五年级走美杯试题(带答案)doc

合集下载

五年级上册数学试题-第十一届走美杯初赛试卷C全国通用 PDF版 含答案 (1)

五年级上册数学试题-第十一届走美杯初赛试卷C全国通用 PDF版 含答案 (1)

11届走美小学五年级试卷(C 卷)11届走美小学五年级试卷(C 卷)一、填空题Ⅰ(每题8分,共40分)1.去掉20.13中的小数点,得到的整数比原来的数增加了多少倍.【分析】原数有2位小数,将小数点去掉,变为原数的100倍,即增加了99倍。

2.在面积为210平方厘米的长方形内如图摆放了3个大小一样的小正六边形,每个小正六边形的面积是多少平方厘米.【分析】如下左图,将原图进行分割,变为一些小三角形、大三角形、五边形及六边形。

如下右图,原图中较大的三角形可以分为2个小三角形,六边形可以分为12个小三角形,而显然五边形是六边形的一半,所以可以分为6个小三角形。

于是,原长方形可以被分为21223631260⨯+⨯+⨯+⨯=个小三角形,而每个正六边形由12个小三角形组成,其面积为210601242÷⨯=平方厘米。

3.某城市出租车计费如下:起步里程为3千米,起步费10元,起步里程后每千米收费为2元;超过8千米以上的部分每千米收费为2.40元.某人坐出租车到离城20千米的地方办事,到达时需付车费多少元.【分析】10(83)2(208) 2.448.8+-⨯+-⨯=元。

4. 从1开始,轮流加4和3,得到下面一列数1,5,8,12,15,19,22……在这列数中与2013最接近的那个数是__________.【分析】可以将这串数列分为两个数列,将其奇数项取出,构成首项为1,公差为7的等差数列;将偶数项取出,构成首项为5,公差为7的等差数列于是,第一个数列的通项可以写为71a +,第二个数列的通项可以写为75b +,而201372874=⨯+,于是,这列数中与2013最接近的数是2014。

11届走美小学五年级试卷(C 卷)5.如图所示,心形由两个半圆,两个扇形和一个正方形拼成,心形面积是多少cm2.(π取3.14)【分析】心形由2个直径为10厘米的半圆、两个半径为10厘米、圆心角为45°的扇形和一个边长为10厘米的正方形组成其面积为2221452 3.1452 3.1410102572360⨯⨯⨯+⨯⨯⨯+=平方厘米。

2009年第七届走美杯初赛五年级试题及详解

2009年第七届走美杯初赛五年级试题及详解

第七届走美杯五年级一、填空题(每题8分,共40分)(第七届走美五年级初赛第1题)200920082008200820092009⨯-⨯=_______(第七届走美五年级初赛第2题)在175、3.04、3.4、133四个小数中,第二小的数是________(第七届走美五年级初赛第3题)A、B都是整数,A大于B,且2009A B⨯=,那么A B-的最大值为________ ,最小值为_______。

(第七届走美五年级初赛第4题)乒乓球从高考空下,到达地面后弹起的高度约为落下高度的0.4倍,若乒乓球从25米高处落下,那么弹起后再落下,弹_______次时它的弹起的高度不足0.5米。

(第七届走美五年级初赛第5题)弹簧测力计可以用来称物体质量,弹簧伸长的长度也不同,观察下表,当物体重0.5千克时,弹簧伸长______厘米,如果弹簧伸长8厘米,物体重______千克。

二、填空题(第题10分,共50分)(第七届走美五年级初赛第6题)从20以内的质数中选出6个数,写在一个正方体的六个面上,使两个相对面的和都相等,所选的6个数是__________________(第七届走美五年级初赛第7题)一天,红太狼和灰太狼同时从“野猪林”出发,到“天堂镇”。

红太狼一半路程溜达,一半路程奔跑。

灰太狼一半时间溜达,一半时间奔跑。

如果它们溜达的速度相同,奔跑的速度也相同,则先到“天堂镇”是_______。

(第七届走美五年级初赛第8题)58的分母扩大到32,要使分数大小不变,分子应该为__________。

(第七届走美五年级初赛第9题)请将三个“数”、三个“学”、三个“美”填入右图中,使得每一横排、每一竖排都有这三个字,如果在左上角摆上“数”,那么可能有_______几种不同的摆法。

