3管道阻力的测定

3管道阻力的测定
3管道阻力的测定

管道阻力的测定

一、实验目的

1、学习直管摩擦阻力ΔP f,直管摩擦系数λ和管件局部阻力系数ζ的测定方法

2、掌握直管摩擦系数λ与雷诺数Re之间关系的测定方法及其变化规律

二、实验内容

1、测定水流过一段等直径水平管的摩擦系数λ和Re的关系(在双对数坐标中作图)。

2、测定不同流量下,流体经90°弯管时的流动阻力系数。

三、基本原理

(1)测定λ和Re的关系曲线:

直管的摩擦系数是Re和相对粗糙度的函数

(Re,

d

f

ε

λ=

相对粗糙度一定,

(Re)

f

=

λ

λ与阻力损失的关系:

2

2

u

d

l

h

f

λ

=

h f由直管两端能量衡算方程求出

ρ

1

P

+gZ1+

2

2

1

u

+W e=

ρ

2

P

+gZ2+

2

2

2

u

+h f1-2 H e=0;Z1=Z2;u1=u2

ρ

2

1

2

1

p

p

h

f

-

=

-

式中: h f——阻力损失,J/kg

d——管径。m。

l——直管长。m

u——流速。m/s

ρ——流体的密度。Kg/m3

μ——流体的粘度。N.S/m3

由流体温度查得液体密度和粘度,用涡轮流量计测定流体流量,通过u d q V 2

4

π

=计算流速,对于每一组测

得的数据分别计算对应的λ和Re 。

(2)局部阻力损失,用局部阻力系数法表示。即流体通过某一管件或者阀门的阻力损失用流体的局部阻力系数来表示。即。

ρ

ξp

u

h f ?=

?

=2

2

测出经过管件时的压差及流体通过管路的流速即可求得局部阻力系数。

四、实验流程及主要设备参数(参见离心泵实验) 五、实验步骤(参见离心泵实验)

注意事项:

1、由于调节流量阀,其仪表显示都有滞后性,故等各仪表显示稳定后再读数。

2、为了取得较好的实验效果,必须事先考虑好实验点的布置和测量的次数。 实验布点

由于R e 在充分湍流区时,λ~Re 的关系是水平线,所以在大流量时少布点,而Re 在比较小时,λ~Re 的

关系是曲线,所以小流量时多布点。先将控制阀开至最大,读取流量显示仪读数F 大,然后关至压差显示值约0.3Kpa 时,再读取流量显示仪读数F 小,在F 小和F 大二个读数之间布8~10个点。 六、实验数据记录和结果讨论

1、 将原始数据在计算机上进行数据处理,将数据处理结果贴在实验报告上。

2、在双对数坐标纸上标绘直管阻力系数与雷诺数关系曲线,即λ——Re 关系曲线。

3、列出一组原始数据,写出计算过程,举例说明。

4、对实验结果进行讨论。

原始数据记录表格:

设备编号 ,水温 ℃ 大气压 Pa

管道阻力

一、实验目的与要求 ,管路摩擦系数λ及管件、阀门的局部阻力系数ζ 1. 学习管路阻力损失h f 的测定方法,并通过实验了解它们的变化规律,巩固对流体阻力基本理论的认识; 2. 测定直管摩擦系数λ与雷诺数Re 的关系,验证在一般湍流区内λ与Re 的关系曲线。 3. 测定管件、阀门的局部阻力系数ζ。 4. 学会倒U形压差计和涡轮流量计的使用方法。 5. 识辨组成管路的各种管件、阀门,了解其作用。 二、仪器设备 实验装置LB201D如图1所示 1- 离心泵;2-进口压力变送器;3-铂热电阻(测量水温);4-出口压力变送器;5-电器仪表控制箱;6-均压环;7-粗糙管;8-光滑管(离心泵实验中充当离心泵管路);9-局部阻力管;10-管路选择球阀;11-涡轮流量计;12-局部阻力管上的闸阀;13-电动调节阀;14-差压变送器;15-水箱 图1 管路阻力实验装置流程示意图 三、实验原理 1.直管阻力摩擦系数λ与R e的测定

流体在水平等径直管中稳定流动时,阻力损失为: 2 12 2 f f p p p l u h d λρ ρ ?-= = = 即,2 222f f dh d p lu lu λρ?= = 湍流时,Re du ρ μ= 其中测定流体温度可查表得到ρ、μ;ΔP 可从实验结果得出;l 、d 为装置 参数;u 可通过测定流体流量,结合2 900V u d π=得到。 2. 局部阻力系数ξ的测定 阻力系数法:流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。即: hf ’=ρ ' f p ?=22 u ξ 故 ζ= 2 ' 2u P ρ? 其中ΔP ’f 由实验结果得出;ρ、μ与u 与计算直管时相同。 四、实验步骤 1泵启动:把光滑管的三个开关打开,打开总电源和仪表开关,启动水泵。 2 流量调节:调节左边装置到100%,调节右边装置的流量让流量从1到5m 3/H 范围内变化,每次实验变化0.5m 3/h 。每次改变流量,待流动到达稳定后,记下对应的数据。然后再换成粗糙管和局部阻力管,重复上述步骤。换管时,注意先把管开了再关掉原来的管。 3实验结束:关闭出口阀,关闭水泵和仪表电源,清理装置。 4计算:装置确定时,根据?p 和u 的实验测定值,可计算入和,在等温条件下,雷诺数Re=du ρ/μ=Au ,其中A 为常数,因此只要调节管路流量,即可得到一系列入~Re 曲线。同理,可画出~Re 曲线。 五、数据与处理 表1 管路阻力实验原始数据及其处理 直管基本参数:光滑管径20.0mm 光滑管长度 100cm 光滑管材质不锈钢管 粗糙管径 21.0mm 粗糙管长度100cm 粗糙管材质镀锌铁管

