数学分析微分中值定理及其应用
中值定理及函数应用
![中值定理及函数应用](https://img.taocdn.com/s3/m/ed698a55a200a6c30c22590102020740be1ecd1a.png)
拉格朗日中值定理的名称来源于法国数学家拉格朗日,他在18世纪中叶证明了 这一定理。该定理是微分学中的基本定理之一,是解决各种问题的关键工具。
柯西中值定理
总结词
柯西中值定理是微分学中的又一重要定理,它指出如果两个函数在闭区间上连续,在开区间上可导,且在该区间 内至少存在一点,使得两个函数的导数之比等于这两个函数在该点的函数值之比,则在该区间内至少存在一点, 使得该点的导数等于两个函数在该点的函数值的商的导数。
中值定理及函数应用
目 录
• 中值定理简介 • 中值定理的应用 • 函数的应用 • 中值定理与函数的应用实例 • 中值定理与函数的应用前景
01 中值定理简介
罗尔定理
总结词
罗尔定理是微分学中的基本定理之一,它指出如果一个函数 在闭区间上连续,在开区间上可导,且在区间的两端取值相 等,则在开区间内至少存在一点,使得该点的导数为零。
极值的计算
通过求导数,找到导数为0的点,然后判断该点两侧的函数值变化情况,确定是否为极值 点,并计算出极值。
函数的单调性
单调性的概念
单调性是指函数在某个区间内单调增加或单调减少的性质。
单调性的判定
通过一阶导数来判断函数的单调性,当一阶导数大于0时,函 数在该区间内单调增加;当一阶导数小于0时,函数在该区间
在物理学中,中值定理的应用非常广泛。例 如,在研究热力学中的热传导和热辐射时, 可以利用中值定理来推导一些重要的结论。
03 函数的应用
函数的极值
极值的概念
极值是函数在某点附近取得的最大或最小值,它反映了函数在某一点上的变化率。
极值的判定
通过一阶导数和二阶导数来判断函数的极值,当一阶导数等于0且二阶导数大于0时,函 数在该点取得极小值;当一阶导数等于0且二阶导数小于0时,函数在该点取得极大值。
微分中值定理的推广及应用
![微分中值定理的推广及应用](https://img.taocdn.com/s3/m/5f80adc6fbb069dc5022aaea998fcc22bdd1437a.png)
微分中值定理的推广及应用微分中值定理是微积分中的重要定理之一,它在分析函数在区间内的平均速度和瞬时速率之间的关系上展示了重要的性质。
在本文中,我们将探讨微分中值定理的推广及其在实际问题中的应用。
首先,我们回顾一下微分中值定理的基本形式。
设函数f(x)在闭区间[a, b]上连续,在开区间(a, b)内可导,那么存在一个点c ∈ (a, b),使得f'(c) = (f(b) - f(a))/(b - a)。
这个定理说明了在[a, b]上函数的瞬时变化率在某一点上与其平均变化率相等。
在进一步研究中,我们可以将微分中值定理推广到更一般的情形。
例如,当函数f(x)在闭区间[a, b]上多次可导时,我们可以得到多次求导的结果。
具体而言,对于任意非负整数n,存在点c ∈ (a, b),使得f^(n)(c) = (f(b) - f(a))/(b - a)^(n),其中f^(n)(c)表示f(x)的n阶导数。
推广定理的证明是基于数学归纳法的。
首先,对于n=1的情况,即一阶导数,我们可以直接应用微分中值定理的基本形式进行证明。
接下来,假设对于k=1,2,...,n-1,定理成立。
我们将其应用于f'(x),得到存在一个点d ∈ (a, b),使得f''(d) = (f'(b) - f'(a))/(b - a)。
然后,我们可以使用拉格朗日中值定理来得到f''(d) = f^(2)(c)。
结合两个等式,我们可以得到f^(2)(c) = (f'(b) - f'(a))/(b - a)。
通过类似的推理,我们可以证明对于更高阶导数的情况也成立。
了解了微分中值定理的推广形式后,我们将进一步探讨其在实际问题中的应用。
微分中值定理常常被用于研究函数在某一区间的极值点及函数图像的凸凹性。
首先,我们考虑函数的极值点。
根据微分中值定理,如果函数在某一区间[a, b]上可导,那么在(a, b)内存在一个点c,使得f'(c) = 0。
数学分析第六章微分中值定理及其应用课件1
![数学分析第六章微分中值定理及其应用课件1](https://img.taocdn.com/s3/m/0f1bbbe4970590c69ec3d5bbfd0a79563c1ed4de.png)
例如, f ( x) x2 2x 3 ( x 3)(x 1).
在[1,3]上连续, 在(1,3)上可导, 且 f (1) f (3) 0,
f ( x) 2( x 1), 取 1, (1 (1,3)) f () 0.
几何解释:
y
C
在曲线弧AB上至少有一
点C , 在该点处的切线是
二、拉格朗日(Lagrange)中值定理
拉格朗日(Lagrange)中值定理 (1)如果函数 f(x)在 闭区间[a, b]上连续(,2在) 开区间(a, b) 内可导,那末在 (a, b)内至少有一点(a b),使等式
f (b) f (a) f ' ()(b a) 成立.
注意 : 与罗尔定理相比条件中去掉了 f (a) f (b). 结论亦可写成 f (b) f (a) f (). ba
使 f ( x) 0.
又例如,
y
1 0,
x, x
x 0
(0,1] ;
y x, x [0,1].
例1 证明方程 x5 5x 1 0 有且仅有一个小于
1 的正实根.
证 设 f ( x) x5 5x 1, 则 f ( x)在[0,1]连续,
且 f (0) 1, f (1) 3.
由介值定理
所得曲线a, b两端点的函数值相等.
作辅助函数
F ( x) f ( x) [ f (a) f (b) f (a) ( x a)]. ba
F ( x) 满足罗尔定理的条件,
则在(a, b)内至少存在一点, 使得 F () 0.
即 f () f (b) f (a) 0 ba
或 f (b) f (a) f ()(b a).
拉格朗日中值公式
微分中值定理与导数的应用
![微分中值定理与导数的应用](https://img.taocdn.com/s3/m/c389f736f342336c1eb91a37f111f18583d00cb6.png)
微分中值定理与导数的应用微分中值定理是微积分中的一个重要定理,它是导数与函数之间的关系的重要推论。
本文将介绍微分中值定理的概念以及其在实际问题中的应用。
一、微分中值定理的概念微分中值定理是数学分析中的一个重要定理,它是由罗尔定理和拉格朗日中值定理推导出的。
该定理表明,如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)内可导,并且在区间端点a和b的函数值相等(f(a) = f(b)),那么在(a, b)内至少存在一点c,使得f'(c) = 0。
这一定理的直观解释是:如果一个连续函数在两个点的函数值相等,并且在两点之间的某个地方斜率为零,那么在该点一定存在切线与横轴平行。
二、导数的应用导数是微积分中的重要概念,它描述了函数在某一点的变化率。
通过导数的概念和性质,我们可以在实际问题中进行一些有用的应用。
1. 最值问题导数可以用来求解函数的最值问题。
在闭区间上的连续函数中,如果在某一点的导数为零或不存在,那么这一点可能是函数的极值点。
通过求解导数为零的方程,可以找到函数的极值。
2. 凹凸性和拐点问题导数可以用来研究函数的凹凸性和拐点问题。
通过分析函数的二阶导数(导数的导数),可以确定函数的凹凸性以及拐点的位置。
3. 曲线的切线和法线问题导数可以用来求解曲线的切线和法线问题。
切线的斜率等于函数在该点的导数,而法线的斜率是切线斜率的负倒数。
三、微分中值定理的应用微分中值定理是导数与函数之间的重要关系推论,它在实际问题中有着广泛的应用。
1. 速度与加速度微分中值定理可以用来解决速度与加速度的问题。
对于一个运动的实体,在某一时间段内,他的速度可能为零,这意味着他的加速度为零。
这可以通过微分中值定理得到证明。
2. 经济学中的应用微分中值定理在经济学中也有广泛的应用。
例如,在某个时间段内,一个消费品的价格可能保持不变,这意味着该消费品的边际效用或边际收益为零。
这可以用微分中值定理来解释。
3. 物理学中的应用微分中值定理在物理学中也有重要的应用。
《数学分析》第六章微分中值定理及其应用
![《数学分析》第六章微分中值定理及其应用](https://img.taocdn.com/s3/m/82913dcd6bec0975f565e229.png)
第六章 微分中值定理及其应用(计划课时: 8时 )§ 1中值定理 ( 3时 )一 思路: 在建立了导数的概念并讨论了其计算后,应考虑导数在研究函数方面的一些作用。
基于这一目的,需要建立导数与函数之间的某种联系。
还是从导数的定义出发:00)()(limx x x f x f x x --→=)(0x f '.若能去掉导数定义中的极限符号,即00)()(x x x f x f --=?)(0x f ',则目的就可达到.这样从几何上说就是要考虑曲线的割线与切线之间的平行关系. 一方面要考虑给定割线, 找平行于该割线的切线; 另一方面要考虑给定切线, 找平行于该切线的割线. (1)若给定的割线是水平的、斜的或曲线的方程以参数方程的形式给出,则分别可找出相应的切线平行于该割线,再分析所需要的条件,就可建立起Rolle 定理、Lagrange 定理、Cauchy 定理. 这三个微分中值定理用一句话概括:对于处处连续、处处有切线曲线的每一条割线都可以找到平行于该割线的切线. (2)若给定切线, 找平行于该切线的割线, 则不一定能实现.二 微分中值定理:1. Rolle 中值定理: 叙述为Th1. ( 证 ) 定理条件的充分但不必要性.2. Lagrange 中值定理: 叙述为Th2. ( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理.Lagrange 中值定理的各种形式. 关于中值点的位置. 系1 函数)(x f 在区间I 上可导且)( ,0)(x f x f ⇒≡'为I 上的常值函数. (证) 系2 函数)(x f 和)(x g 在区间I 上可导且,)()( ),()(c x g x f x g x f +=⇒'≡'.I ∈x 系 3 设函数)(x f 在点0x 的某右邻域)(0x + 上连续,在)(0x +内可导.若)0()(lim 00+'='+→x f x f x x 存在 , 则右导数)(0x f +'也存在, 且有).0()(00+'='+x f x f (证)但是, )0(0+'x f 不存在时, 却未必有)(0x f +'不存在. 例如对函数⎪⎩⎪⎨⎧=≠=.0,0,0 ,1sin )(2x x xx x f 虽然)00(+'f 不存在,但)(x f 却在点0=x 可导(可用定义求得0)0(='f ).Th3 (导数极限定理) 设函数)(x f 在点0x 的某邻域 )(0x 内连续, 在)(0x内可导. 若极限)(lim 0x f x x '→存在, 则)(0x f '也存在, 且).