(第七届走美五年级初赛第10题)地震时,地震中心同时向各个方向传播纵波与横波,纵波的传播速度每秒是3.96千米,横波的传播速度每秒是2.58千米。

在汶川地震中,地震监测点用地震仪接收到地震的纵波后,隔了6.9秒接收到这个地震的横波,那么地震的中心距离监测点__________千米。

2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(五年级)后附答案解析

2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(五年级)后附答案解析

2017年第十五届“走美杯”小数数学竞赛上海赛区初赛试卷(五年级)一、填空题(共5小题,每小题8分,满分40分)1.(8分)1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98= .2.(8分)数学测试满分100分,第二个小组的平均分为86分,明明考了98分,若明明加入第二小组,第二小组平均分将变为88分,第二小组原有人.3.(8分)有一种六位数,从左向右第三位数字开始,每一个数字都是它前面两个数字的和,这样的六位数共有个.4.(8分)24点游戏,用适当的运算符号(包括括号)把3,3,8,8这四个数组成一个算式,使结果等于24..5.(8分)m,n,p是三个不同的正整数,它们除以13的余数分别是3,6,11那么(m+n﹣p)(2m﹣n+p)除以13的余数是.二、解答题(共5小题,满分50分)6.(10分)给定四个正整数9、9、9、17,把他们写在正方形的四个角上,在正方形外面画一个外接正方形,并且连续操作下去,层层嵌套(如图),把这个正方形的角上相邻的两个数相减(以大减小),得到的四个差数分别写在这两个数之间的外接正方形的角上,经过若干次操作,得到的正方形的四个角上的数字之和最小,这个最小值为.7.(10分)从1、2、3、4、5、6、7、8、9这9个数中选出6个不同的数,分别写在一个正方体的6个面上,使任意相邻的面上所写的两个数的差不小于2,这6个数之和最小为.8.(10分)若干个棱长为1的正方体木块组成一个立体图形,从正面看如图1,从侧面看如图2,这组木块最少有个,最多有个.9.(10分)一堆桃子堆在树下,总数为奇数,估计不少于360个,也不会超过400个,一群猴子排队等候猴王分桃,分桃的规则是,若桃子有偶数个,分桃的猴子可以分走一半;若桃子有奇数个,猴王就从树上摘一个桃子放入桃堆,分桃的猴子也分走一半,当剩下1个桃子时就停止分桃,第9个猴子分桃后只剩下了一个桃子,在分桃的过程中,猴王一共摘了7个桃子,这堆桃子原有个.10.(10分)长方形内有2017个点,连同长方形的4个顶点在内,共有2021个点,任意3个点都不在同一条直线上,以这2021个点中的某三点为顶点,可作出个互不重叠的三角形.三、解答题(共5小题,满分60分)11.(12分)一个长方形,长、宽、高均为整数厘米(长>宽>高),已知宽为8厘米,且长方体的三个相邻面的面积值恰好成等差数列,这个长方体的表面积最小为平方厘米.12.(12分)甲、乙、丙、丁四人进行围棋比赛,任意两人都赛一场,胜一场得3分,平一场各得1分,负者不得分,比赛结束,甲得2分,乙和丙都得4分,丁得分.13.(12分)每个小正方体的质量为100克,由125个小正方体组成大正方体,从这个大正方体中抽出一组小正方体,抽的方法是:从一个面到其对面所涉及到的小正方体都要抽掉,如图中涂色部分就是抽出后的情形,抽出这些小正方体后的几何体的质量是克.14.(12分)现有1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)(如图),分别有6块、11块、10块,从这些积木中选出若干个,拼成3×3×3的实心正方体,至多可以拼出个3×3×3的实心正方体,写出这几个正方体的拼法分别所用的A、B、C的个数(如1A+7B+1C):15.(12分)0、1、2、3、4、5、6、7这八个数字可以组成两个四位数M和N,如果M+N的和是一个末三位数字相同、千位数字为0的五位数,这个五位数是,M×N的积的不同取值共有种.2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(五年级)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98= 70 .【分析】在算式中,这些数具有一定的特点:相加的数是1﹣﹣99之间的所有奇数,相减的数是10﹣﹣98之间的所有偶数.在1﹣﹣99之间只有1﹣﹣9这一数段中只有1、3、5、7、9这些奇数,而没有2、4、6、8这些偶数.其余的10﹣﹣19、20﹣﹣29、30﹣﹣39一直到90﹣﹣99这9个数段中都是所有的奇数和偶数.我们还知道相邻的2个自然数之间相差着1.所有把10﹣﹣99之间这些没间断的奇数和偶数运用加法的交换律进行计算,把相邻的2个自然数组成一组.这样每个数段的10个数就组成5组,共5×9=45组.1、3、5、7、9单独组成一个特别的组,再进行计算.【解答】1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98=1+3+5+7+9+11﹣10+13﹣12+…+99﹣98=(1+3+5+7+9)+(11﹣10)+(13﹣12)+…+(99﹣98)=(1+9)+(3+7)+5+1×(5×9)=10+10+5+45=25+45=70【点评】解题的关键是看出这些数的特点,发现其中的规律.特别是怎样分数段,每个数段中有几个组合,它们的差都是1.2.(8分)数学测试满分100分,第二个小组的平均分为86分,明明考了98分,若明明加入第二小组,第二小组平均分将变为88分,第二小组原有 5 人.【分析】首先求出明明的数学测试成绩和第二个小组后来的平均分的差是多少;然后用它除以第二小组后来的平均分比原来的平均分多的分数,求出第二小组原有多少人即可.【解答】解:(98﹣88)÷(88﹣86)=10÷2=5(人)答:第二小组原有5人.故答案为:5.【点评】此题主要考查了平均数问题,考查了分析推理能力的应用,要熟练掌握,解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数.3.(8分)有一种六位数,从左向右第三位数字开始,每一个数字都是它前面两个数字的和,这样的六位数共有 4 个.【分析】可以从首位为1开始算起,1+0=1,故有101123,1+1=2,故有112358,2+0=2,故有202246,3+0=3,故有303369,一共有4个.【解答】解:根据分析,从首位为1开始算起,1+0=1,故有101123;1+1=2,故有112358;2+0=2,故有202246;3+0=3,故有303369,这样的六位数分别是:101123、112358、202246、303369,故答案是:4.【点评】本题考查了数字问题,突破点是:从首位1开始算起,利用数字和求得六位数的个数.4.(8分)24点游戏,用适当的运算符号(包括括号)把3,3,8,8这四个数组成一个算式,使结果等于24.8÷(3﹣8÷3).【分析】首先分析数字题中的有2个搭档,同时组合过程中不容易找到,那么可以分析除法中的特殊情况.【解答】解:依题意可知;8÷(3﹣8÷3)=8÷(3﹣)=8÷=24满足条件.故答案为:8÷(3﹣8÷3)【点评】本题考查对填符号组算式的理解和运用,关键是找到特殊的除法计算.问题解决.5.(8分)m,n,p是三个不同的正整数,它们除以13的余数分别是3,6,11那么(m+n﹣p)(2m﹣n+p)除以13的余数是 4 .【分析】根据“具有同一模的两个同余式,两边分别相加减,仍得同一模的另一同余式”;以及“具有同一模的两个同余式,两边分别相乘,仍得同一模的另一同余式”解答即可.【解答】解:(m+n﹣p)(2m﹣n+p)=(3+6﹣11)×(2×3﹣6+11)=﹣22﹣22(mod )=﹣2×13+4(mod13)=4(mod13)所以,(m+n﹣p)(2m﹣n+p)除以13的余数是4.故答案为:4.【点评】本题考查了孙子定理,关键是明确孙子定理的两个性质定理.二、解答题(共5小题,满分50分)6.(10分)给定四个正整数9、9、9、17,把他们写在正方形的四个角上,在正方形外面画一个外接正方形,并且连续操作下去,层层嵌套(如图),把这个正方形的角上相邻的两个数相减(以大减小),得到的四个差数分别写在这两个数之间的外接正方形的角上,经过若干次操作,得到的正方形的四个角上的数字之和最小,这个最小值为0 .【分析】按照题目所要求的规则依次写出后一层正方形的四个顶点的数字就可以得出结果【解答】解:把四个数字按照顺时针的顺序依次写成(9,9,9,17),外层正方形顶点上的数字依次为:⇒(0,0,8,8)⇒(0,8,0,8),如下图:…再往后推算得到:⇒(8,8,8,8)⇒(0,0,0,0).此时四个数的和最小,为0,故本题答案为:0.【点评】理解清楚题目的处理规则,依据规则进行运算,就不难得出结果.7.(10分)从1、2、3、4、5、6、7、8、9这9个数中选出6个不同的数,分别写在一个正方体的6个面上,使任意相邻的面上所写的两个数的差不小于2,这6个数之和最小为27 .【分析】根据题目要求的数字和最小,首先应考虑1和2为对面,然后考虑它们相邻面的第二组对面的数字情况,进而推断第三组对面.【解答】解:要使六个数之和最小,应有1、2,且1、2不能相邻,只能对面,此时2的四个相邻面中的数不能有3,最小为4、5、6、7;若4、5对面,另两个面中不能出现6,最小为7、8,故满足条件的6个数之和最小为(1+2)+(4+5)+(7+8)=27(括号内的两数对面).故答案为:27.【点评】本题的突破口在于步步推进,首先从最小的数对开始,一步步推出三组对面数字.8.(10分)若干个棱长为1的正方体木块组成一个立体图形,从正面看如图1,从侧面看如图2,这组木块最少有8 个,最多有26 个.【分析】从正面看和从侧面(左侧)看都有4列,可以在4×4的方格中进行摆放,分别看最多和最少可摆放多少方块【解答】解:在如下图所示的4×4方格中,进行摆放方块,来使这堆方块从正面、侧面看起来的画面满足要求,摆放方块最少的情况如下图:最少共需要:3+1+2+2=8块,摆放方块最多的情况如下图:最多需要:26块.故答案为:8;26.【点评】本题需要一定的空间想象能力,要求对摆放的方块的正面和侧面视图进行分析.9.(10分)一堆桃子堆在树下,总数为奇数,估计不少于360个,也不会超过400个,一群猴子排队等候猴王分桃,分桃的规则是,若桃子有偶数个,分桃的猴子可以分走一半;若桃子有奇数个,猴王就从树上摘一个桃子放入桃堆,分桃的猴子也分走一半,当剩下1个桃子时就停止分桃,第9个猴子分桃后只剩下了一个桃子,在分桃的过程中,猴王一共摘了7个桃子,这堆桃子原有 385 个.【分析】首先分析题意,本题可用二进制的方法来解决.若有16个桃子化成二进制的数字是(10000)2,是一个五位数的二进制数字,每次均分,数位减少一个,均分4次以后余数是1个桃子,且不需要从树上摘.继续推理即可.【解答】解:依题意可知:本题可用二进制的方法来解决.若有16个桃子化成二进制的数字是(10000)2,是一个五位数的二进制数字,每次均分,数位减少一个,均分4次以后余数是1个桃子,且不需要从树上摘.((10000)2,(1000)2,(100)2,(10)2,12)看13个桃子13=(1101)2.则在第一次和第二次分桃时从树上各摘一个桃子,即(1101)2+(11)2=(10000)2.看本题中设原来有N 个桃子,则(100000000)2<N <(1000000000)2N 为奇数化为二进制数字后应为9位数,且末尾数字是1,首位数字是1,即是十进制中的256,分桃过程中又摘了7个桃子,第一次必摘,即末尾必加1,中间的7位数有6需要加1,即6个0.只有1个1.因为360<N<400,所以N=256+1+128=385.故答案为:385.【点评】本题考查对二进制的理解和运用,关键问题是找到二进制的数字的表示方法,问题解决.10.(10分)长方形内有2017个点,连同长方形的4个顶点在内,共有2021个点,任意3个点都不在同一条直线上,以这2021个点中的某三点为顶点,可作出4036 个互不重叠的三角形.【分析】这个题如果直接考虑这2021个点的话,会无从下手,可以先只考虑长方形的四个点,可以组成2个三角形,再向长方形内部一个一个的添加点.【解答】解:如图,长方形ABCD的四个顶点,连接BD,可以组成两个三角形:△ABD和△BCD,然后向长方形内部添加点E,连接周围顶点后,现在△BCD被分成3个三角形,相当于多出2个三角形,以此类推,…每添加一个点,三角形数量增加2,共添加2017个点,则三角形的数量为:2+2017×2=4036,故本题答案为:4036.【点评】本题重点在于找到逐一向长方形内部添加点这一思路,化繁为简,找到规律.三、解答题(共5小题,满分60分)11.(12分)一个长方形,长、宽、高均为整数厘米(长>宽>高),已知宽为8厘米,且长方体的三个相邻面的面积值恰好成等差数列,这个长方体的表面积最小为432 平方厘米.【分析】根据题意可设长方形的长、宽、高分别为a、b、c(a>b>c),根据题意可列出a、b、c之间的等量关系,由于均为整数,可将等式凑成乘积的形式结合分解质因数进行求解.【解答】解:设长方形的长、宽、高分别为a、b、c(a>b>c),则长方形的三个相邻面的面积由大到小的顺序为ab、ac、bc,则根据题意可得2ac=ab+bc,其中b=8,则ac=4a+4c,凑成乘积的形式可得(a﹣4)×(c﹣4)=16=16×1=8×2,则a﹣4=16或8,c﹣4=1或2,可得a=20,b=8,c=5或a=12,b=8,c=6.则长方体的表面积=2×(ab+ac+bc)=2×(160+100+40)=600平方厘米或2×(96+72+48)=432平方厘米,因此这个长方体的表面积最小为432平方厘米.故答案为:432.【点评】本题的关键在于能想到画成乘积的形式用分解质因数进行求解,稍有难度.12.(12分)甲、乙、丙、丁四人进行围棋比赛,任意两人都赛一场,胜一场得3分,平一场各得1分,负者不得分,比赛结束,甲得2分,乙和丙都得4分,丁得6分或5 分.【分析】每人恰好都比赛三场,甲得2分,一定是平2场负1场,乙丙都得4分,一定是胜1场平1场负1场,依此推断,丁有两种情形,再分类计算求得丁的得分.【解答】解:根据分析,每人恰好都比赛三场,甲得2分,一定是平2场负1场,乙丙都得4分,一定是胜1场平1场负1场,依此推断,丁有两种情形,如下图(箭头指向负者,线段表示平局);故丁的得分为6分或5分.(图示只为情形之一)故答案是:6分或5分.【点评】本题考查了逻辑推理,突破点是:根据已知,逻辑推理,分析得出丁的得分.13.(12分)每个小正方体的质量为100克,由125个小正方体组成大正方体,从这个大正方体中抽出一组小正方体,抽的方法是:从一个面到其对面所涉及到的小正方体都要抽掉,如图中涂色部分就是抽出后的情形,抽出这些小正方体后的几何体的质量是8000 克.【分析】可以先算出抽出的小正方体的个数,共抽出了3×5+4×5+5×5﹣(2+4)﹣(3×3)=45个小正方体,余下的几何体含有的小正方体个数为:125﹣45=80个,不难求得余下的几何体的质量.【解答】解:根据分析,算出抽出的小正方体的个数,因为抽小正方体的时候上下表面和左右表面以及前后表面共同的小正方体个数有:4+5+6=15个,故共抽出了:3×5+4×5+5×5﹣(4+5+6)=45个小正方体,余下的几何体含有的小正方体个数为:125﹣45=80个,质量为:80×100=8000g,故答案是:8000.【点评】本题考查剪切和拼接,突破点是:先算抽出的小正方体的个数,再求余下的几何体含有的小正方体的个数.14.(12分)现有1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)(如图),分别有6块、11块、10块,从这些积木中选出若干个,拼成3×3×3的实心正方体,至多可以拼出 3 个3×3×3的实心正方体,写出这几个正方体的拼法分别所用的A、B、C的个数(如1A+7B+1C):2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C【分析】首先计算出1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)能提供的总块数为85,3×3×3的实心正方体需要的积木块数为27,85÷27=3…4,因此首先可以判断至多能拼出3个3×3×3的实心正方体,然后根据奇偶性判断A、B、C各自所用的块数,据此解答.【解答】解:6块、11块、10块A、B、C积木总共能提供的块数是2×6+3×11+4×10=85,一个3×3×3的实心正方体需要的块数为27,因此最多拼成3个,且剩下块数为85﹣27×3=4,可以为2个A积木或1个C积木.27=2A+3B+4C,考虑27为奇数,因此B必须为奇数,因此B只能为1,3,5,7,B的总块数为11,因此3个实心正方体所用B的数目可以为1,5,5或1,3,7.①所用B的数目可以为1,5,5:拼法1:1B拼法2:4A+5B+1C拼法3:2A+5B+2C则拼法1中已经没有积木A可用,不符合题意;①所用B的数目可以为1,3,7:拼法1:2A+1B+5C(或4A+1B+4C)拼法2:1A+3B+4C拼法3:1A+7B+1C两种方法均符合题意.因此这几个正方形的拼法可以是 2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C.故答案为:3;2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C.【点评】本题考查拼接方法,需要掌握这种题的答题技巧,难度较大.15.(12分)0、1、2、3、4、5、6、7这八个数字可以组成两个四位数M和N,如果M+N的和是一个末三位数字相同、千位数字为0的五位数,这个五位数是10333或10666 ,M×N的积的不同取值共有64 种.【分析】按题意,这8个数字的和为28,组成的两个四位数相加和为五位数,相加时至少进位一次,所以这个五位数的数字之和只能是19或10或1,显然五位数10000不合题意,数字和为10时,这个五位数为10333或10666,进一步根据数字的组合情况可求得M、N取值的不同情形,进而求解.【解答】解:根据分析,这8个数字的和为28,组成的两个四位数相加和为五位数,相加时至少进位一次,所以这个五位数的数字之和只能是19或10或1,显然五位数10000不合题意.当数字和为10时,这个五位数为10333,两个四位数相加时若个位和为13,则十位数字和为2,只能选2和0,则数字和为3无法选数字,故不符合要求,同理十位和为13也不符合要求,因此只能个位和为3,十位和为3,百位和为13,千位和为9,对应的数字M和N分别有2×2×2×2×=32种情况,M ×N的积有32÷2=16种不同情形;当数字和为19时,这个五位数为10666,此时两个四位数相加时个、十、百位的和都只能是6(0+6,1+5,2+4),千位数相加和为10(3+7),共有6×4×2=48种不同情形,所以M×N的积共有16+48=64种.故答案是:10333或10666,64.【点评】本题考查了数字问题,突破点是:数字进位和数字之和的性质,可以推测出五位数及不同的取值.。