流动阻力测定思考题

流动阻力测定思考题 The following text is amended on 12 November 2020.

实验1单项流动阻力测定 (1)启动离心泵前,为什么必须关闭泵的出口阀门 答:由离心泵特性曲线知,流量为零时,轴功率最小,电动机负荷最小,不会过载烧毁线圈。 (2)作离心泵特性曲线测定时,先要把泵体灌满水以防止气缚现象发生,而阻力实验对泵灌水却无要求,为什么 答:阻力实验水箱中的水位远高于离心泵,由于静压强较大使水泵泵体始终充满水,所以不需要灌水。 (3)流量为零时,U形管两支管液位水平吗为什么 答:水平,当u=0时柏努利方程就变成流体静力学基本方程: (4)怎样排除管路系统中的空气如何检验系统内的空气已经被排除干净 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U形管顶部的阀门,利用空气压强使U形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 (5)为什么本实验数据须在双对数坐标纸上标绘 答:因为对数可以把乘、除变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。

(6)你在本实验中掌握了哪些测试流量、压强的方法它们各有什么特点 答:测流量用转子流量计、测压强用U形管压差计,差压变送器。转子流量计,随流量的大小,转子可以上、下浮动。U形管压差计结构简单,使用方便、经济。差压变送器,将压差转换成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测大流量下的压强差。 (7)读转子流量计时应注意什么为什么 答:读时,眼睛平视转子最大端面处的流量刻度。如果仰视或俯视,则刻度不准,流量就全有误差。 (8)两个转子能同时开启吗为什么 答:不能同时开启。因为大流量会把U形管压差计中的指示液冲走。 (9)开启阀门要逆时针旋转、关闭阀门要顺时针旋转,为什么工厂操作会形成这种习惯 答:顺时针旋转方便顺手,工厂遇到紧急情况时,要在最短的时间,迅速关闭阀门,久而久之就形成习惯。当然阀门制造商也满足客户的要求,阀门制做成顺关逆开。 (10)使用直流数字电压表时应注意些什么 答:使用前先通电预热15分钟,另外,调好零点(旧设备),新设备,不需要调零点。如果有波动,取平均值。

流体流动阻力的测定

流体流动阻力的测定 一、实验目的 (1)熟悉测定流体流经直管的阻力损失的实验组织法及测定摩擦系数的工程意义。 (2)观察摩擦系数λ与雷诺数Re 之间的关系,学习双对数坐标纸的用法 (3)掌握流体流经管件时的局部阻力,并求出该管件的局部阻力。 二、实验原理 流体在管内流动时,由于流体具有黏性,在流动时必须克服内摩擦力,因此,流体必须做功。当流体呈湍流流动时,流体内部充满了大小漩涡,流体质点运动速度和方向都发生改变,质点间不断相互碰撞,引起流体质点动量交换,使其产生了湍动阻力,结果也会消耗流体能量,所以流体的黏性和流体的漩涡产生了流体流动的阻力。 流体在管内流动的阻力的计算公式表示为 2 2 u d l h f λ= 或 2 2 12u d l p p p ρλ=-=? 式中:h 为流体通过直管的阻力(J/kg );△p 为流体通过直管的压力降(N/m 2);p 1,p 2为直管上下游界面流动的压力(N/m 2);l 为管道长(m );d 为管道直径(内径)(m );ρ为流体密度(kg/m 3);u 为流体平均流速(m/s );λ为摩擦系数,无因次。 摩擦系数λ是一个受多种因素影响的变量,其规律与流体流动类型密切相关。当流体在管内作层流流动时,根据力学基本原理,流体流动的推动力(由于压力产生)等于流体内部摩擦力(由于黏度产生),从理论上可以推得λ的计算式为 Re 64 = λ 当流体在管内作湍流流动时,由于流动情况比层流复杂得多,湍流时的λ还不能完全由理论分析建立摩擦系数关系式。湍流的摩擦系数计算式是在研究分析阻力产生的各种因素的基础上,借助因次分析方法,将诸多因素的影响归并为准数关系,最后得出如下结论 ??? ??=?? ??????????=d d du k t ε?εμρλRe,2 由此可见,λ为Re 数和管壁相对粗糙度ε/d 的函数,其函数的具体关系通过实验确定。 局部阻力通常有两种表达方式,即当量长度法和阻力系数法。 当量长度法:流体流过某管件时因局部阻力造成的能量损失相当于流体流过与其相同管径的若干米长度的直管阻力损失,用符号l e 来表示,则 2 2 u d l l h e f +=∑λ 阻力系数法:流体通过某一管件的阻力损失用流体在管路中的动能系数来表示

