八年级数学相似的图形练习题
苏科版数学中考专题复习:图形的相似综合压轴题 专项练习题汇编(Word版,含答案)
苏科版数学中考专题复习:图形的相似综合压轴题专项练习题汇编1.已知四边形ABCD中,M,N两点分别在AB,BD上,且满足∠MCN=∠BDC.(1)如图1,当四边形ABCD为正方形时,①求证:△ACM∽△DCN;②求证:DN+BM=CD;(2)如图2,当四边形ABCD为菱形时,若∠BAD=120°,试探究DN,BM,CD的数量关系.2.在△ABC中,CA=CB=m,在△AED中,DA=DE=m,请探索解答下列问题.【问题发现】(1)如图1,若∠ACB=∠ADE=90°,点D,E分别在CA,AB上,则CD与BE的数量关系是,直线CD与BE的夹角为;【类比探究】(2)如图2,若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图2所示的位置,则CD与BE之间是否满足(1)中的数量关系?说明理由.【拓展延伸】(3)在(1)的条件下,若m=2,将△AED绕点A旋转过程中,当B,E,D三点共线.请直接写出CD的长.3.已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.问题发现:(1)①如图1,若四边形ABCD是正方形,且DE⊥CF于G,则=;②如图2,当四边形ABCD是矩形时,且DE⊥CF于G,AB=m,AD=n,则=;拓展研究:(2)如图3,若四边形ABCD是平行四边形,且∠B+∠EGC=180°时,求证:;解决问题:(3)如图4,若BA=BC=5,DA=DC=10,∠BAD=90°,DE⊥CF于G,请直接写出的值.4.在等边△ABC中,D,E分别是AC,BC上的点,且AD=CE,连接BD、AE相交于点F.(1)如图1,当时,=;(2)如图2,求证:△AFD∽△BAD;(3)如图3,当时,猜想AF与BF的数量关系,并说明理由.5.如图1,点D是△ABC中AB边上一点,∠ACD=∠B,BC2=AB•BD.(1)求证:∠ADC=∠ACB;(2)求∠ACB的度数;(3)将图1中的△BCD绕点C顺时针旋转得到△ECF,BD的对应边EF经过点A(如图2所示),若AC=2,求线段CD的长.6.在矩形ABCD中,AB=6,AD=4,点M为AB边上一个动点,连接DM,过点M作MN ⊥DM,且MN=DM,连接DN.(1)如图①,连接BD与BN,BD交MN于点E.①求证:△ABD∽△MND;②求证:∠CBN=∠DNM;(2)如图②,当AM=4BM时,求证:A,C,N三点在同一条直线上.7.在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上,AB=8,AD=6.(1)如图1,当点G在CD上时,求AE+DG的值;(2)如图2,FG与CD相交于点N,连接EN,当EF平分∠AEN时,求证:EN=AE+DN;(3)如图3,EG,FG分别交CD于点M,N,当MG2=MN•MD时,求AE的值.8.【问题背景】如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,由已知可以得到:①△≌△;②△∽△.【尝试应用】如图2,在△ABC和△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE =30°,求证:△ACE∽△ABD.【问题解决】如图3,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE =30°,AC与DE相交于点F,点D在BC上,,求的值.9.已知正方形ABCD中,点E是边CD上一点(不与C、D重合),将△ADE绕点A顺时针旋转90°得到△ABF,如图1,连接EF分别交AC、AB于点P、G.(1)请判断△AEF的形状;(2)求证:P A2=PG•PF;(3)如图2,当点E是边CD的中点时,PE=1,求AG的长.10.如图,等边△ABC的边长为12,点D,E分别在边AB,AC上,且AD=AE=4,点F 为BA延长线上一点,过点F作直线l∥BC,G为射线BC上动点,连接GD并延长交直线l于点H,连接FE并延长交BC于点M,连接HE并延长交射线BC于点N.(1)若AF=4,当BG=4时,求线段HF和EH的长;(2)若AF=a(a>0),点G在运动过程中,请判断△HGN的面积是否改变.若不变,求出其值(用含a的代数式表示);若改变,请说明理由.11.在△ABC中,∠ACB=90°,AC=8,BC=6.(1)如图1,点D为AC上一点,DE∥BC交AB边于点E,若=,求AD及DE的长;(2)如图2,折叠△ABC,使点A落在BC边上的点H处,折痕分别交AC、AB于点G、F,且FH∥AC.①求证:四边形AGHF是菱形;②求菱形的边长;(3)在(1)(2)的条件下,线段CD上是否存在点P,使得△CPH∽△DPE?若存在,求出PD的长;若不存在,请说明理由.12.如图①,AB∥MH∥CD,AD与BC相交于点M,点H在BD上.求证:.小明的部分证明如下:证明:∵AB∥MH,∴△DMH∽△DAB,∴.同理可得:=,….(1)请完成以上的证明(可用其他方法替换小明的方法);(2)求证:;(3)如图②,正方形DEFG的顶点D、E分别在△ABC的边AB、AC上,E、F在边BC 上,AN⊥BC,交DG于M,垂足为N,求证:.13.【问题情境】如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,我们可以得到如下正确结论:①CD2=AD•BD;②AC2=AB•AD;③BC2=AB•BD,这些结论是由古希腊著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③BC2=AB•BD.【结论运用】(2)如图2,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF.①求证:△BOF∽△BED.②若CE=2,求OF的长.14.如图①,在正方形ABCD中,点P为线段BC上的一个动点,连接AP,将△ABP沿直线AP翻折得到△AEP,点Q是CD的中点,连接BQ交AE于点F,若BQ∥PE.(1)求证:△ABF∽△BQC;(2)求证:BF=FQ;(3)如图②,连接DE交BQ于点G,连接EC,GC,若FQ=6,求△GBC的面积.15.如图1,已知等边△ABC的边长为8,点D在AC边上,AD=2,点P是AB边上的一个动点.(1)连接PC、PD.①当AP=时,△APD∽△ACP;②若△APD与△BPC相似,求AP的长度;(2)已知点Q在线段PB上,且PQ=2.①如图2,若△APD与△BQC相似,则∠ACQ与∠PDC之间的数量关系是;②如图3,若E、F分别是PD、CQ的中点,连接EF,线段EF的长是否是一个定值,若是,求出EF的长,若不是,说明理由.16.(1)如图①,点E,F分别在正方形边AB,BC上,且AF⊥DE,请直接写出AF与DE的关系.(2)如图②,点E,F,G分别在矩形ABCD的边AB,BC,CD上,且AF⊥EG,求证:.(3)如图③,在(2)的条件下,连接AG,过点G作AG的垂线与CF交于点H,已知BH=3,HG=5,GA=7.5,求的值.17.【问题背景】正方形ABCD和等腰直角三角形CEF按如图①所示的位置摆放,点B,C,E在同一条直线上,其中∠ECF=90°.【初步探究】(1)如图②,将等腰直角三角形CEF绕点C按顺时针方向旋转,连接BF,DE,请直接写出BF与DE的数量关系与位置关系:;【类比探究】(2)如图③,将(1)中的正方形ABCD和等腰直角三角形CEF分别改成矩形ABCD和Rt△CEF,其中∠ECF=90°,且,其他条件不变.①判断线段BF与DE的数量关系,并说明理由;②连接DF,BE,若CE=6,AB=12,求DF2+BE2的值.18.在相似的复习课中,同学们遇到了一道题:已知∠C=90°,请设计三种不同方法,将Rt△ABC分割成四个小三角形,使每个小三角形与原三角形相似.(1)甲同学设计了如图1分割方法:D是斜边AB的中点,过D分别作DE⊥AC,DF ⊥BC,请判断甲同学的做法是否正确,并说明理由.(2)乙同学设计了如图2分割方法,过点D作FD⊥AB,DE⊥BC,连结EF,易证△ADF∽△ACB,△DEB∽△ACB,但是只有D在AB特殊位置时,才能证明另两个三角形与原三角形相似,李老师通过几何画板,发现∠A=30°时,,∠A=45°时,,∠A=60°时,.猜测对于任意∠A,当=(用AC,BC或AB相关代数式表示),结论成立.请补充条件并证明.(3)在普通三角形中,显然连结三角形中位线分割成四个小三角形与原三角形相似.你能参考乙同学的分割方法找到其他分割方法吗?请做出示意图并作适当分割说明(不要求证明过程).19.△ABC中,∠BAC=90°,AB=AC,点D在AB边上,点E在AC边上,连接DE,取BC边的中点O,连接DO并延长到点F,使OF=OD,连接CF,EF,令==k.(1)①如图1,若k=1,填空:=;△ECF是三角形.②如图2,将①中△ADE绕点A旋转,①中的结论是否仍然成立?若成立,请仅就图2所示情况给出证明;若不成立,请说明理由.(2)如图3,若k=,AB=AD,将△ADE由图1位置绕点A旋转,当点C,E,D三点共线时,请直接写出sin∠1的值.20.【基础探究】如图1,四边形ABCD中,∠ADC=∠ACB,AC为对角线,AD•CB=DC•AC.(1)求证:AC平分∠DAB.(2)若AC=8,AB=12,则AD=.【应用拓展】如图2,四边形ABCD中,∠ADC=∠ACB=90°,AC为对角线,AD•CB =DC•AC,E为AB的中点,连结CE、DE,DE与AC交于点F.若CB=6,CE=5,请直接写出的值.参考答案1.(1)①证明:∵四边形ABCD为正方形∴∠ACD=∠BDC=∠BAC=45°,又∵∠MCN=∠BDC,∴∠MCN=∠ACD=45°,∴∠MCA+∠ACN=∠ACN+∠DCN,∴∠MCA=∠DCN,∴△ACM∽△DCN.②证明:由①可知:△ACM∽△DCN,∴,∴DN=AM,∴AM+BM=AB=CD,∴DN+BM=CD.(2)解:如图所示:连接AC,在DN上取一点P使∠PCD=∠PDC=30°,过P作PQ ⊥CD于Q,∴∠PCD=∠PDC=30°,∴∠NPC=60°,又∵四边形ABCD为菱形且∠BAD=120°,∴∠BAC=60°,∴∠NPC=∠BAC,又∵∠ACP=∠ACD﹣∠PCD=30°,∠MCN=∠BDC=30°,∵∠MCN=∠ACP,∴∠MCA+∠ACN=∠ACN+∠NCP,∴∠MCA=∠NCP,∴△AMC∽△PNC,∴,∵,∴CD=CP,∴,∴AM,∴AM=PN,∴AM+MB=AB=CD,∴PN+MB=CD,∴(DN﹣DP)+MB=CD,∴(DN﹣CD)+MB=CD,即DN﹣CD+MB=CD,∴DN+MB=2CD.2.解:(1)∵∠ACB=∠ADE=90°,CA=CB,DA=DE,∴∠A=∠B=∠DEA=45°,∴AB=AC=m,AE=AD=m,∴CD=AC﹣AD=m,BE=AB﹣AE=m,∴BE=CD,∵∠A=45°,∴直线CD与BE的夹角为45°,故答案为:BE=CD,45°;(2)不满足,BE=CD,直线CD与BE的夹角为30°,理由如下:如图2,过点C作CH⊥AB于H,延长CD、BE交于点F,∵CA=CB,∴AH=HB,∵∠ACB=∠ADE=120°,CA=CB,DA=DE,∴∠CAB=∠CBA=30°,∠DAE=∠DEA=30°,∴AC=2CH,∠CAD=∠BAE,由勾股定理得:AH=AC,∴AB=AC,同理可得:AE=AD,∵∠CAD=∠BAE,∴△CAD∽△BAE,∴==,∠ACD=ABE,∴BE=CD,∠F=∠CAB=30°,∴BE=CD,直线CD与BE的夹角为30°;(3)如图3,点E在线段BD上,∵m=2,∴AD=DE=1,AB=2,由勾股定理得:BD==,∴BE=BD﹣DE=﹣1,∴CD=BE=,如图4,点D在线段BE上,BE=BD+DE=+1,∴CD=BE=,综上所述:当B,E,D三点共线.CD的长为或.3.(1)解:①∵四边形ABCD是正方形,∴AD=CD,∠BAD=∠ADC=90°,∵DE⊥CF,∴∠DGF=90°=∠ADC,∴∠ADE+∠EDC=90°=∠EDC+∠DCF,∴∠ADE=∠DCF,∴△ADE≌△DCF(ASA),∴DE=CF,故答案为:1;②解:∵四边形ABCD是矩形,∴∠A=∠FDC=90°,AB=CD=m,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴=,故答案为:;(2)证明:如图所示,∠B+∠EGC=180°,∠EGC+∠EGF=180°,∴∠B=∠EGF,在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM,∵AB∥CD,∴∠A=∠CDM,∵AD∥BC,∴∠B+∠A=180°,∵∠B=∠EGF,∴∠EGF+∠A=180°,∴∠AED=∠CFM=∠CMF,∴△ADE∽△DCM,∴,即;(3)解:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,∵∠BAD=90°,即AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四边形AMCN是矩形,∴AM=CN,AN=CM,在△BAD和△BCD中,,∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠MBC=∠ADC,∵∠CND=∠M=90°,∴△BCM∽△DCN,∴,∴,∴CM=x,在Rt△CMB中,CM=x,BM=AM﹣AB=x﹣5,由勾股定理得:BM2+CM2=BC2,∴(x﹣5)2+(x)2=52,解得:x1=0(舍去),x2=8,∴CN=8,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF=90°,∴△AED∽△NFC,∴==.4.解:(1)如图,∵∠ABC=∠C=60°,∴△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,∵AD=CE,∴△ABD≌△CAE(SAS),∴∠EAC=∠DBA,∵,∴点D是AC中点,且△ABC是等边三角形,∴∠DBA=30°,∴∠EAC=30°,∴∠BAE=∠DBA=30°,∴AF=BF,∴,故答案为:1;(2)由(1)可得△ABD≌△CAE,∴∠EAC=∠DBA,∵∠ADF=∠BDA,∴△AFD∽△BAD;(3)由(1)可得△ABD≌△CAE,∴BD=AE,∠EAC=∠DBA,∴∠BFE=∠DBA+∠BAF=∠EAC+∠BAF=∠BAD=60°,设AF=x,BF=y,AB=AC=BC=n,AD=CE=1,BD=AE=m,∵∠EAC=∠DBA,∠ADB=∠ADB,∴△ADF∽△BDA,∴,∴①,∵∠BFE=∠C=60°,∠DBC=∠DBC,∴△BFE∽△BCD,∴,∴②,①÷②得:,∴,∵,即n=4,∴.5.(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB.∴∠ADC=∠ACB.(2)解:∵BC2=AB•BD,∴.又∵∠B=∠B,∴△ABC∽△CBD.∴∠ACB=∠CDB.∵∠ADC+∠CDB=180°,∠ADC=∠ACB,∴∠ACB=∠CDB=∠ADC=90°.(3)解:∵△BCD绕点C顺时针旋转得到△ECF,∴CE=BC,∠E=∠B.∵∠ACD=∠B,∴∠ACD=∠E.∴AC=AE.∵∠ADC=90°,∴CE⊥AB.∴CD=DE=CE.∴∵△ADC∽△ACB,∴.∴AD=•AC=1,在Rt△ADC中,.6.证明:(1)①∵四边形ABCD为矩形,DM⊥MN,∴∠A=∠DMN=90°,∵AB=6,AD=4,MN=DM,∴,∴△ABD∽△MND;②∵四边形ABCD为矩形,DM⊥MN,∴∠ABC=∠DMN=90°,∴∠ABD+∠CBD=90°,由①得△ABD∽△MND,∴∠ABD=∠DNM,又∵∠MEB=∠DEN,∴△MBE∽△DNE,∴,又∵∠MED=∠BEN,∴△DME∽△NBE,∴∠NBE=∠DME=90°,∴∠CBN+∠CBD=90°,∴∠CBN=∠DNM;(2)如图②,过点N作NF⊥AB,交AB延长线于点F,连接AC,AN,则∠NF A=90°,∵四边形ABCD为矩形,AD=4,AB=6,∴∠A=∠ABC=90°,BC=AD=4,,则∠ADM+∠AMD=90°,∵AM=4BM,AB=6,∴AM=AB=,又∵DM⊥MN,∴∠DMN=90°,∴∠AMD+∠FMN=90°,∴∠ADM=∠FMN,∴△ADM∽△FMN,∴,,∴MF=6,FN=,∴,∴,∵∠ABC=∠AFN=90°,∴△ABC∽△AFN,∴∠BAC=∠F AN,∴A,C,N三点在同一条直线上.7.(1)解:∵四边形ABCD是矩形,∴∠A=∠D=90°,EF=FG,∵∠EFG=90°,∴∠AFE+∠DFN=90°,∠AFE+∠AEF=90°,∴∠DFN=∠AEF.∴△DFG≌△AEF(AAS),∴AF=DG,AE=DF,∴AE+DG=AF+DF=AD=6;(2)证明:如图,延长NF,EA相交于H,∴∠HFE=90°,∠HAF=90°,∵∠HFE=∠NFE,EF=EF,∠HEF=∠NEF,∴△HFE≌△NFE(ASA),∴FH=FN,HE=NE,∵∠AFH=∠DFN,∠HAF=∠D,∴△HF A≌△NFD(AAS),∴AH=DN,∵EH=AE+AH=AE+DN,∴EN=AE+DN;(3)解:如图,过点G作GP⊥AD交AD的延长线于P,∴∠P=90°,∵MG2=MN•MD,∴=,∵∠GMN=∠DMG,∴△MGN∽△MDG,∴∠GDM=45°,∠PDG=45°,∴△PDG是等腰直角三角形,PG=PD,∵∠AFE+∠PFG=90°,∠AFE+∠AEF=90°,∴∠PFG=∠AEF,∵∠A=∠P=90°,EF=FG,∴△PFG≌△AEF(AAS),∴AF=PG,AE=PF,∴AE=PD+DF=AF+DF=AD=6.8.【问题背景】∵△ABC和△ADE是等腰直角三角形,∴△ABC∽△ADE.∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,故答案为:①△ABD≌△ACE;②△ABC∽△ADE.【尝试应用】∵△ABC∽△ADE,∴,∠CAB=∠EAD,∴∠CAE=∠BAD,∴△ACE∽△ABD;【问题解决】连接CE,由【尝试应用】知,△ABD∽△ACE,∴∠ACE=∠ABD=∠ADE=30°,∵∠AFD=∠EFC,∴△ADF∽△ECF,∴,∵,∴,∵,∴.9.(1)解:△AEF是等腰直角三角形,理由如下:由旋转的性质可知:AF=AE,∠F AE=90°,∴△AEF是等腰直角三角形;(2)证明:∵四边形ABCD是正方形,∠CAB=45°,由(1)知∠AFE=45°,∴∠P AG=∠AFP=45°,又∵∠APG=∠FP A,∴△APG∽△FP A,∴,∴P A2=PG•PF;(3)解:设正方形的边长为2a,∵将△ADE绕点A顺时针旋转90°得到△ABF,∴∠ABF=∠D=90°,DE=BF,∵∠ABC=90°,∴∠FBC=180°,∴F,B,C三点共线,∵DE=EC=BF=a,BC=2a,∴CF=3a,EF===a,∵BG∥EC,∴BG:EC=FB:CF=FG:FE=1:3,∴BG=,AG=,GE=a,∵∠GAP=∠EG=45°,∠AGP=∠EGA,∴△AGP∽△EGA,∴,∴AG2=GP•GE,∴()2=()×,∴a=或a=0(舍去),∴AG=.10.解:(1)如图1,由题意可得:BD=DF=8,∵HF∥BC,∴∠HFD=∠B,在△HFD和△GBD中,,∴△HFD≌△GBD(ASA),∴HF=BG=4,连接DE,∵△ABC是等边三角形,∴∠B=∠BAC=60°,∵AD=AE=4,∴△ADE是等边三角形,∴DE=AD=4,∠ADE=60°,∴∠ADE=∠B,∴DE∥BC,∴DE∥FH,∵FH=DE=4,∴四边形DEFH是平行四边形,∴HE和DF互相平分,∵DA=AF,∴HE经过点A,∴HE=2AE=8;(2)如图2,面积不变,理由如下:连接DE,作FK⊥BC于K,在Rt△BFK中,∠B=60°,BF=12+a,∴FK=BF•sin60°=,由(1)得,DE∥FH=BC,∴△HDE∽△HGN,△HFD∽△GBD,∴,,∴,∴,∴,∴GN=,∴S△HGN===,11.解:(1)∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴AD=2,;(2)①由翻折不变性可知:AF=FH,AG=GH,∠AFG=∠GFH,∵FH∥AC,∴∠AGF=∠GFH,∴∠AGF=∠AFG,∴AG=AF,∴AG=AF=FH=HG,∴四边形AGHF是菱形;②∵FH∥AC,∴△FBH∽△ABC,∴,又∵BC=6,AC=8,AB=10,∴BH:FH:BF=3:4:5,∴设BH=3a,则FH=AF=4a,BF=5a,∴4 a+5a=10,∴,∴FH=,即菱形的边长为;(3)在点P使得△CPH∽△DPE,理由如下:∵△CPH∽△DPE,∴,∵BH=,∴CH=,∴,∴.12.证明:(1)∴=,两边都除以MH,得,;(2)如图1,作AE⊥BD于E,MF⊥BD于F,CG⊥BD于G,∴AE∥MF∥CG,∴,∵HH∥AB,∴,∴,同理可得:,由(1)得,,两边乘以,得,(3)如图2,∵DG∥BC,∴△ADG∽△ABC,∴,∵,∴,∵四边形DEFG是正方形,∴MN=DE=DG,∴,两边都除以DG,得,.13.(1)证明:∵CD⊥AB,∴∠BDC=90°=∠ACB,∵∠CBD=∠ABC,∴△CBD∽△ABC,∴,∴BC2=AB•BD;(2)①证明:∵四边形ABCD是正方形,∴OC⊥BO,∠BCD=90°,∴BC2=BO•BD,∵CF⊥BE,∴BC2=BF•BE,∴BO•BD=BF•BE,即,∵∠OBF=∠EBD,∴△BOF∽△BED;②解:在Rt△BCE中,∵BC=6,CE=2,∴BE==2,∴DE=4,BO=3,由①知△BOF∽△BED,∴,∴,∴OF=.14.(1)证明:如图①中,∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB∥CD,∴∠ABF=∠CQB,由翻折的性质可知,∠E=∠ABC=90°∵PE∥BQ,∴∠AFB=∠E=90°,∴△AFB∽△BCQ;(2)证明:如图①中,设AB=BC=CD=AD=2a,∵Q是CD的中点,∴CQ=QD=a,∵∠C=90°,∴BQ===a,∵△AFB∽△BCQ,∴=,∴=,∴BF=a,∴QF=a,∴==,∴BF=QF;(3)解:如图②,建立如图平面直角坐标系,过点E作EH⊥AB于点T.∵BF=FQ,FQ=6,∴BF=4,∴BQ=BF+FQ=4+6=10,∴CQ=2,AB=BC=CD=AD=4,∴Q(4,2),∴直线BQ的解析式为y=x,∵∠EAT=∠CBQ,∠ATE=∠BCQ=90°,∴△ATE∽△BCQ,∴==,∴==,∴AT=8,ET=4,∴BT﹣AB﹣AT=4﹣8,∴E(4,4﹣8),∵D(4,4),∴直线DE的解析式为:y=x+2﹣10,由,解得,∴G(4﹣4,2﹣2),∴S△BCG=××(2﹣2)=20﹣4.15.解:(1)①∵等边△ABC的边长为8,∴AC=8,∵△APD∽△ACP,∴,∵AD=2,∴,∴AP=4,故答案为4;②∵△ABC为等边三角形,∴AB=BC=8,∠A=∠B=60°,∵△APD与△BPC相似,∴△APD∽△BPC或△APD∽△BCP,Ⅰ、当△APD∽△BPC时,,∴,∴AP=,Ⅱ、当△APD∽△BCP时,,∴,∴AP=4,即△APD与△BPC相似时,AP的长度为或4;(2)①∵△ABC为等边三角形,∴AB=BC=8,∠A=∠B=∠ACB=60°,∵△APD与△BQC相似,∴△APD∽△BQC或△APD∽△BCQ,Ⅰ、当△APD∽△BQC时,∠APD=∠BQC,∴∠PDC=∠A+∠APD=60°+∠APD=60°+∠BQC,∴∠BQC=∠PDC﹣60°,∴∠ACQ=∠ACB﹣∠BCQ=60°﹣(180°﹣∠B﹣∠BAC)=∠B+∠BQC﹣120°=60°+∠PDC﹣60°﹣120°=∠PDC﹣120°,∴∠PDC+∠ACQ=120°;Ⅱ、当△APD∽△BCQ时,∠APD=∠BCQ,∴∠PDC=∠A+∠APD=60°+∠APD=60°+∠BCQ,∴∠BCQ=∠PDC﹣60°,∴∠ACQ=∠ACB﹣∠BCQ=60°﹣(∠PDC﹣60°)=120°﹣∠PDC,∴∠ACQ+∠PDC=120°,即满足条件的∠ACQ与∠PDC之间的数量关系是∠ACQ+∠PDC=120°或∠PDC﹣∠ACQ=120°;②线段EF的长是一个定值,为.如图,连接AE并延长至G,使AE=GE,连接PG,QG,∵点E是DP的中点,∴DE=PE,∵∠AED=∠GEP,∴△AED≌△GEP(SAS),∴AE=GE,PG=AD=2,∠ADE=∠GPE,∴PG∥AD,∴∠QPG=∠BAC=60°,∵PQ=2=PG,∴△PQG为等边三角形,∴QG=2,∠PQG=60°=∠B,∴QG∥BC,连接GF并延长交BC于H,∴∠FQG=∠FCH,∵点F是CQ的中点,∴FQ=FC,∵∠QFG=∠CFH,∴△QFG≌△CFH(ASA),∴FG=FH,CH=QG=2,连接AH,过点A作AM⊥BC于M,∴∠AMC=90°,CM=BC=4,在Rt△AMC中,AC=8,根据勾股定理得,AM2=AC2﹣CM2=82﹣42=48,在Rt△AMH中,MH=CM﹣CH=2,根据勾股定理得,AH===2,∵AE=GE,FG=FH,∴EF是△AHG的中位线,∴EF=AH=,即线段EF的长是一个定值.16.解:(1)∵AF⊥DE,∴∠ADE+∠DAF=90°,∵∠ADE+∠AED=90°,∴∠DAF=∠AED,∵∠ADE=∠ABF=90°,AD=AB,∴△ADE≌△DAF(AAS),∴AF=DE;(2)过点G作GM⊥BA交于点M,∵AF⊥EG,∴∠F AB+∠AEG=90°,∵∠F AB+∠AFB=90°,∴∠AEG=∠AFB,∵∠GME=∠ABF=90°,∴△GME∽△ABF,∴=,∵AD=GM,∴;(3)连接AH,∵AG⊥GH,∴△AGH是直角三角形,∵HG=5,GA=7.5,∴AH=,在Rt△ABH中,BH=3,AH=,∴AB=,∵∠AGH=90°,∴∠DGA+∠CGH=90°,∵∠DGA+∠GAD=90°,∴∠GAD=∠CGH,∴△DAG∽△CGH,∴==,∴==,∴AD=6,由(2)知,∴==.17.解:(1)如图②,BF与CD交于点M,与DE交于点N,∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,∵△ECF是等腰直角三角形,∴CF=CE,∠ECF=90°,∴∠BCD=∠ECF,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∴△BCF≌△DCE(SAS),∴BF=DE,∠CBF=∠CDE,∵∠BMC=∠DMF,∠CBF+∠BMC=90°,∴∠CDE+∠DMF=90°,∴∠BND=90°,∴BF⊥DE,故答案为:BF=DE,BF⊥DE;(2)①如图③,,理由:∵四边形ABCD是矩形,∴∠BCD=90°,∵∠ECF=90°,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∵,∴△BCF∽△DCE,∴=;②如图③,连接BD,∵△BCF∽△DCE,∴∠CBF=∠CDE,∵四边形ABCD是矩形,∴CD=AB=12,∵CE=6,,∴=,∴CF=8,BC=16,∵∠DBO+∠CBF+∠BDC=∠BDO+∠CDE+∠BDC=∠DBO+∠BDO=90°,∴∠BOD=90°,∴∠DOF=∠BOE=∠EOF=90°,在Rt△DOF中,DF2=OD2+OF2,在Rt△BOE中,BE2=OB2+OE2,在Rt△DOB中,DB2=OD2+OB2,在Rt△EOF中,EF2=OE2+OF2,∴DF2+BE2=OD2+OF2+OB2+OE2=DB2+EF2,在Rt△BCD中,BD2=BC2+CD2=162+122=400,在Rt△CEF中,EF2=EC2+CF2=62+82=100,∴BD2+EF2=400+100=500,∴DF2+BE2=500.18.解:(1)甲的做法正确,理由如下:∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,∵∠C=90°,∴四边形DECF是矩形,∴∠EDF=90°,DE∥BC,DF∥AC,∴,△AED∽△ACB,△BFD∽△BCA,即:AE=CE,同理可得:BF=CF,∴DF∥AC,EF∥AB,∴四边形AEFD是平行四边形,△CEF∽△CAB,同理可得:四边形DEFB是平行四边形,∴∠EFD=∠A,∵∠AED=∠EDF,∴△AED∽△FDE,∴四个小三角形与△ABC相似;(2)当时,△EDF∽△AFD∽△FEC,理由如下:∵△ADF∽△ACB,△DEB∽△ACB,∴①,②,得,,∴DE=EF,∵DE∥AF,∴四边形ADFE是平行四边形,由(1)可得,△DEF和△CEF与△ABC相似,故答案是:;(3)如图,根据和AC和AB及AB的长度找出点D的位置,然后作DE∥AC交BC于E,作EF∥AB交AC于F,连接DF即可.19.解:(1)①∵O是BC的中点,∴OB=OC,在△BOD和△COF中,,∴△BOD≌△COF(SAS),∴CF=BD,∠OCF=∠B,∵AD=AE,AB=AC,∴BD=CE,∴CE=CF,即:,∵∠B+∠ACB=90°,∴∠OCF+∠ACB=90°,∴∠ECF=90°,∴△ECF是等腰直角三角形,故答案是:1,等腰直角三角形,解:(2)如图1,仍然成立,理由如下:连接BD,由(1)得:CF=BD,CF∥BD,∴∠CFO=∠DBO,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠CAE=∠BAD,在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD,∠ACE=∠ABD,∴CE=CF,∵∠ACB+∠ABC=90°,∴∠ACE+∠EAO+∠ABC=90°,∴∠ABD+∠EAO+∠ABC=90°,∴∠EAO+∠DBO=90°,∴∠EAO+∠CFO=90°,∴∠FCE=90°,∴=1,△ECF是等腰直角三角形;(3)如图2,连接BD,作AG⊥CD于G,设AD=a,则AB=,AC=a,AE=,由(2)得:∠CAE=∠BAD,CF=BD,∵,∴△CAE∽△BAD,∴,∠ACD=∠ABD,∴,同理(2)得:∠CEF=90°,∴∠ECF=∠EAD=90°,∴点C、A、B、D共圆,∴∠1=∠ACG,∵AD=a,AE=,∠DAE=90°,∴DE=,由S△ADE=得,AG=a,∴sin∠ACD===,∴sin∠1=.20.(1)证明:∵∠ADC=∠ACB,,∴△ADC∽△ACB,∴∠DAC=∠CAB,∴AC平分∠DAB;(2)解:∵△ADC∽△ACB,∴,∴AC2=AB×AD,∵AC=8,AB=12,∴64=12AD,∴AD=,故答案为:;(3)解:∵∠ACB=90°,点E为AB的中点,∴AB=2CE=10,∴AC=8,∵△ADC∽△ACB,∴AD==6.4,由(1)知∠DAC=∠EAC,∵CE=AE,∴∠ECA=∠EAC,∴∠DAC=∠ECA,∴△AFD∽△CFE,∴.。
中考数学复习《图形的相似》
(3)设 EG=KD=x,则 AK=80-x. EF AK EF 80-x 3 ∵△AEF∽△ABC,∴BC=AD,即120= 80 ,∴EF=120-2x, 3 32 3 ∴矩形面积 S=x(120-2x)=-2x +120x=-2(x-40)2+2 400, 故当 x=40 时,此时矩形的面积最大,最大面积为 2 400 mm2
(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?