走美杯五年级详解

走美杯五年级详解

⎝ 7⎠
⎝ b⎠
牌组 {a,a,b,b}称为“王亮牌组”,请再写出一组不同的“王亮牌组”

考点:24 点
解析: ⎜⎛ a − a ⎟⎞ × b = ab − a = a(b −1) = 24 ,所以 24 能被 a 整除,
⎝ b⎠
所以 a 的可能取值为 1,2,3,4,6,8,12,24,对应的 b 的取值为 25,13,9,7,5,4,3,2 又因为 a、b 的取值范围为 1 至 13,
24,最先找到算法者获胜。游戏规定 4 张扑克牌都要用到,而且每张牌只能用 1 次,比如 2,3,4,Q 则可
以由算法 (2× Q)× (4 − 3)得到 24。
王亮在一次游戏中抽到了 4,4,7,7,经过思考,他发现, ⎜⎛ 4 − 4 ⎟⎞ × 7 = 24 ,我们将满足 ⎜⎛ a − a ⎟⎞ × b = 24 的
【第 13 题】如果两个自然数的积被 9 除余 1,那么我们称这两个自然数互为“模 9 的倒数”。比如,2 × 5 = 10 ,
被 9 除余 1,则 2 和 5 互为“模 9 的倒数”;1×1 = 1,则 1 的“模 9 的倒数”是它自身。显然,一个自然数
如果存在“模 9 的倒数”,则它的倒数并不是唯一的,比如,10 就是 1 的另一个“模 9 的倒数”。判断 1,2,
数)只有 2 与 3。那么,这个自然数是

考点:约数的个数
解析:设这个数为 2a × 3b ( a、b 均为正整数),由题意可知 (a +1)× (b +1) = 10 = 2× 5
所以 a = 1 ,b = 4 或 a = 4 ,b = 1
所以这个自然数是 21 × 34 = 162 或 24 × 31 = 48

2016年第十四届”走美杯“小学数学竞赛杭州赛区试卷(五年级初赛答案及解析)

2016年第十四届”走美杯“小学数学竞赛杭州赛区试卷(五年级初赛答案及解析)

2016年第十四届”走美杯“小学数学竞赛杭州赛区试卷(五年级初赛)-学生用卷一、填空题共5题,共40 分1、计算:(写成小数的形式,精确到小数点后两位)2、角硬币的正面与反面如图所示,拿三个角硬币一起投掷一次,得到两个正面一个反面的概率为。

3、大于的自然数,如果满足所有因数之和等于它自身的倍,则这样的数称为完美数或完全数。

比如,的所有因数为,,,,,就是最小的完美数,是否有无限多个完美数的问题至今仍然是困扰人类的难题之一,研究完美数可以从计算自然数的所有因数之和开始。

那么的所有因数之和为。

4、某大型会议上,要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有种。

5、将从开始到的连续的自然数相乘,得到,记为(读作的阶乘)用除显然,被整除,得到一个商,再用除这个商,,这样一直用除下去,直到所得的商不能被整除为止。

那么,在这个过程中用整除了次。

二、填空题共5题,共50 分6、如图,已知正方形中,是边的中点,,是与的交点,四边形的面积与正方形的面积的比是。

7、如图所示,将一张纸沿着长边的个中点对折,得到个小长方形,小长方形的长与宽之比与纸相同。

如果设纸的长为厘米,那么,以纸的宽为边长的正方形面积为平方厘米(精确到小数点后一位)。

8、由一些顶点和边构成的图形称为一个图,对一个图用不同颜色给顶点染色,要求具有相同边的两个顶点染不同的颜色。

称为图的点染色,图的点染色通常要研究的问题是完成染色所需要的最少的颜色数,这个数称为图的色数。

如图的图称为彼特森图,彼特森图的色数为。

9、在平面上,用边长为的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形。

最简单的格点多边形是格点三角形,而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的本原格点三角形,每一个格点多边形都能够很容易地划分为若干个本原格点三角形。

第十四届走美杯五年级模拟题3含详解

第十四届走美杯五年级模拟题3含详解

3.