流体管路流动阻力系数的测定

五、数据处理 1、局部阻力管的原始数据以及相关处理数据 局部阻力管(不锈钢+闸阀) 18℃水的密度:ρ=998.2kg/m3管内径:20 mm 18℃水的粘度:1.0559×10-3 Pa·s 测量段长度:1000mm 2、光滑管的原始数据以及相关处理数 光滑管(不锈钢) 18℃水的密度:ρ=998.2kg/m3 管内径:20 mm 18℃水的粘度:1.0559×10-3 Pa·s 测量段长度:1000mm

3、粗糙管的原始数据以及相关数据处理 粗糙管(镀锌铁管) 18℃水的密度:ρ=998.2kg/m3管内径:20 mm 18℃水的粘度:1.0559×10-3Pa·s 测量段长度:1000mm

4、根据计算所得的粗糙管和光滑管的实验结果,在同一对数坐标上绘制曲线: 对照《化工基础》教材上的曲线图(如下),估算出两管的相对粗糙度和绝对粗糙度

已知光滑管和粗糙管的管内径都为20mm,将光滑管和粗糙管的λ和Re值代入上图可估算为粗糙管的相对 粗糙度为0.004,绝对粗糙度约为0.00008;光滑管的相对粗糙度约为0.0001,绝对粗糙度约为0.000002。 5、数据方法示例: (1)湍流时流量、流速、以及摩擦力系数的计算取光滑管第一组的数据示例 已知: 光滑管(不锈钢)18℃水的密度:ρ=998.2kg/m3管内径:20 mm 18℃ 水的粘度:1.0559×10-3Pa·s 测量段长度L:1000mm,其中,λ为光滑管阻力摩擦系数,无因次d为光滑管内径, ?p为流体流经 L m 光滑管两端的压力 又有: 流量q v =0.5m3/h 流速 u=q v / A = 4 q v / ∏d2 = 4×0.5/3600×3.14×0.022 m/s = 0.4423≈0.44 m/s 雷诺数 Re=dup /μ=(0.02*0.44*998.2)/0.0010599=8287.73 摩擦阻力系数由?p =ρLλl u2 / 2d得 λ=2d ?p/ρLu2 = 2×0.02×147.13÷(998.2×1×0.442) = 0.03045357 ≈ 0.3045 其中,λ为光滑管阻力摩擦系数,无因次d为光滑管内径?p为流体刘晶L m光滑管两端的压力

流体流动阻力测定实验

实验报告 项目名称:流体流动阻力测定实验 学院: 专业年级: 学号: 姓名: 指导老师: 实验组员: 一、实验目的 1、学习管路阻力损失h f和直管摩擦系数λ的测定方法。 2、掌握不同流量下摩擦系数λ与雷诺数Re之间的关系及其变化规律。 3、学习压差测量、流量测量的方法。了解压差传感器和各种流量计的结构、使用方法 及性能。 4、掌握对数坐标系的使用方法。

二、实验原理 流体在管道内流动时,由于黏性剪应力和涡流的存在,会产生摩擦阻力。这种阻力包括流体流经直管的沿程阻力以及因流体运动方向改变或管子大小形状改变所引起的局部阻力。 流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系: h f = ρf P ?=2 2 u d l λ (4-1) 式中: -f h 直管阻力,J/kg ; -d 直管管径,m ; -?p 直管阻力引起的压强降,Pa ; -l 直管管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -λ摩擦系数。 滞流时,λ= Re 64 ;湍流时,λ与Re 的关系受管壁相对粗糙度d ε?的影响,即λ= )(Re,d f ε。 当相对粗糙度一定时,λ仅与Re 有关,即λ=(Re)f ,由实验可求得。 由式(4—1),得 λ= 2 2u P l d f ???ρ (4-2) 雷诺数 Re =μ ρ ??u d (4-3) 式中-μ流体的黏度,Pa*s 测量直管两端的压力差p ?和流体在管内的流速u ,查出流体的物理性质,即可分别计算出对应的λ和Re 。 三、实验装置 1、本实验共有两套装置,实验装置用图4-2所示的实验装置流程图。每套装置中被测光滑直管段为管内径d=8mm ,管长L=1.6m 的不锈钢管;被测粗糙直管段为管内径d=10mm ,管长L=1.6m 的不锈钢管 2、 流量测量:在图1-2中由大小两个转子流量计测量。 3、 直管段压强降的测量:差压变送器或倒置U 形管直接测取压差值。