【解析】(1)根据正方形的对边平行得到 BC∥EF,利用“平行于三角形的 一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似” EF 判定即可;(2)设 EG=EF=x,用 x 表示 AK,根据△AEF∽△ABC 列比例式BC AK =AD可计算正方形边长; (3)设 EG=KD=x, 根据△AEF∽△ABC 用 x 表示 EF, 根据矩形面积公式可以写出矩形面积关于 x 的二次函数,根据二次函数求出矩 形的最大值.
【解析】根据题意可知一块 10 cm×5 cm 的长方形版面要付广告费 180 元, 18 因此每平方厘米的广告费为:180÷50= 5 元,然后根据相似三角形的性质, 由该版面的边长都扩大为原来的 3 倍, 18 广告费为:3×10×3×5× 5 =1620 元.故选 C.
3.(2017· 杭州)如图,在锐角三角形 ABC 中,点 D,E 分别在边 AC, AB 上,AG⊥BC 于点 G,AF⊥DE 于点 F,∠EAF=∠GAC. (1)求证:△ADE∽△ABC; AF (2)若 AD=3,AB=5,求AG的值. 证明:(1)∵AF⊥DE,AG⊥BC,
EA OD 3 (2)两个矩形不可能全等.当EG= DE =2时,两个矩形相似, 3 3 3 EA=2EG,设 EG=x,则 EA=2x,∴OB=2+2x,FB=3-x, 3 3 5 ∴F(2+2x,3-x),∴(2+2x)(3-x)=6,解得 x1=0(舍去),x2=3, 5 5 EG 3 5 ∴EG=3,∴矩形 AEGF 与矩形 DOHE 的相似比为DE=2=6
2021年中考数学真题 图形的相似(共55题)-(解析版)
2021年中考数学真题分项汇编【全国通用】(第01期)22图形的相似(共55题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·浙江温州市·中考真题)如图,图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,点A ,B 的对应点分别为点A ',B '.若6AB =,则A B ''的长为( )A .8B .9C .10D .15【答案】B 【分析】直接利用位似图形的性质得出线段比进而得出答案. 【详解】解:∵图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,∵23AB A B ='', ∵6AB =,∵623A B ='', ∵9A B ''= 故答案为:B .【点睛】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.2.(2021·山东东营市·中考真题)如图,ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(1,0),以点C 为位似中心,在x 轴的下方作ABC 的位似图形A B C '',并把ABC 的边长放大到原来的2倍,设点B 的横坐标是a ,则点B 的对应点B '的横坐标是( )A .23a -+B .21a -+C .22a -+D .22a --【答案】A 【分析】设点'B 的横坐标为x ,然后表示出BC 、'B C 的横坐标的距离,再根据位似比列式计算即可得解. 【详解】设点'B 的横坐标为x ,则B 、C 间的横坐标的差为1a -,'B 、C 间的横坐标的差为1x -+,ABC 放大到原来的2倍得到'''A B C ,∴()211a x -=-+,解得:23x a =-+. 故选:A. 【点睛】本题考查了位似变换,坐标与图形的性质,根据位似比的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.3.(2021·浙江绍兴市·中考真题)如图,树AB 在路灯O 的照射下形成投影AC ,已知路灯高5m PO =,树影3m AC =,树AB 与路灯O 的水平距离 4.5m AP =,则树的高度AB 长是( )A .2mB .3mC .3m 2D .10m 3【答案】A 【分析】利用相似三角形的性质得到对应边成比例,列出等式后求解即可. 【详解】解:由题可知,CAB CPO ∽,∵AB ACOP CP =, ∵353 4.5AB =+, ∵()2AB m =, 故选A .【点睛】本题考查了相似三角形的判定与应用,解决本题的关键是能读懂题意,建立相似关系,得到对应边成比例,完成求解即可,本题较基础,考查了学生对相似的理解与应用等.4.(2021·四川遂宁市·中考真题)如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积是3cm 2,则四边形BDEC 的面积为( )A .12cm 2B .9cm 2C .6cm 2D .3cm 2【答案】B 【分析】由三角形的中位线定理可得DE =12BC ,DE ∵BC ,可证∵ADE ∵∵ABC ,利用相似三角形的性质,即可求解. 【详解】解:∵点D ,E 分别是边AB ,AC 的中点,∵DE =12BC ,DE ∵BC ,∵∵ADE ∵∵ABC , ∵21()4ADEABCS DE SBC ∆∆==, ∵S ∵ADE =3, ∵S ∵ABC =12,∵四边形BDEC的面积=12-3=9(cm2),故选:B.【点睛】本题考查了相似三角形的判定和性质,三角形中位线定理,掌握相似三角形的性质是解题的关键.5.(2021·重庆中考真题)如图,△ABC与△BEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:9【答案】A【分析】利用位似的性质得∵ABC∵∵DEF,OB:OE= 1:2,然后根据相似三角形的性质解决问题.【详解】解:∵∵ABC与∵DEF位似,点O为位似中心.∵∵ABC∵∵DEF,OB:OE= 1:2,∵∵ABC与∵DEF的周长比是:1:2.故选:A.【点睛】本题主要考查了位似变换,正确掌握位似图形的性质是解题关键.6.(2021·江苏扬州市·中考真题)如图,点P 是函数()110,0k y k x x=>>的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数()220,0k y k x x=>>的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中12k k >,下列结论:△//CD AB ;△122OCDk kS -=;△()21212DCPk k Sk -=,其中正确的是( )A .△△B .△△C .△△D .△【答案】B 【分析】设P (m ,1k m),分别求出A ,B ,C ,D 的坐标,得到PD ,PC ,PB ,P A 的长,判断PD PB和PC PA 的关系,可判断∵;利用三角形面积公式计算,可得∵PDC 的面积,可判断∵;再利用OCD OAPB OBD OCA DPC S S S S S =---△△△△计算∵OCD 的面积,可判断∵.【详解】解:∵PB ∵y 轴,P A ∵x 轴,点P 在1k y x =上,点C ,D 在2k y x=上,设P (m ,1k m ), 则C (m ,2k m ),A (m ,0),B (0,1k m),令12k k m x =,则21k m x k =,即D (21k m k ,1k m ),∵PC =12k k m m -=12k k m -,PD =21k m m k -=()121m k k k -, ∵()121121m k k k k k PD PB m k --==,121211k k k k PC m kPA k m--==,即PD PCPB PA =,又∵DPC =∵BP A , ∵∵PDC ∵∵PBA , ∵∵PDC =∵PBC , ∵CD ∵AB ,故∵正确; ∵PDC的面积=12PD PC ⨯⨯=()1212112m k k k k km --⨯⨯=()21212k k k -,故∵正确;OCD OAPB OBD OCA DPC S S S S S =---△△△△=()112221222112k k k k k k ----=()2121122k k k k k ---=()()21121112222k k k k k k k --- =()22112211222k k k k k k --- =221212k k k -,故∵错误;故选B . 【点睛】此题主要考查了反比例函数的图象和性质,k 的几何意义,相似三角形的判定和性质,解题关键是表示出各点坐标,得到相应线段的长度.7.(2021·江苏连云港市·中考真题)如图,ABC 中,BD AB ⊥,BD 、AC 相交于点D ,47AD AC =,2AB =,150ABC ∠=︒,则DBC △的面积是( )A B C D 【答案】A 【分析】过点C 作CE AB ⊥的延长线于点E ,由等高三角形的面积性质得到:3:7DBCABCS S=,再证明ADB ACE ,解得47AB AE =,分别求得AE 、CE 长,最后根据ACE 的面积公式解题. 【详解】解:过点C 作CE AB ⊥的延长线于点E ,DBC 与ADB △是等高三角形,43:::4:377ADB DBCSSAD DC AC AC === :3:7DBCABCSS∴=BD AB ⊥∴ADB ACE22416749ADB ACEAC S AD SAC AC ⎛⎫ ⎪⎛⎫∴===⎪ ⎪⎝⎭ ⎪⎝⎭47AB AE ∴= 2AB =72AE ∴=73222BE ∴=-=150,ABC ∠=︒18015030CBE ∴∠=︒-︒=︒tan 30CE BE ∴=︒⋅=设4,3ADBDBCSx Sx ==494ACESx ∴=∴4917422x ∴=⨯14x ∴=3x ∴=, 故选:A . 【点睛】本题考查相似三角形的判定与性质、正切等知识,是重要考点,掌握相关知识是解题关键.8.(2021·浙江绍兴市·中考真题)如图,Rt ABC 中,90BAC ∠=︒,1cos 4B =,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使ADE B ∠=∠,连结CE ,则CEAD的值为( )A .32BCD .2【答案】D 【分析】由直角三角形斜边中线等于斜边一半可得出12AD BD CD BC ===,在结合题意可得BAD B ADE ∠=∠=∠,即证明//AB DE ,从而得出BAD B ADE CDE ∠=∠=∠=∠,即易证()ADE CDE SAS ≅,得出AE CE =.再由等腰三角形的性质可知AE CE DE ==,BAD B ADE DAE ∠=∠=∠=∠,即证明ABD ADE ∼,从而可间接推出CE BDAD AB=.最后由1cos 4AB B BC ==,即可求出BD AB 的值,即CEAD的值. 【详解】∵在Rt ABC 中,点D 是边BC 的中点, ∵12AD BD CD BC ===, ∵BAD B ADE ∠=∠=∠, ∵//AB DE .∵BAD B ADE CDE ∠=∠=∠=∠,∵在ADE 和CDE △中,AD CD ADE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩,∵()ADE CDE SAS ≅,∵AE CE =,∵ADE 为等腰三角形,∵AE CE DE ==,BAD B ADE DAE ∠=∠=∠=∠,∵ABD ADE ∼, ∵DE AD BD AB =,即CE BD AD AB=. ∵1cos 4AB B BC ==, ∵12AB BD =, ∵2CE BD AD AB ==. 故选D .【点睛】本题考查直角三角形的性质,等腰三角形的性质,平行线的判定和性质,全等三角形与相似三角形的判定和性质以及解直角三角形.熟练掌握各知识点并利用数形结合的思想是解答本题的关键.9.(2021·重庆中考真题)如图,在平面直角坐标系中,将OAB 以原点O 为位似中心放大后得到OCD ,若()0,1B ,()0,3D ,则OAB 与OCD 的相似比是( )A .2:1B .1:2C .3:1D .1:3 【答案】D【分析】直接利用对应边的比等于相似比求解即可.【详解】解:由B 、D 两点坐标可知:OB =1,OD =3;∵OAB 与∵OCD 的相似比等于13OB OD =; 故选D .【点睛】本题考查了在平面直角坐标系中求两个位似图形的相似比的概念,同时涉及到了位似图形的概念、平面直角坐标系中点的坐标、线段长度的确定等知识;解题关键是牢记相似比等于对应边的比,准确求出对应边的比即可完成求解,考查了学生对概念的理解与应用等能力.10.(2021·浙江丽水市·中考真题)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为( )A .259B .258C .157D .207【答案】D【分析】先根据勾股定理求出AB ,再根据折叠性质得出∵DAE=∵DFE ,AD=DF ,然后根据角平分线的定义证得∵BFD=∵DFE =∵DAE ,进而证得∵BDF=90°,证明Rt∵ABC ∵Rt∵FBD ,可求得AD 的长.【详解】解:∵90,4,3ACB AC BC ∠=︒==,∵AB =,由折叠性质得:∵DAE=∵DFE ,AD=DF ,则BD =5﹣AD ,∵FD 平分EFB ∠,∵∵BFD =∵DFE=∵DAE ,∵∵DAE +∵B =90°,∵∵BDF +∵B =90°,即∵BDF =90°,∵Rt∵ABC ∵Rt∵FBD , ∵BD BC DF AC =即534AD AD -=, 解得:AD =205, 故选:D .【点睛】本题考查折叠性质、角平分线的定义、勾股定理、相似三角形的判定与性质、三角形的内角和定理,熟练掌握折叠性质和相似三角形的判定与性质是解答的关键.11.(2021·山东东营市·中考真题)如图,ABC 是边长为1的等边三角形,D 、E 为线段AC 上两动点,且30DBE ∠=︒,过点D 、E 分别作AB 、BC 的平行线相交于点F ,分别交BC 、AB 于点H 、G .现有以下结论:△ABC S =;△当点D 与点C 重合时,12FH =;△AE CD +=;△当AE CD =时,四边形BHFG 为菱形,其中正确结论为( )A.△△△B.△△△C.△△△△D.△△△【答案】B【分析】过A作AI∵BC垂足为I,然后计算∵ABC的面积即可判定∵;先画出图形,然后根据等边三角形的性质和相似三角形的性质即可判定∵;如图将∵BCD绕B点逆时针旋转60°得到∵ABN,求证NE=DE;再延长EA到P使AP=CD=AN,证得∵P=60°,NP=AP=CD,然后讨论即可判定∵;如图1,当AE=CD时,根据题意求得CH=CD、AG=CH,再证明四边形BHFG为平行四边形,最后再说明是否为菱形.【详解】解:如图1, 过A作AI∵BC垂足为I∵ABC是边长为1的等边三角形∵∵BAC=∵ABC=∵C=60°,CI=1212 BC=∵AI=∵S∵ABC=1112224AI BC=⨯⨯=,故∵正确;如图2,当D 与C 重合时∵∵DBE =30°,ABC 是等边三角形∵∵DBE =∵ABE =30°∵DE =AE =1122AD =∵GE //BD ∵1BGDEAG AE ==∵BG =1122AB =∵GF //BD ,BG //DF∵HF =BG =12,故∵正确;如图3,将∵BCD 绕B 点逆时针旋转60°得到∵ABN∵∵1=∵2,∵5=∵6=60°,AN =CD ,BD =BN∵∵2+∵4=∵1+∵4=30°∵∵NBE=∵3=30°又∵BD=BN,BE=BE∵∵NBE∵∵DBE(SAS)∵NE=DE延长EA到P使AP=CD=AN∵∵NAP=180°-60°-60°=60°∵∵ANP为等边三角形∵∵P=60°,NP=AP=CD成立,则PE,需∵NEP=90°,但∵NEP不一定为90°,如果AE+CD=故∵不成立;如图1,当AE=CD时,∵GE//BC∵∵AGE=∵ABC=60°,∵GEA=∵C=60°∵∵AGE=∵AEG=60°,同理:CH=CD∵AG=CH∵BG//FH,GF//BH∵四边形BHFG是平行四边形∵BG=BH∵四边形BHFG为菱形,故∵正确.故选B.【点睛】本题主要考查了等边三角形的性质、旋转变换、全等三角形的判定和性质以及菱形的判定等知识点,灵活运用相关知识成为解答本题的关键.12.(2021·四川眉山市·中考真题)如图,在以AB为直径的O中,点C为圆上的一点,3⊥于点E,弦AF交CE于点H,交BC于点G.若点H是=,弦CD ABBC AC∠的度数为()AG的中点,则CBFA.18°B.21°C.22.5°D.30°【答案】C【分析】根据直径所对的圆周角是90︒,可知90ACB AFB ∠=∠=︒,根据3BC AC =,可知ABC ∠、BAC ∠的度数,根据直角三角形斜边上的中线等于斜边的一半可知,AHC 为等腰三角形,再根据CAE BFG BCA ∽∽可求得CBF ∠的度数.【详解】解:∵AB 为O 的直径,∵90ACB AFB ∠=∠=︒,∵3BC AC =,∵=22.5ABC ∠︒,=67.5BAC ∠︒,∵点H 是AG 的中点,∵CE AH =,∵CAH ACH ∠=∠,∵CD AB ⊥,∵AEC GCA ∽,又∵,CAF CBF CGA FGB ∠=∠∠=∠,∵AEC GCA GFB ∽∽,∵90ACE ECB ABC ECB ∠+∠=∠+∠=︒,∵ABE ABC ∠=∠,∵AEC GCA GFB ACB ∽∽∽,∵22.5ABC ACE GAC GBF ∠=∠=∠=∠=︒,∵=22.5CBF ∠︒,故选:C .【点睛】本题主要考查圆周角定理,垂径定理,相似三角形,直角三角形斜边上中线等知识点,找出图形中几个相似三角形是解题关键.13.(2021·山东聊城市·中考真题)如图,四边形ABCD中,已知AB△CD,AB与CD之间的距离为4,AD=5,CD=3,△ABC=45°,点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ△AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.【答案】B【分析】依次分析当03t≤≤、36t<≤、610t<≤三种情况下的三角形面积表达式,再根据其对应图像进行判断即可确定正确选项.【详解】解:如图所示,分别过点D、点C向AB作垂线,垂足分别为点E、点F,∵已知AB∥CD,AB与CD之间的距离为4,∵DE =CF =4,∵点P ,Q 同时由A 点出发,分别沿边AB ,折线ADCB 向终点B 方向移动,在移动过程中始终保持PQ ∵AB ,∵PQ∥DE∥CF ,∵AD =5, ∵3==AE ,∵当03t ≤≤时,P 点在AE 之间,此时,AP =t , ∵AP PQ AE DE=, ∵4=3PQ t , ∵2142=2233APQ t S AP PQ t t ⋅=⨯=, 因此,当03t ≤≤时,其对应的图像为()22033y t t =≤≤,故排除C 和D ; ∵CD =3,∵EF =CD =3,∵当36t <≤时,P 点位于EF 上,此时,Q 点位于DC 上,其位置如图中的P 1Q 1,则111422APQ S t t =⨯⨯=, 因此当36t <≤时,对应图像为()236y t t =<≤,即为一条线段;∵∵ABC =45°,∵BF =CF =4,∵AB =3+3+4=10,∵当610t <≤时,P 点位于FB 上,其位置如图中的P 2Q 2,此时,P 2B =10-t , 同理可得,Q 2P 2=P 2B =10-t ,()2221110522AP Q S t t t t =⨯-=-+,因此当610t <≤时,对应图像为()2156102y t t t =-+<≤,其为开口向下的抛物线的610t <≤的一段图像; 故选:B .【点睛】本题考查了平行线分线段成比例的推论、勾股定理、平行线的性质、三角形的面积公式、二次函数的图像等内容,解决本题的关键是牢记相关概念与公式,能分情况讨论等,本题蕴含了数形结合与分类讨论的思想方法等.14.(2021·四川广元市·中考真题)如图,在边长为2的正方形ABCD 中,AE 是以BC 为直径的半圆的切线,则图中阴影部分的面积为( )A .32π+B .2π-C .1D .52π- 【答案】D【分析】取BC的中点O,设AE与∵O的相切的切点为F,连接OF、OE、OA,由题意可得OB=OC=OA=1,∵OF A=∵OFE=90°,由切线长定理可得AB=AF=2,CE=CF,然后根据割补法进行求解阴影部分的面积即可.【详解】解:取BC的中点O,设AE与∵O的相切的切点为F,连接OF、OE、OA,如图所示:∵四边形ABCD是正方形,且边长为2,∵BC=AB=2,∥ABC=∥BCD=90°,∵AE是以BC为直径的半圆的切线,∵OB=OC=OF=1,∵OF A=∵OFE=90°,∵AB=AF=2,CE=CF,∵OA=OA,∵Rt∵ABO∵Rt∵AFO(HL),同理可证∵OCE∵∵OFE,∵,∠=∠∠=∠,AOB AOF COE FOE∵90∠+∠=︒=∠+∠,AOB COE AOB BAO∵COE BAO ∠=∠,∵ABO OCE ∽, ∵OC CE AB OB=, ∵12CE =, ∵15222222ABO OCE ABCE S S S SS S ππ-=-=+-=+-=阴影半圆半圆四边形; 故选D .【点睛】 本题主要考查切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定,熟练掌握切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定是解题的关键.15.(2021·四川自贡市·中考真题)如图,在正方形ABCD 中,6AB =,M 是AD 边上的一点,:1:2AM MD =.将BMA △沿BM 对折至BMN △,连接DN ,则DN 的长是( )A .52BC .3D 【答案】D【分析】延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,根据折叠的正方形的性质得到NE CE =,在Rt MDE 中应用勾股定理求出DE 的长度,通过证明MDE NFE ∽,利用相似三角形的性质求出NF 和DF 的长度,利用勾股定理即可求解.【详解】解:如图,延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,∵6AB =,M 是AD 边上的一点,:1:2AM MD =,∵2AM =,4DM =,∵将BMA △沿BM 对折至BMN △,四边形ABCD 是正方形,∵90BNE C ∠=∠=︒,AB AN BC ==,∵Rt BNE Rt BCE ≌(HL),∵NE CE =,∵2EM MN NE NE =+=+,在Rt MDE 中,设DE x =,则628ME x x =-+=-,根据勾股定理可得()22248x x +=-,解得3x =,∵3NE DE ==,5ME =,∵NF CD ⊥,90MDE ∠=︒,∵MDE NFE ∽, ∵25EF NFNE DE MD ME ===,∵125NF =,95EF =, ∵65DF =,∵DN =,故选:D .【点睛】本题考查折叠的性质、相似三角形的判定与性质、勾股定理的应用等内容,做出合适的辅助线是解题的关键.16.(2021·四川泸州市·中考真题)如图,△O 的直径AB =8,AM ,BN 是它的两条切线,DE 与△O 相切于点E ,并与AM ,BN 分别相交于D ,C 两点,BD ,OC 相交于点F ,若CD =10,则BF 的长是A B C D 【答案】A【分析】过点D 作DG ∵BC 于点G ,延长CO 交DA 的延长线于点H ,根据勾股定理求得6GC =,即可得AD=BG =2,BC = 8,再证明∵HAO ∵∵BCO ,根据全等三角形的性质可得AH=BC =8,即可求得HD= 10;在Rt∵ABD 中,根据勾股定理可得BD =∵DHF ∵∵BCF ,根据相似三角形的性质可得DH DF BC BF=,由此即可求得BF=9【详解】过点D作DG∵BC于点G,延长CO交DA的延长线于点H,∵AM,BN是它的两条切线,DE与∵O相切于点E,∵AD=DE,BC=CE,∵DAB=∵ABC=90°,∵DG∵BC,∵四边形ABGD为矩形,∵AD=BG,AB=DG=8,在Rt∵DGC中,CD=10,∵6GC===,∵AD=DE,BC=CE,CD=10,∵CD= DE+CE = AD+BC =10,∵AD+BG +GC=10,∵AD=BG=2,BC=CG+BG=8,∵∵DAB=∵ABC=90°,∵AD∵BC,∵∵AHO=∵BCO,∵HAO=∵CBO,∵OA=OB,∵∵HAO∵∵BCO,∵AH=BC=8,∵AD=2,∵HD=AH+AD=10;在Rt∵ABD中,AD=2,AB=8,∵BD==∵AD∵BC,∵∵DHF∵∵BCF,∵DH DF=,BC BF∵10=,8解得,BF=故选A.【点睛】本题是圆的综合题,考查了切线长定理、勾股定理、全等三角形的判定及性质、相似三角形的判定于性质,熟练运用相关知识是解决问题的关键.17.(2021·内蒙古通辽市·中考真题)如图,已知//⊥,3AD BC,AB BCAB=,点E 为射线BC上一个动点,连接AE,将ABE△沿AE折叠,点B落在点B'处,过点B'作AD的垂线,分别交AD,BC于M,N两点,当B'为线段MN的三等分点时,BE 的长为()A .32BC .32D 【答案】D【分析】因为点'B 为线段MN 的三等分点,没有指明线段'B M 的占比情况,所以需要分两种情况讨论:∵1'3B M MN =;∵ 2'3B M MN =.然后由一线三垂直模型可证 'AMB ∵'B NE ,再根据相似三角形的性质求得 EN 的值,最后由 BE BN EN =-即可求得 BE 的长.【详解】当点'B 为线段MN 的三等分点时,需要分两种情况讨论:∵如图1,当1'3B M MN =时,∵AD ∵BC ,AB BC ⊥, MN BC ⊥,∵四边形ABNM 为矩形, ∵11'133B M MN AB ===, 22'233B N MN AB ===, BN AM =.由折叠的性质可得'3A B AB ==,'90AB E ABC ∠=∠=︒.在'Rt AB M 中,AM ==.∵''90AB M MAB ∠+∠=︒, ''90AB M EB N ∠+∠=︒,∵''EB N MAB ∠=∠,∵'B NE ∵'AMB ,∵''ENB N B M AM =,即 1EN =,解得 EN =,∵BE BN EN =-==.∵如图2,当2'3B M MN =时,∵AD ∵BC ,AB BC ⊥, MN BC ⊥,∵四边形ABNM 为矩形, ∵22'233B M MN AB ===, 11'133B N MN AB ===, BN AM =.由折叠的性质可得'3AB AB ==,'90AB E ABC ∠=∠=︒.在'Rt AB M 中,AM ===∵''90AB M MAB ∠+∠=︒, ''90AB M EB N ∠+∠=︒,∵''EB N MAB ∠=∠,∵'B NE ∵'AMB ,∵''EN B N B M AM =,即 2EN =EN =,∵BE BN EN =-==.综上所述,BE 的长为2或 5. 故选:D .【点睛】 本题考查了矩形的判定,勾股定理,相似三角形的判定和性质,由'B 为线段MN 的三等分点,分两种情况讨论线段'B M 的占比情况,以及利用K 型相似进行相关计算是解决此题的关键.18.(2021·四川资阳市·中考真题)如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH 组成,恰好拼成一个大正方形ABCD .连结EG 并延长交BC 于点M .若1AB EF ==,则GM 有长为( )A .5B .3CD .5【答案】D【分析】添加辅助线,过F 点作FI ∵HM ,通过证明两组三角形相似,得到FI 和GM 的两个关系式,从而求解GM .【详解】如图所示,过F 点作FI ∵HM ,交BC 于点I ,证明勾股定理的弦图的示意图是由四个全等的直角三角形和一个小正方形EFGH 组成∴=90AEB ∠︒,BF AE CG ==,CF BE =,1FG EF ==,EG =又1AB EF ==∴222AE BE AB +=,即 ()2221BF BF ++=解得2BF =或3BF =-(舍去)∴=2BF AE CG ==,=3CF BE =FI∵HM∴CGM CFI ∆,~BFI BEM ∆ ∴32FICFGM CG ==, 32EMBEFI BF == ∴32FI GM =,32EG GMGMFI FI +==∴322GM=解得:GM =经检验:GM =故选:D .【点睛】本题考查了相似三角形和勾股定理.本题的关键在于添加辅助线,建立所求线段与已知条件之间的联系.19.(2021·河北中考真题)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB ()A.1cm B.2cmC.3cm D.4cm【答案】C【分析】先求出两个高脚杯液体的高度,再通过三角形相似,建立其对应边的比与对应高的比相等的关系,即可求出AB.【详解】解:由题可知,第一个高脚杯盛液体的高度为:15-7=8(cm),第二个高脚杯盛液体的高度为:11-7=4(cm),因为液面都是水平的,图1和图2中的高脚杯是同一个高脚杯,所以图1和图2中的两个三角形相似,∵468AB , ∵=3AB (cm ),故选:C .【点睛】本题考查了相似三角形的判定与性质,解决本题的关键是读懂题意,与图形建立关联,能灵活运用相似三角形的判定得到相似三角形,并能运用其性质得到相应线段之间的关系等,本题对学生的观察分析的能力有一定的要求.20.(2021·四川宜宾市·中考真题)如图,在矩形纸片ABCD 中,点E 、F 分别在矩形的边AB 、AD 上,将矩形纸片沿CE 、CF 折叠,点B 落在H 处,点D 落在G 处,点C 、H 、G 恰好在同一直线上,若AB =6,AD =4,BE =2,则DF 的长是( )A .2B .74C .2D .3【答案】A【分析】 构造如图所示的正方形CMPD ,然后根据相似三角形的判定和性质解直角三角形FNP 即可.