(lim )(00x f x f x x '='→ ( 证 )由该定理可见, 若函数)(x f 在区间I 上可导,则区间I 上的每一点,要么是导函数)(x f '的连续点,要么是)(x f '的第二类间断点.这就是说,当函数)(x f 在区间I 上点点可导时, 导函数)(x f '在区间I 上不可能有第二类间断点.3. Cauchy 中值定理:Th 4 设函数f 和g 在闭区间],[b a 上连续, 在开区间),(b a 内可导, f '和g '在),(b a 内不同时为零, 又).()(b g a g =/ 则在),(b a 内至少存在一点,ξ 使得)()()()()()(a g b g a f b f g f --=''ξξ. 证 分析引出辅助函数 -=)()(x f x F )()()()(a g b g a f b f --)(x g . 验证)(x F 在],[b a 上满足Rolle 定理的条件, ∍∈∃⇒ ),,( b a ξ-'=')()(ξξf F )()()()(a g b g a f b f --.0)(='ξg必有0)(=/'ξg , 因为否则就有0)(='ξf .这与条件“f '和g '在),(b a 内不同时为零” 矛盾. ⇒Cauchy 中值定理的几何意义.Ex [1]P 163 1—4;三 中值定理的简单应用: ( 讲1时 ) 1. 证明中值点的存在性:例1 设函数f 在区间],[b a 上连续, 在),(b a 内可导, 则),(b a ∈∃ξ, 使得)()(a f b f -)(lnξξf ab'⋅=. 证 在Cauchy 中值定理中取x x g ln )(=.例2 设函数f 在区间],[b a 上连续, 在),(b a 内可导, 且有0)()(==b f a f .试证明: 0)()( ),,(='-∍∈∃ξξξf f b a .2. 证明恒等式: 原理.例3 证明: 对R ∈∀x , 有 2π=+arcctgx arctgx .例 4 设函数f 和g 可导且 ,0)(≠x f 又 .0=''g f gf 则 )()(x cf xg =.(证明0) (='fg. ) 例 5 设对R ∈∀ , h x ,有 2|)()(|Mh x f h x f ≤-+,其中M 是正常数.则函数)(x f 是常值函数. (证明 0='f ).3. 证明不等式: 原理.例6 证明不等式: 0>h 时,h arctgh h h<<+21. 例7 证明不等式: 对n ∀,有nn n 1) 11 ln(11<+<+.4. 证明方程根的存在性:例8 证明方程 0cos sin =+x x x 在),0(π内有实根.例9 证明方程 c b a cx bx ax ++=++23423在) 1 , 0 (内有实根.四 单调函数 (结合几何直观建立)1 可导函数单调的充要条件Th 5设函数)(x f 在区间),(b a 内可导. 则在),(b a 内)(x f ↗(或↘) ⇔在),(b a 内 0)(≥'x f ( 或0≤ ).例10 设13)(3+-=x x x f .试讨论函数)(x f 的单调区间. 解:⑴确定定义域. 函数)(x f 的定义域为),(+∞-∞. ⑵求导数并分解因式.)1)(1(333)(2+-=-='x x x x f⑶确定导数为0的点和不存在的点.令0)(='x f ,得1,1=-=x x⑷将导数为0的点和不存在的点作为分点插入函数的定义域,列表讨论各个区间上的单Th6设函数)(x f 在区间),(b a 内可导. 则在),(b a 内)(x f ↗↗( 或↘↘) ⇔ⅰ> 对),,(b a x ∈∀ 有0)(≥'x f ( 或)0≤; ⅱ> 在),(b a 内任子区间上.0)(≡/'x f3 可导函数严格单调的充分条件 推论 见P124例11 证明不等式 .0,1≠+>x x e xEx [1]P 124—125 1—7.§2 不定式的极限 ( 2时 )一.型: Th 1 (L 'Hospital 法则 ) ( 证 ) 应用技巧. 例1 .cos cos 1lim2xxtg xx +→π例2 )1l n ()21(l i m2210x x e xx ++-→. 例3 xx ex-+→1l i m 0. ( 作代换x t = 或利用等价无穷小代换直接计算. )例4 xx x x s i n 1s i nlim20→. ( L 'Hospital 法则失效的例 )二∞∞型: Th 2 (L 'Hospital 法则 ) ( 证略 )例5 ) 0 ( ,ln lim >+∞→ααxxx .例6 3lim x e xx +∞→.注: 关于x x e x ln ,,α当+∞→x 时的阶.例7 xxx x sin lim +∞→. ( L 'Hospital 法则失效的例 )三. 其他待定型: ∞-∞∞∞⋅∞ , ,0 ,1 ,000.前四个是幂指型的. 例8.ln lim 0x x x +→例9)(sec lim 2tgx x x -→π.例10xx x =→0lim .例11xx x ⎪⎭⎫⎝⎛++→11lim 0.例12()21cos lim x x x →.例13nn n ⎪⎭⎫ ⎝⎛+∞→211lim .例14设⎪⎩⎪⎨⎧=≠=.0 ,0,0 ,)()(x x x x g x f 且 .3)0( ,0)0()0(=''='=g g g 求).0(f '解 200)(lim 0)(lim )0()(lim )0(x x g xx x g x f x f f x x x →→→=-=-=' 23)0(21)0()(lim 212)(lim 0000=''='-'='=→→g x g x g x x g x x .Ex [1]P 132—133 1—5.§3 Taylor 公式 ( 3时 )一. 问题和任务:用多项式逼近函数的可能性; 对已知的函数, 希望找一个多项式逼近到要求的精度.二. Taylor ( 1685—1731 )多项式:分析前述任务,引出用来逼近的多项式应具有的形式定义 (Taylor 多项式 )(x P n 及Maclaurin 多项式)例1 求函数24)(23+-=x x x f 在点20=x 的Taylor 多项式.三. Taylor 公式和误差估计:称 )()()(x P x f x R n n -=为余项. 称给出)(x R n 的定量或定性描述的式 )()()(x R x P x f n n +=为函数)(x f 的Taylor 公式.1. 误差的定量刻画( 整体性质 ) —— Taylor 中值定理: Th 1 设函数f 满足条件:ⅰ> 在闭区间],[b a 上f 有直到n 阶连续导数; ⅱ> 在开区间),(b a 内f 有1+n 阶导数. 则对),,( ),,(b a b a x ∈∃∈∀ξ 使+-++-''+-'+=n n a x n a f a x a f a x a f a f x f )(!)()(!2)())(()()()(21)1()()!1()(++-++n n a x n f ξ∑=+-=nk kk a x k a f 0)()(!)(1)1()()!1()(++-+n n a x n f ξ. 证 [1]P 138—139.称这种形式的余项)(x R n 为Lagrange 型余项. 并称带有这种形式余项的Taylor 公式为具Lagrange 型余项的Taylor 公式. Lagrange 型余项还可写为 ,)()!1())(()(1)1(++-+-+=n n n a x n a x a fx R θ ) 1 , 0(∈θ.0=a 时, 称上述Taylor 公式为Maclaurin 公式, 此时余项常写为,)()!1(1)(1)1(+++=n n n x x f n x R θ 10<<θ. 2. 误差的定性描述( 局部性质 ) —— Peano 型余项: Th 2 若函数f 在点a 的某邻域 )(a 内具有1-n 阶导数, 且)()(a fn 存在, 则+-++-''+-'+=n n a x n a f a x a f a x a f a f x f )(!)()(!2)())(()()()(2()n a x )(- , )(a x ∈.证 设)()()(x P x f x R n n -=, na x x G )()(-=. 应用L 'Hospital 法则1-n 次,并注意到)()(a fn 存在, 就有=====--→→)()(lim )()(lim )1()1(00x G x R x G x R n n n a x n a x )(2)1())(()()(lim)()1()1(a x n n a x a f a f x f n n n a x -------→ = 0)()()(lim !1)()1()1(=⎪⎪⎭⎫ ⎝⎛---=--→a f a x a f x f n n n n a x . 称()nn a x x R )()(-= 为Taylor 公式的Peano 型余项, 相应的Maclaurin 公式的Peano型余项为)()(nn x x R =. 并称带有这种形式余项的Taylor 公式为具Peano 型余项的Taylor 公式( 或Maclaurin 公式 ).四. 函数的Taylor 公式( 或Maclaurin 公式 )展开:1. 直接展开:例2 求 xe xf =)(的Maclaurin 公式.解 ) 10 ( ,)!1(!!2!1112<<++++++=+θθn xn xx n e n x x x e . 例3 求 x x f sin )(=的Maclaurin 公式.解 )()!12() 1 (!5!3sin 212153x R m x x x x x m m m +--+-+-=-- , 10 ,)21(sin )!12()(122<<⎪⎭⎫ ⎝⎛+++=+θπθm x m x x R m m . 例4 求函数)1ln()(x x f +=的具Peano 型余项的Maclaurin 公式 .解 )!1() 1()0( ,)1()!1() 1()(1)(1)(--=+--=--n f x n x f n n nn n . )() 1(32)1l n (132n nn x nx x x x x +-+-+-=+-. 例5 把函数tgx x f =)(展开成含5x 项的具Peano 型余项的Maclaurin 公式.2. 间接展开: 利用已知的展开式, 施行代数运算或变量代换, 求新的展开式.例6 把函数2sin )(x x f =展开成含14x 项的具Peano 型余项的Maclaurin 公式 .解 ) (!7!5!3sin 7753x x x x x x +-+-=, ) (!7!5!3sin 141410622x x x x x x +-+-=.例7 把函数x x f 2cos )(=展开成含6x 项的具Peano 型余项的Maclaurin 公式 . 解 ) (!6!4!21c o s6642x x x x x +-+-=, ), (!62!34212cos 66642x x x x x +-+-= (注意, 0),()(≠=k x kx )∴ ) (!62!321)2c o s1(21c o s 665422x x x x x x +-+-=+=.