管道流体阻力测定实验讲义

管道流体阻力测定 一、 实验目的 1.学习直管摩擦阻力f P ?,直管摩擦系数λ的测定方法。 2.掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。 3.掌握局部摩擦阻力f P ?,局部阻力系数ζ的测定方法。 二、实验内容 1.测定实验管路内流体流动的阻力和直管摩擦系数λ。 2.测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。 3.测定管路部件局部摩擦阻力f P ?和局部阻力系数ζ。 三、实验原理 1. 直管摩擦系数λ与雷诺数Re 的测定 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρ ρ f f P P P h ?= -= 2 1 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) 2 2 u d l h f P f λρ == ? (2) 整理(1)(2)两式得 22u P l d f ???= ρλ (3) μ ρ ??= u d Re (4) 式中: -d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,N· s / m 2。 在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。

根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ,用式(4)计算对应的Re ,整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 2.局部阻力系数ζ的测定 22 'u P h f f ζρ =?= ' 2'2u P f ????? ? ??=ρζ 式中: -ζ局部阻力系数,无因次; -?' f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。 图-1 局部阻力测量取压口布置图 局部阻力引起的压强降' f P ? 可用下面方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在上、下游各开两对测压口a-a'和b-b '如图-1,使 ab =bc ; a 'b '=b 'c ',则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c ' 在a~a '之间列柏努利方程式 P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P ' f (5) 在b~b '之间列柏努利方程式: P b -P b ' = △P f ,bc +△P f ,b 'c '+△P ' f = △P f ,a b +△P f ,a 'b '+△P ' f (6) 联立式(5)和(6),则:' f P ?=2(P b -P b ')-(P a -P a ') (7) 为了实验方便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。其数值用差压传感器来测量。 四、实验装置的基本情况 1. 实验装置流程示意图

管道压力损失

除尘系统中的管道压力损失计算 管道的压力损失就是含尘空气在管道中流动的压力损失.它等于管道沿程(摩擦)压力损失和局部损失之和 ,在实际计算中以最长沿程一条管道进行计算,其计算结果作为风机造型的参考依据. 一:管道的沿程压力损失 1. a △P m =△P m λR S P -----湿周,既管道的周长(m ) 左管道系统计算中,一般先计算出单位长度的摩擦损失,通常也称比摩阻(Pa/m ): △P m =λ 比摩阻力可通过查阅图表14-1得出,我公司的管道主要应用于除尘系统中,考虑到含尘空气中粉尘沉降的问题,除尘管道内的风速选择为25~28m/s. 4R S 1 2 V 2e

根据计算图标得出的以下数据: 局部阻力引起的能量损失,称之为局部压力损失或局部损失。 局部损失可按下列公式计算: △P J =δ △P J ----局部压力损失(Pa ) δ------局部阻力系数 2 V 2e

局部阻力系数δ可根据不同管道组件:如进出风口、弯头、三通等的不同尺寸比例,在相关资料中可查得,然后再根据上式计算出局部损失的大小。 例如:整体压制900圆弯头:当r/D=1.5时 δ=0.15 当r/D=2.0时 δ=0.13 当r/D=2.5时 δ=0.12 0总之,△P 为数。 F---Pq---风机全压(Pa ) Q---风机风量(m 3/s ) η----风机效率(一般为0.8~0.86) K---安全系统(1.0~1.2) 上式所得结果即为风机数电机功率,实际使用功率为:

Fs= Fs/F 即为风机的实际使用负载率 Pq*Q 1000* η

流体流动阻力实验

实验一 流体流动阻力实验 一、实验目的 1、学习直管摩擦阻力f P ?、直管摩擦系数λ的实验方法; 2、掌握不同流量下摩擦系数λ与雷诺数Re 之间的关系及其变化规律; 3、学习局部阻力的测定方法; 4、学习压强差的几种测量方法和技巧; 5、掌握坐标系的选用方法和对数坐标系的使用方法。 二、实验原理 1. 直管摩擦系数 与雷诺数Re 的测定 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρ ρf f P P P h ?=-= 2 1 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) 2 2 u d l P h f f λρ=?= (2) 整理(1)(2)两式得 2 2u P l d f ???=ρλ (3) μ ρ ??= u d Re (4) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ;

-ρ流体的密度,kg / m 3 ; -μ流体的粘度,N ·s / m 2。 在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降 f P ?与流速u (流量V )之间的关系。 测得一系列流量下的f P ?后,根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ;用式(4)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 2. 局部阻力系数ζ的测定 2 2 'u P h f f ζρ =?= ' (5) 2'2u P f ?????? ??=ρζ (6) 式中:-ζ局部阻力系数,无因次; -?'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。 图3 局部阻力测量取压口布置图 局部阻力引起的压强降'f P ? 可用下面的方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在其上、下游开两对测压口a-a ’和b-b ',见图3,使 ab =bc ; a 'b '=b 'c ' 则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c '