2016
+2 5 201620162016 +3 除以 25 的余数为

4.
如图, ABC 中,BD 是 ABC 的角平分线。 A 60 , AB 12 , AD 3 , CD 6 ,则
ABC

5.
在某次宴会中,每位出席参加的男士都与 3 位女士握手,而每位女士则都与 4 位男士握手。已知 此次宴会的总参加人数超过 45 人但不足 55 人,请问:此次宴会总共有 位男士参加。
3、 【解析】设 5 20162016
2016
=5k ,则
5 20162016
2016
+2 5 20162016 2016 +3 5k +2 5k +3 25k 2 25k 6
2016
所以 5 20162016
+2 5 201620162016 +3 6 mod 25
(王洪福老师
‐2‐
供题)
王洪福老师 数学 第十四届“走进美妙的数学花园”青少年展示交流活动 趣味数学解题技能展示大赛初赛 五年级模拟卷(三) 1、 【解析】原式=0.1×(1×99+2×98+3×97+4×96+......+10×90) =0.1×[1×(100-1)+2×(100-2)+3×(100-3)+......+10×(100-10)] 2 2+ 2 2 =0.1×[(1+2+3+……+10)×100—(1 +2 3 +......+10 )] =0.1×(5500—10×11×21÷6) =0.1×(5500—385) =511.5 2、 【解析】每人发的苹果数量相同,所以人数与苹果数应为 72 的因数,通过枚举可得 72=1×72=2× 36=3×24=4×18=6×12=8×9,经观察发现因数对(4,18)与(3,24)符合条件,则原有学生 72÷ 4=18(人) 。

走美杯试题汇总及答案

走美杯试题汇总及答案

走美杯试题汇总及答案一、选择题1. 下列选项中,哪一个是走美杯的全称?A. 美国数学竞赛B. 美国物理竞赛C. 美国化学竞赛D. 美国数学奥林匹克答案:D2. 走美杯的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A3. 走美杯的参赛对象是?A. 小学生B. 初中生C. 高中生D. 大学生答案:C二、填空题4. 走美杯的题目类型包括________、________和________。

答案:选择题、填空题、解答题5. 走美杯的题目难度分为________、________和________三个等级。

答案:初级、中级、高级三、解答题6. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。

答案:f(2) = 2(2)^2 - 4(2) + 3 = 8 - 8 + 3 = 37. 已知等差数列{an}的首项a1 = 3,公差d = 2,求该数列的第10项。

答案:a10 = a1 + (n - 1)d = 3 + (10 - 1) * 2 = 3 + 18 = 21四、证明题8. 证明:对于任意实数x,等式x^2 - 5x + 6 = (x - 2)(x - 3)成立。

答案:证明如下:x^2 - 5x + 6= x^2 - 2x - 3x + 6= x(x - 2) - 3(x - 2)= (x - 2)(x - 3)9. 证明:如果一个三角形的两边之和大于第三边,则该三角形是存在的。

答案:证明如下:设三角形的三边分别为a、b、c,根据三角形的三边关系定理,要构成三角形,必须满足以下条件:a +b > ca + c > bb +c > a若已知a + b > c,则根据三角形的三边关系定理,该三角形是存在的。

五、应用题10. 某工厂生产一种产品,固定成本为10000元,每件产品的变动成本为50元,产品售价为100元。

若要实现利润为20000元,该工厂需要生产并销售多少件产品?答案:设需要生产并销售x件产品,则有:100x - 50x - 10000 = 2000050x = 30000x = 600所以,该工厂需要生产并销售600件产品。

2021年第12届五年级走美杯B卷试题详解

2021年第12届五年级走美杯B卷试题详解

4cc 级B 卷【分析】412、5 个人围坐在一张圆桌就餐,有种不同的坐法【分析】圆桌可以旋转,有 P 4= 24 种3、像 2、3、5、7 这样只能被 1 和本身整除的大于 1 的自然数叫做质数或者素数。

每一个自然数都能写成若干个质数(可以相同)的乘积,比如:4 = 2⨯ 2 ,6 = 2⨯ 3 ,8 = 2 ⨯ 2⨯ 2 , 9 = 3⨯ 3 ,10 = 2⨯ 5 等,那么, 2⨯ 3⨯ 5⨯ 7 - 1 写成这种形式为 【分析】2 ⨯3⨯ 5 ⨯ 7 -1 = 209 = 11⨯194、有一个自然数,它是 5 和 7 的倍数,并且被 3 除余 1,满足这小条件的最小的自然数是 【分析】同时为 5 和 7 的倍数的自然数最小为 0,但它是 3 的倍数,第二小为 35,但它除以3 余 2,第三小为 70,除以 3 余 1,所以所求数为 70。

5、“24 点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从 52 张扑克牌(不包括大小王)中抽取 4 张,用这 4 张扑克牌上的数字(A=1,J=11,Q=12,K=13)通过加减乘除四则运算得出 24,最先找到算法的人获胜。

游戏规定 4 张扑克牌都要用到,而且每张牌只能用 1 次,比如 2、3、4、Q ,则可以由算法(2×Q )×(4-3)得到 24 点。

王亮在一次游戏中抽到了 8、8、7、1,他发现 8+8+7+1=24,如果将这种能够直接相加 得到 24 的 4 张牌称为“友好牌组”,那么含有最大数字为 8 的不同“友好牌组”共有 组 【分析】(8、8、7、1)(8、8、6、2)(8、8、5、3)(8、8、4、4)(8、7、7、2)(8、7、6、3)(8、7、5、4)(8、6、6、4)(8、6、5、5)共 9 组6、如图所示的几何体,由一些棱长为 1 的单位小立方体构成,一共有 个小立方体。