例8 先把函数xx f +=11)(展开成具Peano 型余项的Maclaurin 公式.利用得到的展开式, 把函数x x g 531)(+=在点20=x 展开成具Peano 型余项的Taylor 公式. 解 ,)1(!)1(1)(++-=n n n x n f !)1()0()(n f n n -=. ); ()1(1)(32nn n x x x x x x f +-++-+-=13)2(511131)2(5131531)(-+=-+=+=x x x x g=⎪⎭⎫⎝⎛--+--+--n n n x x x )2() 135 () 1()2() 135 ()2(135113122 +().)2(n x - 例9 把函数shx 展开成具Peano 型余项的Maclaurin 公式 ,并与x sin 的相应展开式进行比较.解 ), (!!2!112n nxx n x x x e +++++= )(!)1(!2!112n n n xx n x x x e +-+-+-= ; ∴ ) ( )!12(!5!32121253---+-++++=-=m m x x x m x x x x e e shx . 而 ) ()!12()1(!5!3sin 1212153---+--+-+-=m m m x m x x x x x . 五. Taylor 公式应用举例:1. 证明e 是无理数: 例10 证明e 是无理数.证 把xe 展开成具Lagrange 型余项的Maclaurin 公式, 有10 ,)!1(!1!31!2111<<+++++++=ξξn e n e . 反设e 是有理数, 即p q p e ( =和q 为整数), 就有 =e n !整数 + 1+n e ξ.对qpn e n q n ⋅=>∀!! ,也是整数. 于是,-⋅=+q p n n e !1ξ整数 = 整数―整数 = 整数.但由,30 ,10<<<⇒<<e e ξξ 因而当 3>n 时,1+n e ξ不可能是整数. 矛盾.2. 计算函数的近似值:例11 求e 精确到000001.0的近似值.解 10 ,)!1(!1!31!2111<<+++++++=ξξn e n e . 注意到,30 ,10<<<⇒<<e e ξξ 有 )!1(3) 1 (+≤n R n . 为使000001.0)!1(3<+n , 只要取9≥n . 现取9=n , 即得数e 的精确到000001.0的近似值为 718281.2!91!31!2111≈+++++≈ e . 3. 利用Taylor 公式求极限: 原理:例12 求极限 ) 0 ( ,2lim20>-+-→a x a a x x x . 解 ) (ln 2ln 1222ln x a x a x ea ax x+++==,) (ln 2ln 1222x a x a x ax++-=-;). (ln 2222x a x aa xx+=-+-∴ a xx a x x a a x x x x 22222020ln )(ln lim 2lim =+=-+→-→ . 4. 证明不等式: 原理.例13 证明: 0≠x 时, 有不等式 x e x+>1. Ex[1]P141 1—3.§4 函数的极值与最大(小)值( 4时 )一 可微函数极值点判别法:极值问题:极值点,极大值还是极小值, 极值是多少.1. 可微极值点的必要条件: Th1 Fermat 定理(取极值的必要条件).函数的驻点和(连续但)不可导点统称为可疑点, 可疑点的求法.2. 极值点的充分条件: 对每个可疑点, 用以下充分条件进一步鉴别是否为极(结合几何直观建立极值点的判别法)Th 2 (充分条件Ⅰ) 设函数)(x f 在点0x 连续, 在邻域) , (00x x δ-和) , (00δ+x x 内可导. 则ⅰ> 在) , (00x x δ-内,0)(<'x f 在) , (00δ+x x 内0)(>'x f 时,⇒ 0x 为)(x f 的一个极小值点;ⅱ> 在) , (00x x δ-内,0)(>'x f 在) , (00δ+x x 内0)(<'x f 时,⇒ 0x 为)(x f 的一个极大值点;ⅲ> 若)(x f '在上述两个区间内同号, 则0x 不是极值点.Th 3 (充分条件Ⅱ——“雨水法则”)设点0x 为函数)(x f 的驻点且)(0x f ''存在.则 ⅰ> 当0)(0<''x f 时, 0x 为)(x f 的一个极大值点;ⅱ> 当0)(0>''x f 时, 0x 为)(x f 的一个极小值点.证法一 .)(lim )()(lim)(000000x x x f x x x f x f x f x x x x -'=-'-'=''→→当0)(0<''x f 时, 在点0x 的某空心邻域内0)(x x x f -')( ,0x f '⇒<与0x x -异号,…… 证法二 用Taylor 公式展开到二阶, 带P eano 型余项. Th 4 (充分条件Ⅲ ) 设0)()()(0)1(00===''='-x f x f x f n ,而0)(0)(≠x fn .则ⅰ> n 为奇数时, 0x 不是极值点; ⅱ> n 为偶数时, 0x 是极值点. 且0)(0)(>x fn 对应极小; 0)(0)(<x f n 对应极大.例1 求函数32)52()(x x x f -=的极值.例2 求函数x x x f 432)(2+=的极值. 例3 求函数34)1()(-=x x x f 的极值.注 Th 2、 Th 3、 Th 4只是极值点判别的充分条件.如函数⎪⎩⎪⎨⎧=≠=-.0,0,0,)(21x x e x f x 它在0=x 处取极小值,但因 ,2,1,0)0()(==k f k .所以无法用Th 4对它作出判别.二 函数的最大值与最小值:⑴设函数)(x f 在闭区间],[b a 上连续且仅有有限个可疑点n x x x ,,,21 . 则 )(m a x ],[x f b a x ∈=max } )(,),(),(),(),( {21n x f x f x f b f a f ;m i n )(m i n ],[=∈x f b a x } )(,),(),(),(),( {21n x f x f x f b f a f .⑵函数最值的几个特例: ⅰ> 单调函数的最值:ⅱ> 如果函数)(x f 在区间],[b a 上可导且仅有一个驻点, 则当0x 为极大值点时,0x 亦为最大值点; 当0x 为极小值点时, 0x 亦为最小值点.ⅲ> 若函数)(x f 在R 内可导且仅有一个极大(或小)值点, 则该点亦为最大(或小)值点.ⅳ> 对具有实际意义的函数, 常用实际判断原则确定最大(或小)值点. 例4 求函数x x x x f 1292)(23+-=在闭区间⎥⎦⎤⎢⎣⎡-25,41上的最大值与最小值.⑶最值应用问题:例5 A 、B 两村距输电线(直线)分别为km 1 和km 5.1(如图), CD 长.3km . 现两村合用一台 变压器供电. 问变压器设在何处,输电线总长BE AE +最小.解 设x 如图,并设输电线总长为(x L.30 ,5.1)3(1)(222≤≤+-++=+=x x x EB AE x L015.1)3(1)3(5.1)3()(222222令===+⋅+-+--+-='x x x x x x x L ,⇒1)3(5.1)3(222+-=+-x x x x , .09625.1 2=-+⇒x x解得 2.1=x 和 6-=x ( 舍去 ). 答: …… 三 利用导数证明不等式:我们曾在前面简介过用中值定理或Taylor 公式证明不等式的一些方法. 其实, 利用 导数证明不等式的方法至少可以提出七种 ( 参阅[3]P 112—142 ). 本段仅介绍利用单调性 或极值证明不等式的简单原理.1. 利用单调性证明不等式:原理: 若f ↗, 则对βα<∀, 有不等式)()(βαf f ≤. 例5证明: 对任意实数a 和b , 成立不等式. 1 ||1||||1b b a a b a b a +++≤+++证 取⇒>+='≥+= ,0)1(1)( ).0( ,1)(2x x f x x x x f 在) , 0 [∞+内)(x f ↗↗. 于是, 由 |||| ||b a b a +≤+, 就有 ) |||| () || (b a f b a f +≤+, 即||1||||1||||||1||||||1||||||1||||||1||b b a a b a b b a a b a b a b a b a +++≤+++++=+++≤+++.2. 不等式原理: 设函数)(x f 在区间) , [∞+a 上连续,在区间) , (∞+a 内可导, 且0)(>'x f ; 又 .0)(≥a f 则 a x >时, .0)(>x f (不等式原理的其他形式.)例6 证明: 21>x 时, 1)1ln(2->+arctgx x .例7 证明: 0>x 时, !3sin 3x x x ->.3. 利用极值证明不等式: 例8 证明: 0≠x 时, x e x+>1. Ex [1]P 146—147 1—9.§5 函数的凸性与拐点( 2时 )一. 凸性的定义及判定:1. 凸性的定义:由直观引入. 强调曲线弯曲方向与上升方向的区别. 定义 见书P146凸性的几何意义: 曲线的弯曲方向;曲线与弦的位置关系;曲线与切线的位置关系. 引理(弦与弦斜率之间的关系)2. 利用一阶导数判断曲线的凸向 Th1 (凸的等价描述) 见书P146例1 (开区间内凸函数的左、右可导性,从而开区间内凸函数是连续的)3. 利用二阶导数判断曲线的凸向:Th2 设函数)(x f 在区间),(b a 内存在二阶导数, 则在),(b a 内 ⑴ )( ,0)(x f x f ⇒<''在),(b a 内严格上凸; ⑵ )( ,0)(x f x f ⇒>''在),(b a 内严格下凸. 证法一 ( 用Taylor 公式 ) 对),,(,21b a x x ∈∀ 设2210x x x +=, 把)(x f 在点 0x 展开成具Lagrange 型余项的Taylor 公式, 有,)(2)())(()()(201101001x x f x x x f x f x f -''+-'+=ξ 202202002)(2)())(()()(x x f x x x f x f x f -''+-'+=ξ.其中1ξ和2ξ在1x 与2x 之间. 注意到 )(0201x x x x --=-, 就有[]20222011021))(())((21)(2)()(x x f x x f x f x f x f -''+-''+=+ξξ, 于是若有⇒<'' ,0)(x f 上式中[])(2)()( ,0021x f x f x f <+⇒< , 即)(x f 严格上凸. 若有⇒>'' ,0)(x f 上式中[])(2)()( ,0021x f x f x f >+⇒> , 即)(x f 严格下凸.证法二 ( 利用Lagrange 中值定理. ) 若,0)(>''x f 则有)(x f '↗↗, 不妨设21x x <,并设2210x x x +=,分别在区间],[01x x 和],[20x x 上应用Lagrange 中值定理, 有 ))(()()( ),,(10110011x x f x f x f x x -'=-∍∈∃ξξ, ))(()()( ),,(02202202x x f x f x f x x -'=-∍∈∃ξξ.