容易从输入端加入到反相器中,从而引起反相朝输出低电平方向翻转的误动作。

在接入下拉电阻R1后,电源电压为+5V时,下拉电阻Rl一般取值在100~470Ω,由于Rl阻值很小,所以将输入端的各种高电平干扰短接到地,达到抗干扰的目的。

2.上拉电阻电路图1-108所示是上拉电阻电路,这是数字电路中的反相器,当反相器输入端U没有输入低电平时,上拉电阻R可以使反相器输入端稳定地处于高电平状态,防止了可能出现的低电平干扰使反相器出现误动作。

如果没有上拉电阻Rl,反相器输入端悬空,KI661- KI662外界的低电平干扰很容易从输入端加入到反相器中,从而引起反相器朝输出高电平方向翻转的误动作。

在接入上拉电阻R1后,电源电压为+5V时,上拉电阻R1一般取值在4.7~10kΩ之间,上拉电阻Rl使输入端为高电平状态,没有足够的低电平融发,反相器不会翻转,达到抗干扰的目的。

开关式电容器电路现场可编程模拟阵列中,通常使用开关式电容器电路( switched-capacitor circuits)在只含电容器的IC芯片里,去实现各式的模拟电路。

在芯片中,使用电容器比使用电阻简单许多。

电容器也提供其他优点,如没有功率的消耗。

在一伞电路中,假如需要电阻时,开关式电容器就可以被仿效当作成电阻。

可编程开关式电容器可以改变其电阻值,达到更精确及稳定的电阻。

然而,当你设计一个FPAA时,软件会将你隔离出复杂的电路细节中。

在学完本节后,我们应该能够:描述开关式电容器电路的基本操作;说明开关式电容器电路如何代替电阻。

上拉电容和下拉电容

上拉电容和下拉电容

上拉电容和下拉电容
上拉电容和下拉电容是指在电路中通过改变电压或电流的大小来控制电容器的阻抗或功能的方式。

上拉电容常常用于信号传输和电路控制中。

它的作用是通过增加电场力线的数量来增加电容器的电容值。

上拉电容可以改变电容器的电场分布和介质的极化状态,从而使电容器的总电容增大。

而下拉电容则是通过降低电场力线的数量来减小电容器的电容值。

下拉电容一般用于调节电路的阻抗,实现对电压或电流的精确控制。

通过改变下拉电容的大小,可以调节电路的频率响应和幅度特性。

上拉电容和下拉电容常常与电阻、电感等元件一起组成复杂的电路,用于滤波、调节电压、放大信号等应用中。

它们在电子产品、通信设备、自动控制系统等领域都有广泛的应用。

通俗易懂地讲解一下上拉电阻和下拉电阻的原理是什么

通俗易懂地讲解一下上拉电阻和下拉电阻的原理是什么

通俗易懂地讲解一下上拉电阻和下拉电阻的原理是什么
上拉电阻和下拉电阻在设计电路的时候经常遇到,上拉电阻可以在初始状态把信号牵制在确定的高电平,下拉电阻可以把信号牵制在确定的低电平。

下面举例详细介绍。

1.上拉电阻介绍
所谓上拉,就是端口通过电阻接至VCC电源端。

比如在设计按键电路时,按键的一端接GND,另一端接单片机的GPIO,同时会在GPIO口上接一个电阻到VCC,这个电阻就是上拉电阻。

如下图所示。

有了上拉电阻,在没有按键发生时,单片机会检测到确定的高电平,如果没有该上拉电阻的话,单片机检测到的可能是一个浮空的电平而不是确定的高电平,在检测按键的时候可能会误判。

再以PNP三极管驱动继电器为例,在基极端接一个上拉电阻,在单片机初始化阶段,端口初始化时可能电平不是确定的高电平,容易误触发PNP三极管导通,加了上拉电阻后,在单片机端口不确定的时候基极是高电平,不会让继电器无动作。

2.下拉电阻介绍
所谓下拉,就是端口通过电阻接到GND,在端口输出信号不确定的时候把信号牵制在确定的低电平。

以NPN三极管驱动继电器为例,如下图所示。

单片机作为输出端口控制三极管,输出高电平时三极管导通继电器动作;单片机输出低电平时三极管截止继电器复位。

但是在单片机的初始化阶段,端口的输出状态可能不是确定的,不是确定的高电平也不是确定的低电平,有可能使继电器误动作。

由于下拉电阻的存在,即使单片机初始化时,基极被下拉电阻牵制在低电平状态,不会发生误动作。

什么是上下拉电阻?上下拉电阻怎么用?