【分析】8 + 2⨯12 = 32 个7、下图中有个平行四边形。

五年级上册数学试题-第十二届走美杯初赛A卷全国通用 含答案

五年级上册数学试题-第十二届走美杯初赛A卷全国通用  含答案

第十二届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学五年级试卷(A 卷)填空题Ⅰ(每题8分,共40分)1.计算20140309=7(2877000+17_____)××.2.4个人围坐在一张圆桌就餐,有_________种不同的坐法.3.像2,3,5,7这样只能被1和自身整除的大于1的自然数叫做质数或素数.每一个自然数都能写成若干个(可以相同)质数的乘积,比如,4=22×,6=23×,8=222××,9=33×,10=25×等,那么,2222331×××××−写成这种形式为_________.4.一个自然数,它是3和7的倍数,并且被5除余2,满足这些条件的最小的自然数是_________. 5.“24点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(1,11,12,13A J Q K ====)通过加减乘除四则运算得出24,最先找到算法者取胜.游戏规定4张扑克牌都要用到,而且每张牌只能用一次,比如2,3,4,Q ,则可以由算法(2)(43)Q ××−得到24.王亮在一次游戏中抽到了7,7,7,3,他发现7+7+7+3=24,如果将这种能够直接相加得到24的4张牌称为“友好牌组”.那么,含有最大数字为7的不同“友好牌组”共有_________组.填空题Ⅱ(每题10分,共50分)6.如图由一些棱长为1的单位小立方体构成,一共有_________个小立方体.7.下图中有_________个平行四边形.8.用2种颜色对一个22×棋盘上的4个小方格染色,有_________种不同的染色方案.9.古希腊的数学家们将自然数按照以下方式与多边形联系起来,定义了多边形数:三角形数:1,3,6,10,15…… 四边形数:1,4,9,16,25…… 五边形数:1,5,12,22,35…… 六边形数:1,6,15,28,45…… ……则按照上面的顺序,第6个六边形数为_________.10.边长为a b +的正方形纸片有以下两种剪裁方法,按照“等量减等量差相等”的原则,阴影部分所表示的三个小正形的面积之间的关系可以用,,a b c 表示为_________.填空题Ⅲ(每题12分,共60分)11.将1到16的自然数排成44×的方阵,每行每列以及对角线上数的和都等于34,这样的方阵称为4阶幻方,34称为4阶幻方的幻和.10阶幻方的幻和等于_________.cc c bbaba cbaaabbba12.吴宇写好了四封信和四个信封,要将每封信放入相应的信封中,一个信封只放入一封信,四封信全部被装错的情形有_________种.13.日常生活中经常使用十进制来表示数.要用10个数码:0,1,2,3,4,5,6,7,8,9.在电子计算机中用二进制,只要两个数码0和1,正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到一下自然数的十进制与二进制表示对照表:十进制0 1 2 3 4 5 6 7 8 …二进制0 1 10 11 100 101 110 111 1000 …十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1+1=10,十进制的3在二进制中变成了10+1=11,……熟知十进制10个2相乘等于1024,即102=1024,在二进制中就是10000000000.那么二进制中的10110用十进制表示是_________.14.2014年3月9日是星期日,根据这一消息,可以算出2014年全年天数最多的是星期_________.15.有一个两人游戏,13颗围棋子是游戏道具,用抓阄等方式确定谁先走,把先走的一方称为先手方,后走的一方称为后手方,游戏规则如下:先走方必须选择拿走1颗或2颗围棋子;先手完成后,后手方开始按照同样的规则取围棋子:双方轮流抓取,直到取完所有的棋子.取走最后一颗围棋子的人获胜.这个游戏先手方是有必胜策略的,如果要取胜,先手方应该留给对手的围棋子数目从第一轮开始到取胜依次为_________.第十二届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学五年级试卷(A 卷)1 2 3 4 5 6 7 811 6 143=1113× 424 32 17 69 1011 12 13 14 15 66222c a b =+505922星期三12,9,6,3填空题Ⅰ(每题8分,共40分)1.计算20140309=7(2877000+17_____)××.【考点】速算巧算 【难度】☆【答案】11【解析】(2014030972877000)1711÷−÷=.2.4个人围坐在一张圆桌就餐,有_________种不同的坐法. 【考点】计数 【难度】☆ 【答案】6种【解析】先选定一个人,然后其他3个人在他右边开始全排列,3316A ×=3.像2,3,5,7这样只能被1和自身整除的大于1的自然数叫做质数或素数.每一个自然数都能写成若干个(可以相同)质数的乘积,比如,4=22×,6=23×,8=222××,9=33×,10=25×等,那么,2222331×××××−写成这种形式为_________.【考点】分解质因数 【难度】☆ 【答案】143=1113×【解析】先计算得到143,再将143分解质因数.4.一个自然数,它是3和7的倍数,并且被5除余2,满足这些条件的最小的自然数是_________. 【考点】最小公倍数 【难度】☆☆ 【答案】42.【解析】3和7的最小公倍数是21,21的倍数中满足被5除余2的最小数为42.5.“24点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(1,11,12,13A J Q K ====)通过加减乘除四则运算得出24,最先找到算法者取胜.游戏规定4张扑克牌都要用到,而且每张牌只能用一次,比如2,3,4,Q ,则可以由算法(2)(43)××−得到24.Q王亮在一次游戏中抽到了7,7,7,3,他发现7+7+7+3=24,如果将这种能够直接相加得到24的4张牌称为“友好牌组”.那么,含有最大数字为7的不同“友好牌组”共有_________组.【考点】计数【难度】☆☆【答案】4组【解析】分别为7,7,7,3;7,7,6,4;7,7,5,5;7,6,6,5.填空题Ⅰ(每题8分,共40分)6.如图由一些棱长为1的单位小立方体构成,一共有_________个小立方体.【考点】立体几何【难度】☆☆☆【答案】32个【解析】44+82=32××个7.下图中有_________个平行四边形.【考点】几何计数【难度】☆☆☆【答案】17个【解析】设小三角形面积为1,面积2的平行四边形有:11个;面积的4的平行四边形有:6个.×棋盘上的4个小方格染色,有_________种不同的染色方案.8.用2种颜色对一个22【考点】染色计数【难度】☆☆☆【答案】6【解析】用枚举法可以获得.9.古希腊的数学家们将自然数按照以下方式与多边形联系起来,定义了多边形数:三角形数:1,3,6,10,15…… 四边形数:1,4,9,16,25…… 五边形数:1,5,12,22,35…… 六边形数:1,6,15,28,45…… ……则按照上面的顺序,第6个六边形数为_________. 【考点】找规律 【难度】☆☆☆ 【答案】66【解析】差依次为5,9,13,17,21.10.边长为a b +的正方形纸片有以下两种剪裁方法,按照“等量减等量差相等”的原则,阴影部分所表示的三个小正形的面积之间的关系可以用,,a b c 表示为_________.【考点】勾股定理 【难度】☆☆☆【答案】222c a b =+【解析】两个正方形一样,空白部分都是4ab ,阴影部分一样.11.将1到16的自然数排成44×的方阵,每行每列以及对角线上数的和都等于34,这样的方阵称为4阶幻方,34称为4阶幻方的幻和.10阶幻方的幻和等于_________.cc c bbaba cbaaabbba【考点】数阵图——幻方【难度】☆☆☆【答案】505.【解析】(1+100)10020505×÷=,从横向和竖向看,每个数字出现两次,共20行(列).对角线必可以通过对换使之满足条件.12.吴宇写好了四封信和四个信封,要将每封信放入相应的信封中,一个信封只放入一封信,四封信全部被装错的情形有_________种.【考点】计数——枚举法【难度】☆☆☆【答案】9【解析】枚举法可得13.日常生活中经常使用十进制来表示数.要用10个数码:0,1,2,3,4,5,6,7,8,9.在电子计算机中用二进制,只要两个数码0和1,正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到一下自然数的十进制与二进制表示对照表:十进制0 1 2 3 4 5 6 7 8 …二进制0 1 10 11 100 101 110 111 1000 …十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1+1=10,十进制的3在二进制中变成了10+1=11,……熟知十进制10个2相乘等于1024,即102=1024,在二进制中就是10000000000.那么二进制中的10110用十进制表示是_________.【考点】进制问题【难度】☆☆☆【答案】22.2+2+2=22【解析】即:42114.2014年3月9日是星期日,根据这一消息,可以算出2014年全年天数最多的是星期_________.【考点】周期问题【难度】☆☆☆【答案】星期三.【解析】31+28+8=67,通过递推,2014年1月1日为星期三.又36571÷ ,所以最多的是星期三.15.有一个两人游戏,13颗围棋子是游戏道具,用抓阄等方式确定谁先走,把先走的一方称为先手方,后走的一方称为后手方,游戏规则如下:先走方必须选择拿走1颗或2颗围棋子;先手完成后,后手方开始按照同样的规则取围棋子:双方轮流抓取,直到取完所有的棋子.取走最后一颗围棋子的人获胜.这个游戏先手方是有必胜策略的,如果要取胜,先手方应该留给对手的围棋子数目从第一轮开始到取胜依次为_________.【考点】操作问题【难度】☆☆☆【答案】12,9,6,3.【解析】欲取走最后一颗,需给对方剩下3颗;需给对方剩下3颗,需达到给对方剩下6颗的情况……。

走美杯初答案1 (6)

走美杯初答案1 (6)

第十四届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛五年级模拟卷(二)填空题Ⅰ(每题8分,共40分)1.(2×3+123⨯)+(3×4+134⨯)+……+(9×10+1910⨯)=。

2.下图中,A、B、C、D、F、G 六个角的和为度。

3.“24点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(A=1,J=11,Q=12,K=13)通过加减乘除四则运算得出24,最先找到算法者获胜。

游戏规定4张扑克牌都要用到,而且每张牌只能用1次,比如2,3,4,Q 则可以由算法2×Q×(4-3)得到24。

如果在一次游戏中恰好抽到了3,3,8,8,则你的算法是。

4.明明给白白出了下面这道计算题(A,B 各代表两位数中各位上的数字,相同的字母代表相同的数字。

)AB BA ⨯等于多少?白白:“得数是2872。

”明明:“不对。

”白白:“个位的数字对吗?”明明:“对”。

白白:“其它位的数字有对的吗?”明明:“这是保密的。

但你调换一下四位数2872中4个数字的位置,就能得出正确答案”。

请求出正确答案是。

5.甲、乙、丙三人出同样多的钱合买一批练习本,由于甲比乙、丙均少要15本,乙、丙要的同样多,这样乙、丙两人各要给甲7.5元,每本练习本元。

填空题Ⅱ(每题10分,共50分)6.有五个数,A、B、C、D、E,每次去掉一个数,将其余四个数求平均数,这样计算了五次,得到下面五个数是:17,25,27,30,32,求A、B、C、D、E 这五个数平均数是。