【详解】如图,延长CE ,FG 交于点N ,过点N 作//l AB ,延长,CB DA 交l 于,M P , ∵∵CMN =∵DPN =90°,∵四边形CMPD 是矩形,根据折叠,∵MCN =∵GCN ,CD =CG ,DF FG =,∵∵CMN =∵CGN =90°,CN =CN ,∵Rt MNC Rt GNC ∆≅∆,∵6CM CG CD ===,MN NG =∴四边形CMPD 为正方形,//BE MN∵CBE CMN , ∵4263BE CB MN CM ===, 2BE =,3MN ∴=,3NP ∴=,设DF x =,则4AF x =-, 在Rt PNF 中,由222FP NP NF +=可得222(42)3(3)x x -++=+解得2x =;故选A .【点睛】 本题考查了折叠问题,正方形的性质与判定,矩形的性质,平行线的性质,全等三角形的性质和判定,相似三角形,勾股定理等知识点的综合运用,难度较大.作出合适的辅助线是解题的关键.21.(2021·湖北恩施土家族苗族自治州·中考真题)如图,在44⨯的正方形网格中,每个小正方形的边长都为1,E 为BD 与正方形网格线的交点,下列结论正确的是( )A .12CE BD ≠B .ABC CBD ≌ C .AC CD = D .ABC CBD ∠=∠【答案】D【分析】 由题意易得CE ∵AB ,然后根据相似三角形的性质与判定、直角三角形斜边中线定理及全等三角形的判定可排除选项.【详解】解:∵每个小正方形的边长都为1,∵4,2,5AB AC BC CD BD ====,∵22225BC CD BD +==,AC CD ≠,故C 错误;∵∵BCD 是直角三角形,∵90BCD BAC ∠=∠=︒,∵5AB AC BC CD ==, ∵C ABC BD ∽△△,故B 错误;∵ABC CBD ∠=∠,故D 正确;∵E 为BD 与正方形网格线的交点,∵CE ∵AB ,∵ABC BCE CBD ∠=∠=∠,∵90DBC BDC BCE ECD ∠+∠=∠+∠=︒,∵BDC ECD ∠=∠, ∵12BE CE ED BD ===,故A 错误;故选D .【点睛】本题主要考查勾股定理的逆定理、相似三角形的性质与判定及直角三角形斜边中线定理,熟练掌握勾股定理的逆定理、相似三角形的性质与判定及直角三角形斜边中线定理是解题的关键.22.(2021·山东威海市·中考真题)如图,在ABC 和ADE 中,36CAB DAE ∠=∠=︒,AB AC =,AD AE =.连接CD ,连接BE 并延长交AC ,AD 于点F ,G .若BE 恰好平分ABC ∠,则下列结论错误的是( )A .ADC AEB ∠=∠B .//CD ABC .DE GE =D .2BF CF AC =⋅【答案】C【分析】 根据SAS 即可证明DAC EAB △≌△,再利用全等三角形的性质以及等腰三角形的性质,结合相似三角形的判定和性质,即可一一判断【详解】,,36AB AC AD AE CAB DAE ==∠=∠=︒DAC EAB ∴∠=∠∴DAC EAB △≌△ADC AEB ∴∠=∠,故选项A 正确;,36AB AC CAB =∠=︒72ABC ACB ∴∠=∠=︒ BE 平分ABC ∠1362ABE CBF ABC ∴∠=∠=∠=︒DAC EAB △≌△36ACD ABE ∴∠=∠=︒ACD CAB ∴∠=∠//CD AB ∴,故选项B 正确;,36AD AE DAE =∠=︒72ADE ∴∠=︒72DGE DAE EAB ABE EAB ∠=∠+∠+∠=︒+∠即ADE DGE ∠≠∠DE GE ∴≠,故选项C 错误;72,36ABC ACB CAB CBF ∠=∠=︒∠=∠=︒∴∠=︒CFB72∴=BC BF∴△∽△ABC BFCBF CF∴=AB BCAB AC=BF CF∴=AC BF2=⋅,故选项D正确;BF CF AC故答案选:C.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,相似三角形的判定和性质,平行线的判定,能利用全等三角形的判定和性质以及等腰三角形的性质是解题关键.二、填空题23.(2021·江苏无锡市·中考真题)下列命题中,正确命题的个数为________.△所有的正方形都相似△所有的菱形都相似△边长相等的两个菱形都相似△对角线相等的两个矩形都相似【答案】∵【分析】根据多边形的判定方法对∵进行判断;利用菱形的定义对∵进行判断;根据菱形的性质对∵进行判断;根据矩形的性质和相似的定义可对∵进行判断.【详解】解:所有的正方形都相似,所以∵正确;所有的菱形不一定相似,所以∵错误;边长相等的两个菱形,形状不一定相同,即:边长相等的两个菱形不一定相似所以∵错误;对角线相等的两个矩形,对应边不一定成比例,即不一定相似,所以∵错误; 故答案是:∵.【点睛】本题考查了判断命题真假,熟练掌握图形相似的判定方法,菱形,正方形,矩形的性质,是解题的关键.24.(2021·内蒙古中考真题)如图,在Rt ABC 中,90ACB ∠=︒,过点B 作BD CB ⊥,垂足为B ,且3BD =,连接CD ,与AB 相交于点M ,过点M 作MN CB ⊥,垂足为N .若2AC =,则MN 的长为__________.【答案】65【分析】根据MN ∵BC ,AC ∵BC ,DB ∵BC ,得,BNM BCA CNM ABD ,可得,MN BN MN CN AC BC BD BC ,因为1BN CN BC BC ,列出关于MN 的方程,即可求出MN 的长.【详解】∵MN ∵BC ,DB ∵BC , 90ACB ∠=︒∵AC ∵MN ∵DB ,∵,BNM BCA CNM ABD , ∵,MN BN MN CN AC BC BD BC 即,23MN BN MN CN BC BC , 又∵1BN CN BCBC , ∵123MN MN , 解得65MN =, 故填:65. 【点睛】本题考查相似三角形的判定和性质,解题关键是根据题意得出两组相似三角形以及它们对应边之比的等量关系.25.(2021·山东东营市·中考真题)如图,正方形纸片ABCD 的边长为12,点F 是AD 上一点,将CDF 沿CF 折叠,点D 落在点G 处,连接DG 并延长交AB 于点E .若5AE =,则GE 的长为________.【答案】4913【分析】因为折叠,则有DG CF ⊥,从而可知AED HDC △∽△,利用线段比求出DG 的长,即可求出EG .【详解】如图, 四边形ABCD 是正方形12=90∴∠+∠︒因为折叠,DG CF ∴⊥,设垂足为HDH HG ∴=2390∴∠+∠=︒13∠∠∴=AED HDC ∴△∽△AE DHED DC =5AE =,12AD DC ==51312DH∴=6013DH ∴=EG ED GD ∴=-2ED GH =-6013213=-⨯4913=故答案为4913. 【点睛】本题考查了正方形的性质,轴对称的性质,三角形相似的判定与性质,勾股定理,找到AED HDC △∽△是解题的关键.26.(2021·四川南充市·中考真题)如图,在ABC 中,D 为BC 上一点,3BC BD ==,则:AD AC 的值为________.【分析】证明∵ABD ∵∵CBA ,根据相似三角形的性质即可解答.【详解】 ∵3BC BD ==,∵ABBC ==BDAB =,∵3ABBDBC AB ==,∵∵B =∵B ,∵∵ABD ∵∵CBA ,∵3ADBDAC AB ==.故答案为:3. 【点睛】 本题考查了相似三角形的判定及性质,证明∵ABD ∵∵CBA 是解决问题的关键. 27.(2021·湖北随州市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,O 为AB 的中点,OD 平分AOC ∠交AC 于点G ,OD OA =,BD 分别与AC ,OC 交于点E ,F ,连接AD ,CD ,则OG BC 的值为______;若CE CF =,则CF OF的值为______.【答案】12【分析】(1)根据条件,证明AOD COD ≅△△,从而推断90OGA ∠=,进一步通过角度等量,证明AOG ABC △△,代入推断即可.(2)通过OA OD OC OB ===,可知,,,A B C D 四点共圆,通过角度转化,证明ODF CBF △△,代入推断即可. 【详解】解:(1)∵90ACB ∠=︒,O 为AB 的中点∵OA OC =又∵OD 平分AOC ∠∵AOD COD ∠=∠又∵OD OD =∵AOD COD ≅△△∵AD CD =∵OD AC ⊥∵90OGA ∠=在AOG 与ABC 中GAO BAC ∠=∠,90OGA BCA ∠=∠=∵AOG ABC △△12OGAOBC AB ==(2∵OA OD OC OB ===∵,,,A B C D 四点共圆,如下图:∵CE CF =∵CEF CFE ∠=∠又∵CFE BFO ∠=∠∵CEF BFO ∠=∠∵AOD COD ≅△△∵AD CD =∵AD CD =∵OBF CBE ∠=∠∵90BFO OBF CEF CBE ∠+∠=∠+∠=即90BOC ∠=∵OB OC = ∵BC ===∵90OGA BCA ∠=∠= ∵ODB FBC ∠=∠∵OFD CFB ∠=∠∵ODF CBF △△∵CF BC OF OD==故答案为:12【点睛】本题考查三角形的相似,三角形的全等以及圆的相关知识点,根据图形找见相关的等量关系是解题的关键.28.(2021·四川广元市·中考真题)如图,在正方形ABCD 中,点O 是对角线BD 的中点,点P 在线段OD 上,连接AP 并延长交CD 于点E ,过点P 作PF AP ⊥交BC 于点F ,连接AF 、EF ,AF 交BD 于G ,现有以下结论:△AP PF =;△DE BF EF +=;△PB PD -=;△AEF S 为定值;△APG PEFG S S =四边形.以上结论正确的有________(填入正确的序号即可).【答案】∵∵∵∵【分析】由题意易得∵APF =∵ABC =∵ADE =∵C =90°,AD =AB ,∵ABD =45°,对于∵:易知点A 、B 、F 、P 四点共圆,然后可得∵AFP =∵ABD =45°,则问题可判定;对于∵:把∵AED 绕点A 顺时针旋转90°得到∵ABH ,则有DE =BH ,∵DAE =∵BAH ,然后易得∵AEF ∵∵AHF ,则有HF =EF ,则可判定;对于∵:连接AC ,在BP 上截取BM =DP ,连接AM ,易得OB =OD ,OP =OM ,然后易证∵AOP ∵∵ABF ,进而问题可求解;对于∵:过点A 作AN ∵EF 于点N ,则由题意可得AN =AB ,若∵AEF 的面积为定值,则EF 为定值,进而问题可求解;对于∵由∵可得2AP AF =得∵APG ∵∵AFE ,然后可得相似比为AP AF =相似比的关系可求解.【详解】解:∵四边形ABCD 是正方形,PF AP ⊥,∵∵APF =∵ABC =∵ADE =∵C =90°,AD =AB ,∵ABD =45°,∵∵180ABC APF ∠+∠=︒,∵由四边形内角和可得180BAP BFP ∠+∠=︒,∵点A、B、F、P四点共圆,∵∵AFP=∵ABD=45°,∵∵APF是等腰直角三角形,∵AP PF=,故∵正确;∵把∵AED绕点A顺时针旋转90°得到∵ABH,如图所示:∵DE=BH,∵DAE=∵BAH,∵HAE=90°,AH=AE,∵45∠=∠=︒,HAF EAF∵AF=AF,∵∵AEF∵∵AHF(SAS),∵HF=EF,∵HF BH BF=+,∵DE BF EF+=,故∵正确;∵连接AC,在BP上截取BM=DP,连接AM,如图所示:∵点O 是对角线BD 的中点,∵OB =OD ,BD AC ⊥,∵OP =OM ,∵AOB 是等腰直角三角形, ∵AB =,由∵可得点A 、B 、F 、P 四点共圆,∵APO AFB ∠=∠,∵90ABF AOP ∠=∠=︒,∵∵AOP ∵∵ABF ,∵2OPOAAPBF AB AF ===,∵OP =,∵2BP DP BP BM PM OP -=-==, ∵PB PD -=,故∵正确;∵过点A 作AN ∵EF 于点N ,如图所示:由∵可得∵AFB =∵AFN ,∵∵ABF =∵ANF =90°,AF =AF ,∵∵ABF ∵∵ANF (AAS ),∵AN =AB ,若∵AEF 的面积为定值,则EF 为定值,∵点P 在线段OD 上,∵EF 的长不可能为定值,故∵错误;∵由∵可得2APAF =∵∵AFB =∵AFN =∵APG ,∵F AE =∵P AG ,∵∵APG ∵∵AFE ,∵2GP AP EF AF ==,∵2122AGP AEF S S ⎛== ⎝⎭,∵12AGP AEF S S =,∵APGPEFG S S =四边形,故∵正确;综上所述:以上结论正确的有∵∵∵∵;故答案为∵∵∵∵.【点睛】本题主要考查正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定,熟练掌握正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定是解题的关键.29.(2021·江苏南京市·中考真题)如图,将ABCD 绕点A 逆时针旋转到AB C D '''的位置,使点B '落在BC 上,B C ''与CD 交于点E ,若3,4,1AB BC BB '===,则CE 的长为________.【答案】98【分析】 过点C 作CM //C D ''交B C ''于点M ,证明ABB ADD ''∆∆∽求得53C D '=,根据AAS 证明ABB B CM ''∆≅∆可求出CM =1,再由CM //C D ''证明∵CME DC E '∆∽,由相似三角形的性质查得结论.【详解】解:过点C 作CM //C D ''交B C ''于点M ,。
浙江省2023年中考数学真题(图形的相似)附答案
浙江省2023年中考数学真题(图形的相似)一、选择题1.如图.在直角坐标系中.△ABC的三个顶点分别为A(1.2) B(2.1) C(3.2).现以原点O为位似中心.在第一象限内作与△ABC的位似比为2的位似图形△A′B′C′.则顶点C′的坐标是()A.(2,4)B.(4,2)C.(6,4)D.(5,4)2.如图.点P是△ABC的重心.点D是边AC的中点.PE∥AC交BC于点E.DF∥BC交EP于点F.若四边形CDFE的面积为6.则△ABC的面积为()A.12B.14C.18D.243.如图.在四边形ABCD中.AD∥BC.∥C=45°.以AB为腰作等腰直角三角形BAE.顶点E恰好落在CD边上.若AD=1.则CE的长是()A.√2B.√2C.2D.124.如图.在△ABC中.D是边BC上的点(不与点B.C重合).过点D作DE//AB交AC于点E;过点D作DF//AC交AB于点F.N是线段BF上的点.BN=2NF;M是线段DE上的点.DM=2ME.若已知△CMN的面积.则一定能求出()A.△AFE的面积B.△BDF的面积C.△BCN的面积D.△DCE的面积5.图1是第七届国际数学教育大会(ICME)的会徽.图2由其主体图案中相邻两个直角三角形组合而成.作菱形CDEF.使点D.E.F分别在边OC.OB.BC上.过点E作EH⊥AB于点H.当AB=BC,∠BOC= 30°,DE=2时.EH的长为()A.√3B.32C.√2D.43二、填空题6.小慧同学在学习了九年级上册“4.1比例线段”3节课后.发现学习内容是一个逐步特殊化的过程.请在横线上填写适当的数值+感受这种特殊化的学习过程.7.如图.在△ABC中.AB=AC ∠A<90°.点D.E.F分别在边AB.BC.CA上.连接DE.EF.FD.已知点B和点F关于直线DE对称.设BCAB=k .若AD=DF.则CFFA=(结果用含k的代数式表示).8.如图.在Rt△ABC中.∠C=90°,E为AB边上一点.以AE为直径的半圆O与BC相切于点D.连接AD.BE=3 BD=3√5.P是AB边上的动点.当△ADP为等腰三角形时.AP的长为.三、解答题9.如图.在⊙O中.直径AB垂直弦CD于点E.连接AC AD BC作CF⊥AD于点F.交线段OB于点G(不与点O.B重合).连接OF.(1)若BE=1.求GE的长.(2)求证:BC2=BG⋅BO(3)若FO=FG.猜想∠CAD的度数.并证明你的结论.10.在边长为1的正方形ABCD中.点E在边AD上(不与点A.D重合).射线BE与射线CD交于点F.(1)若ED=13.求DF的长.(2)求证:AE⋅CF=1.(3)以点B为圆心.BC长为半径画弧.交线段BE于点G.若EG=ED.求ED的长.11.如图.已知矩形ABCD.点E在CB延长线上.点F在BC延长线上.过点F作FH⊥EF交ED的延长线于点H.连结AF交EH于点G,GE=GH.(1)求证:BE=CF.(2)当ABFH=56,AD=4时.求EF的长.12.如图1.AB为半圆O的直径.C为BA延长线上一点.CD切半圆于点D,BE⊥CD.交CD延长线于点E.交半圆于点F.已知OA=32,AC=1.如图2.连结AF.P为线段AF上一点.过点P作BC的平行线分别交CE.BE于点M.N.过点P作PH⊥AB于点H.设PH=x,MN=y.(1)求CE的长和y关于x的函数表达式.(2)当PH<PN.且长度分别等于PH,PN.a的三条线段组成的三角形与△BCE相似时.求a的值.(3)延长PN交半圆O于点Q.当NQ=154x−3时.求MN的长.13.在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列)AB=12,AD=10.∥B为锐角.且sinB=45.(1)如图1.求AB边上的高CH的长.(2)P是边AB上的一动点.点C,D同时绕点P按逆时针方向旋转90°得点C′,D′.①如图2.当点C′落在射线CA上时.求BP的长.②当ΔAC′D′当是直角三角形时.求BP的长.14.我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系.用直线上点的位置刻画圆上点的位置.如图.AB是⊙O的直径.直线l是⊙O的切线.B为切点.P.Q是圆上两点(不与点A重合.且在直径AB的同侧).分别作射线AP.AQ交直线l于点C.点D.(1)如图1.当AB =6.BP ⌢长为π时.求BC 的长.(2)如图2.当AQ AB =34.BP ⌢=PQ ⌢时.求BC CD的值. (3)如图3.当sin∠BAQ =√64.BC =CD 时.连接BP.PQ.直接写出PQ BP 的值. 15.如图1.锐角△ABC 内接于⊙O .D 为BC 的中点.连接AD 并延长交⊙O 于点E.连接BE ,CE .过C 作AC 的垂线交AE 于点F.点G 在AD 上.连接BG ,CG .若BC 平分∠EBG 且∠BCG =∠AFC .(1)求∠BGC 的度数.(2)①求证:AF =BC .②若AG =DF .求tan∠GBC 的值.(3)如图2.当点O 恰好在BG 上且OG =1时.求AC 的长.16.已知.AB 是半径为1的⊙O 的弦.⊙O 的另一条弦CD 满足CD =AB .且CD ⊥AB 于点H (其中点H 在圆内.且AH >BH ,CH >DH ).(1)在图1中用尺规作出弦CD 与点H (不写作法.保留作图痕迹).(2)连结AD.猜想.当弦AB 的长度发生变化时.线段AD 的长度是否变化?若发生变化.说明理由:若不变.求出AD 的长度.(3)如图2.延长AH 至点F.使得HF =AH .连结CF.∠HCF 的平分线CP 交AD 的延长线于点P.点M 为AP 的中点.连结HM.若PD =12AD .求证:MH ⊥CP . 17.如图.在∥O 中.AB 是一条不过圆心O 的弦.点C.D 是AB⌢的三等分点.直径CE 交AB 于点F.连结AD 交CF 于点G.连结AC.过点C 的切线交BA 的延长线于点H .(1)求证:AD∥HC ;(2)若OG GC=2.求tan∥FAG 的值; (3)连结BC 交AD 于点N .若∥O 的半径为5.下面三个问题.依次按照易、中、难排列.对应的分值为2分、3分、4分.请根据自己的认知水平.选择其中一道问题进行解答。
中考数学《图形的相似》专项练习题及答案
中考数学《图形的相似》专项练习题及答案一、单选题1.一块含30°角的直角三角板(如图),它的斜边AB=8cm,里面空心△DEF的各边与△ABC的对应边平行,且各对应边的距离都是1cm,那么△DEF的周长是()A.5cm B.6cm C.(6-√3)cm D.(3+√3)cm2.如图,DE△BC,EF△AB,现得到下列结论:AEEC=BFFC,ADBF=ABBC,EFAB=DEBC,CECF=EABF其中正确的比例式的个数有()A.4个B.3个C.2个D.1个3.如图,△ABC与△ADE成位似图形,位似中心为点A,若AD:AB=1:3,则△ADE与△ABC面积之比为()A.1:2B.1:3C.1:9D.1:164.如图,△ABC中,三边互不相等,点P是AB上一点,有过点P的直线将△ABC切出一个小三角形与△ABC相似,这样的直线一共有()A.5条B.4条C.3条D.2条5.如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的位似比为1:2,△ABC面积为2,则△EDC的面积是()A.2B.8C.16D.326.如图,△ADE△△ABC,若AD=2,BD=4,则△ADE与△ABC的相似比是()A.1:2B.1:3C.2:3D.3:27.如图,以A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若s1表示△ADE的面积,s2表示四边形DBCE的面积,则s1:s2=()A.1︰2B.1︰3C.1︰4D.2︰38.如图,按如下方法,将△ABC的三边缩小到原来的12,任取一点O,连AO、BO、CO,并取它们的中点D、E、F得△DEF,则下列说法正确的是()①△ABC与△DEF是相似图形;②△ABC与△DEF的周长比为2:1;③△ABC与△DEF的面积比为4:1.A.①、②B.②、③C.①、③D.①、②、③9.如图,已知AB是半圆O的直径,弦AD,CB相交于点P,若∠DPB=45°,则S△CDP:S△ABP 的值()A.25B.23C.13D.1210.如图,AD△BE△CF,直线l1、l2这与三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4B.5C.6D.811.一个三角形的三边长分别为3,4,5,另一个与它相似的三角形中有一条边长为6.则这个三角形的周长不可能是()A.725B.18C.48D.2412.如图,小正方形的边长为均为1,下列各图(图中小正方形的边长均为1)阴影部分所示的三角形中,与△ABC相似的三角形是()A.B.C.D.二、填空题13.勾股定理是一个基本的几何定理,有数百种证明方法.“青朱出入图”是我国古代数学家证明勾股定理的几何证明法.刘徽描述此图“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,加就其余不动也,合成弦方之幂,开方除之,即弦也”.若图中BF=4,DF=2,则AE=.14.如图,矩形ABCD中,AB=3,BC=4,E是BC上一点,BE=1,AE与BD交于点F.则DF的长为.15.如图,点D在△ABC的边BC的延长线上,AD为△ABC的外角的平分线,AB=2BC,AC=3,CD=4,则AB的长为.16.如图,在△ABC中,△BAC=90°,AD△BC于D,BD=3,CD=12,则AD的长为17.在某一时刻,测得一根高为1m的竹竿的影长为2m,同时测得一栋高楼的影长为40m,这栋高楼的高度是m.18.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.三、综合题19.如图,已知△BAC=90°,AD△BC于D,E是AC的中点,ED的延长线交AB的延长线于点F.求证:(1)△DFB△△AFD;(2)AB:AC=DF:AF.20.一次小组合作探究课上,小明将两个正方形按如图1所示的位置摆放(点E、A、D在同一条直线上).(1)发现BE与DG数量关系是,BE与DG的位置关系是.(2)将正方形AEFG绕点A按逆时针方向旋转(如图2),(1)中的结论还成立吗?若能,请给出证明;若不能,请说明理由.(3)把图1中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG=ABAD=23,AE=2,AB=4,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请直接写出这个定值.21.如图,已知点D在△ABC的外部,AD△BC,点E在边AB上,AB•AD=BC•AE.(1)求证:△BAC=△AED;(2)在边AC取一点F,如果△AFE=△D,求证:ADBC=AFAC.22.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O作BD的垂线与边AD,BC分别交于点E,F,连接BE交AC于点K,连接DF。
2020届中考数学知识点练习:图形的相似(含答案)
图形的相似一、选择题1.(2019常德)如图,在等腰三角形△ABC中,AB=AC,图中所有三角形均相似,其中最小的三角形面积为1,△ABC的面积为42,则四边形DBCE的面积是A.20 B.22 C.24 D.26【答案】D2.(2019凉山)如图,在△ABC中,D在AC边上,AD∶DC=1∶2,O是BD的中点,连接AO并延长交BC于E,则BE∶EC=A.1∶2 B.1∶3 C.1∶4 D.2∶3【答案】B3.(2019赤峰)如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是A.1 B.2 C.3 D.4【答案】C4.(2019重庆)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是A .2B .3C .4D .5【答案】C5.(2019连云港)在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似A .①处B .②处C .③处D .④处【答案】B6.(2019邵阳)如图,以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A ′B ′C ′,以下说法中错误的是A .△ABC ∽△A ′B ′C ′B .点C 、点O 、点C ′三点在同一直线上 C .AO ∶AA ′=1∶2D .AB ∥A ′B ′ 【答案】C7.(2019温州)如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使BM =BC ,作MN ∥BG 交CD 于点L ,交FG 于点N ,欧几里得在《几何原本》中利用该图解释了(a +b )(a ﹣b )=a 2﹣b 2,现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结EP ,记△EPH 的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则12S S 的值为A .2 B .3C D 【答案】C8.(2019淄博)如图,在△ABC 中,AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B .若△ADC 的面积为a ,则△ABD 的面积为A .2aB .52a C .3aD .72a【答案】C9.(2019杭州)如图,在△ABC 中,点D ,E 分别在AB 和AC 上,DE ∥BC ,M 为BC 边上一点(不与点B ,C 重合),连接AM 交DE 于点N ,则A .AD ANAN AE = B .BD MNMN CE =C .DN NEBM MC=D .DN NEMC BM= 【答案】C10.(2019玉林)如图,AB ∥EF ∥DC ,AD ∥BC ,EF 与AC 交于点G ,则是相似三角形共有A.3对B.5对C.6对D.8对【答案】C11.(2019安徽)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC 于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为A.3.6 B.4 C.4.8 D.5【答案】B12.(2019兰州)已知△ABC∽△A'B'C',AB=8,A'B'=6,则BCB'C'=A.2 B.43C.3 D.169【答案】B13.(2019常州)若△ABC~△A′B'C′,相似比为1∶2,则△ABC与△A'B′C'的周长的比为A.2∶1 B.1∶2 C.4∶1 D.1∶4【答案】B二、填空题14.(2019吉林)在某一时刻,测得一根高为1.8 m的竹竿的影长为3 m,同时同地测得一栋楼的影长为90 m,则这栋楼的高度为__________m.【答案】5415.(2019台州)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且23mn,则m+n的最大值为__________.【答案】25 316.(2019南京)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠AC B.若AD=2,BD=3,则AC的长__________.17.(2019)烟台)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(-2,-1),B(-2,-3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,-1),B1(1,-5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为__________.【答案】(-5,-1)18.(2019)本溪)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相似比为12,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为__________.【答案】(2,1)或(-2,-1)19.(2019宜宾)如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=__________.【答案】16 520.(2019河池)如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则ABCD=__________.【答案】2 521.