有),()( ,2122011ξξξξf f x x x '<'⇒<<<< 又由 00210>-=-x x x x ,⇒ ))((101x x f -'ξ<))((022x x f -'ξ, ⇒)()()()(0210x f x f x f x f -<-, 即 ⎪⎭⎫⎝⎛+=>+22)(2)()(21021x x f x f x f x f , )(x f 严格下凸.可类证0)(<''x f 的情况.例2 讨论函数x x f arctan )(=的凸性区间.例3 若函数)(x f 为定义在开区间),(b a 内的可导函数,则),(0b a x ∈为)(x f 的极值点的 充要条件是0x 为)(x f 的稳定点,即.0)(0='x f4. 凸区间的分离: )(x f ''的正、负值区间分别对应函数)(x f 的下凸和上凸区间.二.曲线的拐点: 拐点的定义.Th3 (拐点的必要条件) Th4注:. 例4 讨论曲线x x f arctan )(=的拐点.Jensen 不等式: 设在区间],[b a 上恒有0)(>''x f ( 或) 0<, 则对],[b a 上的任意n 个点 )1(n k x k ≤≤, 有Jensen 不等式:∑=≥n k k x f n 1)(1( 或⎪⎭⎫⎝⎛≤∑=n k k x n f 11) ,且等号当且仅当n x x x === 21时成立.证 令∑==nk k x n x 101, 把)(k x f 表为点0x 处具二阶Lagrange 型余项的Taylor 公式,仿前述定理的证明,注意∑==-nk kx x10,0)( 即得所证.对具体的函数套用Jensen 不等式的结果,可以证明一些较复杂的不等式.这种证明不等式的方法称为Jensen 不等式法或凸函数法.具体应用时,往往还用到所选函数的严格单调性.例2 证明: 对,,R ∈∀y x 有不等式 )(212y xy x e e e+≤+. 例3 证明均值不等式: 对+∈∀R n a a a ,,,21 , 有均值不等式na a a n11121+++ n a a a a a a nn n +++≤≤ 2121 . 证 先证不等式na a a a a a nn n +++≤ 2121.取x x f ln )(=. )(x f 在) , 0 (∞+内严格上凸, 由Jensen 不等式, 有∑∑∑∑∏=====⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛≤==n k n k k n k k k n k k n nk k x n x n f x f n x n x 111111ln 1)(1ln 1ln .由)(x f ↗↗ ⇒ na a a a a a n n n +++≤ 2121 .对+∈R na a a 1,,1,121 用上述已证结果, 即得均值不等式的左半端. 例4 证明: 对R ∈∀n x x x ,,,21 , 有不等式nx x x n x x x nn 2222121+++≤+++ . ( 平方根平均值 ) 例5设6=++z y x ,证明 12222≥++z y x . 解 取2)(x x f =, 应用Jensen 不等式.例6 在⊿ABC 中, 求证 233sin sin sin ≤++C B A . 解 考虑函数x x x f x x x f sin . 0 , 0 sin .0 ,sin )(⇒<<-=''≤≤=ππ在 区间) , 0 (π内凹, 由Jensen 不等式, 有233sin 33)()()(3sinC sinB sinA ==⎪⎭⎫⎝⎛++≤++=++∴πC B A f C f B f A f . 233sinC sinB sinA ≤++⇒.例7 已知1 ,,,=++∈+c b a c b a R . 求证6737373333≤+++++c b a .解 考虑函数3)(x x f =, )(x f 在) , 0 (∞+内严格上凸. 由Jensen 不等式, 有≤+++++=+++++3)73()73()73(3737373333c f b f a f c b a 28)8()7(37373733===+++=⎪⎭⎫⎝⎛+++++≤f c b a f c b a f . ⇒6737373333≤+++++c b a .例8 已知 .2 , 0 , 033≤+>>βαβα 求证 2≤+βα. ( 留为作业 )(解 函数3)(x x f =在) , 0 (∞+内严格下凸. 由Jensen 不等式, 有=+≤⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+2)()(228)(33βαβαβαβαf f f ⇒=≤+ ,122233βα 2 , 8)(3≤+⇒≤+βαβα. )Ex [1]P 153 1—5.§6 函数图象的描绘( 2时 )微分作图的步骤: ⑴确定定义域.⑵确定奇偶性、周期性.⑶求一阶导数并分解因式,同时确定一阶导数为0的点和不存在的点. ⑷求二阶导数并分解因式,同时确定二阶导数为0的点和不存在的点.⑸将一阶、二阶导数为0的点和不存在的点作为分点插入函数的定义域,列表讨论各个区间上的单调性、凹凸性及各分点的极值、拐点. ⑹确定渐近线.⑺适当补充一些点,如与坐标轴的交点. ⑻综合以上讨论作图. 例1 描绘函数3231)(+--=x x x x f 的图象. 例2 描绘函数222)(21)(σμσπ--=x ex f (其中0,>σμ为常数)的图象.Ex [1]P 155 (1)—(8).。
微分中值定理的推广及应用
![微分中值定理的推广及应用](https://img.taocdn.com/s3/m/eb675449793e0912a21614791711cc7931b7782d.png)
微分中值定理的推广及应用微分中值定理是数学分析中一个重要的定理,它是关于微分学中函数的变化性的定理。
这个定理在数学家们探索函数几何性质时,尤其是推广应用中起到了重要的作用。
本文旨在介绍微分中值定理的推广及应用。
2分中值定理微分中值定理是在变分学中最为经典的定理之一。
它往往用来说明函数的连续性、变化率及函数的驻点有关。
它的正式定义如下:定义:设f(x)为连续函数,在区间[a,b]上,若存在一点θ∈(a,b),使得f′(θ)与[f(a)-f(b)]/[a-b]相等,则称θ为函数f(x)在区间[a,b]上的中值点,令f′(θ)=[f(a)-f(b)]/[a-b],则称为微分中值定理。
3广微分中值定理在原始定义的基础上,可以推广出一系列类似的定理。
3.1阶中值定理高阶中值定理是一种推广微分中值定理,它引入了高阶导数,通过某些极值点解出高阶导数等于函数在该点处的前后变化值的差值。
定义:设f(x)具有N阶可导的连续函数,在区间[a,b]上,若存在一点θ∈(a,b),使得f^(N)(θ)与[f^(N-1)(b)-f^(N-1)(a)]/[b-a]相等,则称θ为函数f(x)在区间[a,b]上的N阶中值点,令f^(N)(θ)=[f^(N-1)(b)-f^(N-1)(a)]/[b-a],则称为高阶中值定理。
3.2展中值定理拓展中值定理是一种推广微分中值定理,它与高阶中值定理的不同之处在于,它把对一个连续函数的某一段求导之后得到的极值点,当做求函数本身的极值点,从而拓展出新的中值定理。
定义:设f(x)是一个连续函数,且f′(x)在区间[a,b]上连续可导,若存在一点θ∈(a,b),使得f′(θ)与[f′(b)-f′(a)]/[b-a]相等,则称θ为函数f(x)在区间[a,b]上的拓展中值点,令f′(θ)=[f′(b)-f′(a)]/[b-a],则称为拓展中值定理。
4用微分中值定理及其推广的定理在微积分应用中起到了重要作用,常用于函数的极值求解、区间求值等方面。
数学分析22第六章 微分中值定理及其应用-微分中值定理.DOC
![数学分析22第六章 微分中值定理及其应用-微分中值定理.DOC](https://img.taocdn.com/s3/m/1f6179138e9951e79b892772.png)
第六章 微分中值定理及其应用引言在前一章中,我们引进了导数的概念,详细地讨论了计算导数的方法。
这样一来,类似于求已知曲线上点的切线问题已获完美解决。
但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具。
另一方面,我们注意到:(1)函数与其导数是两个不同的的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,因此如何解决这个矛盾?需要在导数及函数间建立起一一联系――搭起一座桥,这个“桥”就是微分中值定理。
本章以中值定理为中心,来讨论导数在研究函数性态(单调性、极值、凹凸性质)方面的应用。
§1.微分中值定理[教学目的] 掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。
[教学要求] 深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。
[教学重点] 中值定理。
[教学难点] 定理的证明。
[教学难点] 系统讲解法。
一、一个几何命题的数学描述为了了解中值定理的背景,我们可作以下叙述:弧AB 上有一点P ,该处的切线平行与弦AB 。
如何揭示出这一叙述中所包含的“数量”关系呢?联系“形”、“数”的莫过于“解析几何”,故如建立坐标系,则弧 AB 的函数是y=f(x),x [a,b]的图像,点P 的横坐标为x 。
如点P 处有切线,则f(x)在点x 处可导,且切线的斜率为()f ;另一方面,弦AB 所在的直线斜率为()()f b f a b a ,曲线y=f(x)上点P 的切线平行于弦AB ()()()f b f a f b a。
撇开上述几何背景,单单观察上述数量关系,可以发现:左边仅涉及函数的导数,右边仅涉及函数在端点的函数值。
这样这个公式就把函数及其导数联系起来。
在二者之间架起了一座桥梁,这座“桥”就是导数在研究函数方面应用的理论基础。
鉴于(,)a b ,故把类似公式称为“中值公式”;把类似的定理称为中值定理。
数学分析》第六章微分中值定理及其应用(3)
![数学分析》第六章微分中值定理及其应用(3)](https://img.taocdn.com/s3/m/7b97cec752ea551811a68756.png)
f(x)1 4 0
-0.05 -0.075
(2k1)
2
当
x
1 2k
时,
f(x)10
0.05
0.1
注意 k可以任意大,故在 x0 0点的任何邻 域内,f (x) 都不单调递增.
编辑ppt
13
练习题
一、填空题: 1、函数y 2x3 6x2 18x 7单调区间为________ _____________. 2、函数y 2x 在区间[-1,1]上单调________, 1 x2 在_________上单调减. 3、函数y x2 lnx2的单调区间为____________, 单减区间为_____________.