流体流动阻力的测定

实验一流体流动阻力的测定 一、实验目的 1. 学习液压计及流量计的使用方法; 2.识别管路中的各个管件、阀门并了解其作用; 3.测定流体流经直管时的摩擦系数与雷诺数的关系; 4.测定90。标准弯头的局部阻力系数。 二、实验原理 1. 摩擦系数的测定方法 直管的摩擦系数是雷诺数和管的相对粗糙度(ε/d)的函数,即λ=Ф(Re, ε/d),因此,在相对粗糙度一定的情况下,λ与Re存在一定的关系。根据流体力学的基本理论,摩擦系数与阻力损失之间存在以下关系: (1-1) 式中:h f 阻力损失,J/N; L管段长度,m; d管径,m; u流速,m/s; 摩擦系数; g重力加速度,m/s2。 流体在水平均匀直管中作稳态流动时,由截面1流动到截面2时的阻力损失体现在压强的降低,即 (1-2) 两截面之间管段的压强差(P1-P2)可以用U形压差计测量,故可以计算出h f 。 用涡轮流量计测定流体通过已知管段的流量,在已知管径的情况下流速可以通过体积流量来计算,由流体的密度ρ、粘度μ,因此,对于每一组测得的数据可以分别计算出对应的λ和Re。 2. 局部阻力系数的测定 根据局部阻力系数的定义: (1-3) 式中:ζ—局部阻力系数。 实验时测定流体经过管件时的阻力损失h f及流体通过管路的流速u,其中阻力损失h f可以应用机械能衡算方程由压差计读数求出,再由式(1-3)即可计算出局部阻力系数。在测定阻力损失时,测压孔不能紧靠管件处,因为在紧靠管件处压强差难以测准。通常测压孔都开设在距管件一定距离的管子上,这样测出的阻力损失包括了管件和直管两部分,因此计算管件阻力损失时应扣除直管部分的阻力损失。

管道阻力的测定

弯道阻力的测定 一、 实验目的 (1) 学习管路阻力损失(f h )、管路摩擦系数(λ)、管件局部阻力 系数(ζ)的测定方法,并通过实验了解它们的变化规律,巩固对流体阻力基本理论的认识; (2) 学习对数坐标纸的用法; (3) 了解压力传感器的工作原理。 二、 实验任务 (1) 测定流体流经直管时的摩擦系数与雷诺系数的关系; (2) 测定流体流动属滞留状态时,直管摩擦系数与雷诺系数的关系; (3) 测定o 90标准弯头的局部阻力系数。 三、 试验方法及其理论原理 1摩擦系数测定法 直管的摩擦系数是雷诺数和管的相对粗糙(d ε)的函数,即 )(Re,d εφλ=,因此,相对粗糙度一定,λ与Re 有一定的关系。 根据流体力学的基本理论,摩擦系数与阻力损失之间存在如下的关系: 22 u d l h f λ = (1) 式中:f h ——阻力损失,kg J ; l ——管段长度,m ; d ——管径,m ;

u ——平均流速,s m ; λ——摩擦系数。 管路的摩擦系数是根据这一原理关系来测定的。对已知长度、管径的直管,在一定流速范围内,测定阻力损失,然后按式(1)求出摩擦系数。根据能量横算方程 f h u g z P u g z P +++=++ +2 22 22211 ρωρ (2) 在一条等直径的水平管上选取两个截面,测定λ~Re 的关系,则这两截面间管段的阻力损失变简化为 ρ 2 1P P h f -= (3) 两截面就爱你管段的压力差为(21P P -)可用U 形管压差计测量,也可以使用压力变送器进行测量。压力变送器是一种能感受的压力,并按照一定的规律将压力信号转变成可用的统一的电信号输出的期间或装置。夜里变送器的输出信号与压力心寒之间有一给定的连续现行函数关系,变送器内部装有专用放大电路,其统一的标准信号通常为4~20mA ,1~5A ,本实验使用差压变送器测取流体通过两截面的压强差,故可计算出f h 。 用无论流量计测定流体通过已知管段的流量,在已知d 的情况下流速可以通过式u d V 24 π = 计算,由流体的温度可查得流体的密度 ρ、粘度μ,因此,对于每一组测得的数据可跟别计算出对应的λ和 Re 。 2,局部阻力系数测定 根据局部阻力系数的定义:

流体流动阻力的测定

实验名称:流体流动阻力的测定 一、实验目的及任务: 1.掌握测定流体流动阻力实验的一般方法。 2.测定直管的摩擦阻力系数及突然扩大管的局部阻力系数。 3.验证湍流区内摩擦阻力系数为雷诺数和相对粗糙度的函数。 4.将所得光滑管的方程与Blasius方程相比较。 二、实验原理: 流体输送的管路由直管和阀门、弯头、流量计等部件组成。由于粘性和涡流作用,流体在输送过程中会有机械能损失。这些能量损失包括流体流经直管时的直管阻力和流经管道部件时的局部阻力,统称为流体流动阻力。 1.根据机械能衡算方程,测量不可压缩流体直管或局部的阻力 如果管道无变径,没有外加能量,无论水平或倾斜放置,上式可简化为: Δp为截面1到2之间直管段的虚拟压强差,即单位体积流体的总势能差,通过压差传感器直接测量得到。 2.流体流动阻力与流体性质、流道的几何尺寸以及流动状态有关,可表示为: 由量纲分析可以得到四个无量纲数群: 欧拉数,雷诺数,相对粗糙度和长径比