(2019淮安)如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别相交于点A、B、C和点D、E、F.若AB=3,DE=2,BC=6,则EF=__________.【答案】4三、解答题22.(2019福建)已知△ABC和点A',如图.(1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF∽△D'E'F'.解:(1)作线段A 'C '=2AC 、A 'B '=2AB 、B 'C '=2BC ,得△A 'B 'C '即可所求.∵A 'C '=2AC 、A 'B '=2AB 、B 'C '=2BC ,∴△ABC ∽△A ′B ′C ′,∴2()4A B C'ABC ''S A B''S AB==△△. (2)如图,∵D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点, ∴111222DE BC DF AC EF AB ===,,, ∴△DEF ∽△ABC同理:△D 'E 'F '∽△A 'B 'C ', 由(1)可知:△ABC ∽△A ′B ′C ′, ∴△DEF ∽△D 'E 'F '.23.(2019绍兴)如图,矩形ABCD 中,AB =a ,BC =b ,点M ,N 分别在边AB ,CD 上,点E ,F 分别在边BC ,AD 上,MN ,EF 交于点P ,记k =MN :EF .(1)若a :b 的值为1,当MN ⊥EF 时,求k 的值.(2)若a :b 的值为12,求k 的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.解:(1)如图1中,作FH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.∵四边形ABCD是正方形,∴FH=AB,MQ=BC,∵AB=CB,∴FH=MQ,∵EF⊥MN,∴∠EON=90°,∵∠ECN=90°,∴∠MNQ+∠CEO=180°,∠FEH+∠CEO=180°,∴∠FEH=∠MNQ,∵∠EHF=∠MQN=90°,∴△FHE≌△MQN(ASA),∴MN=EF,∴k=MN:EF=1.(2)∵a:b=1:2,∴b=2a,由题意:2a≤MN≤,a≤EF≤,∴当MN的长取最大时,EF取最短,此时k当MN的长取最短时,EF的值取最大,此时k的值最小,最小值为5.(3)连接FN,ME.∵k=3,MP=EF=3PE,∴MN EFPM PE==3,∴PN PFPM PE==2, ∴△PNF ∽△PME ,∴NF PNME PM==2,ME ∥NF , 设PE =2m ,则PF =4m ,MP =6m ,NP =12m ,①如图2中,当点N 与点D 重合时,点M 恰好与点B 重合.过点F 作FH ⊥BD 于点H .∵∠MPE =∠FPH =60°,∴PH =2m ,FH ,DH =10m ,∴a AB FHb AD HD ===.②如图3中,当点N 与点C 重合,过点E 作EH ⊥MN 于点H .则PH =m ,HE =,∴HC =PH +PC =13m ,∴tan ∠HCE MB HE BC HC ===, ∵ME ∥FC ,∴∠MEB =∠FCB =∠CFD , ∵∠B =∠D ,∴△MEB ∽△CFD ,∴CD FC MB ME ==2,∴213a CD MBb BC BC ===,综上所述,a :b 24.(2019凉山)如图,∠ABD =∠BCD =90°,DB 平分∠ADC ,过点B 作BM ∥CD 交AD 于M .连接CM 交DB 于N . (1)求证:BD 2=AD ·CD ;(2)若CD =6,AD =8,求MN 的长.解:(1)证明:∵DB 平分∠ADC , ∴∠ADB =∠CDB ,且∠ABD =∠BCD =90°, ∴△ABD ∽△BCD , ∴AD BDBD CD=, ∴BD 2=AD ·CD .(2)∵BM ∥CD ,∴∠MBD =∠BDC , ∴∠ADB =∠MBD ,且∠ABD =90°, ∴BM =MD ,∠MAB =∠MBA , ∴BM =MD =AM =4,∵BD 2=AD ·CD ,且CD =6,AD =8,∴BD 2=48, ∴BC 2=BD 2-CD 2=12, ∴MC 2=MB 2+BC 2=28,∴MC =∵BM ∥CD ,∴△MNB ∽△CND ,∴23BM MN CD CN ==,且MC =∴MN =5. 25.(2019舟山)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC 中,AD ⊥BC 于点D ,正方形PQMN 的边QM 在BC 上,顶点P ,N 分别在AB ,AC 上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.解:(1)证明:如图1,由正方形PQMN得PN∥BC,∴△APN∽△ABC,∴NP AEBC AD=,即PN h PNa h-=,解得PNaha h =+.(3)证明:由画法得,∠QMN=∠PNM=∠POM=90°,∴四边形PQMN为矩形,∵N'M'⊥BC,NM⊥BC,∴NM'∥NM,∴△BN'M'∽△BNM,∴N'M'BN'NM BN=,同理可得=N'P'BN'NP BN,∴N'M'P'N' NM PN=.∵N′M′=P′N′,∴NM=PN,∴四边形PQMN为正方形.(4)如图2,过点N作NR⊥ME于点R.∵NE=NM,∴∠NEM=∠NME,∴ER=RM=12 EM,又∵∠EQM+∠EMQ=∠EMQ+∠EMN=90°,∴∠EQM=∠EMN.又∠QEM=∠NRM=90°,NM=QM,∴△EQM≌△RMN(AAS),∴EQ=RM,∴EQ=12 EM,∵∠QEM=90°,∴∠BEQ+∠NEM=90°,∴∠BEQ=∠EMB,又∵∠EBM=∠QBE,∴△BEQ∽△BME,∴1=2 BQ BE EQBE BM EM==.设BQ=x,则BE=2x,BM=4x,∴QM=BM–BQ=3x=MN=NE,∴BN=BE+NE=5x,∴BN=53NM=533aha h+.26.(2019巴中)△ABC在边长为1的正方形网格中如图所示.①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1∶2.且△A1B1C位于点C的异侧,并表示出A1的坐标.②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.③在②的条件下求出点B经过的路径长.解:①如图,△A1B1C为所作,点A1的坐标为(3,-3).②如图,△A2B2C为所作.③OB=点B经过的路径长=.27.(2019衢州)如图,在Rt△AB C中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE ∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求EFDF的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC12=∠BAC=30°,在Rt△ADC中,DC=AC•tan30°=63⨯=.(2)由题意易知:BC BD∵DE∥AC,∴∠EDA=∠DAC,∠DFM=∠AGM,∵AM=DM,∴△DFM≌△AGM(ASA),∴DF=AG,由DE∥AC,得△BFE∽△BGA,∴EF BE BD AG AB BC==,∴23 EF EF BDDF AG BC====.(3)∵∠CPG=60°,过C,P,G作外接圆,圆心为Q,∴△CQG是顶角为120°的等腰三角形.①当⊙Q与DE相切时,如图1,过点Q作QH⊥AC于H,并延长HQ与DE交于点P.连结QC,QG.设⊙Q 的半径QP =r .则QH 12=r ,r 12+r ,解得r =,∴CG ==4,AG =2, 易知△DFM ∽△AGM ,可得43DM DF AM AG ==,∴DM 47=,∴DM = ②当⊙Q 经过点E 时,如图2,过点C 作CK ⊥AB ,垂足为K ,设⊙Q 的半径QC =QE =r .则QK r .在Rt △EQK 中,12+(r )2=r 2,解得r =∴CG 143==,易知△DFM ∽△AGM ,可得DM 5=.③当⊙Q经过点D时,如图3中,此时点M与点G重合,且恰好在点A处,可得DM.∴综上所述,当DM=DM≤P只有一个.28.(2019荆门)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2 m,BD=2.1 m,如果小明眼睛距地面髙度BF,DG为1.6 m,试确定楼的高度OE.解:如图,设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF并延长交OE于点H,∵GF∥AC,∴△MAC∽△MFG,∴AC MA MO FG MF MH==,即:AC OE OE OEBD MH MO OH OE BF ===++,∴21.62.1OE OE =+,∴OE =32,答:楼的高度OE 为32米.29.(2019安徽)如图,Rt △ABC 中,∠ACB =90°,AC =BC ,P 为△ABC 内部一点,且∠APB =∠BPC =135°. (1)求证:△PAB ∽△PBC ; (2)求证:PA =2PC ;(3)若点P 到三角形的边AB ,BC ,CA 的距离分别为h 1,h 2,h 3,求证h 12=h 2·h 3.证明:(1)∵∠ACB =90°,AB =BC , ∴∠ABC =45°=∠PBA +∠PBC ,又∠APB =135°,∴∠PAB +∠PBA =45°, ∴∠PBC =∠PAB , 又∵∠APB =∠BPC =135°, ∴△PAB ∽△PBC .(2)∵△PAB ∽△PBC ,∴PA PB ABPB PC BC ==,在Rt △ABC 中,AB =AC ,∴ABBC=∴PB PA ==,,∴PA =2PC .(3)如图,过点P 作PD ⊥BC ,PE ⊥AC 交BC 、AC 于点D ,E ,∴PF =h 1,PD =h 2,PE =h 3,∵∠CPB +∠APB =135°+135°=270°, ∴∠APC =90°, ∴∠EAP +∠ACP =90°, 又∵∠ACB =∠ACP +∠PCD =90°, ∴∠EAP =∠PCD , ∴Rt △AEP ∽Rt △CDP ,∴2PE APDP PC==,即322h h =,∴h 3=2h 2, ∵△PAB ∽△PBC,∴12h AB h BC==∴12h =,∴2212222322h h h h h h ==⋅=.即h 12=h 2·h 3.30.(2019长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;(__________命题) ②三个角分别相等的两个凸四边形相似;(__________命题) ③两个大小不同的正方形相似.(__________命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,1111AB BC A B B C ==11CDC D .求证:四边形ABCD 与四边形A 1B 1C 1D 1相似.(3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFCD 的面积为S 2,若四边形ABFE 与四边形EFCD 相似,求21S S 的值.解:(1)①四条边成比例的两个凸四边形相似,是假命题,角不一定相等. ②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例. ③两个大小不同的正方形相似.是真命题.故答案为:假,假,真. (2)证明:如图1中,连接BD ,B 1D 1.∵∠BCD =∠B 1C 1D 1,且1111BC CDB C C D =, ∴△BCD ∽△B 1C 1D 1,∴∠CDB =∠C 1D 1B 1,∠C 1B 1D 1=∠CBD ,∵111111AB BC CD A B B C C D ==,∴1111BD ABB D A B =, ∵∠ABC =∠A 1B 1C 1, ∴∠ABD =∠A 1B 1D 1, ∴△ABD ∽△A 1B 1D 1,∴1111AD ABA D AB =,∠A =∠A 1,∠ADB =∠A 1D 1B 1, ∴11111111AB BC CD ADA B B C C D A D ===,∠ADC =∠A 1D 1C 1,∠A =∠A 1,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1, ∴四边形ABCD 与四边形A 1B 1C 1D 1相似.(3)证明:∵四边形ABCD 与四边形EFCD 相似.∴DE EFAE AB=, ∵EF =OE +OF ,∴DE OE OFAE AB+=, ∵EF ∥AB ∥CD , ∴DE OE DE OC OF AD AB AD AB AB =-=,,∴DE DE OE OF AD AD AB AB +=+,∴2DE DEAD AE=, ∵AD =DE +AE , ∴21DE AE AE=+,∴2AE =DE +AE ,∴AE =DE ,∴12S S =1.。
中考数学复习----《位似》知识点总结与专项练习题(含答案)
中考数学复习----《位似》知识点总结与专项练习题(含答案)知识点总结1. 位似的概念:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心。
2. 位似与平面直角坐标系:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k 。
练习题1、(2022•百色)已知△ABC 与△A 'B 'C '是位似图形,位似比是1:3,则△ABC 与△A 'B 'C '的面积比是( )A .1:3B .1:6C .1:9D .3:1【分析】利用为位似的性质得到△ABC 与△A 'B 'C '相似比是1:3,然后根据相似三角形的性质求解.【解答】解:∵△ABC 与△A 'B 'C '是位似图形,位似比是1:3,∴△ABC 与△A 'B 'C '相似比是1:3,∴△ABC 与△A 'B 'C '的面积比是1:9.故选:C .2、(2022•梧州)如图,以点O 为位似中心,作四边形ABCD 的位似图形A ′B ′C ′D ′,已知 OA OA =31,若四边形ABCD 的面积是2,则四边形A ′B ′C ′D ′的面积是( )A .4B .6C .16D .18【分析】直接利用位似图形的性质得出面积比进而得出答案.【解答】解:∵以点O 为位似中心,作四边形ABCD 的位似图形A ′B ′C ′D ′,=,∴==, 则四边形A ′B ′C ′D ′面积为:18.故选:D .3、(2022•威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,∠AOB =∠BOC =∠COD =…=∠LOM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( )A .(34)3B .(34)7C .(34)6D .(43)6 【分析】根据余弦的定义得到OB =OA ,进而得到OG =()6OA ,根据位似图形的概念得到△GOH 与△AOB 位似,根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:在Rt △AOB 中,∠AOB =30°,∵cos∠AOB=,∴OB=OA,同理,OC=OB,∴OC=()2OA,……OG=()6OA,由位似图形的概念可知,△GOH与△AOB位似,且位似比为()6,∵S△AOB=1,∴S△GOH=[()6]2=()6,故选:C.4、(2022•重庆)如图,△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,则△ABC与△DEF的周长之比是()A.1:2 B.1:4 C.1:3 D.1:9【分析】根据两三角形位似,周长比等于相似比即可求解.【解答】解:∵△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,∴△ABC与△DEF的周长之比是1:2,故选:A.5、(2022•重庆)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC 的周长为4,则△DEF的周长是()A.4 B.6 C.9 D.16【分析】根据位似图形是相似图形,相似三角形的周长比等于相似比,可以求得△DEF 的周长.【解答】解:∵△ABC与△DEF位似,相似比为2:3.∴C△ABC:C△DEF=2:3,∵△ABC的周长为4,∴△DEF的周长是6,故选:B.6、(2022•黔西南州)如图,在平面直角坐标系中,△OAB与△OCD位似,位似中心是坐标原点O.若点A(4,0),点C(2,0),则△OAB与△OCD周长的比值是.【分析】利用关于原点为位似中心的对应点的坐标变换规律得到相似比为2:1,然后根据相似三角形的性质解决问题.【解答】解:∵△OAB与△OCD位似,位似中心是坐标原点O,而点A(4,0),点C(2,0),∴相似比为4:2=2:1,∴△OAB与△OCD周长的比值为2.故答案为:2.7、(2022•潍坊)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为.【分析】如图,连接B′D′.利用相似多边形的性质求出正方形A′B′C′D′的面积,求出边长,再求出B′D′可得结论.【解答】解:如图,连接B′D′.设B′D′的中点为O.∵正方形ABCD∽正方形A′B′C′D′,相似比为1:2,又∵正方形ABCD的面积为4,∴正方形A′B′C′D′的面积为16,∴A′B′=A′D′=4,∵∠B′A′D′=90°,∴B′D′=A′B′=4,∴正方形A′B′C′D′的外接圆的周长=4π,故答案为:4π.8、(2022•成都)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC与△DEF的周长比是.【分析】先根据位似的性质得到△ABC和△DEF的位似比为OA:OD,再利用比例性质得到OA:OD=2:5,然后利用相似比等于位似比和相似三角形的性质求解.【解答】解:∵△ABC和△DEF是以点O为位似中心的位似图形.∴△ABC和△DEF的位似比为OA:OD,∵OA:AD=2:3,∴OA:OD=2:5,∴△ABC与△DEF的周长比是2:5.故答案为:2:5.。
中考数学《图形的相似》真题汇编含解析
图形的相似(29题)一、单选题1(2023·重庆·统考中考真题)如图,已知△ABC ∽△EDC ,AC :EC =2:3,若AB 的长度为6,则DE 的长度为()A.4B.9C.12D.13.5【答案】B【分析】根据相似三角形的性质即可求出.【详解】解:∵△ABC ∽△EDC ,∴AC :EC =AB :DE ,∵AC :EC =2:3,AB =6,∴2:3=6:DE ,∴DE =9,故选:B .【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.2(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点△ABC 、△DEF 成位似关系,则位似中心的坐标为()A.-1,0B.0,0C.0,1D.1,0【答案】A【分析】根据题意确定直线AD 的解析式为:y =x +1,由位似图形的性质得出AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,即可求解.【详解】解:由图得:A 1,2 ,D 3,4 ,设直线AD 的解析式为:y =kx +b ,将点代入得:2=k +b 4=3k +b ,解得:k =1b =1 ,∴直线AD 的解析式为:y =x +1,AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,∴当y =0时,x =-1,∴位似中心的坐标为-1,0 ,故选:A .【点睛】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键.3(2023·浙江嘉兴·统考中考真题)如图,在直角坐标系中,△ABC 的三个顶点分别为A 1,2 ,B 2,1 ,C 3,2 ,现以原点O 为位似中心,在第一象限内作与△ABC 的位似比为2的位似图形△A B C ,则顶点C 的坐标是()A.2,4B.4,2C.6,4D.5,4【答案】C【分析】直接根据位似图形的性质即可得.【详解】解:∵△ABC 的位似比为2的位似图形是△A B C ,且C 3,2 ,∴C 2×3,2×2 ,即C 6,4 ,故选:C .【点睛】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.4(2023·四川南充·统考中考真题)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为()A.6.4mB.8mC.9.6mD.12.5m【答案】B【分析】根据镜面反射性质,可求出∠ACB =∠ECD ,再利用垂直求△ABC ∽△EDC ,最后根据三角形相似的性质,即可求出答案.【详解】解:如图所示,由图可知,AB ⊥BD ,CD ⊥DE ,CF ⊥BD∴∠ABC =∠CDE =90°.∵根据镜面的反射性质,∴∠ACF =∠ECF ,∴90°-∠ACF =90°-∠ECF ,∴∠ACB =∠ECD ,∴△ABC ∽△EDC ,∴AB DE =BC CD.∵小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,∴AB =1.6m ,BC =2m ,CD =10m .∴1.6DE =210.∴DE =8m .故选:B .【点睛】本题考查了相似三角形的应用,解题的关键在于熟练掌握镜面反射的基本性质和相似三角形的性质.5(2023·安徽·统考中考真题)如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.10【答案】B 【分析】根据平行线分线段成比例得出DE EM =AF FB =2,根据△ADE ∽△CME ,得出AD CM =DE EM =2,则CM =12AD =32,进而可得MB =32,根据BC ∥AD ,得出△GMB ∽△GDA ,根据相似三角形的性质得出BG =3,进而在Rt △BGM 中,勾股定理即可求解.【详解】解:∵四边形ABCD 是正方形,AF =2,FB =1,∴AD =BC =AB =AF +FG =2+1=3,AD ∥CB ,AD ⊥AB ,CB ⊥AB ,∵EF ⊥AB ,∴AD ∥EF ∥BC∴DE EM =AFFB=2,△ADE∽△CME,∴AD CM =DEEM=2,则CM=12AD=32,∴MB=3-CM=32,∵BC∥AD,∴△GMB∽△GDA,∴BG AG =MBDA=323=12∴BG=AB=3,在Rt△BGM中,MG=MB2+BG2=322+32=352,故选:B.【点睛】本题考查了正方形的性质,平行线分线段成比例,相似三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.6(2023·湖北黄冈·统考中考真题)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为()A.10B.11C.23D.4【答案】A【分析】由作图可知BP平分∠CBD,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,根据角平分线的性质可知RQ=RC,进而证明Rt△BCR≌Rt△BQR,推出BC=BQ=4,设RQ=RC=x,则DR=CD-CR=3-x,解Rt△DQR求出QR=CR=43.利用三角形面积法求出OC,再证△OCR∽△DCN,根据相似三角形对应边成比例即可求出CN.【详解】解:如图,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,∵矩形ABCD中,AB=3,BC=4,∴CD =AB =3,∴BD =BC 2+CD 2=5.由作图过程可知,BP 平分∠CBD ,∵四边形ABCD 是矩形,∴CD ⊥BC ,又∵RQ ⊥BD ,∴RQ =RC ,在Rt △BCR 和Rt △BQR 中,RQ =RC BR =BR ,∴Rt △BCR ≌Rt △BQR HL ,∴BC =BQ =4,∴QD =BD -BQ =5-4=1,设RQ =RC =x ,则DR =CD -CR =3-x ,在Rt △DQR 中,由勾股定理得DR 2=DQ 2+RQ 2,即3-x 2=12+x 2,解得x =43,∴CR =43.∴BR =BC 2+CR 2=4310.∵S △BCR =12CR ⋅BC =12BR ⋅OC ,∴OC =CR ⋅BC BR =43×44310=2510.∵∠COR =∠CDN =90°,∠OCR =∠DCN ,∴△OCR ∽△DCN ,∴OC DC =CR CN ,即25103=43CN,解得CN =10.故选:A .【点睛】本题考查角平分线的作图方法,矩形的性质,角平分线的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出BP 平分∠CBD ,通过勾股定理解直角三角形求出CR .7(2023·四川内江·统考中考真题)如图,在△ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC ∥DG ∥EF ,点H 为AF 与DG 的交点.若AC =12,则DH 的长为()A.1B.32C.2D.3【答案】C 【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB,解得EF =4,则DH =12EF =2.【详解】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴∠BEF =∠BAC ,∠BFE =∠BCA ,∴△BEF ∽△BAC ,∴EF AC =BE AB,即EF 12=BE 3BE ,解得:EF =4,∴DH =12EF =12×4=2,故选:C .【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.8(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,O 为原点,OA =OB =35,点C 为平面内一动点,BC =32,连接AC ,点M 是线段AC 上的一点,且满足CM :MA =1:2.当线段OM 取最大值时,点M 的坐标是()A.35,65B.355,655C.65,125D.655,1255 【答案】D【分析】由题意可得点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,先证△OAM ∽△DAC ,得OM CD =OA AD =23,从而当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,然后分别证△BDO ∽△CDF ,△AEM ∽△AFC ,利用相似三角形的性质即可求解.【详解】解:∵点C 为平面内一动点,BC =32,∴点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,∵OA =OB =35,∴AD =OD +OA =952,∴OA AD=23,∵CM :MA =1:2,∴OA AD =23=CM AC,∵∠OAM =∠DAC ,∴△OAM ∽△DAC ,∴OM CD =OA AD=23,∴当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,∵OA =OB =35,OD =352,∴BD =OB 2+OD 2=35 2+352 2=152,∴CD =BC +BD =9,∵OM CD=23,∴OM =6,∵y 轴⊥x 轴,CF ⊥OA ,∴∠DOB =∠DFC =90°,∵∠BDO =∠CDF ,∴△BDO ∽△CDF ,∴OB CF =BD CD 即35CF=1529,解得CF =1855,同理可得,△AEM ∽△AFC ,∴ME CF =AM AC =23即ME 1855=23,解得ME =1255,∴OE =OM 2-ME 2=62-1255 2=655,∴当线段OM 取最大值时,点M 的坐标是655,1255,故选:D .【点睛】本题主要考查了勾股定理、相似三角形的判定及性质、圆的一般概念以及坐标与图形,熟练掌握相似三角形的判定及性质是解题的关键.9(2023·山东东营·统考中考真题)如图,正方形ABCD 的边长为4,点E ,F 分别在边DC ,BC 上,且BF =CE ,AE 平分∠CAD ,连接DF ,分别交AE ,AC 于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN ⊥AC 垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM +PN 的最小值为32;③CF 2=GE ⋅AE ;④S ΔADM =62.其中正确的是()A.①②B.②③④C.①③④D.①③【答案】D【分析】根据正方形的性质和三角形全等即可证明∠DAE =∠FDC ,通过等量转化即可求证AG ⊥DM ,利用角平分线的性质和公共边即可证明△ADG ≌△AMG ASA ,从而推出①的结论;利用①中的部分结果可证明△ADE ∽△DGE 推出DE 2=GE ⋅AE ,通过等量代换可推出③的结论;利用①中的部分结果和勾股定理推出AM 和CM 长度,最后通过面积法即可求证④的结论不对;结合①中的结论和③的结论可求出PM +PN 的最小值,从而证明②不对.【详解】解:∵ABCD 为正方形,∴BC =CD =AD ,∠ADE =∠DCF =90°,∵BF =CE ,∴DE =FC ,∴△ADE ≌△DCF SAS .∴∠DAE =∠FDC ,∵∠ADE =90°,∴∠ADG +∠FDC =90°,∴∠ADG +∠DAE =90°,∴∠AGD =∠AGM =90°.