什么是上下拉电阻?上下拉电阻怎么用?

什么是上下拉电阻?上下拉电阻怎么用?展开全文https:///is/L1whmXJ/?=什么是上下拉电阻大家好,我是李工,今天讲一下上下拉电阻。

什么是上下拉电阻?上拉电阻和下拉电阻是根据电阻不同的使用场景来定义的,并不存在上拉和下拉这两种实体的电阻,本质上是电阻。

类似的还有去耦合电容和耦合电容,也是根据应用场合来取名,不存在实体的电容,本质是电容。

上下拉电阻原理上拉电阻:在某信号线上,通过电阻与一个固定的高电平VCC相接,使其电压在空闲状态保持在VCC电平,此时电阻被称为上拉电阻。

也就是说把一个信号通过一个电阻接到电源(V CC)。

如下图所示:电阻R12将KEY1网络标识上拉到高电平,在按键S2没有按下的情况下KEY1将被钳制在高电平,从而避免了引脚悬空而引起的误动作。

上拉电阻图下拉电阻:在某信号线上,通过电阻与一个固定的高电平VCC相接,使其电压在空闲状态保持在VCC电平,此时电阻被称为上拉电阻。

也就是信号接到地(GND)。

下拉电阻图电阻R29将DIR网络标识下拉到低电平,在光耦没有导通的情况下DIR将被钳制在低电平,从而避免了引脚悬空而引起的误动作。

“强上拉”、“弱上拉”是什么?强弱只是上拉电阻的阻值不一样而已,没有什么严格的区分。

例如50Ω上拉,则一般称为强上拉;100kΩ上拉则称为弱上拉。

“强下拉”、“弱下拉”也是一样的,强下拉电阻的极端就是0欧姆电阻,或者是将信号线直接与电源或地相来连接。

上下拉电阻的作用1、维持输入管脚是一个稳定态芯片的管脚有三个类型,输出(Output,简称O)、输入(Input,简称I)和输入输出(Input/Output,简称I/O)。

芯片的输入管脚,输入的状态有三个:高电平、低电平、和高阻状态。

当输入是高阻,即输入管脚悬空,很可能造成输入的结果是不稳定态,引起输出振荡。

有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使这个输入管脚处于稳定状态。

上拉电阻下拉电阻及耦合电容和退耦电容的总结.

上拉电阻下拉电阻及耦合电容和退耦电容的总结.

上拉电阻下拉电阻及耦合电容和退耦电容的总结上拉电阻:1、当 TTL 电路驱动 COMS 电路时,如果 TTL 电路输出的高电平低于 COMS 电路的最低高电平(一般为 3.5V ,这时就需要在 TTL 的输出端接上拉电阻,以提高输出高电平的值。

2、 OC 门电路必须加上拉电阻,才能使用。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在 COMS 芯片上, 为了防止静电造成损坏, 不用的管脚不能悬空, 一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括 :1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点 , 通常在 1k 到 10k 之间选取。