从而有 取,可得摩擦系数与阻力损失之间的关系: 从而得到实验中摩擦系数的计算式 当流体在管径为d的圆形管中流动时,选取两个截面,用压差传感器测出两个截面的静压差,即可求出流体的流动阻力。根据伯努利方程摩擦系数与静压差的关系,可以求出摩擦系数。改变流速可测得不同Re下的λ,可以求出某一相对粗糙度下的λ-Re关系。 在湍流区内摩擦系数,对于光滑管(水力学光滑),大量实验证明,Re 在氛围内,λ与Re的关系遵循Blasius关系式,即 对于粗糙管,λ与Re的关系以图来表示。 3.对局部阻力,可用局部阻力系数法表示: 对于扩大和缩小的直管,式中的流速按照细管的流速来计算。 对一段突然扩大的圆直管,局部阻力远大于其直管阻力。由忽略直管阻力时的伯努利方程 可以得到局部阻力系数的计算式: 式中,、分别为细管和粗管中的平均流速,为2,1截面的压差。 突然扩大管的理论计算式为:ζ(),、分别为细管和粗管的流通

管道系统压力测试报告(精)

管道系统压力测试报告 测试日期:2011年10月10日 一、试压、试漏工作的意义 试压、试漏是一项重要工作,必须严格认真完成。易燃、易爆、有毒介质的泄漏将危害工厂的安全生产和工作人员的生命安全。 二、试压、试漏前应具备的条件 1. 试验范围内管道安装工程除涂漆、绝热外,已按设计图纸全部完成,安装质量符合有关规定。 2. 焊缝和其它待试验部分尚未涂漆和绝热。 3. 试验用压力表已经校验,其精度不得低于1?6级,表的满刻度值应为被测最大压力的1?5~2?0倍,压力表不得少于6块。 4. 待测管道与无关系统已用盲板或采用其它方式隔开。 5. 待测管道上的安全阀、仪表元件等己经拆下或加以隔离。 三、试压、试漏前应准备的工具 准备好试压、试漏所用的无油干燥压缩空气或干燥的氮气,以及准备肥皂水、刷子(油漆刷即可、吸耳球等试气密工具若干。 1、无油干燥压缩空气或干燥的氮气, 2、洗衣粉(洗洁精) 3、没有用过的油漆刷,吸耳球 4、盛水用的盆子

5、做标志明示牌用的小牌若干,记号笔 6、临时压力表 (1)气压强度实验 使压力缓慢升高。至试验压力的50%时停止进气。检查,若无泄露及管道变形,进入下一步。 1. 继续按实验压力的10%逐渐升至实验压力,每一级稳压3min ,检查。(要求同上) 2. 达到实验压力后,稳定5min ,以无明显泄露,目测无变形为合格。 (2)气密性实验 1. 将压力升至试验压力的1/3时,用肥皂水涂抹所有的管道连接处、设备密封口、管道焊缝和螺纹接头处。 2. 开关前、后压力相等的手动截止阀2~3次,重复检查阀门的阀杆和填料压盖处。 3. 开关所有调节阀3~4次,重复检查调节阀的阀杆和填料压盖处。 4. 开关前、后压力相等的程控阀5~6次,重复检查阀门的阀杆和填料压盖处,同时检查程控阀整个行程所用的时间(应当在规定值范围内)和程控阀的动作是否与程序一致。 5. 装置试压、试漏过程中必须做好记录,记录好所有气体泄漏处。 6. 在压力≤0?25MPa 设备和管路上,发现小量气体泄漏允许小心地带压处理,较大的泄漏必须泄压处理。 7. 在压力≥0?25MPa 设备和管路上,发现气体泄漏必须泄压处理。

管道压力损失计算

冷热水管道系统的压力损失 无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。 (2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的 的设备。 如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。 管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。 压力损失分为延程压力损失和局部压力损失: — 延程压力损失指在管道中连续的、一致的压力损失。 — 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。 以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。 一、 延程压力损失的计算方式 对于每一米管道,其水流的压力损失可按以下公式计算 其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数 ρ=水的密度 kg/m 3 v=水平均流速 m/s D=管道内径 m 公式(1) 延程压力损失 局部压力损失

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度 表1:水密度与温度对应值 水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.6 1.1 水流方式 水在管道内的流动方式分为3种: —分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。 流动方式通过雷诺数(Reynolds Number)予以确定: 其中: Re=雷诺数 v=流速m/s D=管道内径m。 ?=水温及水流动力粘度,m2/s 表2:水温及相关水流动力粘度 水温m2/s cSt °E 10°C 1.30×10-6 1.30 1.022 20°C 1.02×10-6 1.02 1.000 30°C 0.80×10-6 0.80 0.985 40°C 0.65×10-6 0.65 0.974 50°C 0.54×10-6 0.54 0.966 60°C 0.47×10-6 0.47 0.961 70°C 0.43×10-6 0.43 0.958 80°C 0.39×10-6 0.39 0.956 90°C 0.35×10-6 0.35 0.953 通过公式2计算出雷诺数就可判断水流方式: Re<2,000:分层式流动 Re:2,000-2,500:过渡式流动