∵AE 平分∠CAD ,∴∠DAG =∠MAG .∵AG =AG ,∴△ADG ≌△AMG ASA .∴DG =GM ,∵∠AGD =∠AGM =90°,∴AE 垂直平分DM ,故①正确.由①可知,∠ADE =∠DGE =90°,∠DAE =∠GDE ,∴△ADE ∽△DGE ,∴DE GE=AE DE ,∴DE 2=GE ⋅AE ,由①可知DE =CF ,∴CF 2=GE ⋅AE .故③正确.∵ABCD 为正方形,且边长为4,∴AB =BC =AD =4,∴在Rt △ABC 中,AC =2AB =4 2.由①可知,△ADG ≌△AMG ASA ,∴AM =AD =4,∴CM =AC -AM =42-4.由图可知,△DMC 和△ADM 等高,设高为h ,∴S △ADM =S △ADC -S △DMC ,∴4×h 2=4×42-42-4 ⋅h 2,∴h =22,∴S △ADM =12⋅AM ⋅h =12×4×22=4 2.故④不正确.由①可知,△ADG ≌△AMG ASA ,∴DG =GM ,∴M 关于线段AG 的对称点为D ,过点D 作DN ⊥AC ,交AC 于N ,交AE 于P ,∴PM +PN 最小即为DN ,如图所示,由④可知△ADM 的高h =22即为图中的DN ,∴DN =2 2.故②不正确.综上所述,正确的是①③.故选:D .【点睛】本题考查的是正方形的综合题,涉及到三角形相似,最短路径,三角形全等,三角形面积法,解题的关键在于是否能正确找出最短路径以及运用相关知识点.10(2023·内蒙古赤峰·统考中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM ⊥AB于点M ,AM =4,则下列结论,①DQ =EQ ,②BQ =3,③BP =158,④BD ∥FQ .正确的是()A.①②③B.②④C.①③④D.①②③④【答案】A【分析】由折叠性质和平行线的性质可得∠QDF =∠CDF =∠QEF ,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出MQ =AM =4,再求出BQ 即可判断②正确;由△CDP ∽△BQP 得CP BP =CD BQ=53,求出BP 即可判断③正确;根据EF DE ≠QE BE 即可判断④错误.【详解】由折叠性质可知:∠CDF =∠QDF ,CD =DQ =5,∵CD ∥AB ,∴∠CDF =∠QEF .∴∠QDF =∠QEF .∴DQ =EQ =5.故①正确;∵DQ =CD =AD =5,DM ⊥AB ,∴MQ =AM =4.∵MB =AB -AM =5-4=1,∴BQ =MQ -MB =4-1=3.故②正确;∵CD ∥AB ,∴△CDP ∽△BQP .∴CP BP =CD BQ=53.∵CP +BP =BC =5,∴BP =38BC =158.故③正确;∵CD ∥AB ,∴△CDF ∽△BEF .∴DF EF =CD BE =CD BQ +QE=53+5=58.∴EF DE =813.∵QE BE =58,∴EF DE ≠QE BE.∴△EFQ 与△EDB 不相似.∴∠EQF ≠∠EBD .∴BD 与FQ 不平行.故④错误;故选:A .【点睛】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.11(2023·黑龙江·统考中考真题)如图,在正方形ABCD中,点E,F分别是AB,BC上的动点,且AF ⊥DE,垂足为G,将△ABF沿AF翻折,得到△AMF,AM交DE于点P,对角线BD交AF于点H,连接HM,CM,DM,BM,下列结论正确的是:①AF=DE;②BM∥DE;③若CM⊥FM,则四边形BHMF是菱形;④当点E运动到AB的中点,tan∠BHF=22;⑤EP⋅DH=2AG⋅BH.()A.①②③④⑤B.①②③⑤C.①②③D.①②⑤【答案】B【分析】利用正方形的性质和翻折的性质,逐一判断,即可解答.【详解】解:∵四边形ABCD是正方形,∴∠DAE=∠ABF=90°,DA=AB,∵AF⊥DE,∴∠BAF+∠AED=90°,∵∠BAF+∠AFB=90°,∴∠AED=∠BFA,∴△ABF≌△AED AAS,∴AF=DE,故①正确,∵将△ABF沿AF翻折,得到△AMF,∴BM⊥AF,∵AF⊥DE,∴BM∥DE,故②正确,当CM⊥FM时,∠CMF=90°,∵∠AMF=∠ABF=90°,∴∠AMF+∠CMF=180°,即A,M,C在同一直线上,∴∠MCF=45°,∴∠MFC=90°-∠MCF=45°,通过翻折的性质可得∠HBF=∠HMF=45°,BF=MF,∴∠HMF=∠MFC,∠HBC=∠MFC,∴BC∥MH,HB∥MF,∴四边形BHMF是平行四边形,∵BF=MF,∴平行四边形BHMF是菱形,故③正确,当点E运动到AB的中点,如图,设正方形ABCD的边长为2a,则AE=BF=a,在Rt △AED 中,DE =AD 2+AE 2=5a =AF ,∵∠AHD =∠FHB ,∠ADH =∠FBH =45°,∴△AHD ∽△FHB ,∴FH AH =BF AD=a 2a =12,∴AH =23AF =253a ,∵∠AGE =∠ABF =90°,∴△AGF ∽△ABF ,∴AE AF =EG BF =AG AB =a 5a=55,∴EG =55BF =55a ,AG =55AB =255a ,∴DG =ED -EG =455a ,GH =AH -AG =4515a ,∵∠BHF =∠DHA ,在Rt △DGH 中,tan ∠BHF =tan ∠DHA =DG GH=3,故④错误,∵△AHD ∽△FHB ,∴BH DH=12,∴BH =13BD =13×22a =223a ,DH =23BD =23×22a =423a ,∵AF ⊥EP ,根据翻折的性质可得EP =2EG =255a ,∴EP ⋅DH =255a ⋅423a =81015a 2,2AG ⋅BH =2⋅255a ⋅223a =81015a 2,∴EP ⋅DH =2AG ⋅BH =81015a 2,故⑤正确;综上分析可知,正确的是①②③⑤.故选:B .【点睛】本题考查了正方形的性质,翻折的性质,相似三角形的判定和性质,正切的概念,熟练按照要求做出图形,利用寻找相似三角形是解题的关键.二、填空题12(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1位似,原点O 是位似中心,且AB A 1B 1=3.若A 9,3 ,则A 1点的坐标是.【答案】3,1【分析】直接利用位似图形的性质得出相似比进而得出对应线段的长.【详解】解∶设A1m,n∵△ABC与△A1B1C1位似,原点O是位似中心,且ABA1B1=3.若A9,3,∴位似比为31,∴9 m =31,3n=31,解得m=3,n=1,∴A13,1故答案为:3,1.【点睛】此题主要考查了位似变换,正确得出相似比是解题关键.13(2023·吉林长春·统考中考真题)如图,△ABC和△A B C 是以点O为位似中心的位似图形,点A 在线段OA 上.若OA:AA =1:2,则△ABC和△A B C 的周长之比为.【答案】1:3【分析】根据位似图形的性质即可求出答案.【详解】解:∵OA:AA =1:2,∴OA:OA =1:3,设△ABC周长为l1,设△A B C 周长为l2,∵△ABC和△A B C 是以点O为位似中心的位似图形,∴l1l2=OAOA=13.∴l1:l2=1:3.∴△ABC和△A B C 的周长之比为1:3.故答案为:1:3.【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.14(2023·四川乐山·统考中考真题)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE 交于点F .若AE EB =23,则S △ADF S △AEF =.【答案】52【分析】四边形ABCD 是平行四边形,则AB =CD ,AB ∥CD ,可证明△EAF ∽△DCF ,得到DF EF =CD AE =AB AE,由AE EB =23进一步即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠AEF =∠CDF ,∠EAF =∠DCF ,∴△EAF ∽△DCF ,∴DF EF =CD AE =AB AE ,∵AE EB =23,∴AB AE =52,∴S △ADF S △AEF =DF EF =AB AE=52.故答案为:52【点睛】此题考查了平行四边形的性质、相似三角形的判定和性质等知识,证明△EAF ∽△DCF 是解题的关键.15(2023·江西·统考中考真题)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,∠ABC 和∠AQP 均为直角,AP 与BC 相交于点D .测得AB =40cm ,BD =20cm ,AQ =12m ,则树高PQ =m .【答案】6【分析】根据题意可得△ABD ∽△AQP ,然后相似三角形的性质,即可求解.【详解】解:∵∠ABC 和∠AQP 均为直角∴BD ∥PQ ,∴△ABD ∽△AQP ,∴BD PQ =AB AQ∵AB =40cm ,BD =20cm ,AQ =12m ,∴PQ =AQ ×BD AB=12×2040=6m ,故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.16(2023·四川成都·统考中考真题)如图,在△ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ;③以点M 为圆心,以MN 长为半径作弧,在∠BAC 内部交前面的弧于点N :④过点N 作射线DN 交BC 于点E .若△BDE 与四边形ACED 的面积比为4:21,则BE CE的值为.【答案】23【分析】根据作图可得∠BDE =∠A ,然后得出DE ∥AC ,可证明△BDE ∽△BAC ,进而根据相似三角形的性质即可求解.【详解】解:根据作图可得∠BDE =∠A ,∴DE ∥AC ,∴△BDE ∽△BAC ,∵△BDE 与四边形ACED 的面积比为4:21,∴S △BDC S △BAC =421+4=BE BC2∴BE BC =25∴BE CE =23,故答案为:23.【点睛】本题考查了作一个角等于已知角,相似三角形的性质与判定,熟练掌握基本作图与相似三角形的性质与判定是解题的关键.17(2023·内蒙古·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =1,将△ABC 绕点A 逆时针方向旋转90°,得到△AB C .连接BB ,交AC 于点D ,则AD DC的值为.【答案】5【分析】过点D 作DF ⊥AB 于点F ,利用勾股定理求得AB =10,根据旋转的性质可证△ABB 、△DFB是等腰直角三角形,可得DF =BF ,再由S △ADB =12×BC ×AD =12×DF ×AB ,得AD =10DF ,证明△AFD ∼△ACB ,可得DF BC =AF AC ,即AF =3DF ,再由AF =10-DF ,求得DF =104,从而求得AD =52,CD =12,即可求解.【详解】解:过点D 作DF ⊥AB 于点F ,∵∠ACB =90°,AC =3,BC =1,∴AB =32+12=10,∵将△ABC 绕点A 逆时针方向旋转90°得到△AB C ,∴AB =AB =10,∠BAB =90°,∴△ABB 是等腰直角三角形,∴∠ABB =45°,又∵DF ⊥AB ,∴∠FDB =45°,∴△DFB 是等腰直角三角形,∴DF =BF ,∵S △ADB =12×BC ×AD =12×DF ×AB ,即AD =10DF ,∵∠C =∠AFD =90°,∠CAB =∠FAD ,∴△AFD ∼△ACB ,∴DF BC =AF AC,即AF =3DF ,又∵AF =10-DF ,∴DF =104,∴AD =10×104=52,CD =3-52=12,∴AD CD =5212=5,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.18(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.【答案】2或2+1【分析】分两种情况:当∠MND =90°时和当∠NMD =90°时,分别进行讨论求解即可.【详解】解:当∠MND =90°时,∵四边形ABCD 矩形,∴∠A =90°,则MN ∥AB ,由平行线分线段成比例可得:AN ND =BM MD,又∵M 为对角线BD 的中点,∴BM =MD ,∴AN ND =BM MD=1,即:ND =AN =1,∴AD =AN +ND =2,当∠NMD =90°时,∵M 为对角线BD 的中点,∠NMD =90°∴MN 为BD 的垂直平分线,∴BN =ND ,∵四边形ABCD 矩形,AN =AB =1∴∠A =90°,则BN =AB 2+AN 2=2,∴BN =ND =2∴AD =AN +ND =2+1,综上,AD 的长为2或2+1,故答案为:2或2+1.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.19(2023·辽宁大连·统考中考真题)如图,在正方形ABCD 中,AB =3,延长BC 至E ,使CE =2,连接AE ,CF 平分∠DCE 交AE 于F ,连接DF ,则DF 的长为.【答案】3104【分析】如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,由CF 平分∠DCE ,可知∠FCM =∠FCN =45°,可得四边形CMFN 是正方形,FM ∥AB ,设FM =CM =NF =CN =a ,则ME =2-a ,证明△EFM ∽△EAB ,则FM AB=ME BE ,即a 3=2-a 3+2,解得a =34,DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2,计算求解即可.【详解】解:如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,则四边形CMFN 是矩形,FM ∥AB ,∵CF 平分∠DCE ,∴∠FCM =∠FCN =45°,∴CM =FM ,∴四边形CMFN 是正方形,设FM =CM =NF =CN =a ,则ME =2-a ,∵FM ∥AB ,∴△EFM ∽△EAB ,∴FM AB =ME BE ,即a 3=2-a 3+2,解得a =34,∴DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2=3104,故答案为:3104.【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.20(2023·广东·统考中考真题)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.【答案】15【分析】根据正方形的性质及相似三角形的性质可进行求解.【详解】解:如图,由题意可知AD =DC =10,CG =CE =GF =6,∠CEF =∠EFG =90°,GH =4,∴CH =10=AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ AAS ,∴CJ =DJ =5,∴EJ =1,∵GI ∥CJ ,∴△HGI ∽△HCJ ,∴GI CJ =GH CH=25,∴GI =2,∴FI =4,∴S 梯形EJIF =12EJ +FI ⋅EF =15;故答案为:15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.21(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.【答案】3;13【分析】(1)过点E 作EH ⊥AD ,根据正方形和等腰三角形的性质,得到AH 的长,再利用勾股定理,求出EH 的长,即可得到△ADE 的面积;(2)延长EH 交AG 于点K ,利用正方形和平行线的性质,证明△ABF ≌△KEF ASA ,得到EK 的长,进而得到KH 的长,再证明△AHK ∽△ADG ,得到KH GD =AH AD ,进而求出GD 的长,最后利用勾股定理,即可求出AG的长.【详解】解:(1)过点E作EH⊥AD,∵正方形ABCD的边长为3,∴AD=3,∵△ADE是等腰三角形,EA=ED=52,EH⊥AD,∴AH=DH=12AD=32,在Rt△AHE中,EH=AE2-AH2=522-32 2=2,∴S△ADE=12AD⋅EH=12×3×2=3,故答案为:3;(2)延长EH交AG于点K,∵正方形ABCD的边长为3,∴∠BAD=∠ADC=90°,AB=3,∴AB⊥AD,CD⊥AD,∵EK⊥AD,∴AB∥EK∥CD,∴∠ABF=∠KEF,∵F为BE的中点,∴BF=EF,在△ABF和△KEF中,∠ABF=∠KEF BF=EF∠AFB=∠KFE,∴△ABF≌△KEF ASA,∴EK=AB=3,由(1)可知,AH=12AD,EH=2,∴KH=1,∵KH∥CD,∴△AHK∽△ADG,∴KH GD =AH AD,∴GD=2,在Rt△ADG中,AG=AD2+GD2=32+22=13,故答案为:13.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.22(2023·四川泸州·统考中考真题)如图,E,F是正方形ABCD的边AB的三等分点,P是对角线AC上的动点,当PE+PF取得最小值时,APPC的值是.【答案】27【分析】作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,此时PE +PF 取得最小值,过点F 作AD 的垂线段,交AC 于点K ,根据题意可知点F 落在AD 上,设正方形的边长为a ,求得AK 的边长,证明△AEP ∽△KF P ,可得KP AP=2,即可解答.【详解】解:作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,过点F 作AD 的垂线段,交AC 于点K ,由题意得:此时F 落在AD 上,且根据对称的性质,当P 点与P 重合时PE +PF 取得最小值,设正方形ABCD 的边长为a ,则AF =AF =23a ,∵四边形ABCD 是正方形,∴∠F AK =45°,∠P AE =45°,AC =2a∵F K ⊥AF ,∴∠F AK =∠F KA =45°,∴AK =223a ,∵∠F P K =∠EP A ,∴△E KP ∽△EAP ,∴F K AE =KP AP=2,∴AP =13AK =292a ,∴CP =AC -AP =792a , ∴AP CP=27,∴当PE +PF 取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.23(2023·山西·统考中考真题)如图,在四边形ABCD 中,∠BCD =90°,对角线AC ,BD 相交于点O .若AB =AC =5,BC =6,∠ADB =2∠CBD ,则AD 的长为.【答案】973【分析】过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,根据等腰三角形性质得出BH =HC =12BC =3,根据勾股定理求出AH =AC 2-CH 2=4,证明∠CBD =∠CED ,得出DB =DE ,根据等腰三角形性质得出CE =BC =6,证明CD ∥AH ,得出CD AH=CE HE ,求出CD =83,根据勾股定理求出DE =CE 2+CD 2=62+83 2=2973,根据CD ∥AH ,得出DE AD =CE CH ,即2973AD=63,求出结果即可.【详解】解:过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,如图所示:则∠AHC =∠AHB =90°,∵AB =AC =5,BC =6,∴BH =HC =12BC =3,∴AH =AC 2-CH 2=4,∵∠ADB =∠CBD +∠CED ,∠ADB =2∠CBD ,∴∠CBD =∠CED ,∴DB =DE ,∵∠BCD =90°,∴DC ⊥BE ,∴CE =BC =6,∴EH =CE +CH =9,∵DC ⊥BE ,AH ⊥BC ,∴CD ∥AH ,∴△ECD ~△EHA ,∴CD AH =CE HE ,即CD 4=69,解得:CD =83,∴DE =CE 2+CD 2=62+83 2=2973,∵CD ∥AH ,∴DE AD=CE CH ,即2973AD =63,解得:AD =973.故答案为:973.【点睛】本题主要考查了三角形外角的性质,等腰三角形的判定和性质,勾股定理,平行线分线段成比例,相似三角形的判定与性质,平行线的判定,解题的关键是作出辅助线,熟练掌握平行线分线段成比例定理及相似三角形的判定与性质.三、解答题24(2023·湖南·统考中考真题)在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高.(1)证明:△ABD ∽△CBA ;(2)若AB =6,BC =10,求BD 的长.【答案】(1)见解析(2)BD =185【分析】(1)根据三角形高的定义得出∠ADB =90°,根据等角的余角相等,得出∠BAD =∠C ,结合公共角∠B =∠B ,即可得证;(2)根据(1)的结论,利用相似三角形的性质即可求解.【详解】(1)证明:∵∠BAC =90°,AD 是斜边BC 上的高.∴∠ADB =90°,∠B +∠C =90°∴∠B +∠BAD =90°,∴∠BAD =∠C又∵∠B =∠B∴△ABD ∽△CBA ,(2)∵△ABD ∽△CBA∴AB CB =BD AB,又AB =6,BC =10∴BD =AB 2CB=3610=185.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.25(2023·湖南·统考中考真题)如图,CA ⊥AD ,ED ⊥AD ,点B 是线段AD 上的一点,且CB ⊥BE .已知AB =8,AC =6,DE =4.(1)证明:△ABC∽△DEB.(2)求线段BD的长.【答案】(1)见解析(2)BD=3【分析】(1)根据题意得出∠A=∠D=90°,∠C+∠ABC=90°,∠ABC+∠EBD=90°,则∠C=∠EBD,即可得证;(2)根据(1)的结论,利用相似三角形的性质列出比例式,代入数据即可求解.【详解】(1)证明:∵AC⊥AD,ED⊥AD,∴∠A=∠D=90°,∠C+∠ABC=90°,∵CE⊥BE,∴∠ABC+∠EBD=90°,∴∠C=∠EBD,∴△ABC∽△DEB;(2)∵△ABC∽△DEB,∴AB DE =AC BD,∵AB=8,AC=6,DE=4,∴8 4=6 BD,解得:BD=3.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.26(2023·四川眉山·统考中考真题)如图,▱ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:AF=AB;(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H,若AG=2,FG=6,求GH的长.【答案】(1)见解析(2)65【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,证明△AEF≅△DEC ASA,推出AF= CD,即可解答;(2)通过平行四边形的性质证明GC=GF=6,再通过(1)中的结论得到DC=AB=AF=8,最后证明△AGH∽△DCH,利用对应线段比相等,列方程即可解答.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠EAF=∠D,∵E是AD的中点,∴AE=DE,∵∠AEF =∠CED ,∴△AEF ≅△DEC ASA ,∴AF =CD ,∴AF =AB ;(2)解:∵四边形ABCD 是平行四边形,∴DC =AB =AF =FG +GA =8,DC ∥FA ,∴∠DCF =∠F ,∠DCG =∠CGB ,∵∠FCG =∠FCD ,∴∠F =∠FCG ,∴GC =GF =6,∵∠DHC =∠AHG ,∴△AGH ∽△DCH ,∴GH CH =AG DC,设HG =x ,则CH =CG -GH =6-x ,可得方程x 6-x =28,解得x =65,即GH 的长为65.【点睛】本题考查了平行四边形的性质,等腰三角形的判定和性质,相似三角形的判定和性质,熟练运用上述性质证明三角形相似是解题的关键.27(2023·四川凉山·统考中考真题)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 于点E .(1)求证:AC ⊥BD ;(2)若AB =10,AC =16,求OE 的长.【答案】(1)见详解(2)92【分析】(1)可证AB =CB ,从而可证四边形ABCD 是菱形,即可得证;(2)可求OB =6,再证△EBO ∽△BAO ,可得EO BO =BO AO,即可求解.【详解】(1)证明:∵∠CAB =∠ACB ,∴AB =CB ,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,∴AC ⊥BD .(2)解:∵四边形ABCD 是平行四边形,∴OA =12AC =8,∵AC ⊥BD ,BE ⊥AB ,∴∠AOB =∠BOE =∠ABE =90°,∴OB =AB 2-OB 2=102-82=6,∵∠EBO +∠BEO =90°,∠ABO +∠EBO =90°,∴∠BEO =∠ABO ,∴△EBO ∽△BAO ,∴EO BO =BO AO ,∴EO 6=68解得:OE =92.【点睛】本题考查了平行四边形的性质,菱形的判定及性质,勾股定理,三角形相似的判定及性质,掌握相关的判定方法及性质是解题的关键.28(2023·江苏扬州·统考中考真题)如图,点E 、F 、G 、H 分别是▱ABCD 各边的中点,连接AF 、CE 相交于点M ,连接AG 、CH 相交于点N .(1)求证:四边形AMCN 是平行四边形;(2)若▱AMCN 的面积为4,求▱ABCD 的面积.【答案】(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG ,四边形AFCH 均为平行四边形,进而得到:AM ∥CN ,AN ∥CM ,即可得证;(2)连接HG ,AC ,EF ,推出S △ANH S △ANC =HN CN=12,S △FMC S △AMC =12,进而得到S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,求出S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,再根据S ▱ABCD =2S ▱AFCH ,即可得解.【详解】(1)证明:∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,AB =CD ,AD =BC ,∵点E 、F 、G 、H 分别是▱ABCD 各边的中点,∴AE =12AB =12CD =CG ,AE ∥CG ,∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴AM ∥CN ,AN ∥CM ,∴四边形AMCN 是平行四边形;(2)解:连接HG ,AC ,EF ,∵H ,G 为AD ,CD 的中点,∴HG ∥AC ,HG =12AC ,∴△HNG ∽△CNA ,∴HN CN =HG AC =12,∴S △ANH S △ANC =HN CN=12,同理可得:S △FMC S △AMC =12∴S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,∴S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,∵AH =12AD ,∴S ▱ABCD =2S ▱AFCH =12.【点睛】本题考查平行四边形的判定和性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握平行四边形的性质,以及三角形的中位线定理,证明三角形相似,是解题的关键.29(2023·上海·统考中考真题)如图,在梯形ABCD 中AD ∥BC ,点F ,E 分别在线段BC ,AC 上,且∠FAC =∠ADE ,AC =AD(1)求证:DE =AF(2)若∠ABC =∠CDE ,求证:AF 2=BF ⋅CE【答案】见解析【分析】(1)先根据平行线的性质可得∠DAE =∠ACF ,再根据三角形的全等的判定可得△DAE ≅△ACF ,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得∠AFC =∠DEA ,从而可得∠AFB =∠CED ,再根据相似三角形的判定可得△ABF ∼△CDE ,然后根据相似三角形的性质即可得证.【详解】(1)证明:∵AD ∥BC ,∴∠DAE =∠ACF ,在△DAE和△ACF中,∠DAE=∠ACF AD=CA∠ADE=∠CAF,∴△DAE≅△ACF ASA,∴DE=AF.(2)证明:∵△DAE≅△ACF,∴∠AFC=∠DEA,∴180°-∠AFC=180°-∠DEA,即∠AFB=∠CED,在△ABF和△CDE中,∠AFB=∠CED ∠ABF=∠CDE,∴△ABF∼△CDE,∴AF CE =BF DE,由(1)已证:DE=AF,∴AF CE =BF AF,∴AF2=BF⋅CE.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.。
八年级数学相似的图形练习题-初中二年级数学试题练习、期中期末试卷-初中数学试卷
八年级数学相似的图形练习题-初中二年级数学试题练习、期中期末试卷、测验题、复习资
料-初中数学试卷-试卷下载
18.1
相似的图形
1、
请看下图,并回答下面的问题:
(1)
在图(1)中,两个足球的形状相同吗?它们的大小呢?