对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1. 驱动能力与功耗的平衡。

以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。

2. 下级电路的驱动需求。

同样以上拉电阻为例,当输出高电平时, 开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。

3. 高低电平的设定。

不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。

以上拉电阻为例, 当输出低电平时, 开关管导通, 上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。

4. 频率特性。

以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成 RC 延迟, 电阻越大, 延迟越大。

一次性说清上拉电阻和下拉电阻

一次性说清上拉电阻和下拉电阻

一次性说清上拉电阻和下拉电阻在电子元件中,没有上拉电阻和下拉电阻等物理电阻。

之所以这样称呼它们,是因为它们是根据使用电阻的不同场景来定义的,它们的本质仍然是电阻。

常用于偏置数字门的输入,以防止它们在没有输入时随机浮动。

当你使用它们时,你会得到一个稳定的“高”或“低”状态。

相反,如果没有发生这种情况,则引脚上没有连接,程序读取高阻抗的“浮动”状态。

上拉电阻的定义:通过电阻将不确定的信号连接到VCC电源,并将其固定在高电平。

功能:向上拉动将电流注入器件;灌电流;当带有上拉电阻器的IO 端口设置为输入状态时,其正常状态为高电平,如下图。

图1同理,下拉电阻的定义:通过电阻将某个信号线连接到固定的低电平GND,以将其空闲状态保持在低电平。

功能:下拉是从器件输出电源;拉电流。

当带有下拉电阻的IO端口设置为输入状态时,其正常状态为低,如下图。

图2上拉电阻和下拉电阻2者共同的作用是:避免电压的“悬浮”,造成电路的不稳定。

如下图所示,R1为上拉电阻,R2为下拉电阻。

当R1的电阻在数百K时,它可以向信号线提供非常小的负载电流,负载电容器的充电相对较慢。

在这一点上,电阻被称为弱上拉。

同样,如果下拉电阻很大,下拉速度相对较慢,此时的电阻称为弱下拉。

如果上拉和下拉电平可以为芯片提供大电流,则此时的电阻称为强上拉或强下拉图3上拉电阻的作用1、提高输出的高电平:当TTL电路驱动COMS电路时,当TTL电路的输出电平低于COMS电路的最低高电平(通常为3.5V)时,必须在TTL的输出端连接上拉电阻,以提高输出值的输出电平。

2、OC(集电极开路,TTL)门电路必须加上拉电阻,才能使用,因为管子没有电源就不能输出高电平了。

3、为了提高输出引脚的驱动能力,一些MCU通常在引脚上使用上拉电阻。

4、在COMS芯片上,为了避免静电造成的损坏,不用的管脚不能悬空,通常,连接上拉电阻以降低输入阻抗并提供放电路径。

同时,当引脚悬空时,相对容易接受外部电磁干扰(MOS器件具有高输入阻抗,非常容易受到外部干扰)。

上拉电阻下拉电阻及耦合电容和退耦电容的总结

上拉电阻下拉电阻及耦合电容和退耦电容的总结

上拉电阻下拉电阻及耦合电容和退耦电容的总结上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC门电路必须加上拉电阻,才能使用。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1k到10k之间选取。

对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。

以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。

2.下级电路的驱动需求。

同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。

3.高低电平的设定。

不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。

以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。

4.频率特性。

以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。

上拉电阻的设定应考虑电路在这方面的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上拉电阻下拉电阻,耦合电容和退耦电容的总结上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC门电路必须加上拉电阻,才能使用。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1k到10k之间选取。

对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。

以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。

2.下级电路的驱动需求。

同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。

3.高低电平的设定。

不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。

以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。

4.频率特性。

以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。

上拉电阻的设定应考虑电路在这方面的需求。

下拉电阻的设定的原则和上拉电阻是一样的。

OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平);2V(高电平门限值)。

选上拉电阻时:500uA x 8.4K= 4.2即选大于8.4K时输出端能下拉至0.8V以下,此为最小阻值,再小就拉不下来了。

如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V即可。

当输出高电平时,忽略管子的漏电流,两输入口需200uA200uA x15K=3V即上拉电阻压降为3V,输出口可达到2V,此阻值为最大阻值,再大就拉不到2V了。

选10K可用。

COMS门的可参考74HC系列设计时管子的漏电流不可忽略,IO口实际电流在不同电平下也是不同的,上述仅仅是原理,一句话概括为:输出高电平时要喂饱后面的输入口,输出低电平不要把输出口喂撑了(否则多余的电流喂给了级联的输入口,高于低电平门限值就不可靠了)别的地方看到的和大家分享,大家觉得好的话请帮顶一下!谢谢了!扫盲知识持续更新帖~~~~~~~~~~~~~~~~~~~~~~~~~~什么是耦合电容?什么是去耦电路?耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。