管路阻力的测定

实验题目:管路阻力的测定 一 实验目的 1. 学习管路阻力损失h f ,管路摩擦系数λ及管件、阀门的局部阻力系数ζ的测定方法,并通过实验了解它们的变化规律,巩固对流体阻力基本理论的认识; 2. 测定直管摩擦系数λ与雷诺数Re 的关系,验证在一般湍流区内λ与Re 的关系曲线。 3. 测定管件、阀门的局部阻力系数ζ。 4. 学会倒U 形压差计和涡轮流量计的使用方法。 5. 识辨组成管路的各种管件、阀门,了解其作用。 二 实验原理 流体通过由直管、管件和阀门等组成的管路系统时,由于粘性剪应力和涡流的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1. 直管阻力摩擦系数λ的测定。 流体在水平等径直管中稳定流动时,阻力损失为: 212 2 f f p p p l u h d λρ ρ ?-= = = (3-1) 即,2 2 22f f dh d p lu lu λρ?= = (3-2) 式中:λ——只管阻力摩擦系数,无因次;d ——直管内径,m ; ΔP f ——流体流经l 米直管的压力降,Pa ;l ——直管长度,m ; H f ——单位质量流体流经l 米直管的机械能损失,J/kg ; u ——流体在管内流动的平均流速,m/s ;ρ——流体密度,kg/m 3. 层流时,64 Re λ= (3-3) Re du ρ μ = (3-4) 式中:Re ——雷诺准数,无因次;μ——流体粘度,kg/(m.s). 湍流时λ是雷诺准数Re 和相对粗糙度(ε/d )的函数,须由实验确定。 由式(3-2)可知,欲测定λ,需确定L 、d ,测定ΔP f 、u 、ρ、μ等参数。L 、d 为装置参数,ρ、μ通过测定流体温度,再查有关手册而得,u 通过测定流体流量,再由管径计算得到。 例如本装置采用涡轮流量计测流量V (m 3/h )。

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

水系统管道阻力计算

空调水系统的水力计算 根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。 一、沿程阻力(摩擦阻力) 流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力,即 (1-1) 若直管段长度l=1m时, 则 式中λ——摩擦阻力系数,m; ——管道直径,m; R——单位长度直管段的摩擦阻力(比摩阻),Pa/m; ——水的密度,kg/m3; ——水的流速,m/s。 对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。根据管径、流速,查出管道动压、流量、比摩阻等参数。 计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。所以这种空调末端承担负荷应计算精确,以避免负荷叠加。同时应清楚了解水管系统的方式,如同程式,异程式。不同的接管方式对沿程阻力具有一定的影响。在计算工程中,比摩阻宜控制在100-300Pa/m,通常不应超过400Pa/m。 二、局部阻力 (一)局部阻力及其系数

在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力()。

(2-1)式中——管道配件的局部阻力系数; ——水流速度,m/s。 常用管道的配件可以通过相应的表格进行查询。根据管道管径的不同以及管道上的阀门、弯头、过滤器、除污器、水泵入口等能出现局部阻力的类别进行查询,得到不同的局部阻力系数,再利用公式计算出局部阻力。 对于三通而言,不同的混合方向及方式,会出现不同的阻力系数,且数值相差比较大。因此,查询三通阻力系数时,应根据已有的混合方式进行查询,进而得到更准确的局部阻力系数。 在实际计算水管局部阻力时,应先确定管道上的管件种类、数目,尤其是水管接进机组、水泵、末端。可参见设备安装详图,其中会画出相应的管道配件。 (二)当量长度 利用相同管径直管段的长度表示局部阻力,这样称为局部阻力当量长度(m): 式中——管道配件的局部阻力系数。 根据各种阀门、弯头、三通以及特殊配件(突扩、突缩、胀管、凸出管等)的工程直径,可以查出相应的当量长度。 三、设备压力损失 空调系统中含有很多制冷、制热设备,如冷凝器、蒸发器、冷却水塔、冷热盘管等等。这些设备自身都有一定的压力损失。在水系统的水力计算中,除了管道部分的阻力之外,还有设备的压力损失。将这两部分加起来,才是整个系统的水力损失。 但是因为设备的生产厂家、型号、运行条件及工况的不同,压力损失相差比较大,一般情况下,是由设备厂家提供该设备的压力损失。若缺乏该方面的资料,可以按照经验值进行估算。估算值见表3-1。