(2)
在图(2)中,两个正方形物体的形状相同吗?
2、
生活中存在大量的形状相同的图形,试举出几例。
3、在实际生活和数学学习中,我们常常会看到许多开头相同的图形,下图形状相同的图形分别是、、、
、
(填序号)
4、
如右图,放大镜中的三角形与原三角形具有怎样的关系?
5、提高:在直角坐标系中描出点O (0,0)、A (1,2)、B (2,4)、C (3,2)、D (4,0).先用线段顺次连接点O, A、B,C, D,然后再用线段连结A、C两点.
(1)你得到了一个什么图形?
(2)填写表1,在直角坐标系中描出点O,、、、、,并按同样的方式连结各点.你得到一个什么图形?
填写表2,你又得到一个什么图形?
填写表3呢?
(3)在上述的图个图形中,哪两个图形的形状相同?欢迎下载使用,分享让人快乐。
八年级数学图形的位似
1.(1)以点O为位似中心,按相似比2:1将图形放大, 得图1; (2)以点Q为位似中心,按相似比1:2将图形缩小, 得图2。 图1与图2的相似比是( ),面积的比是( )。
D C P A O B
2. 如图,DE∥BC,DF∥AC,EF∥AB,找出图中的 位似图形,并找出它们的位似中心。
A D E
影惭惭の消失,在寒冰之中撕开了虚空,钻进了黑暗の异空间之中."该死!"七彩神尼冷哼壹声,阴沉着喝道:"他竟然得到了那件东西,为何会如此!""难道真是天命如此?"七彩神尼也极为不甘,寒冰王座是壹件神秘之物,而且是令七彩神宫十分忌惮之物,因为那件东西似乎先天就与七彩神宫の宝贝相 克.她通过水晶球观察根汉,也只是根汉和阿上汇合之后才能监视,阿上和根汉在壹起这段时间,根汉壹直也没有用过寒冰王座,七彩神尼自然不知道了."果真和当年の晴天壹模壹样,都是混蛋,还想强上咱这个出家之人!"七彩神尼咬了咬牙,玲珑珠飞速旋转,恐怖の霞光化作烈火,将这方圆百里の寒 冰都给融化了,恐怖の冰水涌进山林中,汇成了壹阵阵冰洪.不过七彩神尼也没有管它,任由它们在这山林中奔涌,她自己则是撕开虚空,下壹秒返回了七彩神殿."哈哈,真是天意呀,他竟然得到了寒冰王座,你杀不了他,你杀不了他!"见到七彩神尼返回来了,红娘得意の哈哈大笑.七彩神尼却表现の很 平静:"咱现在是杀不了他,可是若合你咱之力,必可诛杀了他...""你当真要逼咱?"红娘眼神怔了怔,不甘の咬着嘴唇,嘴都被咬出血了,冷眼盯着七彩神尼."你若答应咱壹个条件,咱可以放过他..."七彩神尼说."你,你想要什么条件?"红娘眼神壹跳.七彩神尼道:"你与咱壹道,同入七彩丹炉炼成绝 情道..."&
(易错题精选)初中数学图形的相似难题汇编
(易错题精选)初中数学图形的相似难题汇编一、选择题1.已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.35B.43C.53D.34【答案】C【解析】【分析】首先延长BC,做FN⊥BC,构造直角三角形,利用三角形相似的判定,得出Rt△FNE∽Rt△ECD,再利用相似比得出12.52NE CD==,运用正方形性质,得出△CNF是等腰直角三角形,从而求出CE.【详解】解:过F作BC的垂线,交BC延长线于N点,∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN,∴Rt△FNE∽Rt△ECD,∵DE的中点G,EG绕E顺时针旋转90°得EF,∴两三角形相似比为1:2,∴可以得到CE=2NF,12.52NE CD==∵AC平分正方形直角,∴∠NFC=45°,∴△CNF是等腰直角三角形,∴CN=NF,∴2255.3323 CE NE==⨯=故选C.【点睛】此题主要考查了旋转的性质与正方形的性质以及相似三角形的判定等知识,求线段的长度经常运用相似三角形的知识解决,同学们应学会这种方法.2.如果两个相似正五边形的边长比为1:10,则它们的面积比为()A .1:2B .1:5C .1:100D .1:10【答案】C【解析】 根据相似多边形的面积比等于相似比的平方,由两个相似正五边形的相似比是1:10,可知它们的面积为1:100.故选:C .点睛:此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.3.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则AB 的长为( )A .10B .12C .16D .20【答案】D【解析】【分析】 连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ∆∆∽,利用相似比得到16BE =,所以20AB =.【详解】解:连接BD ,如图,AB Q 为直径,90ADB ACB ∴∠=∠=︒,AD CD =Q ,DAC DCA ∴∠=∠,而DCA ABD ∠=∠,DAC ABD ∴∠=∠,DE AB ∵⊥,90ABD BDE ∴∠+∠=︒,而90ADE BDE ∠+∠=︒,ABD ADE ∴∠=∠,ADE DAC ∴∠=∠,5FD FA ∴==,在Rt AEF ∆中,3sin 5EF CAB AF ∠==Q , 3EF ∴=, 22534AE ∴=-=,538DE =+=, ADE DBE ∠=∠Q ,AED BED ∠=∠,ADE DBE ∴∆∆∽,::DE BE AE DE ∴=,即8:4:8BE =,16BE ∴=,41620AB ∴=+=.故选:D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.4.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x=-、2y x =的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A .逐渐变小B .逐渐变大C .时大时小D .保持不变【答案】D【解析】【分析】 如图,作辅助线;首先证明△BEO ∽△OFA ,,得到BE OE OF AF =;设B 为(a ,1a-),A 为(b ,2b ),得到OE=-a ,EB=1a-,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠2为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴BE OE OF AF=,设点B为(a,1 a-),A为(b,2b),则OE=-a,EB=1a-,OF=b,AF=2b,可代入比例式求得222a b=,即222ab=,根据勾股定理可得:OB=22221OE EB aa+=+,OA=22224OF AF bb+=+,∴tan∠OAB=2222222212244baOB a bOAb bb b++==++=222214()24bbbb++=22∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.5.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.12【答案】D【解析】分析:根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.详解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选D.点睛:本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.6.如图,正方形OABC的边长为6,D为AB中点,OB交CD于点Q,Q是y=kx上一点,k的值是()A.4 B.8 C.16 D.24【答案】C【解析】【分析】延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q ,OCQ BDQ ∴∆∆∽, ∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽, ∴22213QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.7.如图,点A在双曲线y═kx(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于12OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.3225C.43D.252+【答案】B【解析】分析:如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;详解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,22=5OF OC+∴255,∴OA=455,由△FOC∽△OBA,可得OF OC CFOB AB OA==,∴215455 OB AB==,∴OB=85,AB=45,∴A(85,45),∴k=32 25.故选B.点睛:本题考查作图-复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边40DE cm=,20EF cm=,测得边DF离地面的高度 1.5AC m=,8CD m=,则树高AB是()A.4米B.4.5米C.5米D.5.5米【答案】D【解析】【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明的身高即可求得树高AB.【详解】解:∵∠DEF=∠BCD-90°∠D=∠D∴△ADEF∽△DCB∴BC DC EF DE=∴DE=40cm=0.4m,EF-20cm=0.2m,AC-1.5m,CD=8m∴80.20.4BC=解得:BC=4∴AB=AC+BC=1.5+4=5.5米故答案为:5.5.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型。
2023年中考数学一轮专题练习 图形的相似(含解析)
2023年中考数学一轮专题练习 ——图形的相似3一、单选题(本大题共11小题)1. (云南省2022年)如图,在ABC 中,D 、E 分别为线段BC 、BA 的中点,设ABC的面积为S 1,EBD 的面积为S 2.则21S S =( )A .12 B .14 C .34 D .782. (广西百色市2022年)已知△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,则△ABC 与△A 1B 1C 1的面积比( )A .1 :3B .1:6C .1:9D .3:1 3. (广西贺州市2022年)如图,在ABC 中,25DE BC DE BC ==∥,,,则:ADE ABC S S 的值是( )A .325B .425C .25D .35 4. (广西贺州市2022年)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm ,高是6cm ;圆柱体底面半径是3cm ,液体高是7cm .计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )A .2cmB .3cmC .4cmD .5cm5. (广西梧州市2022年)如图,以点O 为位似中心,作四边形ABCD 的位似图形''''A B C D ﹐已知'13OAOA ,若四边形ABCD 的面积是2,则四边形''''A B C D 的面积是( )A .4B .6C .16D .186. (贵州省毕节市2022年)矩形纸片ABCD 中,E 为BC 的中点,连接AE ,将ABE △沿AE 折叠得到AFE △,连接CF .若4AB =,6BC =,则CF 的长是( )A .3B .175C .72D .1857. (贵州省贵阳市2022年)如图,在ABC 中,D 是边上的点,,,则与的周长比是()AB B ACD ∠=∠:1:2AC AB =ADC ACB △A .B .C . D.8. (海南省2022年)如图,点(0,3)(1,0)A B 、,将线段AB 平移得到线段DC ,若90,2ABCBC AB ∠=︒=,则点D 的坐标是( )A .(7,2)B .(7,5)C .(5,6)D .(6,5)9. (浙江省金华市2022年)如图是一张矩形纸片ABCD ,点E 为AD 中点,点F 在BC 上,把该纸片沿EF 折叠,点A ,B 的对应点分别为A B A E ''',,与BC 相交于点G ,B A ''的延长线过点C .若23BF GC =,则AD AB的值为( )A .B .C .207D .8310. (黑龙江省哈尔滨市2022年)如图,相交于点E ,,则的长为( )A .32B .4C .D .611. (黑龙江省省龙东地区2022年)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点F 是CD 上一点,OE OF ⊥交BC 于点E ,连接AE ,BF 交于点P ,连接OP .则下列结论:①AE BF ⊥;②45OPA ∠=︒;③AP BP -=;④若:2:3BE CE =,则4tan 7CAE ∠=;⑤四边形OECF 的面积是正方形ABCD 面积的14.其中正确的结论是( ) 1:21:31:4,,AB CD AC BD ∥1,2,3AE EC DE ===BD 92A .①②④⑤B .①②③⑤C .①②③④D .①③④⑤二、填空题(本大题共11小题)12. (浙江省湖州市2022年)如图,已知在△ABC 中,D ,E 分别是AB ,AC 上的点,DE BC ∥,13AD AB =.若DE =2,则BC 的长是 .13. (浙江省温州市2022年)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M 在旋转中心O 的正下方.某一时刻,太阳光线恰好垂直照射叶片,OA OB ,此时各叶片影子在点M 右侧成线段CD ,测得8.5m,13m MC CD ==,垂直于地面的木棒EF 与影子FG 的比为2∶3,则点O ,M 之间的距离等于 米.转动时,叶片外端离地面的最大高度等于 米.14. (北京市2022年)如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为 .15. (江苏省泰州市2022年)如图上,Δ,90,8,6,ABC C AC BC ∠===中O 为内心,过点O 的直线分别与AC 、AB 相交于D 、E ,若DE=CD+BE ,则线段CD 的长为 .16. (山东省潍坊市2022年)《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形的面积为4,以它的对角线的交点为位似中心,作它的位似图形A B C D '''',若:2:1A B AB ='',则四边形A B C D ''''的外接圆的周长为 .17. (陕西省2022年)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF 将矩形窗框ABCD 分为上下两部分,其中E 为边AB 的黄金分割点,即2BE AE AB =⋅.已知AB 为2米,则线段BE 的长为 米.18. (浙江省丽水市2022年)一副三角板按图1放置,O 是边()BC DF 的中点,12cm BC =.如图2,将ABC 绕点O 顺时针旋转60︒,AC 与EF 相交于点G ,则FG 的长是 cm .ABCD19. (浙江省杭州市2022年)某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .已知B ,C ,E ,F 在同一直线上,AB ⊥BC ,DE ⊥EF ,DE =2.47m ,则AB = m .20. (黑龙江省省龙东地区2022年)在矩形ABCD 中,9AB =,12AD =,点E 在边CD 上,且4CE =,点P 是直线BC 上的一个动点.若APE 是直角三角形,则BP 的长为 .21. (江苏省宿迁市2022年)如图,在矩形ABCD 中,AB =6,BC =8,点M 、N 分别是边AD 、BC 的中点,某一时刻,动点E 从点M 出发,沿MA 方向以每秒2个单位长度的速度向点A 匀速运动;同时,动点F 从点N 出发,沿NC 方向以每秒1个单位长度的速度向点C 匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF ,过点B 作EF 的垂线,垂足为H .在这一运动过程中,点所经过的路径长是 .22. (安徽省2022年)如图,四边形ABCD 是正方形,点E 在边AD 上,△BEF 是以E 为直角顶点的等腰直角三角形,EF ,BF 分别交CD 于点M ,N ,过点F 作AD 的垂线交AD 的延长线于点G .连接DF ,请完成下列问题:H(1)FDG ∠= °;(2)若1DE =,DF =MN = .三、解答题(本大题共8小题)23. (湖南省常德市2022年)在四边形ABCD 中,BAD ∠的平分线AF 交BC 于F ,延长AB 到E 使BE FC =,G 是AF 的中点,GE 交BC 于O ,连接GD .(1)当四边形ABCD 是矩形时,如图,求证:①GE GD =;②BO GD GO FC ⋅=⋅.(2)当四边形ABCD 是平行四边形时,如图,(1)中的结论都成立,请给出结论②的证明.24. (湖北省武汉市2022年)问题提出:如图(1),ABC 中,AB AC =,D 是AC 的中点,延长BC 至点E ,使DE DB =,延长ED 交AB 于点F ,探究AF AB的值.(1)先将问题特殊化.如图(2),当60BAC ∠=︒时,直接写出AF AB的值; (2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展:如图(3),在ABC 中,AB AC =,D 是AC 的中点,G 是边BC 上一点,()12CG n BC n=<,延长BC 至点E ,使DE DG =,延长ED 交AB 于点F .直接写出AF AB的值(用含n 的式子表示). 25. (甘肃省金昌市2022年)如图,AB 是O 的直径,AM 和BN 是它的两条切线,过O 上一点E 作直线DC ,分别交AM 、BN 于点D 、C ,且DA =DE .(1)求证:直线CD 是O 的切线;(2)求证:2OA DE CE =⋅26. (湖北省宜昌市2022年)已知菱形ABCD 中,E 是边AB 的中点,F 是边AD 上一点.(1)如图1,连接CE ,CF .CE AB ⊥,CF AD ⊥.①求证:CE CF =;②若2AE =,求CE 的长;(2)如图2,连接CE ,EF .若3AE =,24EF AF ==,求CE 的长.27. (浙江省温州市2022年)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE CD ⊥,交CD 延长线于点E ,交半圆于点F ,已知5,3BC BE ==.点P ,Q 分别在线段AB BE ,上(不与端点重合),且满足54AP BQ =.设,BQ x CP y ==.(1)求半圆O 的半径.(2)求y 关于x 的函数表达式.(3)如图2,过点P 作PR CE ⊥于点R ,连结,PQ RQ .①当PQR 为直角三角形时,求x 的值.②作点F 关于QR 的对称点F ',当点F '落在BC 上时,求CF BF ''的值. 28. (江苏省泰州市2022年)已知:△ABC 中,D 为BC 边上的一点.(1)如图①,过点D 作DE ∥AB 交AC 边于点E ,若AB =5,BD =9,DC =6,求DE 的长;(2)在图②,用无刻度的直尺和圆规在AC 边上做点F ,使∠DFA =∠A ;(保留作图痕迹,不要求写作法)(3)如图③,点F 在AC 边上,连接BF 、DF ,若∠DFA =∠A ,△FBC 的面积等于12CD AB •,以FD 为半径作⊙F ,试判断直线BC 与⊙F 的位置关系,并说明理由. 29. (江苏省苏州市2022年)(1)如图1,在△ABC 中,2ACB B ∠=∠,CD 平分ACB ∠,交AB 于点D ,DE //AC ,交BC 于点E .①若1DE =,32BD =,求BC 的长; ②试探究AB BE AD DE-是否为定值.如果是,请求出这个定值;如果不是,请说明理由.(2)如图2,CBG ∠和BCF ∠是△ABC 的2个外角,2BCF CBG ∠=∠,CD 平分BCF ∠,交AB 的延长线于点D ,DE //AC ,交CB 的延长线于点E .记△ACD 的面积为1S ,△CDE 的面积为2S ,△BDE 的面积为3S .若2132916S S S ⋅=,求cos CBD ∠的值.30. (浙江省湖州市2022年)已知在Rt △ABC 中,∠ACB =90°,a ,b 分别表示∠A ,∠B 的对边,a b >.记△ABC 的面积为S .(1)如图1,分别以AC ,CB 为边向形外作正方形ACDE 和正方形BGF C .记正方形ACDE 的面积为1S ,正方形BGFC 的面积为2S .①若19S =,216S =,求S 的值;②延长EA 交GB 的延长线于点N ,连结FN ,交BC 于点M ,交AB 于点H .若FH ⊥AB (如图2所示),求证:212S S S -=.(2)如图3,分别以AC ,CB 为边向形外作等边三角形ACD 和等边三角形CBE ,记等边三角形ACD 的面积为1S ,等边三角形CBE 的面积为2S .以AB 为边向上作等边三角形ABF (点C 在△ABF 内),连结EF ,CF .若EF ⊥CF ,试探索21S S 与S 之间的等量关系,并说明理由.参考答案1. 【答案】B【分析】先判定EBD ABC ,得到相似比为12,再根据两个相似三角形的面积比等于相似比的平方,据此解题即可.【详解】解:∵D 、E 分别为线段BC 、BA 的中点, ∴12BE BD AB BC ==, 又∵B B ∠=∠, ∴EBD ABC ,相似比为12, ∴22114S BE S AB ⎛⎫== ⎪⎝⎭, 故选:B .2. 【答案】C【分析】根据位似图形的面积比等于位似比的平方,即可得到答案.【详解】∵△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,∴△ABC 与△A 1B 1C 1的面积比为1:9,故选:C .3. 【答案】B【分析】根据相似三角形的判定定理得到ADE ABC ,根据相似三角形的面积比等于相似比的平方计算,得到答案.【详解】解:25DE BC DE BC ==∥,,∴ADE ABC , ∴2224525ADE ABC S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 故选:B .4. 【答案】B【分析】由圆锥的圆锥体底面半径是6cm ,高是6cm ,可得CD =DE ,根据园锥、圆柱体积公式可得液体的体积为63πcm 3,圆锥的体积为72πcm 3,设此时“沙漏”中液体的高度AD =x cm ,则DE =CD =(6-x )cm ,根据题意,列出方程,即可求解.【详解】解:如图,作圆锥的高AC ,在BC 上取点E ,过点E 作DE ⊥AC 于点D ,则AB =6cm ,AC =6cm ,∴△ABC 为等腰直角三角形,∵DE ∥AB ,∴△CDE ∽△CAB ,∴△CDE 为等腰直角三角形,∴CD =DE ,圆柱体内液体的体积为:圆锥的体积为, 设此时“沙漏”中液体的高度AD =x cm ,则DE =CD =(6-x )cm ,∴, ∴,解得:x =3,即此时“沙漏”中液体的高度3cm .故选:B .5. 【答案】D【分析】两图形位似必相似,再由相似的图形面积比等于相似比的平方即可求解.【详解】解:由题意可知,四边形与四边形相似,由两图形相似面积比等于相似比的平方可知:, 又四边形的面积是2,∴四边形的面积为18,故选:D .6. 【答案】D【分析】 连接BF 交AE 于点G ,根据对称的性质,可得AE 垂直平分BF ,BE =FE ,BG =FG =12BF ,根据E 为BC 中点,可证BE =CE =EF ,通过等边对等角可证明∠BFC =90°,利233763cm ππ⨯⨯=2316672cm 3ππ⨯⨯=21(6)(6)72633x x πππ⋅-⋅-=-3(6)27x -=ABCD ''''A B C D ''''22'1139ABCD A B C D S OA S OA ABCD ''''A B C D用勾股定理求出AE,再利用三角函数(或相似)求出BF,则根据FC=算即可.【详解】连接BF,与AE相交于点G,如图,∵将ABE△沿AE折叠得到AFE△∴ABE△与AFE△关于AE对称∴AE垂直平分BF,BE=FE,BG=FG=12 BF∵点E是BC中点∴BE=CE=DF=13 2BC=∴5 AE=∵sinBE BG BAEAE AB ∠==∴341255BE ABBGAE⋅⨯===∴1224 2225 BF BG==⨯=∵BE=CE=DF∴∠EBF=∠EFB,∠EFC=∠ECF∴∠BFC=∠EFB+∠EFC=18090 2︒=︒∴185FC故选 D7. 【答案】B【分析】先证明△ACD∽△ABC,即有,则可得,问题得解.【详解】∵∠B=∠ACD,∠A=∠A,∴△ACD∽△ABC,∴,12AC AD CDAB AC BC===12AC AD CDAB AC BC++=++AC AD CDAB AC BC==∵, ∴, ∴, ∴△ADC 与△ACB 的周长比1:2,故选:B .8. 【答案】D【分析】先过点C 做出轴垂线段CE ,根据相似三角形找出点C 的坐标,再根据平移的性质计算出对应D 点的坐标.【详解】如图过点C 作轴垂线,垂足为点E ,∵∴∵∴在和BCE ∆中,90ABO BCE AOB BEC =⎧⎨==︒⎩∠∠∠∠ , ∴ABO BCE ∆∆∽,∴ , 则 ,22EC OB ==∵点C 是由点B 向右平移6个单位,向上平移2个单位得到,∴点D 同样是由点A 向右平移6个单位,向上平移2个单位得到,∵点A 坐标为(0,3),∴点D 坐标为(6,5),选项D 符合题意,故答案选D9. 【答案】A【分析】12AC AB =12AC AD CD AB AC BC ===12AC AD CD AC AD CD AB AC BC AB AC BC ++====++x x 90ABC ∠=︒90ABO CBE ∠+∠=︒90CBE BCE +=︒∠ABO BCE ABO ∆12AB AO OB BC BE EC ===26BE AO ==令BF =2x ,CG =3x ,FG =y ,易证CGA CFB ''△∽△,得出CG A G CF B F'=',进而得出y =3x ,则AE =4x ,AD =8x ,过点E 作EH ⊥BC 于点H ,根据勾股定理得出EH=,最后求出AD AB的值. 【详解】解:过点E 作EH ⊥BC 于点H ,又四边形ABCD 为矩形,∴∠A =∠B =∠D =∠BCD =90°,AD =BC ,∴四边形ABHE 和四边形CDEH 为矩形,∴AB =EH ,ED =CH , ∵23BF GC =, ∴令BF =2x ,CG =3x ,FG =y ,则CF =3x +y ,2B F x '=,52x y A G -'=, 由题意,得==90CA G CB F ''︒∠∠,又为公共角,∴,∴, 则,整理,得,解得x =-y (舍去),y =3x ,∴AD =BC =5x +y =8x ,EG =3x ,HG =x ,在Rt △EGH 中EH 2+HG 2=EG 2,则EH 2+x 2=(3x )2,解得EH =, EH =-(舍),∴AB =x ,∴.故选:A .GCA '∠CGA CFB ''△∽△CG AG CF B F'='53232x yx x y x-=+()()30x y x y +-=AD AB ==10. 【答案】C【分析】根据相似三角形对应边长成比例可求得BE 的长,即可求得BD 的长.【详解】∵∴∴ ∵, ∴∵∴ 故选:C .11. 【答案】B【分析】分别对每个选项进行证明后进行判断:①通过证明得到EC =FD ,再证明得到∠EAC =∠FBD ,从而证明∠BPQ =∠AOQ =90°,即;②通过等弦对等角可证明;③通过正切定义得,利用合比性质变形得到,再通过证明AOP AEC ∽得到OP AE CE AO ⋅=,代入前式得OP AE BP AP BP AO BE⋅⋅-=⋅,最后根据三角形面积公式得到AE BP AB BE ⋅=⋅,整体代入即可证得结论正确;④作EG ⊥AC 于点G 可得EG ∥BO ,根据tan EG EG CAE AG AC CG∠==-,设正方形边长为5a ,分别求出EG 、AC 、CG 的长,可求出3tan 7CAE ∠=,结论错误;⑤将四边形OECF 的面积分割成两个三角形面积,利用()DOF COE ASA ≌,可证明S 四边形OECF =S △COE +S △COF = S △DOF +S △COF =S △COD 即可证明结论正确.【详解】①∵四边形ABCD 是正方形,O 是对角线AC 、BD 的交点,∴OC =OD ,OC ⊥OD ,∠ODF =∠OCE =45°∵OE OF ⊥∴∠DOF +∠FOC =∠FOC +∠EOC =90°∴∠DOF =∠EOC在△DOF 与△COE 中//AB CD ABE CDE ∽AE BE EC DE=1,2,3AE EC DE ===32BE =BD BE ED =+92BD =()DOF COE ASA ≌()EAC FBD SAS ≌AE BF ⊥45OPA OBA ∠=∠=︒tan BE BP BAE AB AP ∠==CE BP AP BP BE ⋅-=ODF OCE OC ODDOF EOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DOF COE ASA ≌∴EC =FD∵在△EAC 与△FBD 中45EC FD ECA FDB AC BD =⎧⎪∠=∠=︒⎨⎪=⎩∴()EAC FBD SAS ≌∴∠EAC =∠FBD又∵∠BQP =∠AQO∴∠BPQ =∠AOQ =90°∴AE ⊥BF所以①正确;②∵∠AOB =∠APB =90°∴点P 、O 在以AB 为直径的圆上 ∴AO 是该圆的弦∴45OPA OBA ∠=∠=︒所以②正确; ③∵tan BE BP BAE AB AP ∠== ∴AB AP BE BP = ∴AB BE AP BP BE BP --= ∴AP BP CE BP BE-= ∴CE BP AP BP BE⋅-= ∵,45EAC OAP OPA ACE ∠=∠∠=∠=︒ ∴∴ ∴ ∴ ∵1122ABE AE BP AB BE S⋅=⋅= ∴AE BP AB BE ⋅=⋅∴OP AB BE AB AP BP OP AO BE AO⋅⋅-==⋅ 所以③正确;AOP AEC ∽OP AO CE AE =OP AE CE AO⋅=OP AE BP AP BP AO BE ⋅⋅-=⋅④作EG ⊥AC 于点G ,则EG ∥BO , ∴EG CE CG OB BC OC== 设正方形边长为5a ,则BC =5a ,OB =OC, 若:2:3BE CE =,则23BE CE =, ∴233BE CE CE ++= ∴35CE BC =∴35CE EG OB BC =⋅= ∵EG ⊥AC ,∠ACB =45°,∴∠GEC =45°∴CG =EG∴3tan 7EG EG CAE AG AC CG ∠===- 所以④错误;⑤∵()DOF COE ASA ≌,S 四边形OECF =S △COE +S △COF ∴S 四边形OECF = S △DOF +S △COF = S △COD ∵S △COD =∴S 四边形OECF =所以⑤正确;综上,①②③⑤正确,④错误, 故选 B12. 