7.多位数2016201620162016206n个,能被11整除,n 最小值为。

8.在下面的算式中,A 、B 、C 是三位数的各位数字。

可以是1至9里面的数字,允许有相同的。

X 是两位数。

2016=+++X CAB BCA ABC ,求ABC 的最大为。

第九届走美杯五年级试题详解

第九届走美杯五年级试题详解

N 个不同面积各不相等的长方形(含正方形).N 最大

.
解析:首先,我们来看看理论上 N 最大可能是多少. 如 果 N=8 , 那 么 8 个 不 同 面 积 长 方 形 面 积 和 至 少 是
1+2+3+4+5+6+8+10=39>36(因为不可能有面积为 7 或 9 的长方形在这之中).所 以 N 不可能超过 7.
7
4
6
8
第 9 个小朋友 6
8
5
7
4
第 10 个小朋 7

„„
„„
4 „„
6 „„
8 „„
5 „„
容易发现,从第 2 个小朋友开始,每五个小朋友形成一个循环.
2
2011 年第九届走美杯五年级试题详解
而(2011-1)÷5=401,所以当 2011 个小朋友放完后,A 盒中放有 8 个球.
8、右图是一个 6×6 的方格表,现在沿格线将它分割成
所以,大长方形的长为 1.5,宽为 1,故面积为 1.5.
13、某校五年级二班 35 个同学,学号分别为 1~35.一天他们去春游.出了班长之
外,其余 34 个同学分成 5 组,结果发现每个小组的同学学号之和都相等;后来
这 34 个同学又重新分成 8 组,结果发现每个小组的同学学号之和还是相等.班长
得 C=2,F=8.
所以 ABCD =1026.
7、A、B、C、D、E 五个盒子中依次放有 2、4、6、8、10 个小球.第一个小朋友
找到放球最多的盒子,从中拿出 4 个放在其他盒子中各一个球.第二个小朋友也
找到放球最多的盒子,从中拿出 4 个放在其他盒子中各一个球;依此类推,„„.

第十三届走美杯初赛五年级解析

第十三届走美杯初赛五年级解析
9
2015
年 1 月 11 日第十三届走美杯小学五年级初赛
4of 8

10
、如图, 3× 3 的表格中有16 个小黑点,一个微型机器人从 A 点出发,沿格线运动,经过其他每个黑点恰 好一次,再回到 A 点,共有_______种不同的走法。
A B C
让 优 秀 成 为 习 惯
5、如图, 如图,一个边长为 24cm 的等边三角形被分成了面积相等的五块。 的等边三角形被分成了面积相等的五块。 AB =
A
cm
B
1 1
C

E
1
D
F
新舟解析: 新舟解析:三角形等积变形之高相等, 三角形等积变形之高相等,面积之比等于底边之比。 面积之比等于底边之比。 通过分析( 通过分析(两三角形各自有一条边在同一条线上, 两三角形各自有一条边在同一条线上,并且这两条边在各自三角形里对应的顶点是同一个 点;两三角形等高) 两三角形等高)可以发现, 可以发现,该图形中存在着很多高相等的三角形; 该图形中存在着很多高相等的三角形;其中: 其中: ∆ABF , ∆BCF 等高, 等高,面积也相等, 面积也相等,故底边也相等, 故底边也相等,即 AB = BC ; ∆ACE , ∆CDE 等高, 等高,面积 3 倍关系, 倍关系,故底边 3 倍关系, 倍关系,即 AC = 3CD ; 又因为 AD = AC + CD = 24cm ,所以 AC = 24 ÷ (3 + 1) × 3 = 18 ( cm ) ; AB = BC = 1 AC = 18 ÷ 2 = 9 ( cm ) 2 难度系数: 难度系数:★★★
1
60.45 × 0.28 − 0.4030 × 37 = 6045 × 28 ÷ 10000 − 4030 × 37 ÷ 10000 = ( 6045 × 28 − 4030 × 37 ) ÷ 10000 ⇓ 重点是括号里的计算

15届走美杯五年级试题

15届走美杯五年级试题

第26个是26÷10=2......6即2个循环后的第 6个 即己
第38个是38÷10=3......8即3个循环后的第8 个 即辛
第50个是50÷10=5 即5个循环后正好 即癸 所以还有丁丑、己丑、辛丑、癸丑
第14个是14÷10=1......4即一个循环后的第4个 即丁
15届走美杯五年级
第 7 题
15届走美杯五年级
第 1 题
15届走美杯五年级
第 2 题
解析 本题考点 概率 两个骰子一块投一次,第一个骰子有6种可能,第二个骰子也有6种可能,共有6×6=36种可能
因为1+6=7,2+5=7,3+4=7,所以两个骰子之和为7的共有6种,所以概率为6/36=1/6 同理,第二次投骰子一共有36种情况,4+6=10,5+5=10,两个骰子之和为10的共有3种情况,所 以概率为3/36=1/12
那么两次同时出现的概率也就是1/6×1/12=1/72
15届走美杯五年级
第 3 题
解析 本题考点 因数
321 1 321
3
107
1+321+3+107=432
15届走美杯五年级
第 4 题
解析 本题考点 排列组合 假设5个信封分别记作1,2,3,4,5,放对的信分别记作A,B,C,D,E 假设A放1对,2可以放C,D,E,有三种,无论2放哪一封信,所对应对的那一个信封还有三种方法 (比如2中放D,D对应的信封是4,那么现在4中还可以选BCE三种),剩下的两个信封放错的话, 只能是各有一种情况。(在2放D情况下,如果4放B,那么3只能放E,5只能放C,如果4放C,3 只能放E,5只能放B,如果4放E,那么3只能放B,5只能放C) 所以在1放对信的情况下其他都错,共有3×3=9种情况 5个信封都可以有一个放对的,每一个信封放对的时候,其他4 个信封放错都有9种情况, 所以共有9×5=45种情况

第15届走美杯决赛五年级自测卷(解析版) -

第15届走美杯决赛五年级自测卷(解析版) -

B P 【解析】将 BP 反向延长如下图所示构造弦图,
C
A E B F H G
D
C
P 以 BP 为底,△PAB 的高是 AF,于是有:S△PAB=PB×AF÷2=90,即 AF=15 厘米, 同理有 CG=8 厘米.因此 S□ABCD=152+82=289 平方厘米.
10、有一堆石头,第一次取走一个,第二次取走两个,每次比前一次多一个,如果最后一次 不够则全取。结果发现每次取完后剩余的石头数目都不是质数。当一开始的石头数目在 1000-1100 之间时只有一个值符合,这个值是 。 【考点】质数合数、构造 【答案】1081 【解析】本题考查的是构造的思想,题目中说开始的石头数目在 1000-1100 之间只有一个值 符合,意思就是说只要找到一个符合题意的数其它的数肯定就不符合,也不需要证明。我们 知道连续 n(n≥3)个自然数的和一定是合数(奇数项,中间项是平均数。偶数项,刚好配 对) 。构造 1+2+3+4+……+45+46=1081,检验 1081-1 即为 2+3+4+……+45+46 其结果必为合数,1081-1-2 即为 3+4+5+……+45+46 其结果必为合数,……,1081 -1-2-……-43 即为 44+45+46 其结果必为合数,再减 44 最后的结果为 45+46=91 也 是合数(注:剩最后两数时必须检验,因为 n<3 时不一定是合数) ,所以符合条件的值为 1081。 填空题Ⅲ(每题 12 分,共 60 分) 11、将四个不同的数字排在一起,可以组成 24 个不同的四位数(4×3×2×1=24) 。将这 24 个四位数按从小到大排列顺序排列,第二个是 5 的倍数;按从大到小排列,第二个是不 能被 4 整除的偶数; 按从小到大排列的第五个与第二十个的差在 3000~4000 之间。 请求出这 24 个四位数中最大的一个数是 。 【考点】数的整除 【答案】7543 【解析】设这个四个不同的数字从小到大依次为 A、B、C、D;因为这个四个互不相同的数 字可以组成 4× 3× 2× 1=24 个不同的四位数;所以这个四个数字均不为 0。因为这 24 个四位 数按从小到大排列顺序排列,第二个 ABDC 是 5 的倍数;所以 5|C,C=5; 因为这 24 个四位数按从大到小排列顺序排列,第二个 DCAB 是不能被 4 整除的偶数;所 以 AB 是不能被 4 整除的偶数,因为 A<B<C=5;所以 AB =14 或 34,即 B=4,A=1 或 3; 因为这 24 个四位数按从小到大排列顺序排列,第五个与第二十个的差 DACB ADBC 在 3000~4000 之间;比较百位数字可知 A<D,需从千位借位相减;所以 D-A-1=3,D-A =4;当 A=1 时, D=5,而 C=5,不符合题意;所以 A=3,D=7,这 24 个四位数中 最大的一个 DCBA =7543。

第十一届走美杯初赛小学五级B卷(含解析)

第十一届走美杯初赛小学五级B卷(含解析)