2
2
f ( x ) 0 , f ( x ) 单 增 ; 方 法 ( 2 ) f ( x ) 0 ,
利用泰勒公式]
编辑ppt
15
练习题答案
一 、 1 、 ( , 1 ], [ 3 , ) 单 调 增 加 ,[ 1 ,3 ] 单 调 减 少 ; 2 、 增 加 , ( , 1 ], [1 , ) 3 、 ( , 1 ] ,[1 , ) ; [ 1 ,0 ), ( 0 ,1 ]; ( , 1 ], ( 0 ,1 ] .
函数单调减少;
在(0, )内 , y 0, 函数单调增.加
注意:函数的单调性是一个区间上的性质,要用 导数在这一区间上的符号来判定,而不能用一 点处的导数符号来判别一个区间上的单调性.
编辑ppt
5
单调区间求法
问题:如上例,函数在定义区间上不是单调的, 但在各个部分区间上单调.
定义:若函数在其定义域的某个区间内是单调的, 则该区间称为函数的单调区间.
解 D:(, ) .
数学分析第6章 微分中值定理及其应用
![数学分析第6章 微分中值定理及其应用](https://img.taocdn.com/s3/m/79648a07336c1eb91a375d59.png)
lim f (x) lim f (x)
xa
xb
在( a , b ) 内至少存在一点 , 使 f ( ) 0.
f (a 0), x a
证明提示: 设 F(x) f (x), a x b
f (b 0), x b 证 F(x) 在 [a , b] 上满足罗尔定理 .
机动 目录 上页 下页 返回 结束
若 M = m , 则 f (x) M , x [a , b] ,
因此 (a , b), f ( ) 0 .
若 M > m , 则 M 和 m 中至少有一个与端点值不等,
不妨设 M f (a) , 则至少存在一点 (a,b), 使 f ( ) M , 则由费马引理得 f ( ) 0.
注意:
1) 定理条件条件不全具备, 结论不一定成立.
例如,
f
(
x)
x,
0
,
0 x 1 x 1
y
o
1x
y
f (x) x
x [1,1]
1 o 1 x
f (x) x x [0,1]
y
o 1x
机动 目录 上页 下页 返回 结束
2) 定理条件只是充分的. 本定理可推广为
y f (x) 在 ( a , b ) 内可导, 且
ba
f (b) f (a) f '( )(b a) a b f (b) f (a) f '(a (b a))(b a) 0 1
f (a h) f (a) f '(a h)h 0 1
即为函数值之差与导数关系式,今后凡遇到函数 值之差与导数值关系的问题,想法用中值定理
(2) 在区间 (a , b) 内可导
y
y f (x)
微分中值定理及其应用
![微分中值定理及其应用](https://img.taocdn.com/s3/m/7172b20ea9956bec0975f46527d3240c8447a189.png)
微分中值定理及其应用一、本文概述《微分中值定理及其应用》是一篇深入探讨微分学中值定理及其在实际应用中的作用的学术性文章。
微分中值定理是数学分析领域中的一个核心概念,它建立了函数在特定区间内的变化与其导数之间的紧密联系。
本文旨在通过对微分中值定理的深入剖析,揭示其在理论研究和实际应用中的广泛价值。
文章首先介绍了微分中值定理的基本概念,包括罗尔定理、拉格朗日中值定理和柯西中值定理等。
这些定理不仅在数学分析中占有重要地位,而且在实际应用中发挥着重要作用。
接着,文章通过一系列实例展示了微分中值定理在几何、物理、工程等领域的应用,如曲线形状的判定、物体运动的分析、工程设计的优化等。
本文还关注微分中值定理在经济学、生物学等社会科学领域的应用。
通过引入这些领域的实际案例,文章进一步强调了微分中值定理在解决实际问题中的重要作用。
文章对微分中值定理的应用前景进行了展望,探讨了其在未来科学研究和技术发展中的潜在影响。
《微分中值定理及其应用》是一篇系统介绍微分中值定理及其在各个领域应用的综合性文章。
通过本文的阅读,读者可以全面了解微分中值定理的基本知识和应用技巧,为深入研究和实际应用打下坚实基础。
二、微分中值定理概述微分中值定理是微积分理论中的核心内容之一,它揭示了函数在某区间内与导数之间的紧密联系。
这些定理不仅为函数的研究提供了重要的工具,还在解决实际问题中发挥了重要作用。
微分中值定理主要包括罗尔定理、拉格朗日定理和柯西定理。
罗尔定理是微分中值定理的基础,它指出如果一个函数在某闭区间上连续,在开区间内可导,并且区间两端点的函数值相等,那么在这个开区间内至少存在一点,使得该点的导数值为零。
拉格朗日定理是罗尔定理的推广,它进一步指出,如果存在满足上述条件的点,那么该点的导数值等于函数在区间两端点值的差与区间长度的商。
柯西定理则是拉格朗日定理的推广,它涉及到两个函数在相同区间上的性质。
这些定理在实际应用中具有广泛的价值。
数学分析简明教程答案数分5_微分中值定理及其应用
![数学分析简明教程答案数分5_微分中值定理及其应用](https://img.taocdn.com/s3/m/bfa13ef6afaad1f34693daef5ef7ba0d4a736ddb.png)
壹第五章微分中值定理及其应用第一节微分中值定理331231.(1)30()[0,1];(2)0(,,),;(1)[0,1]30[0,1]()3nx x c c x px q n p q n n x x c x x f x x x c证明:方程为常数在区间内不可能有两个不同的实根方程为正整数为实数当为偶数时至多有两个实根当为奇数时,至多有三个实根。
证明:设在区间内方程有两个实根,即有使得函数值为零012023(,)[0,1],'()0.'()33(0,1)(3,0)30()[0,1] (2)2220nx x x f x f x x x x c c n n k x px q x 。
那么由罗尔定理可知存在使得 但是在内的值域为是不可能有零点的,矛盾。
因此有:方程为常数在区间内不可能有两个不同的实根。
当时,方程至多只可能有两个实根,满足所证。
当时,设方程有三个实根,即存在实数1230112022301021010110202()0(,),(,),'()'()0,'()0(*'()0n n n x x f x x px q x x x x x x f x f x f x nx p f x nx p使得函数成立。
那么由罗尔定理可知存在使得即0010220000102),(,),''(0)0,''()(1)0,0,0,0.2(*).212n nx x x f f x n n x x x x n k p n n k x px q 再次利用罗尔定理可以知道,存在使得即显然必有那么就有 那么由于为偶数,可以知道此时不存在满足式的实数因此当为偶数时方程至多有两个实根。
当时,设方程1234111212231334111213111110()0(,),(,),(,)'()0,'()0,'()0,'()0'(nn x x x x f x x px q x x x x x x x x x f x f x f x f x nx p f x 有三个实根,即存在实数使得函数成立。
数学分析微分中值定理及应用(二)
![数学分析微分中值定理及应用(二)](https://img.taocdn.com/s3/m/623bc601783e0912a2162a72.png)
§2.Rolle ,Lagrange ,Cauchy 定理的进一步应用[教学目的](1)掌握讨论函数单调性方法;(2)掌握L’Hospital 法则,或正确运用后求某些不定式的极限。
[教学要求](1)熟练掌握L’Hospital 法则,并能正确运用后迅速正确地求某些不定式的极限;(2)深刻理解函数在一区间上单调以及严格单调的意义和条件;熟练掌握运用导数判断函数单调性与单调区间的方法;能利用函数的单调性证明某些不等式。
[教学重点]利用函数的单调性,L’Hospital 法则[教学难点]L’Hospital 法则的使用技巧;用辅助函数解决问题的方法;。
[教学方法]问题教学法,结合练习。
[教学程序]一、中值定理与函数的单调性定理1设f(x)在区间I 上可导,则f(x)在I 上递增(减)()0(0)f x '⇔≥≤.注(1)这个定理的主要用途在于用它研究函数的单调性,确定单调区间。
例1设3()f x x x =-,试讨论函数f 的单调区间。
(2)从实现充分性的证明中发现,若21()0(0)()()f x f x f x '><⇒>21(()())f x f x <,即f 严格递增(减),从而有如下推论:推论设函数f 在区间I 上可微,若()0(0)f x '><,则f 在I 上严格递增(减)。
(3)上述推论是严格递增(减)的一个充分非必要条件。
定理2若函数f 在(a,b)内可导,则f 在(a,b)内严格递增(减)的充要条件是:(ⅰ)对一切(,)x a b ∈,有()0(0)f x '≥≤;(ⅱ)在(a,b)内的任何子区间上()0f x '≠。
(4)一个问题:f(x)在[a,b]上有定义,在(a,b)内严格递增(减),那么f(x)在[a,b]上是否一定严格递增(减)呢?答案:不一定。
推论若f(x)在(a,b)内可导,f(x)在(a,b)内严格递增(减),且y=f(x)在右端点a 右连续,则f 在[a,b]上变为严格递增(减),对左端点b 也有类似讨论。
16章数学分析课件第6章微分中值定理及其应用67
![16章数学分析课件第6章微分中值定理及其应用67](https://img.taocdn.com/s3/m/fbb52d6c590216fc700abb68a98271fe910eafda.png)
对各种情形都是有效的.
例 用牛顿切线法求方程 x3 2x2 4x 7 0
的近似解,使误差不超过0.01.
解 设 f ( x) x3 2x2 4x 7, 则
前页 后页 返回
f ( x) 3x2 4x 4 (3x 2)( x 2), f ( x) 6x 4.易见xFra bibliotek2 3
x2 x1
f ( x1 ) f ( x1 )
,
x2 ( x1, b).
一般地 xn xn1
f ( xn1 ) , f ( xn1 )
n 1, 2,
.
易知{ xn}递增有上界 b,故
lim
n
xn
存在.
由上
式得
f ( ) , f ( )
前页 后页 返回
推得 f ( ) 0.
最后来估计 xn .由中值定理 f ( xn ) f ( xn ) f ( ) f ()( xn ), xn ,
前页 后页 返回
基本思想是
: 构造一收敛点列 {xn},
使得
lim
n
xn
恰为 f ( x) 的零点,故当 n 充分大时,xn 可以近似地
替代 .