管路沿程阻力测定实验报告

实验一 管路沿程阻力测定 一 实验目的 1. 掌握流体流经管道时沿程阻力损失的测定方法。 2.测定流体流过直管时的摩擦阻力,确定摩擦系数λ与Re 的关系。 3.测定流体流过管件时的局部阻力,并求出阻力系数ξ 。 4.学会压差计和流量计的使用。 二 实验原理 流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起压强损耗。这种损耗包括流体流经直管的沿程阻力以及流体流动方向的改变或因管子大小、形状的改变所引起的局部阻力。 1.沿程阻力 2u d l p h 2 f ?=?=λρ λ称为直管摩擦系数,滞留时,;湍流时,λ与e R 的关系受管壁粗糙度的影响,需由实验测得。e 64R =λ 根据伯努利方程可知,流体流过的沿程阻力损失,可直接得出所测得的液柱压差计度数R(m)算出:()g -R p 水指ρρ=? 2.局部阻力 1)当量长度法2u d l l h 2e f ???? ? ??+=∑∑λ 2)阻力系数法2 u h 2 p ?=ξ ξ-局部阻力系数,无因次;u-在小截面管中流体的平均流速(m/s ) 三 实验装置与流程 1.本实验装置及设备主要参数: 被测元件:镀锌水管,管长2.0m ,管径(公称直径)0.021m ;闸阀D=3/4. 1)测量仪表:U 型压差计(水银指示液);LW —15型涡轮流量计(精度0.5级,量程0.4~4.0m /h, 仪器编号Ⅰ的仪表常数为599.41(次/升),仪器编号II 的仪表常数为605.30(次/升),MMD 智能流量仪)。 2)循环水泵。 3)循环水箱。

121014134)DZ15-40型自动开关。 5)数显温度表 2.流程: 流体流动阻力损失实验流程图 1)水箱 6)放空阀 11)取压孔 2)控制阀 7)排液阀 12)U 形压差计 3)放空阀 8)数显温度表 13)闸阀 4)U 形压差计 9)泵 14)取压孔 5)平衡阀 10)涡轮流量计 四 实验操作步骤及注意事项 1.水箱充水至80% 2.仪表调整(涡轮流量计﹑MMD 智能流量计仪按说明书调节) 3.打开压差计上平衡阀,关闭各放气阀。 4.启动循环水泵(首先检查泵轴是否转动,开全阀13,全关阀2,后启动)。 5.排气:(1)管路排气;(2)测压管排气;(3)关闭平衡阀,缓慢旋动压差计上放气阀排除压差计中的气泡(注意:先排进压管后排出压管,以防压差计中水银冲走),排气完毕。 6.读取压差计零位读数。 7.开启调节阀至最大,确定流量范围,确定实验点(8~10个),测定直管部分阻力和局部阻力(闸阀全开时)。 8测定读数:改变管道中的流量读出一系列流量s V 、压差1p ?或者2p ?。 注意:每改变一次流量后,必须等流动稳定后,才能保证测定数据的准确。 9实验装置恢复原状,打开压差计上的平衡阀,并清理实验场地。 1 2 3 4 5 6 7 8 9 11 11

流体管路阻力系数的测定

实验数据处理 1.原始数据记录 ⑴装置参数: 离心泵型号:MS60 /0.55SSC 转速:2850 r/min 额定流量:60 L/min 额定功率:0.55 kw 额定扬程:19.5 m 泵进出口测压点高度差: 12.10 cm ⑵水的相关参数: t = 28.1 o C,ρ= 995.7 kg*m-3,μ= 0.9579*10-3 Pa*s。重力加速度g = 9.81 m/s2⑵原始数据记录 表 1 原始数据记录表 序号流量q v (L/h) 泵进口压力 (kpa) 泵出口压力 (Mpa) 电动机功率N 电 (kW) 泵转速n (r/min) 1 600 -0. 2 0.24 3 0.227 2940 2 800 -0.2 0.240 0.240 2940 3 1000 -0.2 0.238 0.245 2920 4 1200 -0.2 0.236 0.25 5 2940 5 1400 -0.2 0.231 0.274 2940 6 1600 -0. 7 0.234 0.260 2920 7 1800 -0.4 0.229 0.279 2920 8 2000 -0.9 0.227 0.289 2920 9 2200 -0.8 0.224 0.297 2900 10 2400 -1.1 0.221 0.305 2920 11 2600 -1.1 0.218 0.314 2900 12 2800 -1.5 0.219 0.321 2900 13 3000 -1.8 0.211 0.311 2900 14 3200 -1.7 0.209 0.339 2900 15 3400 -2.1 0.204 0.344 2880 16 3600 -2.3 0.200 0.353 2880 17 3800 -2.7 0.196 0.361 2880 18 4000 -2.3 0.193 0.368 2880 19 4200 -3.1 0.188 0.378 2880 20 4400 -3.3 0.184 0.381 2880 21 4600 -3.7 0.179 0.389 2880 22 4800 -3.9 0.175 0.396 2880 23 5000 -3.7 0.169 0.403 2880 24 5200 -4.1 0.170 0.400 2860 25 5400 -4.4 0.164 0.408 2860 26 5600 -4.9 0.157 0.415 2860 27 5800 -5.1 0.154 0.419 2840 28 6000 -5.8 0.142 0.428 2840 2.数据分析及处理 以q v = 600 L/h(即第一组数据)为例,计算过程如下: 单位换算:600 L/h = 600/1000/3600 m3/s = 1.67*10-4 m3/s, 12.1 cm = 0.121 m, 根据基本原理部分的公式,在校核转速后,计算各流量下的泵扬程、轴功率和效率①由式q v’ / q v= n’/n可得: q v’= n’/n*q v = (2940/2850*1.67*10-4) m3/s = 1.72*10-4 m3/s

相关文档
最新文档