【答案】6【分析】根据相似三角形的性质可得,再根据DE =2,进而得到BC 长. 【详解】 14ABCD S 正方形14ABCD S正方形13DE AD BC AB ==解:根据题意,∵,∴△ADE ∽△ABC ,∴, ∵DE =2, ∴, ∴;故答案为:6.13. 【答案】 10 ;10【分析】过点O 作AC 、BD 的平行线,交CD 于H ,过点O 作水平线OJ 交BD 于点J ,过点B 作BI ⊥OJ ,垂足为I ,延长MO ,使得OK =OB ,求出CH 的长度,根据23EF OM FG MH ==,求出OM 的长度,证明BIO JIB ∽,得出23BI IJ =,49OI IJ =,求出IJ 、BI 、OI 的长度,用勾股定理求出OB 的长,即可算出所求长度.【详解】如图,过点O 作AC 、BD 的平行线,交CD 于H ,过点O 作水平线OJ 交BD 于点J ,过点B 作BI ⊥OJ ,垂足为I ,延长MO ,使得OK =OB ,由题意可知,点O 是AB 的中点,∵OH AC BD ,∴点H 是CD 的中点,∵13m CD =, ∴1 6.5m 2CH HD CD ===, ∴8.5 6.515m MH MC CH =+=+=,又∵由题意可知:23EF OM FG MH ==, ∴2153OM =,解得10m =OM , ∴点O 、M 之间的距离等于10m ,∵BI ⊥OJ ,∴90BIO BIJ ∠=∠=︒,∵由题意可知:90OBJ OBI JBI ∠=∠+∠=︒,又∵90BOI OBI ∠+∠=︒,∴BOI JBI ∠=∠,∴BIO JIB ∽,DE BC ∥13DE AD BC AB ==213BC =6BC =∴23BI OI IJ BI ==, ∴,, ∵, ∴四边形IHDJ 是平行四边形,∴,∵, ∴,,,∵在中,由勾股定理得:,∴,∴,∴,∴叶片外端离地面的最大高度等于,故答案为:10,14. 【答案】1【分析】根据勾股定理求出BC ,以及平行线分线段成比例进行解答即可.【详解】解:在矩形ABCD 中:AD BC ∥,90ABC ∠=︒,∴14AE AF BC FC ==,4BC ==, ∴144AE =, ∴1AE =,故答案为:1.15. 【答案】2或##或2 23BI IJ =49OI IJ =,OJCD OH DJ 6.5m OJ HD ==4 6.5m 9OJ OI IJ IJ IJ =+=+=4.5m IJ =3m BI =2m OI =Rt OBI △222OB OI BI =+OB =OB OK ==(10m MK MO OK =+=(10m 101212【分析】分析判断出符合题意的DE 的情况,并求解即可;【详解】解:①如图,作,,连接OB ,则OD ⊥AC ,∵,∴∵O 为的内心,∴,∴∴,同理,,∴DE=CD+BE ,∵O 为的内心,∴,∴∴∴②如图,作,由①知,,,∵∴ ∴ ∴1061582AB AE AD AC ⋅⨯=== //DE BC OF BC OG AB ⊥⊥,//DE BC OBF BOE ∠=∠ABC ∆OBF OBE ∠=∠BOE OBE ∠=∠BE OE =CD OD=10AB =ABC ∆OF OD OG CD ===BF BG AD AG ==,6810AB BG AG BC CD AC CD CD CD =+=-+-=-+-=2CD =DE AB⊥4BE =6AE =ACB AED CAB EAD ∠=∠∠=∠,ABCADE ∆∆AB AD AC AE=∴151822CD AC AD =-=-=∵92DE == ∴19422DE BE CD =+=+= ∴12CD = 故答案为:2或12.16. 【答案】【分析】根据正方形ABCD 的面积为4,求出,根据位似比求出,周长即可得出;【详解】解:正方形ABCD 的面积为4,,,,所求周长;故答案为:.17. 【答案】##【分析】根据点E 是AB 的黄金分割点,可得,代入数值得出答案. 【详解】∵点E 是AB 的黄金分割点,∴. ∵AB=2米,∴米.).18. 【答案】3【分析】BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,根据锐角三角函数即可得DE ,FE ,根据旋转的性质得ONF △是直角三角形,根据直角三角形的性质得3ON =,即3NC =,根据角之间2AB =4A B ''=∴2AB =:2:1A B AB ''=∴4A B ''=∴A C ''==1)15AE BE BE AB ==AE BE BE AB ==1BE =)1的关系得CNG △是等腰直角三角形,即3NG NC ==cm ,根据90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒得FON FED △∽△,即ON FN DE DF=,解得FN = 【详解】解:如图所示,BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,在Rt EDF 中,12tan tan 60DF DE EDF ===∠︒12sin sin 60DF EF EDF ===∠︒∵△ABC 绕点O 顺时针旋转60°,∴60BOD NOF ∠=∠=︒,∴90NOF F ∠+∠=︒,∴18090FNO NOF F ∠=︒-∠-∠=︒,∴ONF △是直角三角形, ∴132ON OF ==(cm ), ∴3NC OC ON =-=(cm ),∵90FNO ∠=︒,∴18090GNC FNO ∠=︒-∠=︒,∴NGC 是直角三角形,∴18045NGC GNC ACB ∠=-∠-∠=︒,∴CNG △是等腰直角三角形,∴3NG NC ==cm ,∵90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒,∴FON FED △∽△, 即ON FN DE DF=,12FN =,FN =∴3FG FN NG =-=(cm ),故答案为:3.19. 【答案】9.88【分析】根据平行投影得AC ∥DE ,可得∠ACB =∠DFE ,证明Rt △ABC ∽△Rt △DEF ,然后利用相似三角形的性质即可求解.【详解】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m . ∴AC ∥DE ,∴∠ACB =∠DFE ,∵AB ⊥BC ,DE ⊥EF ,∴∠ABC =∠DEF =90°,∴Rt △ABC ∽△Rt △DEF ,∴,即, 解得AB =9.88,∴旗杆的高度为9.88m .故答案为:9.88.20. 【答案】313或154或6 【分析】分三种情况讨论:当∠APE =90°时,当∠AEP =90°时,当∠PAE =90°时,过点P 作PF ⊥DA 交DA 延长线于点F ,即可求解.【详解】解:在矩形ABCD 中,9AB CD ==,12AD BC ==,∠BAD =∠B =∠BCD =∠ADC =90°,如图,当∠APE =90°时,∴∠APB +∠CPE =90°,∵∠BAP +∠APB =90°,∴∠BAP =∠CPE ,∵∠B =∠C =90°,∴△ABP ∽△PCE , ∴AB BP PC CE =,即9124BP BP =-, 解得:BP =6;如图,当∠AEP =90°时,AB BC DE EF =8.722.47 2.18AB=∴∠AED +∠PEC =90°,∵∠DAE +∠AED =90°,∴∠DAE =∠PEC ,∵∠C =∠D =90°,∴△ADE ∽△ECP , ∴AD DE CE PC =,即12944PC-=, 解得:53PC =, ∴313BP BC PC =-=; 如图,当∠PAE =90°时,过点P 作PF ⊥DA 交DA 延长线于点F ,根据题意得∠BAF =∠ABP =∠F =90°,∴四边形ABPF 为矩形,∴PF =AB =9,AF =PB ,∵∠PAF +∠DAE =90°,∠PAF +∠APF =90°,∴∠DAE =∠APF ,∵∠F =∠D =90°,∴△APF ∽△EAD , ∴AF PF DE AD =,即99412AF =-, 解得:154=AF ,即154PB =; 综上所述,BP 的长为313或154或6. 故答案为:313或154或621.【分析】根据题意知EF 在运动中始终与MN 交于点Q ,且 点H 在以BQ 为直径的上运动,运动路径长为的长,求出BQ 及的圆角,运用弧长公式进行计算即可得到结果.【详解】解:∵点、分别是边、的中点,连接MN ,则四边形ABNM 是矩形,∴MN =AB =6,AM =BN =AD ==4,根据题意知EF 在运动中始终与MN 交于点Q ,如图,∵四边形ABCD 是矩形,∴AD //BC ,∴ ∴ ∴ 当点E 与点A 重合时,则NF =, ∴BF =BN +NF =4+2=6,∴AB =BF =6∴是等腰直角三角形,∴∵BP ⊥AF ,∴由题意得,点H 在以BQ 为直径的上运动,运动路径长为长,取BQ 中点O ,连接PO ,NO ,∴∠PON =90°,又∴, AQM FQN ∆∆,:1:2,NQ MQ =PN PN PN M N AD BC 12AQMFQN ∆∆,12NF NQ EM MQ ==123NQ MN ==122AM =ABF ∆45,AFB ∠=︒45PBF ∠=︒PN PN 90,BNQ ∠=︒BQ ===∴, ∴故答案为: 22. 【答案】 45 ;2615【分析】 (1)先证△ABE ≌△GEF ,得FG =AE =DG ,可知△DFG 是等腰直角三角形即可知FDG ∠度数.(2)先作FH ⊥CD 于H ,利用平行线分线段成比例求得MH ;再作MP ⊥DF 于P ,证△MPF ∽△NHF ,即可求得NH 的长度,MN =MH +NH 即可得解.【详解】(1)∵四边形ABCD 是正方形,∴∠A =90°,AB =AD ,∴∠ABE +∠AEB =90°,∵FG ⊥AG ,∴∠G =∠A =90°,∵△BEF 是等腰直角三角形,∴BE =FE ,∠BEF =90°,∴∠AEB +∠FEG =90°,∴∠FEG =∠EBA ,在△ABE 和△GEF 中,A G ABE GEF BE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△GEF (AAS ),∴AE =FG ,AB =GE ,在正方形ABCD 中,AB =ADAD GE ∴=∵AD =AE +DE ,EG =DE +DG ,∴AE =DG =FG ,∴∠FDG =∠DFG =45°.故填:45°.(2)如图,作FH ⊥CD 于H ,12ON OP OQ BQ ===PN∴∠FHD =90°∴四边形DGFH 是正方形,∴DH =FH =DG =2,∴AG FH , ∴=DE DM FH MH, ∴DM =23,MH =43, 作MP ⊥DF 于P ,∵∠MDP =∠DMP =45°,∴DP =MP ,∵DP 2+MP 2=DM 2,∴DP =MP=∴PF∵∠MFP +∠MFH =∠MFH +∠NFH =45°,∴∠MFP =∠NFH ,∵∠MPF =∠NHF =90°,∴△MPF ∽△NHF , ∴=MP PF NH HF,即=NH 332, ∴NH =25, ∴MN =MH +NH =43+25=2615. 故填: 2615. 23. 【答案】(1)证明见详解(2)证明见详解【分析】(1)①证明ADG AEG ≌△即可;②连接BG ,CG ,证明ADG BCG ≌△,BOE GOC ∽△△即可证明;(2)①的结论和(1)中证明一样,证明ADG AEG ≌△即可;②的结论,作DM BC GM ⊥,连接,证明BOE GOM ∽△△即可.(1)证明:①证明过程:四边形ABCD 为矩形,90ABC BAD ∴∠=∠=︒AF 平分BAD ∠45BAF DAF ∴∠=∠=︒ABF ∴为等腰直角三角形AB BF ∴=BE FC =AB BE BF CF AE BC AD ∴+=+==,即AG AG =∴ADG AEG ≌△∴GE GD =②证明:连接BG ,CG ,G 为AF 的中点,四边形ABCD 为矩形,90ABC BAD AD BC ∴∠=∠=︒=,BG AG FG ∴==AF 平分BAD ABF ∠,为等腰直角三角形,45BAF DAF ABG CBG ∴∠=∠=︒=∠=∠∴ADG BCG ≌△∴ADG BCG ∠=∠ADG AEG ≌△E ADG ∴∠=∠E BCG ∴∠=∠BOE GOC ∠=∠BOE GOC ∴∽△△BO GO GO BO BE GC GD CF∴=== ∴BO GD GO FC ⋅=⋅ (2)作DM BC BC M GM GN DM DM N ⊥⊥交于,连接,作交于点,如图所示90DMB GNM GND DMC ∴∠=︒=∠=∠=∠由(1)同理可证:ADG AEG ≌△E ADG ∴∠=∠四边形ABCD 为平行四边形AD BC ∴∥90ADM DMC ∴∠=∠=︒BC GN AD ∴∥∥G 为AF 的中点,由平行线分线段成比例可得DN MN =DG MG ∴=,,GDM GMDADG BMG EBOE GOM ∠=∠BOE GOM ∴∽△△BO GO GO BO BE GM GD CF∴=== ∴BO GD GO FC ⋅=⋅ 24. 【答案】(1)[问题提出](1)14;(2)见解析 (2)[问题拓展]24n - 【分析】[问题探究](1)根据等边三角形的性质结合已知条件,求得30ADF ADB ∠=∠=︒,90AFD ∠=︒,根据含30度角的直角三角形的性质,可得111,222AF AD AD AC AB ===,即可求解; (2)取BC 的中点H ,连接DH .证明DBH DEC △≌△,可得BH EC =,根据DH AB ∥,证明EDH EFB △∽△,根据相似三角形的性质可得32FB EB DH EH ==,进而可得14AF AB =;[问题拓展]方法同(2)证明DBH DEC△≌△,得出,GH EC,证明EDH EFB△∽△,得到2+2FB EB nDH EH==,进而可得AFAB=24n-.(1)[问题探究]:(1)如图,ABC中,AB AC=,D是AC的中点,60BAC∠=︒,ABC∴是等边三角形,12AD AB=30ABD DBE∴∠=∠=︒,60A∠=︒,DB DE∴=,30E DBE∴∠=∠=︒,180120DCE ACB∠=︒-∠=︒,18030ADF CDE E DCE∴∠=∠=︒-∠-∠=︒,60A∠=︒,90AFD∴∠=︒,12AF AD∴=,1124ADAFAB AB∴==.(2)证明:取BC的中点H,连接DH.∵D是AC的中点,∴DH AB∥,12DH AB=.∵AB AC=,∴DH DC=,∴DHC DCH ∠=∠.∵BD DE =,∴DBH DEC ∠=∠.∴BDH EDC ∠=∠.∴DBH DEC △≌△.∴BH EC =. ∴32EB EH =. ∵DH AB ∥,∴EDH EFB △∽△. ∴32FB EB DH EH ==. ∴34FB AB =. ∴14AF AB =. (2)[问题拓展]如图,取BC 的中点H ,连接DH .∵D 是AC 的中点,∴DH AB ∥,12DH AB =. ∵AB AC =,∴DH DC =,∴DHC DCH ∠=∠.∵DE DG =,∴DGH DEC ∠=∠.∴GDH EDC ∠=∠.∴DGH DEC ≌.∴GH EC . HE CG ∴=()12CG nBC n=<BC nCG ∴=()1BG n CG ∴=-,()1111222n CE GH BC BG nCG n CG CG ⎛⎫==-=--=- ⎪⎝⎭∴1221+22nCG EB BC CE n n EH EH n C CG G ⎛⎫-+++==== ⎪⎝⎭. ∵DH AB ∥,∴EDH EFB △∽△. ∴2+2FB EB n DH EH ==. ∴24FB n AB +=. ∴42244AF n n AB ---==. ∴AF AB =24n -. 25. 【答案】(1)见解析;(2)见解析【分析】(1)连接OD ,OE ,证明△OAD ≌△OED ,得∠OAD=∠OED=90°,进而得CD 是切线;(2)连接OC ,得AM ∥BN ,得,DEOOEC ∆∆,再证明2.OE DE CE =•,进而得出结论2.OA DE CE =•.【详解】解(1)如图,连接,OE OD 、 DA 是O 的切线,90OAD ︒∠= 在AOD ∆和EOD ∆中, , ,,OA OE DA DE OD OD ===()AOD EOD SSS ∴∆∆≌90,OAD OED ︒∴∠=∠=,OE CD ∴⊥CD ∴是O 的切线.(2)连接,OC AM BN DC 、、是O 的切线,90OAD OBC DEO OEC ︒∴∠=∠=∠=∠=//,AM BN ∴180ADE BCE ︒∴∠+∠=又AM BN DC 、、是O 的切线,CE CB ∴=,OD 平分,ADE OC ∠平分, .BCE ∠()111809022ODE OCE ADE BCE ︒︒∴∠+∠=∠+∠=⨯=又90ODE DOE ︒∠+∠=,OCE DOE ∴∠=∠又90DEO OEC ︒∠=∠=,,DEO OEC ∴∆∆OE DE CE OE∴= 2.OE DE CE ∴=•又,OA OE =2.OA DE CE ∴=•26. 【答案】(1)①见解析;②CE =(2)6EC =【分析】(1)①根据AAS 可证得:BEC DFC ≌△△,即可得出结论; ②连接AC ,可证得ABC是等边三角形,即可求出CE =(2)延长FE 交的延长线于点,根据可证得,可得出,,,则,即可证得,即可得出的长. (1)(1)①∵,,∴,∵四边形是菱形,∴,,∴()BEC DFC AAS ≌,∴CE CF =.②如图,连接AC .∵E 是边AB 的中点,CE AB ⊥,∴BC AC =,又由菱形ABCD ,得BC AB =,∴ABC 是等边三角形,∴60EAC ∠=︒,CB M AAS AEF BEM ≌4ME =2BM =8MC =MB ME =12ME MC =MEB MCE △∽△EC CE AB ⊥CF AD ⊥90BEC DFC ∠=∠=︒ABCD B D ∠=∠BC CD =在Rt AEC 中,2AE =,∴tan 60EC AE =︒=∴CE =(2)如图,延长FE 交CB 的延长线于点M ,由菱形ABCD ,得AD BC ∥,AB BC =,∴AFE M ∠=∠,A EBM ∠=∠,∵E 是边AB 的中点,∴AE BE =,∴()AEF BEM AAS △≌△,∴=ME EF ,MB AF =,∵3AE =,24EF AF ==,∴4ME =,2BM =,3BE =,∴26BC AB AE ===,∴8MC =, ∴2142MB ME ==,4182ME MC ==, ∴MB ME ME MC=,而M ∠为公共角. ∴MEB MCE △∽△, ∴24BE MB EC ME ==, 又∵3BE =,∴6EC =.27. 【答案】(1)(2) (3)①或;② 【分析】 (1)连接OD ,设半径为r ,利用,得,代入计算即可; (2)根据CP =AP 十AC ,用含x 的代数式表示 AP 的长,再由(1)计算求AC 的长即可;(3)①显然,所以分两种情形,当 时,则四边形RPQE 是矩形,当 ∠PQR =90°时,过点P 作PH ⊥BE 于点H , 则四边形PHER 是矩形,分别根据图形可得答案;②连接,由对称可知,利用三角函数表示出和BF 的长度,从而解决问题.(1)解:如图1,连结.设半圆O 的半径为r .∵切半圆O 于点D ,∴.∵,∴,∴,∴, 即, ∴,即半圆O 的半径是. (2) 由(1)得:. 1585544y x =+972111199△∽△COD CBE OD CO BE CB =90PRQ ∠<︒90RPQ ∠=︒,AF QF ',45QF QF F QR EQR ∠∠'=='=︒BF 'OD CD OD CD ⊥BE CD ⊥OD BE ∥△∽△COD CBE OD CO BE CB =535r r -=158r =1581555284CA CB AB =-=-⨯=∵, ∴. ∵,∴. (3)①显然,所以分两种情况. ⅰ)当时,如图2.∵,∴.∵,∴四边形为矩形,∴.∵, ∴, ∴. ⅱ)当时,过点P 作于点H ,如图3,则四边形是矩形,∴.∵,∴.5,4AP BQ x BQ ==54AP x =CP AP AC =+5544y x =+90PRQ ∠<︒90RPQ ∠=︒PR CE ⊥90ERP ∠=︒90E ∠=︒RPQE PR QE =333sin 544PR PC C y x =⋅==+33344x x +=-97x =90PQR ∠=︒PH BE⊥PHER ,PH RE EH PR ==5,3CB BE ==4CE ==∵, ∴3PH RE x EQ ==-=, ∴45EQR ERQ ∠=∠=︒, ∴45PQH QPH ∠=︒=∠, ∴3HQ HP x ==-, 由EH PR =得:33(3)(3)44x x x -+-=+, ∴2111x =. 综上所述,x 的值是97或2111. ②如图4,连结,AF QF ',由对称可知QF QF =',F QR EQR ∠=∠' ∵BE ⊥CE ,PR ⊥CE , ∴PR ∥BE , ∴∠EQR =∠PRQ , ∵BQ x =,5544CP x =+, ∴EQ =3-x , ∵PR ∥BE , ∴CPR CBE △∽△, ∴CP CB CR CE=, 即:x CR +=555444, 解得:CR =x +1, ∴ER =EC -CR =3-x , 即:EQ = ER∴∠EQR =∠ERQ =45°, ∴45F QR EQR ∠=∠='︒ ∴90BQF ∠='︒, 4cos 15CR CP C y x =⋅==+∴4tan 3QF QF BQ B x ==⋅='. ∵AB 是半圆O 的直径,∴90AFB ∠=︒, ∴9cos 4BF AB B =⋅=, ∴4934x x +=, ∴2728x =, ∴319119CF BC BF BC BF BF BF x -==''''=-='-. 28. 【答案】(1)2(2)图见详解(3)直线BC 与⊙F 相切,理由见详解【分析】(1)由题意易得23CD BD =,则有,然后根据相似三角形的性质与判定可进行求解;(2)作DT ∥AC 交AB 于点T ,作∠TDF =∠ATD ,射线DF 交AC 于点F ,则点F 即为所求;(3)作BR ∥CF 交FD 的延长线于点R ,连接CR ,证明四边形ABRF 是等腰梯形,推出AB =FR ,由CF ∥BR ,推出,推出CD ⊥DF ,然后问题可求解.(1)解:∵DE ∥AB ,∴,∴, ∵AB =5,BD =9,DC =6,∴, ∴;(2)解:作DT ∥AC 交AB 于点T ,作∠TDF =∠ATD ,射线DF 交AC 于点F ,则点F 即为所求;如图所示:点F 即为所求,25CD CB =1122CFB CFR SS AB CD FR CD ==⋅=⋅CDE CBA ∽DECD AB CB 6569DE =+2DE =(3)解:直线BC 与⊙F 相切,理由如下:作BR ∥CF 交FD 的延长线于点R ,连接CR ,如图,∵∠DFA =∠A ,∴四边形ABRF 是等腰梯形,∴,∵△FBC 的面积等于, ∴, ∴CD ⊥DF ,∵FD 是⊙F 的半径,∴直线BC 与⊙F 相切.29. 【答案】(1)①94BC =;②AB BE AD DE -是定值,定值为1;(2)3cos 8CBD ∠= 【分析】(1)①证明CED CDB ∽,根据相似三角形的性质求解即可;②由DE AC ∥,可得AB BC AD DE =,由①同理可得CE DE =,计算AB BE AD DE-1=; (2)根据平行线的性质、相似三角形的性质可得12S AC BC S DE BE==,又32S BE S CE =,则1322S S BC S CE ⋅=,可得916BC CE =,设9BC x =,则16CE x =.证明CDB CED ∽△△,可得12CD x =,过点D 作DH BC ⊥于H .分别求得BD BH ,,进而根据余弦的定义即可求解.【详解】(1)①∵CD 平分ACB ∠,AB FR =12CD AB •1122CFB CFR S S AB CD FR CD ==⋅=⋅2∵2ACB B ∠=∠,∴ACD DCB B ∠=∠=∠. ∴32CD BD ==. ∵DE AC ∥,∴ACD EDC ∠=∠.∴EDC DCB B ∠=∠=∠.∴1CE DE ==.∴CED CDB ∽. ∴CE CD =CD CB. ∴94BC =. ②∵DE AC ∥, ∴AB BC AD CE=. 由①可得CE DE =, ∴AB BC AD DE=. ∴1AB BE BC BE CE AD DE DE DE DE-=-==. ∴AB BE AD DE -是定值,定值为1. (2)∵DE AC ∥,BDE BAC ∴∽△△BC AB AC BE BD DE ∴== ∴12S AC BC S DE BE==. ∵32S BE S CE=, ∴1322S S BC S CE⋅=. 又∵2132916S S S ⋅=, ∴916BC CE =. 设9BC x =,则16CE x =.∵CD 平分BCF ∠,2∵2BCF CBG ∠=∠,∴ECD FCD CBD ∠=∠=∠.∴BD CD =.∵DE AC ∥,∴EDC FCD ∠=∠.∴EDC CBD ECD ∠=∠=∠.∴CE DE =.∵DCB ECD ∠=∠,∴CDB CED ∽△△. ∴CD CB CE CD=. ∴22144CD CB CE x =⋅=.∴12CD x =.如图,过点D 作DH BC ⊥于H .∵12BD CD x ==, ∴1922BH BC x ==. ∴932cos 128x BH CBD BD x ∠===. 30. 【答案】(1)①6;②见解析 (2)2114S S S -=,理由见解析 【分析】(1)①将面积用a ,b 的代数式表示出来,计算,即可②利用AN 公共边,发现△FAN ∽△AN B ,利用FA AN AN NB=,得到a ,b 的关系式,化简,变形,即可得结论(2)等边ABF 与等边CBE △共顶点B ,形成手拉手模型,△ABC ≌△FBE ,利用全等的对应边,对应角,得到:AC =FE =b ,∠FEB =∠ACB =90°,从而得到∠FEC =30°,再利用Rt CFE △,cos30FE b CE a ︒===,得到a 与b 的关系,从而得到结论 (1)∵19S =,216S =∴b =3,a =4∵∠ACB =90° ∴11S ab 34622==⨯⨯= ②由题意得:∠FAN =∠ANB =90°,∵FH ⊥AB∴∠AFN =90°-∠FAH =∠NAB∴△FAN ∽△AN B ∴FA AN AN NB = ∴a b a a b+=, 得:22ab b a +=∴122S S S +=.即212S S S -= (2)2114S S S -=,理由如下: ∵△ABF 和△BEC 都是等边三角形∴AB =FB ,∠ABC =60°-∠FBC =∠FBE ,CB =EB∴△ABC ≌△FBE (S A S )∴AC =FE =b∠FEB =∠ACB =90°∴∠FEC =30°∵EF ⊥CF ,CE =BC =a∴cos30b FE a CE ==︒=∴b =∴212S ab ==由题意得:21S ,22S =∴22221S S -== ∴2114S S S -=。
专题21图形的相似(共50题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】