退耦是指对电源采取进一步的滤波措施,去除两级间信号通过电源互相干扰的影响。

耦合常数是指耦合电容值与第二级输入阻抗值乘积对应的时间常数。

退耦有三个目的:1.将电源中的高频纹波去除,将多级放大器的高频信号通过电源相互串扰的通路切断。

2.大信号工作时,电路对电源需求加大,引起电源波动,通过退耦降低大信号时电源波动对输入级/高电压增益级的影响;3.形成悬浮地或是悬浮电源,在复杂的系统中完成各部分地线或是电源的协调匹有源器件在开关时产生的高频开关噪声将沿着电源线传播。

去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。

摘引自伦德全《电路板级的电磁兼容设计》一文,该论文对噪声耦和路径、去耦电容和旁路电容的使用都讲得不错。

请参阅。

干扰的耦合方式干扰源产生的干扰信号是通过一定的耦合通道对电控系统发生电磁干扰作用的。

干扰的耦合方式无非是通过导线、空间、公共线等作用在电控系统上。

分析下来主要有以下几种。

直接耦合:这是干扰侵入最直接的方式,也是系统中存在最普遍的一种方式。

如干扰信号通过导线直接侵入系统而造成对系统的干扰。

对这种耦合方式,可采用滤波去耦的方法有效地抑制电磁干扰信号的传入。

公共阻抗耦合:这也是常见的一种耦合方式。

常发生在两个电路的电流有共同通路的情况。

公共阻抗耦合有公共地和电源阻抗两种。

防止这种耦合应使耦合阻抗趋近于零、使干扰源和被干扰对象间没有公共阻抗。

电容耦合:又称电场耦合或静电耦合,是由于分布电容的存在而产生的一种耦合方式。

电磁感应耦合:又称磁场耦合。

是由于内部或外部空间电磁场感应的一种耦合方式,防止这种耦合的常用方法是对容易受干扰的器件或电路加以屏蔽。

辐射耦合:电磁场的辐射也会造成干扰耦合,是一种无规则的干扰。

这种干扰很容易通过电源线传到系统中去。

另当信号传输线较长时,它们能辐射干扰波和接收干扰波,称为大线效应。

漏电耦合:所谓漏电耦合就是电阻性耦合。

这种干扰常在绝缘降低时发生。

记得以前我的观点是:去藕电容一般容量比较大,也就是避免噪声耦合到其他部分的意思;旁路电容容量小,提供低阻抗的噪声回流路径。

其实这种说法也可以算没有什么大错误。

但是经过偶查阅了相关资料,才发现其实decouple和bypass从根本上来说没有任何区别,两者在称谓上可以互换。

两者的作用低俗一点说:当电源用。

所谓噪声其实就是电源的波动,电源波动来自于两个方面:电源本身的波动,负载对电流需求变化和电源系统相应能力的差别带来的电压波动。

而去藕和旁路电容都是相对负载变化引起的噪声来说。

所以他们两个没有必要做区分。

而且实际上电容值的大小,数量也是有理论根据可循的,如果随意选择,可能会在某些情况下遇到去藕电容(旁路)和分布参数发生自激振荡的情况。

所以真正意义上的去藕和旁路都是根据负载和供电系统的实际情况来说的。

没有必要去做区分,也没有本质区别。

电容是板卡设计中必用的元件,其品质的好坏已经成为我们判断板卡质量的一个很重要的方面。

①电容的功能和表示方法。

由两个金属极,中间夹有绝缘介质构成。

电容的特性主要是隔直流通交流,因此多用于级间耦合、滤波、去耦、旁路及信号调谐。

电容在电路中用“C”加数字表示,比如C8,表示在电路中编号为8的电容。

②电容的分类。

电容按介质不同分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。

按极性分为:有极性电容和无极性电容。

按结构可分为:固定电容,可变电容,微调电容。

③电容的容量。

电容容量表示能贮存电能的大小。

电容对交流信号的阻碍作用称为容抗,容抗与交流信号的频率和电容量有关,容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)。