因为 f ( x) 0, f ( x) 在 [a, b] 上连续,所以
m min f ( x) 0 x[a ,b]
下面分四种情形进行讨论 . 1 设 f ( x) 0, f ( x) 0, 故有 f (a) 0, f (b) 0.
因而
xn
f ( xn )
f ( )
f ( xn ) . m
其它三种情形可以类似进行讨论,在此仅以图来
示意.
前页 后页 返回
•
2 f ( x) 0, f ( x) 0,
《数学分析》第六章微分中值定理及其应用3共18页文档
![《数学分析》第六章微分中值定理及其应用3共18页文档](https://img.taocdn.com/s3/m/b5378a3502768e9951e73885.png)
f(x)1 4 0
-0.05 -0.075
(2k1)
2
当
x
1 2k
时,
f(x)10
0.05
0.1
注意 k可以任意大,故在 x0 0点的任何邻 域内,f (x) 都不单调递增.
练习题
一、填空题: 1、函数y 2x3 6x2 18x 7单调区间为________ _____________. 2、函数y 2x 在区间[-1,1]上单调________, 1 x2 在_________上单调减. 3、函数y x2 lnx2的单调区间为____________, 单减区间为_____________.
2
2
f ( x ) 0 , f ( x ) 单 增 ; 方 法 ( 2 ) f ( x ) 0 ,
利用泰勒公式]
练习题答案
一 、 1 、 ( , 1 ], [ 3 , ) 单 调 增 加 ,[ 1 ,3 ] 单 调 减 少 ; 2 、 增 加 , ( , 1 ], [1 , ) 3 、 ( , 1 ] ,[1 , ) ; [ 1 ,0 ), ( 0 ,1 ]; ( , 1 ], ( 0 ,1 ] .
那末函 y数 f(x)在[a,b]上单调. 减少
证 x 1,x 2 (a ,b )且 , x1x2,应用拉氏定理,得
f ( x 2 ) f ( x 1 ) f ( ) x 2 x ( 1 )( x 1 x 2 ) x2x10,
若 (a ,b 在 )内 f(x ) , 0 , 则 f()0,
二 、 1 、 在 ( ,0 ), ( 0 , 1 ], [1 , ) 内 单 调 减 少 , 2
在 [ 1 ,1] 上 单 调 增 加 ; 2 2
数学分析 微分中值定理及其应用 教案
![数学分析 微分中值定理及其应用 教案](https://img.taocdn.com/s3/m/4c3fc14926fff705cc170ab0.png)
P
)
()
()()()()(ξξg f a g b g a f b f '=--
柯西中值定理的几何意义 若连续 曲线
由参数方程
],[)
()
(b a x x g Y x f X ∈⎪⎩⎪⎨⎧==
给出,除端点外处处有不垂直于 轴 的切线,则 上存在一点 P 处的切线平 行于割线
.。
注意曲线 AB 在点 ),(Y X 处的切线的斜率为
,
)(1ξF )(2ξF )
(a F A
)
(b F B
)(
x F N
M
x
o
y
⎩⎨
⎧==)
()(x f Y x F X 而弦 的斜率为
.
受此启发,可以得出柯西中值定理 的证明如下:
由于
,
类似于拉格朗日中值定理的证明,作一辅助函数
容易验证
满足罗尔定理的条件且
根据罗尔定理,至少有一点使得
即
由此得
注2:在柯西中值定理中,取,则公式(3)可写成
这正是拉格朗日中值公式,而在拉格朗日中值定理中令,则. 这恰恰是罗尔定理.
注3:设在区间I上连续,则在区间I上为常数,.
三、利用拉格朗日中值定理研究函数的某些特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 微分中值定理及其应用(计划课时: 8时 )§ 1中值定理( 3时 )一 思路: 在建立了导数的概念并讨论了其计算后,应考虑导数在研究函数方面的一些作用。
基于这一目的,需要建立导数与函数之间的某种联系。
还是从导数的定义出发:00)()(limx x x f x f x x --→=)(0x f '.若能去掉导数定义中的极限符号,即00)()(x x x f x f --=?)(0x f ',则目的就可达到.这样从几何上说就是要考虑曲线的割线与切线之间的平行关系. 一方面要考虑给定割线, 找平行于该割线的切线; 另一方面要考虑给定切线, 找平行于该切线的割线. (1)若给定的割线是水平的、斜的或曲线的方程以参数方程的形式给出,则分别可找出相应的切线平行于该割线,再分析所需要的条件,就可建立起Rolle 定理、Lagrange 定理、Cauchy 定理. 这三个微分中值定理用一句话概括:对于处处连续、处处有切线曲线的每一条割线都可以找到平行于该割线的切线. (2)若给定切线, 找平行于该切线的割线, 则不一定能实现.二 微分中值定理:1. Rolle 中值定理: 叙述为Th1. ( 证 ) 定理条件的充分但不必要性.2. Lagrange 中值定理: 叙述为Th2.( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理.Lagrange 中值定理的各种形式. 关于中值点的位置. 系1 函数)(x f 在区间I 上可导且)( ,0)(x f x f ⇒≡'为I 上的常值函数. (证) 系2 函数)(x f 和)(x g 在区间I 上可导且,)()( ),()(c x g x f x g x f +=⇒'≡'.I ∈x 系 3 设函数)(x f 在点的某右邻域)(0x +Y 上连续,在)(0x +οY 内可导.若)0()(lim 00+'='+→x f x f x x 存在 , 则右导数)(0x f +'也存在, 且有).0()(00+'='+x f x f (证)但是, )0(0+'x f 不存在时, 却未必有)(0x f +'不存在. 例如对函数⎪⎩⎪⎨⎧=≠=.0,0,0 ,1sin )(2x x xx x f 虽然)00(+'f 不存在,但)(x f 却在点0=x 可导(可用定义求得0)0(='f ).Th3 (导数极限定理)设函数)(x f 在点的某邻域 )(0x Y 内连续, 在)(0x οY 内可导.若极限)(lim 0x f x x '→存在, 则)(0x f '也存在, 且).(lim )(00x f x f x x '='→( 证 )由该定理可见, 若函数)(x f 在区间I 上可导,则区间I 上的每一点,要么是导函数)(x f '的连续点,要么是)(x f '的第二类间断点.这就是说,当函数)(x f 在区间I 上点点可导时, 导函数)(x f '在区间I 上不可能有第二类间断点.3. Cauchy 中值定理:Th 4 设函数和在闭区间],[b a 上连续, 在开区间),(b a 内可导, 和在),(b a 内不同时为零, 又).()(b g a g =/ 则在),(b a 内至少存在一点 使得)()()()()()(a g b g a f b f g f --=''ξξ. 证 分析引出辅助函数 -=)()(x f x F )()()()(a g b g a f b f --)(x g . 验证)(x F 在],[b a 上满足Rolle 定理的条件, ∍∈∃⇒ ),,( b a ξ-'=')()(ξξf F )()()()(a g b g a f b f --.0)(='ξg必有0)(=/'ξg , 因为否则就有0)(='ξf .这与条件“和在),(b a 内不同时为零” 矛盾. ΛΛ ⇒Cauchy 中值定理的几何意义.Ex [1]P 163 1—4;三 中值定理的简单应用: ( 讲1时 )1. 证明中值点的存在性:例1设函数在区间],[b a 上连续, 在),(b a 内可导, 则),(b a ∈∃ξ, 使得)()(a f b f -)(lnξξf ab'⋅=. 证 在Cauchy 中值定理中取x x g ln )(=.例2设函数在区间],[b a 上连续, 在),(b a 内可导, 且有0)()(==b f a f .试证明: 0)()( ),,(='-∍∈∃ξξξf f b a . 2. 证明恒等式: 原理.例3证明: 对R ∈∀x , 有 2π=+arcctgx arctgx .例4 设函数和可导且 ,0)(≠x f 又.0=''g f g f则 )()(x cf x g =.(证明 0) (='f g. )例 5 设对R ∈∀ , h x ,有 2|)()(|Mh x f h x f ≤-+,其中是正常数.则函数)(x f 是常值函数. (证明 0='f ).3. 证明不等式: 原理.例6 证明不等式: 0>h 时,h arctgh h h<<+21.例7 证明不等式: 对,有nn n 1) 11 ln(11<+<+.4. 证明方程根的存在性:例8 证明方程 0cos sin =+x x x 在),0(π内有实根.例9 证明方程 c b a cx bx ax ++=++23423在) 1 , 0 (内有实根.四 单调函数 (结合几何直观建立)1 可导函数单调的充要条件Th 5设函数)(x f 在区间),(b a 内可导. 则在),(b a 内)(x f ↗(或↘) 在),(b a 内0)(≥'x f ( 或 ).例10 设13)(3+-=x x x f .试讨论函数)(x f 的单调区间. 解:⑴确定定义域. 函数)(x f 的定义域为),(+∞-∞. ⑵求导数并分解因式.)1)(1(333)(2+-=-='x x x x f⑶确定导数为0的点和不存在的点.令0)(='x f ,得1,1=-=x x⑷将导数为0的点和不存在的点作为分点插入函数的定义域,列表讨论各个区间上的单Th6设函数)(x f 在区间),(b a 内可导.则在),(b a 内)(x f ↗↗( 或↘↘)ⅰ> 对),,(b a x ∈∀ 有0)(≥'x f ( 或)0≤; ⅱ> 在),(b a 内任子区间上.0)(≡/'x f3 可导函数严格单调的充分条件 推论 见P124例11 证明不等式 .0,1≠+>x x e xEx [1]P 124—125 1—7.§2 不定式的极限( 2时 )一.型: Th 1 (Hospital 法则 ) ( 证 ) 应用技巧. 例1 .cos cos 1lim2xxtg xx +→π例2)1ln()21(lim 2210x x e x x ++-→. 例3xx e x -+→1lim 0. ( 作代换x t = 或利用等价无穷小代换直接计算. )例4xx x x sin 1sinlim20→. ( Hospital 法则失效的例 )二 ∞∞型:Th 2 (Hospital 法则 ) ( 证略 )例5) 0 ( ,ln lim>+∞→ααx xx .例63lim xe xx +∞→.注: 关于x x e x ln ,,α当+∞→x 时的阶.例7xxx x sin lim+∞→. ( Hospital 法则失效的例 )三. 其他待定型:∞-∞∞∞⋅∞ , ,0 ,1 ,000.前四个是幂指型的. 例8.ln lim 0x x x +→例9)(sec lim 2tgx x x -→π.例10xx x =→0lim .例11xx x ⎪⎭⎫⎝⎛++→11lim 0.