第十一届“走进美好的数学花园”青青年展现交流活动趣味数学解题技术展现大赛初赛小学五年级试卷(B 卷)一、填空题Ⅰ(每题8分,共40分)1.算式143214372⨯⨯⨯⨯的计算结果是_________.2.2021年第一季度某省出口总额为80.7亿美元,比入口总额的1.5倍还多11.1亿美元,这季度该省入口总额为_________亿美元.3.200到220之间有唯一的质数,它是_________.4.3将0~5这六个数字中的4个数字填入由图的圆圈中,每条线段两头的数字作差(大或小),能够取得5个差,这5个差恰好为1~5.在所有知足条件的填法中,四位数ABCD 的最大值是_________.5.蕾蕾去买方便面,递给老板1张面值100元的纸币,老板找完钱后对她说:“你才给我1张钱,我却给了你16张钱,还有价值5元的方便面,你真是太赚了啊!”,若是老板找给蕾蕾的钱要么是面值10元的,要么是面值5元的,那么这16张钱中有_________张是面值10元的.二、填空题Ⅱ(每题10分,共50分)6.将数字1~9填入右图竖式的9个方格中,每一个数字只能用一次,那么和的最大值为_________.7.魔地上有一块魔石,不断向上均匀生长,为幸免它把天捅破,仙界长老决定派出植物战士吸食魔石,抑DC BA3201+制它的生长,每名植物战士天天吸食的量相同,若是派出14名植物战士,16天后魔石就会把天捅破;若是派出15名植物战士,24天后魔石就会把天捅破,至少派出_________名植物战士,才能保证天可不能被捅破.8.有10个小伙子,他们的体重和身高各不相同;关于任意两个小伙子A 和B ,若是A 比B 重,或A 比B 高,那么称“A 不比B 差”;若是一个小伙子不比其它9个人差,就称那个小伙子是“棒小伙”,那么,这10个人中最多有个“棒小伙”_________.9.军区食堂晚餐需用1000斤大米和200斤小米,军需员到米店后发觉米店正在促销,“大米1元1斤,每购10斤送1斤小米(不足10斤部份不送);小米2元一斤,每购5斤送2斤大米(不足5斤部份不送).”军需员至少要付_________元钱才能买够晚餐需用的米.10.如图,正方形ABCD 中,等腰直角三角形AEF 的面积是1,长方形EFGH 的面积是10,那么,正方形ABCD 的面积是_________.三、填空题Ⅲ(每题12分,共60分)11.概念(2)(2)2a b a b =++-,算式135791113(1357911)⨯⨯⨯⨯⨯⨯-的计算结果是_________.12.一个正整数恰有8个约数,它的最小的3个约数的和为15,且那个四位数的一个质因数减去另一个质因数的5倍等于第三个质因数的2倍,那个数是_________.13.甲从A 地动身前去B 地,乙、丙两人从B 地动身前去A 地,甲行了50千米后,乙和丙才同时从B 地动身,结果甲和乙相遇在C 地,甲和丙相遇在D 地,已知甲的速度是丙的3倍,甲的速度是乙的1.5倍,C 、D 两地之间的距离是12千米.那么A 、B 两地之间的距离是_________千米.HGFEDCBA14.小俊掷骰子游戏,刚开始他站在起点格(如图),若是他掷出1至5点,掷出几点就前进几格,若是他掷出6点或某次前进后超出终点格,那么当即返回起点格;假设小俊掷了三次恰好抵达终点格,掷骰子的顺序有_________种可能.15.教师让同窗们计算..时,马小虎把.D E中的小数点看漏了,取得错误结果;而马大虎把加号AB C D E看成了乘号,取得错误结果,那么,正确的计算结果应该是_________.第十一届“走进美好的数学花园”青青年展现交流活动趣味数学解题技术展现大赛初赛小学五年级试卷(B卷)参考答案参考解析一、填空题Ⅰ(每题8分,共40分)1.算式143214372⨯⨯⨯⨯的计算结果是_________.【考点】速算巧算【难度】☆☆【答案】888888【解析】原式(1113)(37)4372=⨯⨯⨯⨯⨯⨯10011118888888 =⨯⨯⨯⨯⨯⨯(71113)(337)(42)=⨯⨯=.2.2021年第一季度某省出口总额为80.7亿美元,比入口总额的1.5倍还多11.1亿美元,这季度该省入口总额为_________亿美元.【考点】差倍问题【难度】☆☆【答案】【解析】入口总额为:(80.711.1) 1.569.6 1.546.4-÷=÷=亿美元.3.200到220之间有唯一的质数,它是_________.【考点】质数合数 【难度】☆☆ 【答案】211【解析】范围内的偶数全为合数;201、207、213、219都是3的倍数;205、215都是5的倍数;203、217都是7的倍数;209是11的倍数;只有211是质数.4.将0~5这六个数字中的4个数字填入由图的圆圈中,每条线段两头的数字作差(大或小),能够取得5个差,这5个差恰好为1~5.在所有知足条件的填法中,四位数ABCD 的最大值是_________.【考点】数字谜 【难度】☆☆ 【答案】5304【解析】共有6个差,故5和0必需存在,为使ABCD 最大,需要5A =,而且B 和C 中有一个为0;B 作为百位数字应尽可能大,假设4B =,那么0C =,但现在D 已无法填出,故B 最大为3;3B =时,0C =,现在有4D =,最大值为5304.5.蕾蕾去买方便面,递给老板1张面值100元的纸币,老板找完钱后对她说:“你才给我1张钱,我却给了你16张钱,还有价值5元的方便面,你真是太赚了啊!”,若是老板找给蕾蕾的钱要么是面值10元的,要么是面值5元的,那么这16张钱中有_________张是面值10元的. 【考点】鸡兔同笼问题 【难度】☆☆ 【答案】3【解析】假设满是5元的,那么16张钱共51680⨯=元,比实际情形的100595-=元少了958015-=元,故有10元钱15(105)3÷-=张.方程方式:设有x 张10元,那么有方程:105(16)1005x x +-=-,解得3x =.DC BA二、填空题Ⅱ(每题10分,共50分)6.将数字1~9填入右图竖式的9个方格中,每一个数字只能用一次,那么和的最大值为_________.【考点】数字谜 【难度】☆☆☆ 【答案】3972【解析】让和最大,那么和的百位为9,假设和的十位不为8,那么第二个加数百位最大为7,可是十位无法提供进位;因此和的十位最大为7.现在第二个加数百位为8.第三个加数千位为3,剩下1、2、4、5、6.假设个位没有进位,只能是2125++=,那么十位无法凑出和为7.故而个位有进位,知足要求的最大的和为1280431563972++=.7.魔地上有一块魔石,不断向上均匀生长,为幸免它把天捅破,仙界长老决定派出植物战士吸食魔石,抑制它的生长,每名植物战士天天吸食的量相同,若是派出14名植物战士,16天后魔石就会把天捅破;若是派出15名植物战士,24天后魔石就会把天捅破,至少派出_________名植物战士,才能保证天可不能被捅破.【考点】应用题——牛吃草 【难度】☆☆☆ 【答案】17【解析】这是一个反生长型的牛吃草问题;设一名战士一天的吸食量是“1”,设魔石天天的增加量为x ,捅破天所需的魔石量为y ,那么有方程组:161416241524y x y x =-⨯⎧⎨=-⨯⎩,解得17x =,故应至少派17名战士来抑制生长.8.有10个小伙子,他们的体重和身高各不相同;关于任意两个小伙子A 和B ,若是A 比B 重,或A 比B3201+高,那么称“A 不比B 差”;若是一个小伙子不比其它9个人差,就称那个小伙子是“棒小伙”,那么,这10个人中最多有个“棒小伙”_________. 【考点】极端思想、构造 【难度】☆☆ 【答案】10【解析】令最高的人体重排第10,第二高的人体重排第9,第三高的人体重排第8,……,最矮的人最重,如此10个人都是“棒小伙”.9.军区食堂晚餐需用1000斤大米和200斤小米,军需员到米店后发觉米店正在促销,“大米1元1斤,每购10斤送1斤小米(不足10斤部份不送);小米2元一斤,每购5斤送2斤大米(不足5斤部份不送).”军需员至少要付_________元钱才能买够晚餐需用的米. 【考点】列方程解应用题、估算 【难度】☆☆☆☆ 【答案】1168【解析】认真观看两种米的促销方式,会发觉其折扣本质是相同的(若是把“10斤大米”和“5斤小米”看做一份促销品的话,那么10元钱能买到的折扣都是15份促销品),故不存在多买大米好仍是多买小米好的问题,只需凑足所需重量,就必然是最省的方式;设买大米x 斤,小米y 斤,列方程组:210005120010x y x y ⎧+≤⎪⎪⎨⎪+≤⎪⎩来估算大米与小米应买多少斤;取得大致重量:大米买950斤,小米买105斤,现在花了1160元,已有992斤大米和200斤小米,再用8元买8斤大米即可,最少用1168元(构造方式不唯一).10.如图,正方形ABCD 中,等腰直角三角形AEF 的面积是1,长方形EFGH 的面积是10,那么,正方形ABCD 的面积是_________.【考点】三角形面积 【难度】☆☆☆ 【答案】【解析】241AEF S EF =÷=△,故2EF =;故1025FG =÷=,254 6.25BFG DEH S S ==÷=△△;故12 6.2521024.5ABCDS=⨯+⨯+=.三、填空题Ⅲ(每题12分,共60分)11.概念(2)(2)2a b a b =++-,算式135791113(1357911)⨯⨯⨯⨯⨯⨯-的计算结果是_________. 【考点】概念新运算 【难度】☆☆☆ 【答案】2【解析】此题能够算出答案,但用递推推出答案会使进程更简单,由概念式可推得:13352=⨯-,135=(13522)7213572⨯⨯-+⨯-=⨯⨯⨯-……以此类推,1357911=1357911132⨯⨯⨯⨯⨯⨯-,故原式答案为2.12.一个正整数恰有8个约数,它的最小的3个约数的和为15,且那个四位数的一个质因数减去另一个质因数的5倍等于第三个质因数的2倍,那个数是_________. 【考点】约数与倍数、质数 【难度】☆☆☆ 【答案】2021或1221【解析】那个正整数有8个约数,还至少有3个质因数,故由约数个数定理可知此数应恰有3个不同的质因数;和为15的3个最小约数只能是:(1、3、11),故那个正整数至少含有质因数3、11;由HGFEDCBA于6111532-⨯=⨯,3735112-⨯=⨯,故此题答案为:31161=2013⨯⨯或31137=1221⨯⨯.13.甲从A 地动身前去B 地,乙、丙两人从B 地动身前去A 地,甲行了50千米后,乙和丙才同时从B 地动身,结果甲和乙相遇在C 地,甲和丙相遇在D 地,已知甲的速度是丙的3倍,甲的速度是乙的1.5倍,C 、D 两地之间的距离是12千米.那么A 、B 两地之间的距离是_________千米. 【考点】行程问题、量率对应 【难度】☆☆☆ 【答案】130【解析】设距A 地50千米处为E 地,那么由于甲速:乙速 1.5:13:2==,故25BC BE =;甲速:丙速3:1=,故14BD BE =;故213125420CD BE BE BE =-==千米,求得80BE =千米,全长5080130+=千米.14.小俊掷骰子游戏,刚开始他站在起点格(如图),若是他掷出1至5点,掷出几点就前进几格,若是他掷出6点或某次前进后超出终点格,那么当即返回起点格;假设小俊掷了三次恰好抵达终点格,掷骰子的顺序有_________种可能.【难度】☆☆☆ 【答案】21【解析】走到终点的方式分两种:要么前进3次,要么先投出6点,再前进2次;前一种情形有(1、2、5)(1、3、4)(1、4、3)(1、5、2)(2、1、5)(2、2、4)(2、3、3)(2、4、2)(2、5、1)(3、1、4)(3、2、3)(3、3、2)(3、4、1)(4、1、3)(4、2、2)(4、3、1)(5、1、2)(5、2、1)共18种,后一种情形有:(6、3、5)(6、4、4)(6、5、3)共3种,总走法为21种.15.教师让同窗们计算..AB C D E +时,马小虎把.D E 中的小数点看漏了,取得错误结果;而马大虎把加号看成了乘号,取得错误结果,那么,正确的计算结果应该是_________. 【考点】逻辑推理、位值原理【难度】☆☆☆☆ 【答案】【解析】.39.6AB C DE +=,故6C =;又.6.36.9AB D E ⨯=,故5E =;再利用加法式:.6539.6AB D +=,得4B =;再利用乘法式: 4.6.536.9A D ⨯=,做数字谜可由乘积中的9推出D ;3(6D +的个位数)9=,故1D =或6;但由于加法式的结果不足40,故D 只能为1;4.61539.6A +=,故2A =;因此原结果为24.6 1.526.1+=.。