④电容的容量单位和耐压。

\n\n电容的基本单位是F(法),其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。

由于单位F 的容量太大,所以我们看到的一般都是μF、nF、pF的单位。

换算关系:1F=1000000μF,1μF=1000nF=1000000pF。

每一个电容都有它的耐压值,用V表示。

一般无极电容的标称耐压值比较高有:63V、100V、160V、250V、400V、600V、1000V等。

有极电容的耐压相对比较低,一般标称耐压值有:4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、220V、400V等。

⑤电容的标注方法和容量误差。

电容的标注方法分为:直标法、色标法和数标法。

对于体积比较大的电容,多采用直标法。

如果是0.005,表示0.005uF=5nF。

如果是5n,那就表示的是5nF。

数标法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是10的多少次方。

如:102表示10x10x10 PF=1000PF,203表示20x10x10x10 PF。

\n\n色标法,沿电容引线方向,用不同的颜色表示不同的数字,第一、二种环表示电容量,第三种颜色表示有效数字后零的个数(单位为pF)。

颜色代表的数值为:黑=0、棕=1、红=2、橙=3、黄=4、绿=5、蓝=6、紫=7、灰=8、白=9。

电容容量误差用符号F、G、J、K、L、M来表示,允许误差分别对应为±1%、±2%、±5%、±10%、±15%、±20%。

⑥电容的正负极区分和测量。

电容上面有标志的黑块为负极。

在PCB上电容位置上有两个半圆,涂颜色的半圆对应的引脚为负极。

也有用引脚长短来区别正负极长脚为正,短脚为负。

当我们不知道电容的正负极时,可以用万用表来测量。

电容两极之间的介质并不是绝对的绝缘体,它的电阻也不是无限大,而是一个有限的数值,一般在1000兆欧以上。

电容两极之间的电阻叫做绝缘电阻或漏电电阻。

只有电解电容的正极接电源正(电阻挡时的黑表笔),负端接电源负(电阻挡时的红表笔)时,电解电容的漏电流才小(漏电阻大)。

反之,则电解电容的漏电流增加(漏电阻减小)。

这样,我们先假定某极为“+”极,万用表选用R*100或R*1K挡,然后将假定的“+”极与万用表的黑表笔相接,另一电极与万用表的红表笔相接,记下表针停止的刻度(表针靠左阻值大),对于数字万用表来说可以直接读出读数。

然后将电容放电(两根引线碰一下),然后两只表笔对调,重新进行测量。

两次测量中,表针最后停留的位置靠左(或阻值大)的那次,黑表笔接的就是电解电容的正极。

\n\n⑦电容使用的一些经验及来四个误区。

一些经验:在电路中不能确定线路的极性时,建议使用无极电解电容。

通过电解电容的纹波电流不能超过其充许范围。

如超过了规定值,需选用耐大纹波电流的电容。

电容的工作电压不能超过其额定电压。

在进行电容的焊接的时候,电烙铁应与电容的塑料外壳保持一定的距离,以防止过热造成塑料套管破裂。

并且焊接时间不应超过10秒,焊接温度不应超过260摄氏度。

四个误区:●电容容量越大越好。

\n\n很多人在电容的替换中往往爱用大容量的电容。

我们知道虽然电容越大,为IC提供的电流补偿的能力越强。

且不说电容容量的增大带来的体积变大,增加成本的同时还影响空气流动和散热。

关键在于电容上存在寄生电感,电容放电回路会在某个频点上发生谐振。

在谐振点,电容的阻抗小。

因此放电回路的阻抗最小,补充能量的效果也最好。

但当频率超过谐振点时,放电回路的阻抗开始增加,电容提供电流能力便开始下降。

电容的容值越大,谐振频率越低,电容能有效补偿电流的频率范围也越小。

相关文档
最新文档