例12()21cos lim x x x →.例13nn n ⎪⎭⎫ ⎝⎛+∞→211lim .例14设⎪⎩⎪⎨⎧=≠=.0 ,0,0 ,)()(x x x x g x f 且 .3)0( ,0)0()0(=''='=g g g 求).0(f '解200)(lim 0)(lim )0()(lim )0(x x g xx x g x f x f f x x x →→→=-=-=' 23)0(21)0()(lim 212)(lim0000=''='-'='=→→g x g x g x x g x x . Ex [1]P 132—133 1—5.§3 Taylor 公式 ( 3时 )一. 问题和任务:用多项式逼近函数的可能性; 对已知的函数, 希望找一个多项式逼近到要求的精度.二. Taylor ( 1685—1731 )多项式:分析前述任务,引出用来逼近的多项式应具有的形式 定义(Taylor 多项式 )(x P n 及Maclaurin 多项式)例1 求函数24)(23+-=x x x f 在点20=x 的Taylor 多项式.三. Taylor 公式和误差估计:称 )()()(x P x f x R n n -=为余项. 称给出)(x R n 的定量或定性描述的式 )()()(x R x P x f n n +=为函数)(x f 的Taylor 公式.1. 误差的定量刻画( 整体性质 ) ——Taylor 中值定理: Th 1 设函数满足条件:ⅰ> 在闭区间],[b a 上有直到阶连续导数; ⅱ> 在开区间),(b a 内有1+n 阶导数. 则对),,( ),,(b a b a x ∈∃∈∀ξ 使+-++-''+-'+=n n a x n a f a x a f a x a f a f x f )(!)()(!2)())(()()()(2Λ1)1()()!1()(++-++n n a x n f ξ∑=+-=nk k k a x k a f 0)()(!)(1)1()()!1()(++-+n n a x n f ξ. 证 [1]P 138—139.称这种形式的余项)(x R n 为Lagrange 型余项.并称带有这种形式余项的Taylor 公式为具Lagrange 型余项的Taylor 公式.Lagrange 型余项还可写为,)()!1())(()(1)1(++-+-+=n n n a x n a x a fx R θ) 1 , 0(∈θ.0=a 时, 称上述Taylor 公式为Maclaurin 公式, 此时余项常写为,)()!1(1)(1)1(+++=n n n x x f n x R θ10<<θ.2. 误差的定性描述( 局部性质 ) ——Peano 型余项: Th 2 若函数在点的某邻域内具有1-n 阶导数, 且)()(a fn 存在, 则+-++-''+-'+=n n a x n a f a x a f a x a f a f x f )(!)()(!2)())(()()()(2Λ()n a x )(-ο,)(a x Y ∈.证 设)()()(x P x f x R n n -=, na x x G )()(-=. 应用Hospital 法则1-n 次,并注意到)()(a fn 存在, 就有=====--→→)()(lim )()(lim )1()1(00x G x R x G x R n n n a x n a x )(2)1())(()()(lim)()1()1(a x n n a x a f a f x f n n n a x -------→Λ= 0)()()(lim !1)()1()1(=⎪⎪⎭⎫ ⎝⎛---=--→a f a x a f x f n n n n a x . 称()nn a x x R )()(-=ο为Taylor 公式的Peano 型余项,相应的Maclaurin 公式的Peano型余项为)()(nn x x R ο=. 并称带有这种形式余项的Taylor 公式为具Peano 型余项的Taylor 公式( 或Maclaurin 公式 ).四. 函数的Taylor 公式( 或Maclaurin 公式 )展开:1. 直接展开:例2 求 xe xf =)(的Maclaurin 公式.解) 10 ( ,)!1(!!2!1112<<++++++=+θθn xn xx n e n x x x e Λ. 例3 求 x x f sin )(=的Maclaurin 公式.解)()!12() 1 (!5!3sin 212153x R m x x x x x m m m +--+-+-=--Λ, 10 ,)21(sin )!12()(122<<⎪⎭⎫ ⎝⎛+++=+θπθm x m x x R m m .例4求函数)1ln()(x x f +=的具Peano 型余项的Maclaurin 公式 .解)!1() 1()0( ,)1()!1() 1()(1)(1)(--=+--=--n f x n x f n n nn n . )() 1(32)1ln(132n nn x nx x x x x οΛ+-+-+-=+-. 例5把函数tgx x f =)(展开成含项的具Peano 型余项的Maclaurin 公式.2. 间接展开: 利用已知的展开式, 施行代数运算或变量代换, 求新的展开式. 例6 把函数2sin )(x x f =展开成含项的具Peano 型余项的Maclaurin 公式 .解 ) (!7!5!3sin 7753x x x x x x ο+-+-=, ) (!7!5!3sin 141410622x x x x x x ο+-+-=.例7 把函数x x f 2cos )(=展开成含项的具Peano 型余项的Maclaurin 公式 .解) (!6!4!21cos 6642x x x x x ο+-+-=, ), (!62!34212cos 66642x x x x x ο+-+-=注意, 0 ),()(≠=k x kx οο) (!62!321)2cos 1(21cos 665422x x x x x x ο+-+-=+=.例8 先把函数x x f +=11)(展开成具Peano 型余项的Maclaurin 公式.利用得到的展开式,把函数x x g 531)(+=在点20=x 展开成具Peano 型余项的Taylor 公式.解,)1(!)1(1)(++-=n n n x n f !)1()0()(n f n n -=. ); ()1(1)(32n n n x x x x x x f οΛ+-++-+-=13)2(511131)2(5131531)(-+=-+=+=x x x x g=⎪⎭⎫⎝⎛--+--+--n n n x x x )2() 135 () 1()2() 135 ()2(135113122Λ+().)2(n x -ο 例9 把函数shx 展开成具Peano 型余项的Maclaurin 公式 ,并与x sin 的相应展开式进行比较.解), (!!2!112n nxx n x x x e οΛ+++++= )(!)1(!2!112n n n xx n x x x e οΛ+-+-+-= ; ) ( )!12(!5!32121253---+-++++=-=m m x x x m x x x x e e shx οΛ.而 ) ()!12()1(!5!3sin 1212153---+--+-+-=m m m x m x x x x x οΛ. 五. Taylor 公式应用举例:1. 证明是无理数: 例10 证明是无理数.证 把展开成具Lagrange 型余项的Maclaurin 公式, 有10 ,)!1(!1!31!2111<<+++++++=ξξn e n e Λ.反设是有理数, 即p qpe ( =和为整数), 就有 =e n !整数 + 1+n e ξ.对qpn e n q n ⋅=>∀!! ,也是整数. 于是,-⋅=+q p n n e !1ξ整数=整数―整数=整数.但由,30 ,10<<<⇒<<e e ξξ 因而当 3>n 时,1+n e ξ不可能是整数. 矛盾.2. 计算函数的近似值:例11 求精确到000001.0的近似值.解10 ,)!1(!1!31!2111<<+++++++=ξξn e n e Λ. 注意到,30 ,10<<<⇒<<e e ξξ 有 )!1(3) 1 (+≤n R n . 为使000001.0)!1(3<+n , 只要取9≥n . 现取9=n , 即得数的精确到000001.0的近似值为718281.2!91!31!2111≈+++++≈Λe . 3. 利用Taylor 公式求极限:原理:例12 求极限 ) 0 ( ,2lim 20>-+-→a xa a x x x . 解) (ln 2ln 1222ln x a x a x ea ax xο+++==,) (ln 2ln 1222x a x a x axο++-=-;). (ln 2222x a x a a x x ο+=-+-a xx a x x a a x x x x 22222020ln ) (ln lim 2lim =+=-+→-→ο. 4. 证明不等式: 原理.例13 证明: 0≠x 时, 有不等式 x e x+>1.Ex [1]P141 1—3.§4 函数的极值与最大(小)值( 4时 )一 可微函数极值点判别法:极值问题:极值点,极大值还是极小值, 极值是多少.1. 可微极值点的必要条件: Th1 Fermat 定理(取极值的必要条件).函数的驻点和(连续但)不可导点统称为可疑点, 可疑点的求法.2. 极值点的充分条件:对每个可疑点, 用以下充分条件进一步鉴别是否为极(结合几何直观建立极值点的判别法)Th 2 (充分条件Ⅰ) 设函数)(x f 在点连续, 在邻域) , (00x x δ-和) , (00δ+x x 内可导. 则ⅰ> 在) , (00x x δ-内,0)(<'x f 在) , (00δ+x x 内0)(>'x f 时, 为)(x f 的一个极小值点;ⅱ> 在) , (00x x δ-内,0)(>'x f 在) , (00δ+x x 内0)(<'x f 时,为)(x f 的一个极大值点;ⅲ> 若)(x f '在上述两个区间内同号, 则不是极值点.Th 3 (充分条件Ⅱ——“雨水法则”)设点为函数的驻点且)(0x f ''存在.则 ⅰ> 当0)(0<''x f 时, 为)(x f 的一个极大值点; ⅱ> 当0)(0>''x f 时, 为)(x f 的一个极小值点.证法一.)(lim )()(lim)(000000x x x f x x x f x f x f x x x x -'=-'-'=''→→当0)(0<''x f 时, 在点的某空心邻域内)(x x x f -')( ,0x f '⇒<与0x x -异号,…… 证法二 用Taylor 公式展开到二阶, 带P eano 型余项. Th 4 (充分条件Ⅲ ) 设0)()()(0)1(00===''='-x f x f x f n Λ,而0)(0)(≠x fn .则ⅰ>为奇数时, 不是极值点; ⅱ>为偶数时, 是极值点. 且0)(0)(>x fn 对应极小; 0)(0)(<x fn 对应极大.例1 求函数32)52()(x x x f -=的极值.例2 求函数x x x f 432)(2+=的极值. 例3 求函数34)1()(-=x x x f 的极值.