走美杯五年级第1讲计算 Microsoft Word 文档

走美杯五年级第1讲计算 Microsoft Word 文档

走美杯五年级第一讲—计算与计数注意:1.并不是每道题都能巧算2.计数中常用分类讨论的思想基础计算1、3.78201067⨯+÷=。

2、小马虎在计算两个小数的乘积时,忘了在乘积中点上小数点,结果比正确结果大了310.86,正确的答案是。

3、(1)3.75与1.25的和除它们的差,商是。

(2)58的分母扩大到32,要使分数大小不变,分子应为。

4、173173173162162162⨯⨯-⨯⨯的计算结果为(填A、B、C、D之一)。

A、926183B、936185C、926187D、9261895、在175、3.04、3.4∙和133四个数中,第二小的数是。

6、计算200720082008200820072007⨯-⨯= 。

7、67200254335467⨯+⨯+⨯=。

8、计算:2237.522.312.523040.7 2.51⨯+⨯+÷-⨯+=。

9、111112342346+-+= 。

10、2008减去它的12,再减去所得差的13,……,以此类推,直到减去上次所得差的12000。

最后的数是。

计数原理11、请将3个“数”,3个“学”,三个“美”填入右图中,使得每一横排,每一竖排都有这3个字,如果右上角上摆“数”,那么可能有种不同的摆法。

12右图中有个三角形,个平行四边形,个梯形。

13、给定三种质量的砝码(每种数量都有足够多个)3kg,11kg,17kg,将它们组合凑成100kg 有种不同方法。

14、玩具厂生产一种玩具棒共四节,用红、黄、蓝三种颜色给每节涂色。

这家玩具厂共有种颜色不同的玩具棒。

15、有一种电子表在8时31分25秒时的显示为258:31,那么从7时到8时这段时间里,此表的5个数字都不相同的时刻一共有个。

数字迷与定义新运算16、定义x☆y=3x+7y,(1☆1)+(2☆2)+(3☆3)+…+(10☆10)= 。

17、一个数n 的数字中为奇数的那些数字的和记为()S n ,为偶数的那些数字记为()E n ,例如(134)134S =+=,(134)4E =.(1)(2)...(100)S S S ++= , (1)(2)...(100)E E E +++= .18、请将1、3、5、7、9填入等号左边的5个方框中,2、4、6、8填入右边的4个方框中,使等式成立,且等号两边的计算结果都是自然数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十届“走进美妙数学花园”中国青少年数学论坛
趣味数学解题技能展示大赛初赛
注意事项:
1. 考生按要求在密封线内填好考生的有关信息.
2. 不允许使用计算器.
小学五年级试卷(B 卷)
一、填空题Ⅰ(每题8分,共40分) 1.一段路,第一天修了全长的
12,第二天修了剩下的12,第三天又修了剩下的1
2
,还剩全长的______。

2.一块玉米地的形状如右图(单位:米)。

它的面积是_____平方米。

3.
7
A 是最简分数且7
710A ,A 最小是____。

4.学校参加体操表演的学生人数在60~100之间。

把这些同学按人数平均分成8人一组,或平均分成12人一组都正好分完。

参加这次表演的同学至少有______人。

5.右图的量杯可以盛6杯水或4碗水。

现将1杯水和2碗水倒入量杯,这时水面应到刻度_______。

二、填空题Ⅱ(每题10分,共50分)
6.2012×20122012-2011×20122013 =________。

7.有一张残缺的发票如右图,那么单价是_______元。

8.200到220之间有唯一的质数,它是______。

9.右图中共能数出______个三角形来。

10.平时轮船从A地顺流而下到B地要行20小时,从B地逆流而上到A地要行28小时。

现在正值雨季,水流速度为平时的2倍,那么,从A到B再回到A共需_____小时。

三、填空题Ⅲ(每题12分,共60分)
11.玉米炮有单筒玉米炮、双筒玉米炮、三筒玉米炮三种。

单筒玉米炮每次发射一根玉米,可以消灭20个僵尸;双筒玉米炮每次发射2根玉米,每根玉米消灭17个僵尸,三筒玉米炮每次发射3根玉米,每根玉米消灭16个僵尸。

玉米炮一共开炮10次发射玉米23根,消灭_____个僵尸。

12.小华需要构造一个3×3的乘积魔方,使得每行、每列、每条对角线上三个正整数的乘积都相等;现在他已经填入了2,3,6三个数,那当小华的乘积魔方构造完毕后,x等于______。

13.有五个互不相等的非零自然数。

如果其中一个减少45,另外四个数字都变成原来的2倍,那么得到的仍然是这五个数。

这五个数的总和是______。

14.如图,直角三角形ABC两直角边的长为3、4,M为斜边中点,以两直角边向外作两个正方形。

那么三角形MEF的面积是________。

15.甲以每分钟60米的速度从A地出发去B地;甲出发5分钟后,乙以每分钟80米的速度从B地出发去A地;结果他们在距离两地中点100米的某处相遇。

A、B两地相距____________米。

答案:。

相关文档
最新文档