注 Th 2、 Th 3、 Th 4只是极值点判别的充分条件.如函数⎪⎩⎪⎨⎧=≠=-.0,0,0,)(21x x e x f x 它在0=x 处取极小值,但因Λ,2,1,0)0()(==k f k .所以无法用Th 4对它作出判别.二 函数的最大值与最小值:⑴设函数)(x f 在闭区间],[b a 上连续且仅有有限个可疑点n x x x ,,,21Λ. 则)(max ],[x f b a x ∈=max } )(,),(),(),(),( {21n x f x f x f b f a f Λ; min )(min ],[=∈x f b a x } )(,),(),(),(),( {21n x f x f x f b f a f Λ.⑵函数最值的几个特例: ⅰ> 单调函数的最值:ⅱ> 如果函数)(x f 在区间],[b a 上可导且仅有一个驻点, 则当为极大值点时, 亦为最大值点; 当为极小值点时,亦为最小值点.ⅲ> 若函数)(x f 在内可导且仅有一个极大(或小)值点, 则该点亦为最大(或小)值点.ⅳ> 对具有实际意义的函数, 常用实际判断原则确定最大(或小)值点. 例4 求函数x x x x f 1292)(23+-=在闭区间⎥⎦⎤⎢⎣⎡-25,41上的最大值与最小值.⑶最值应用问题:例5 、两村距输电线(直线)分别为km 1和km 5.1(如图), CD 长.3km . 现两村合用一台 变压器供电. 问变压器设在何处,输电线总长BE AE +最小.解 设如图,并设输电线总长为)(x L.30 ,5.1)3(1)(222≤≤+-++=+=x x x EB AE x L015.1)3(1)3(5.1)3()(222222令===+⋅+-+--+-='x x x x x x x L ,⇒1)3(5.1)3(222+-=+-x x x x , .09625.1 2=-+⇒x x 解得 2.1=x 和 6-=x ( 舍去 ). 答: …… 三 利用导数证明不等式:我们曾在前面简介过用中值定理或Taylor 公式证明不等式的一些方法. 其实, 利用 导数证明不等式的方法至少可以提出七种 ( 参阅[3]P 112—142 ). 本段仅介绍利用单调性 或极值证明不等式的简单原理.1. 利用单调性证明不等式:原理: 若↗, 则对βα<∀, 有不等式)()(βαf f ≤. 例5证明: 对任意实数和, 成立不等式.1 ||1||||1b b a a b a b a +++≤+++证 取⇒>+='≥+= ,0)1(1)( ).0( ,1)(2x x f x x x x f 在) , 0 [∞+内)(x f ↗↗. 于是, 由 |||| ||b a b a +≤+, 就有 ) |||| () || (b a f b a f +≤+, 即 ||1||||1||||||1||||||1||||||1||||||1||b b a a b a b b a a b a b a b a b a +++≤+++++=+++≤+++.2. 不等式原理:设函数)(x f 在区间) , [∞+a 上连续,在区间) , (∞+a 内可导, 且0)(>'x f ; 又 .0)(≥a f 则 a x >时, .0)(>x f (不等式原理的其他形式.)例6 证明: 21>x 时, 1)1ln(2->+arctgx x .例7 证明: 0>x 时, !3sin 3x x x ->.3. 利用极值证明不等式: 例8 证明: 0≠x 时, x e x+>1.Ex [1]P 146—147 1—9.§5 函数的凸性与拐点( 2时 )一. 凸性的定义及判定:1. 凸性的定义:由直观引入. 强调曲线弯曲方向与上升方向的区别. 定义 见书P146凸性的几何意义:曲线的弯曲方向;曲线与弦的位置关系;曲线与切线的位置关系. 引理(弦与弦斜率之间的关系)2. 利用一阶导数判断曲线的凸向 Th1 (凸的等价描述) 见书P146例1 (开区间内凸函数的左、右可导性,从而开区间内凸函数是连续的)3. 利用二阶导数判断曲线的凸向:Th2 设函数)(x f 在区间),(b a 内存在二阶导数, 则在),(b a 内⑴)(,0)(x f x f ⇒<''在),(b a 内严格上凸; ⑵)( ,0)(x f x f ⇒>''在),(b a 内严格下凸.证法一 ( 用Taylor 公式 ) 对),,(,21b a x x ∈∀ 设2210x x x +=, 把)(x f 在点 展开成具Lagrange 型余项的Taylor 公式, 有,)(2)())(()()(201101001x x f x x x f x f x f -''+-'+=ξ 202202002)(2)())(()()(x x f x x x f x f x f -''+-'+=ξ.其中和在与之间. 注意到 )(0201x x x x --=-, 就有[]20222011021))(())((21)(2)()(x x f x x f x f x f x f -''+-''+=+ξξ, 于是 若有⇒<'' ,0)(x f 上式中[])(2)()( ,0021x f x f x f <+⇒<Λ, 即)(x f 严格上凸. 若有⇒>'' ,0)(x f 上式中[])(2)()( ,0021x f x f x f >+⇒>Λ, 即)(x f 严格下凸. 证法二 ( 利用Lagrange 中值定理. ) 若,0)(>''x f 则有)(x f '↗↗, 不妨设21x x <,并设2210x x x +=,分别在区间],[01x x 和],[20x x 上应用Lagrange 中值定理, 有 ))(()()( ),,(10110011x x f x f x f x x -'=-∍∈∃ξξ, ))(()()( ),,(02202202x x f x f x f x x -'=-∍∈∃ξξ.有),()( ,2122011ξξξξf f x x x '<'⇒<<<< 又由 00210>-=-x x x x ,))((101x x f -'ξ<))((022x x f -'ξ, ⇒)()()()(0210x f x f x f x f -<-, 即⎪⎭⎫⎝⎛+=>+22)(2)()(21021x x f x f x f x f , )(x f 严格下凸.可类证0)(<''x f 的情况.例2 讨论函数x x f arctan )(=的凸性区间.例3 若函数)(x f 为定义在开区间),(b a 内的可导函数,则),(0b a x ∈为)(x f 的极值点的 充要条件是为)(x f 的稳定点,即.0)(0='x f4. 凸区间的分离: )(x f ''的正、负值区间分别对应函数)(x f 的下凸和上凸区间. 二.曲线的拐点:拐点的定义.Th3 (拐点的必要条件) Th4注:. 例4 讨论曲线x x f arctan )(=的拐点.Jensen 不等式:设在区间],[b a 上恒有0)(>''x f ( 或) 0<, 则对],[b a 上的任意个点 )1(n k x k ≤≤, 有Jensen 不等式:∑=≥n k k x f n 1)(1( 或⎪⎭⎫⎝⎛≤∑=n k k x n f 11) , 且等号当且仅当n x x x ===Λ21时成立.证 令∑==nk k x n x 101, 把)(k x f 表为点处具二阶Lagrange 型余项的Taylor 公式,仿前述定理的证明,注意∑==-nk kx x10,0)( 即得所证.对具体的函数套用Jensen 不等式的结果,可以证明一些较复杂的不等式.这种证明不等式的方法称为Jensen 不等式法或凸函数法.具体应用时,往往还用到所选函数的严格单调性.例2证明: 对,,R ∈∀y x 有不等式 )(212y xy x e e e+≤+. 例3 证明均值不等式: 对+∈∀R n a a a ,,,21Λ, 有均值不等式na a a n11121+++Λn a a a a a a nn n +++≤≤ΛΛ2121 .证 先证不等式na a a a a a nn n +++≤ΛΛ2121.取x x f ln )(=. )(x f 在) , 0 (∞+内严格上凸, 由Jensen 不等式, 有∑∑∑∑∏=====⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛≤==n k n k k n k k k n k k n nk k x n x n f x f n x n x 111111ln 1)(1ln 1ln .由)(x f ↗↗na a a a a a nn n +++≤ΛΛ2121 .对+∈R na a a 1,,1,121Λ用上述已证结果, 即得均值不等式的左半端. 例4 证明: 对R ∈∀n x x x ,,,21Λ, 有不等式nx x x n x x x nn 2222121+++≤+++ΛΛ. ( 平方根平均值 ) 例5设6=++z y x ,证明 12222≥++z y x . 解 取2)(x x f =, 应用Jensen 不等式.例6 在⊿ABC 中, 求证 233sin sin sin ≤++C B A . 解 考虑函数x x x f x x x f sin . 0 , 0 sin .0 ,sin )(⇒<<-=''≤≤=ππ在 区间) , 0 (π内凹, 由Jensen 不等式, 有233sin 33)()()(3sinC sinB sinA ==⎪⎭⎫⎝⎛++≤++=++∴πC B A f C f B f A f . 233sinC sinB sinA ≤++⇒.例7 已知1 ,,,=++∈+c b a c b a R . 求证6737373333≤+++++c b a .解 考虑函数3)(x x f =, )(x f 在) , 0 (∞+内严格上凸. 由Jensen 不等式, 有≤+++++=+++++3)73()73()73(3737373333c f b f a f c b a28)8()7(37373733===+++=⎪⎭⎫ ⎝⎛+++++≤f c b a f c b a f .6737373333≤+++++c b a .例8 已知 .2 , 0 , 033≤+>>βαβα 求证 2≤+βα. ( 留为作业 )(解 函数3)(x x f =在) , 0 (∞+内严格下凸. 由Jensen 不等式, 有=+≤⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+2)()(228)(33βαβαβαβαf f f ⇒=≤+ ,122233βα 2 , 8)(3≤+⇒≤+βαβα. )Ex [1]P 153 1—5.§6 函数图象的描绘( 2时 )微分作图的步骤: ⑴确定定义域.⑵确定奇偶性、周期性.⑶求一阶导数并分解因式,同时确定一阶导数为0的点和不存在的点. ⑷求二阶导数并分解因式,同时确定二阶导数为0的点和不存在的点.⑸将一阶、二阶导数为0的点和不存在的点作为分点插入函数的定义域,列表讨论各个区间上的单调性、凹凸性及各分点的极值、拐点. ⑹确定渐近线.⑺适当补充一些点,如与坐标轴的交点. ⑻综合以上讨论作图. 例1 描绘函数3231)(+--=x x x x f 的图象. 例2 描绘函数222)(21)(σμσπ--=x ex f (其中0,>σμ为常数)的图象.Ex [1]P 155 (1)—(8).。