备战2023年中考数学必刷真题考点分类专练(全国通用)专题21图形的相似(共50题)一.选择题(共24小题)1.(2022•凉山州)如图,在△ABC中,点D、E分别在边AB、AC上,若DE∥BC,,DE=6cm,则BC的长为()A.9cm B.12cm C.15cm D.18cm2.(2022•连云港)△ABC的三边长分别为2,3,4,另有一个与它相似的三角形DEF,其最长边为12,则△DEF的周长是()A.54B.36C.27D.213.(2022•云南)如图,在△ABC中,D、E分别为线段BC、BA的中点,设△ABC的面积为S1,△EBD的面积为S2,则=()A.B.C.D.4.(2022•武威)若△ABC∽△DEF,BC=6,EF=4,则=()A.B.C.D.5.(2022•十堰)如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为()A.0.3cm B.0.5cm C.0.7cm D.1cm6.(2022•台湾)△ABC的边上有D、E、F三点,各点位置如图所示.若∠B=∠FAC,BD=AC,∠BDE =∠C,则根据图中标示的长度,求四边形ADEF与△ABC的面积比为何?()A.1:3B.1:4C.2:5D.3:87.(2022•宿迁)如图,点A在反比例函数y=(x>0)的图象上,以OA为一边作等腰直角三角形OAB,其中∠OAB=90°,AO=AB,则线段OB长的最小值是()A.1B.C.2D.48.(2022•孝感)如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于AC的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是()A.4B.3C.2D.19.(2022•山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移B.旋转C.轴对称D.黄金分割10.(2022•湘潭)在△ABC中(如图),点D、E分别为AB、AC的中点,则S△ADE:S△ABC=()A.1:1B.1:2C.1:3D.1:411.(2022•衡阳)在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是(结果精确到0.01m.参考数据:≈1.414,≈1.732,≈2.236)()A.0.73m B.1.24m C.1.37m D.1.42m12.(2022•眉山)如图,四边形ABCD为正方形,将△EDC绕点C逆时针旋转90°至△HBC,点D,B,H在同一直线上,HE与AB交于点G,延长HE与CD的延长线交于点F,HB=2,HG=3.以下结论:①∠EDC=135°;②EC2=CD•CF;③HG=EF;④sin∠CED=.其中正确结论的个数为()A.1个B.2个C.3个D.4个13.(2022•乐山)如图,等腰△ABC的面积为2,AB=AC,BC=2.作AE∥BC且AE=BC.点P是线段AB上一动点,连结PE,过点E作PE的垂线交BC的延长线于点F,M是线段EF的中点.那么,当点P从A点运动到B点时,点M的运动路径长为()A.B.3C.2D.414.(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是()A.4B.6C.2D.315.(2022•扬州)如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D在BC边上,DE交AC于点F.下列结论:①△AFE∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD,其中所有正确结论的序号是()A.①②B.②③C.①③D.①②③16.(2022•泰安)如图,平行四边形ABCD的对角线AC,BD相交于点O,点E为BC的中点,连接EO并延长交AD于点F,∠ABC=60°,BC=2AB.下列结论:①AB⊥AC;②AD=4OE;③四边形AECF是=S△ABC,其中正确结论的个数是()菱形;④S△BOEA.4B.3C.2D.117.(2022•绍兴)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB=9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是()A.B.C.10D.18.(2022•连云港)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=AD;③GE=DF;④OC=2OF;⑤△COF∽△CEG.其中正确的是()A.①②③B.①③④C.①④⑤D.②③④19.(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为()A.9B.12C.15D.1820.(2022•金华)如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF折叠,点A,B的对应点分别为A′,B′,A′E与BC相交于点G,B′A′的延长线过点C.若=,则的值为()A.2B.C.D.21.(2022•丽水)如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段AB=3,则线段BC的长是()A.B.1C.D.222.(2022•重庆)如图,△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:923.(2022•重庆)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC的周长为4,则△DEF的周长是()A.4B.6C.9D.1624.(2022•遂宁)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC 交于点P,连接OD、OB,则下列结论一定正确的是()①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;A.①③B.①②③C.②③D.①②④二.填空题(共17小题)25.(2022•宜宾)如图,△ABC中,点E、F分别在边AB、AC上,∠1=∠2.若BC=4,AF=2,CF=3,则EF=.26.(2022•邵阳)如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件,使△ADE∽△ABC.27.(2022•河北)如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A,B的连线与钉点C,D的连线交于点E,则(1)AB与CD是否垂直?(填“是”或“否”);(2)AE=.28.(2022•陕西)如图,在菱形ABCD中,AB=4,BD=7.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为.29.(2022•新疆)如图,四边形ABCD是正方形,点E在边BC的延长线上,点F在边AB上,以点D为中心,将△DCE绕点D顺时针旋转90°与△DAF恰好完全重合,连接EF交DC于点P,连接AC交EF 于点Q,连接BQ,若AQ•DP=3,则BQ=.30.(2022•嘉兴)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为.31.(2022•陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为米.32.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=m.33.(2022•娄底)如图,已知等腰△ABC的顶角∠BAC的大小为θ,点D为边BC上的动点(与B、C不重合),将AD绕点A沿顺时针方向旋转θ角度时点D落在D′处,连接BD′.给出下列结论:①△ACD≌△ABD′;②△ACB∽△ADD′;③当BD=CD时,△ADD′的面积取得最小值.其中正确的结论有(填结论对应的应号).34.(2022•娄底)九年级融融陪同父母选购家装木地板,她感觉某品牌木地板拼接图(如实物图)比较美观,通过手绘(如图)、测量、计算发现点E是AD的黄金分割点,即DE≈0.618AD.延长HF与AD相交于点G,则EG≈DE.(精确到0.001)35.(2022•苏州)如图,在矩形ABCD中,=.动点M从点A出发,沿边AD向点D匀速运动,动点N从点B出发,沿边BC向点C匀速运动,连接MN.动点M,N同时出发,点M运动的速度为v1,点N运动的速度为v2,且v1<v2.当点N到达点C时,M,N两点同时停止运动.在运动过程中,将四边形MABN沿MN翻折,得到四边形MA′B′N.若在某一时刻,点B的对应点B′恰好与CD的中点重合,则的值为.36.(2022•湖州)如图,已知在△ABC中,D,E分别是AB,AC上的点,DE∥BC,=.若DE=2,则BC的长是.37.(2022•武威)如图,在矩形ABCD中,AB=6cm,BC=9cm,点E,F分别在边AB,BC上,AE=2cm,BD,EF交于点G,若G是EF的中点,则BG的长为cm.38.(2022•温州)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M在旋转中心O的正下方.某一时刻,太阳光线恰好垂直照射叶片OA,OB,此时各叶片影子在点M右侧成线段CD,测得MC=8.5m,CD=13m,垂直于地面的木棒EF与影子FG的比为2:3,则点O,M之间的距离等于米.转动时,叶片外端离地面的最大高度等于米.39.(2022•绍兴)如图,AB=10,点C是射线BQ上的动点,连结AC,作CD⊥AC,CD=AC,动点E在AB延长线上,tan∠QBE=3,连结CE,DE,当CE=DE,CE⊥DE时,BE的长是.40.(2022•达州)人们把≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.a=,b=,记S1=+,S2=+,…,S100=+,则S1+S2+…+S100=.41.(2022•成都)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC 与△DEF的周长比是.三.解答题(共9小题)42.(2022•宜宾)如图,点C是以AB为直径的⊙O上一点,点D是AB的延长线上一点,在OA上取一点F,过点F作AB的垂线交AC于点G,交DC的延长线于点E,且EG=EC.(1)求证:DE是⊙O的切线;(2)若点F是OA的中点,BD=4,sin∠D=,求EC的长.43.(2022•常德)如图,已知AB是⊙O的直径,BC⊥AB于B,E是OA上的一点,ED∥BC交⊙O于D,OC∥AD,连接AC交ED于F.(1)求证:CD是⊙O的切线;(2)若AB=8,AE=1,求ED,EF的长.44.(2022•广元)在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,点E是边BC的中点,连结DE.(1)求证:DE是⊙O的切线;(2)若AD=4,BD=9,求⊙O的半径.45.(2022•常德)在四边形ABCD中,∠BAD的平分线AF交BC于F,延长AB到E使BE=FC,G是AF的中点,GE交BC于O,连接GD.(1)当四边形ABCD是矩形时,如图1,求证:①GE=GD;②BO•GD=GO•FC.(2)当四边形ABCD是平行四边形时,如图2,(1)中的结论都成立.请给出结论②的证明.46.(2022•孝感)问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD是△ABC的角平分线,可证=.小慧的证明思路是:如图2,过点C作CE∥AB,交AD的延长线于点E,构造相似三角形来证明=.尝试证明:(1)请参照小慧提供的思路,利用图2证明:=;应用拓展:(2)如图3,在Rt△ABC中,∠BAC=90°,D是边BC上一点.连接AD,将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处.①若AC=1,AB=2,求DE的长;②若BC=m,∠AED=α,求DE的长(用含m,α的式子表示).47.(2022•泰安)如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.48.(2022•杭州)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF.已知四边形BFED是平行四边形,=.(1)若AB=8,求线段AD的长.(2)若△ADE的面积为1,求平行四边形BFED的面积.49.(2022•江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.50.(2022•宁波)【基础巩固】(1)如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG=EG.【尝试应用】(2)如图2,在(1)的条件下,连结CD,CG.若CG⊥DE,CD=6,AE=3,求的值.【拓展提高】(3)如图3,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.。
数学图形的相似试题
数学图形的相似试题1.如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)作出与△ABC关于x轴对称的△A1B1C1,并写出A1、B1、C1的坐标;(2)以原点O为位似中心,在原点的另一侧画出△A2B2C2,使.【答案】(1),A1(1,-3),B1(4,-2),C1(2,-1)(2)【解析】解:(1)△ABC关于x轴对称的△A1B1C1,如图所示:A1(1,-3),B1(4,-2),C1(2,-1)。
(2)根据A(1,3)、B(4,2)、C(2,1),以原点O为位似中心,在原点的另一侧画出△A2B2C2,使,则A2(-2,-6),B2(-8,-4),C2(-4,-2)。
在坐标系中找出各点并连接,如图所示:(1)根据坐标系找出点A、B、C关于x轴对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1、B1、C1的坐标即可。
(2)利用在原点的另一侧画出△A2B2C2,使,原三角形的各顶点坐标都乘以-2得出对应点的坐标即可得出图形。
2.如图,在△ABC中,∠C=90°,BC=5米,AC=12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.(1)当t为何值时,∠AMN=∠ANM?(2)当t为何值时,△AMN的面积最大?并求出这个最大值.【答案】(1)4(2)当t=6时,△AMN的面积最大,最大值为【解析】解:(1)∵从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒,运动时间为t秒,∴AM=12﹣t,AN=2t。
∵∠AMN=∠ANM,∴AM=AN,即12﹣t=2t,解得:t="4" 秒。
∴当t为4时,∠AMN=∠ANM。
(2)如图作NH⊥AC于H,∴∠NHA=∠C=90°。
∴NH∥BC。
∴△ANH∽△ABC。
∴,即。
中考数学专卷2020届中考数学总复习(28)图形的相似-精练精析(1)及答案解析
图形的变化——图形的相似1一.选择题(共9小题)1.若x:y=1:3,2y=3z,则的值是()A.﹣5 B.﹣C.D.52.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A. B. C. D.3.如果两个相似多边形面积的比为1:5,则它们的相似比为()A.1:25 B.1:5 C.1:2.5 D.1:4.如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.AD=DE C.AD2=BD•CD D.CD•AB=AC•BD5.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P1B.P2C.P3D.P46.如图,在平面直角坐标系中,A(0,4),B(2,0),点C在第一象限,若以A、B、C为顶点的三角形与△AOB相似(不包括全等),则点C的个数是()A.1 B.2 C.3 D.47.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个8.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1 B.2 C.12﹣6 D.6﹣69.如图,在△ABC中,两条中线BE、CD相交于点O,则S△DOE:S△COB=()A.1:4 B.2:3 C.1:3 D.1:2二.填空题(共7小题)10 已知线段b是线段a、c的比例中项,且a=1,c=4,那么b= _________ .11.如图,点M是△ABC内﹣点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1,4,9.则△ABC的面积是_________ .12.若,则= _________ .13.已知△ABC∽△DEF,其中AB=5,BC=6,CA=9,DE=3,那么△DEF的周长是_________ .14.如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为_________ .15.如图,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:_________ .16.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则= _________ .三.解答题(共8小题)17.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?18.已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.19.如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EB,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.20.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.21.如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.22.如图,正方形ABCD的边长为1,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.(1)求线段PQ的长;(2)问:点P在何处时,△PFD∽△BFP,并说明理由.23.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.24.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.图形的变化——图形的相似参考答案与试题解析一.选择题(共9小题)1.若x:y=1:3,2y=3z,则的值是()A.﹣5 B.﹣C.D.5考点:比例的性质.专题:计算题.分析:根据比例设x=k,y=3k,再用k表示出z,然后代入比例式进行计算即可得解.解答:解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.点评:本题考查了比例的性质,利用“设k法”分别表示出x、y、z可以使计算更加简便.2.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A.B.C.D.考点:平行线分线段成比例.专题:几何图形问题.分析:根据平行线分线段成比例定理得出===2,即可得出答案.解答:解:∵DE∥BC,EF∥AB,AD=2BD,∴==2,==2,∴=,故选:A.点评:本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截得的对应线段成比例.3.如果两个相似多边形面积的比为1:5,则它们的相似比为()A.1:25 B.1:5 C.1:2.5 D.1:考点:相似多边形的性质.专题:计算题.分析:根据相似多边形的面积的比等于相似比的平方解答.解答:解:∵两个相似多边形面积的比为1:5,∴它们的相似比为1:.故选:D.点评:本题考查了相似多边形的性质,熟记性质是解题的关键.4.如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.AD=DE C.AD2=BD•CD D.C D•AB=AC•BD考点:相似三角形的判定;圆周角定理.专题:几何图形问题.分析:由∠ADC=∠ADB,根据有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似,即可求得答案;注意排除法在解选择题中的应用.解答:解:如图,∠ADC=∠ADB,A、∵∠ACD=∠DAB,∴△ADC∽△BDA,故A选项正确;B、∵AD=DE,∴=,∴∠DAE=∠B,∴△ADC∽△BDA,故B选项正确;C、∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C选项正确;D、∵CD•AB=AC•BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是对应夹角,故D选项错误.故选:D.点评:此题考查了相似三角形的判定以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用.5.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P1B.P2C.P3D.P4考点:相似三角形的判定.专题:网格型.分析:由于∠BAC=∠PED=90°,而=,则当=时,可根据两组对应边的比相等且夹角对应相等的两个三角形相似判断△ABC∽△EPD,然后利用DE=4,所以EP=6,则易得点P落在P3处.解答:解:∵∠BAC=∠PED,而=,∴=时,△ABC∽△EPD,∵DE=4,∴EP=6,∴点P落在P3处.故选:C.点评:本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.6.如图,在平面直角坐标系中,A(0,4),B(2,0),点C在第一象限,若以A、B、C为顶点的三角形与△AOB相似(不包括全等),则点C的个数是()A. 1 B.2 C.3 D.4考点:相似三角形的判定;坐标与图形性质.分析:根据题意画出图形,根据相似三角形的判定定理即可得出结论.解答:解:如图①,∠OAB=∠BAC1,∠AOB=∠ABC1时,△AOB∽△ABC1.如图②,AO∥BC,BA⊥AC2,则∠ABC2=∠OAB,故△AOB∽△BAC2;如图③,AC3∥OB,∠ABC3=90°,则∠ABO=∠CAB,故△AOB∽△C3BA;如图④,∠AOB=∠BAC4=90°,∠ABO=∠ABC4,则△AOB∽△C4AB.故选D.点评:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键.7.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个考点:相似三角形的判定;直角梯形.分析:由于∠PAD=∠PBC=90°,故要使△PAD与△PBC相似,分两种情况讨论:①△APD∽△BPC,②△APD∽△BCP,这两种情况都可以根据相似三角形对应边的比相等求出AP的长,即可得到P点的个数.解答:解:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠PAD=∠PBC=90°.AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x.若AB边上存在P点,使△PAD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=;②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x),解得x=2或x=6.∴满足条件的点P的个数是3个,故选:C.点评:本题主要考查了相似三角形的判定及性质,难度适中,进行分类讨论是解题的关键.8.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G 分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A. 1 B.2 C.12﹣6 D.6﹣6考点:相似三角形的判定与性质;等腰三角形的性质;勾股定理;正方形的性质.专题:几何图形问题.分析:首先过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,易证得△ADG∽△ABC,然后根据相似三角形的性质以及正方形的性质求解即可求得答案.解答:解:过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,∵AB=AC,AD=AG,∴AD:AB=AG:AC,∵∠BAC=∠DAG,∴△ADG∽△ABC,∴∠ADG=∠B,∴DG∥BC,∵四边形DEFG是正方形,∴FG⊥DG,∴FH⊥BC,AN⊥DG,∵AB=AC=18,BC=12,∴BM=BC=6,∴AM==12,∴,∴,∴AN=6,∴MN=AM﹣AN=6,∴FH=MN﹣GF=6﹣6.故选:D.点评:此题考查了相似三角形的判定与性质、正方形的性质、等腰三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9.如图,在△ABC中,两条中线BE、CD相交于点O,则S△DOE:S△COB=()A.1:4 B.2:3 C.1:3 D.1:2考点:相似三角形的判定与性质;三角形中位线定理.专题:计算题.分析:根据三角形的中位线得出DE∥BC,DE=BC,根据平行线的性质得出相似,根据相似三角形的性质求出即可.解答:解:∵BE和CD是△ABC的中线,∴DE=BC,DE∥BC,∴=,△DOE∽△COB,∴=()2=()2=,故选:A.点评:本题考查了相似三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方,三角形的中位线平行于第三边,并且等于第三边的一半.二.填空题(共7小题)10.已知线段b是线段a、c的比例中项,且a=1,c=4,那么b= 2 .考点:比例线段.分析:根据比例中项的定义可得b2=ac,从而易求b.解答:解:∵b是a、c的比例中项,∴b2=ac,即b2=4,∴b=±2(负数舍去).故答案是:2.点评:本题考查了比例线段,解题的关键是理解比例中项的含义.11.如图,点M是△ABC内﹣点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1,4,9.则△ABC的面积是36 .考点:相似三角形的判定与性质.分析:根据相似三角形的面积比是相似比的平方,先求出相似比.再根据平行四边形的性质及相似三角形的性质得到BC:DM=6:1,即S△ABC:S△FDM=36:1,从而得到△ABC面积.解答:解:过M作BC的平行线交AB、AC于D、E,过M作AC的平行线交AB、BC于F、H,过M作AB的平行线交AC、BC于I、G,因为△1、△2、△3的面积比为1:4:9,所以他们对应边边长的比为1:2:3,又因为四边形BDMG与四边形CEMH为平行四边形,所以DM=BG,EM=CH,设DM为x,则ME=2x,GH=3x,所以BC=BG+GH+CH=DM+GH+ME=x+2x+3x=6x,所以BC:DM=6x:x=6:1,由面积比等于相似比的平方故可得出:S△ABC:S△FDM=36:1,所以S△ABC=36×S△FDM=36×1=36.故答案为:36.点评:本题考查了平行线的性质,平行四边形的性质及相似三角形的性质.熟悉相似三角形的性质:相似三角形的面积比是相似比的平方.12.若,则= .考点:比例的性质.分析:先用b表示出a,然后代入比例式进行计算即可得解.解答:解:∵ =,∴a=,∴=.故答案为:.点评:本题考查了比例的性质,用b表示出a是解题的关键,也是本题的难点.13.已知△ABC∽△DEF,其中AB=5,BC=6,CA=9,DE=3,那么△DEF的周长是12 .考点:相似三角形的性质.专题:计算题.分析:根据相似的性质得=,即=,然后利用比例的性质计算即可.解答:解:∵△ABC∽△DEF,∴=,即=,∴△DEF的周长=12.故答案为:12.点评:本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.14.如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为y=2x .考点:相似三角形的性质;反比例函数图象上点的坐标特征.专题:数形结合.分析:设OC=a,根据点D在反比例函数图象上表示出CD,再根据相似三角形对应边成比例列式求出AC,然后根据中点的定义表示出点B的坐标,再根据点B在反比例函数图象上表示出a、k的关系,然后用a表示出点B的坐标,再利用待定系数法求一次函数解析式解答.解答:解:设OC=a,∵点D在y=上,∴CD=,∵△OCD∽△ACO,∴=,∴AC==,∴点A(a,),∵点B是OA的中点,∴点B的坐标为(,),∵点B在反比例函数图象上,∴=,∴=2k2,∴a4=4k2,解得,a2=2k,∴点B的坐标为(,a),设直线OA的解析式为y=mx,则m•=a,解得m=2,所以,直线OA的解析式为y=2x.故答案为:y=2x.点评:本题考查了相似三角形的性质,反比例函数图象上点的坐标特征,用OC的长度表示出点B的坐标是解题的关键,也是本题的难点.15.如图,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:△ABP∽△AED(答案不唯一).考点:相似三角形的判定;平行四边形的性质.专题:开放型.分析:可利用平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似判断△ABP∽△AED.解答:解:∵BP∥DF,∴△ABP∽△AED.故答案为:△ABP∽△AED(答案不唯一).点评:本题考查了相似三角形的判定与性质:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;16.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则= .考点:相似三角形的判定与性质.分析:根据相似三角形的判定与性质,可得答案.解答:解:∵DE∥BC,∴△ADE∽△ABC.∵S△ADE=S四边形BCDE,∴,∴,故答案为:.点评:本题考查了相似三角形的判定与性质,平行于三角形一边截三角形另外两边所得的三角形与原三角形相似,相似三角形面积的比等于相似比的平方.三.解答题(共8小题)17.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?考点:相似三角形的判定与性质;待定系数法求一次函数解析式;解直角三角形.专题:压轴题;动点型.分析:(1)设直线AB的解析式为y=kx+b,解得k,b即可;(2)由AO=6,BO=8得AB=10,①当∠APQ=∠AOB时,△APQ∽△AOB利用其对应边成比例解t.②当∠AQP=∠AOB时,△AQP∽△AOB利用其对应边成比例解得t.(3)过点Q作QE垂直AO于点E.在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,再利用三角形面积解得t即可.解答:解:(1)设直线AB的解析式为y=kx+b,由题意,得,解得,所以,直线AB的解析式为y=﹣x+6;(2)由AO=6,BO=8得AB=10,所以AP=t,AQ=10﹣2t,①当∠APQ=∠AOB时,△APQ∽△AOB.所以=,解得t=(秒),②当∠AQP=∠AOB时,△AQP∽△AOB.所以=,解得t=(秒);∴当t为秒或秒时,△APQ与△AOB相似;(3)过点Q作QE垂直AO于点E.在Rt△AOB中,sin∠BAO==,在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,S△APQ=AP•QE=t•(8﹣t),=﹣t2+4t=,解得t=2(秒)或t=3(秒).∴当t为2秒或3秒时,△AP Q的面积为个平方单位点评:此题主要考查相似三角形的判定与性质,待定系数法求一次函数值,解直角三角形等知识点,有一定的拔高难度,属于难题.18.已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.考点:相似形综合题;等腰三角形的性质;勾股定理;矩形的性质;锐角三角函数的定义.专题:综合题.分析:(1)易证△ABM∽△APB,然后根据相似三角形的性质就可得到y关于x的函数解析式,由P是边AD上的一动点可得0≤x≤5,再由y>0就可求出该函数的定义域;(2)过点M作MH⊥BP于H,由AP=x=4可求出MP、AM、BM、BP,然后根据面积法可求出MH,从而可求出BH,就可求出∠EBP的正切值;(3)可分EB=EC和CB=CE两种情况讨论:①当EB=EC时,可证到△AMB≌△DPC,则有AM=DP,从而有x﹣y=5﹣x,即y=2x﹣5,代入(1)中函数解析式就可求出x的值;②当CB=CE时,可得到PC=EC﹣EP=BC﹣MP=5﹣y,在Rt△DPC中根据勾股定理可得到x与y的关系,然后结合y关于x的函数解析式,就可求出x的值.解答:解:(1)∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=5,∠A=∠D=90°,AD∥BC,∴∠APB=∠PBC.∵∠ABE=∠CBP,∴∠ABM=∠APB.又∵∠A=∠A,∴△ABM∽△APB,∴=,∴=,∴y=x﹣.∵P是边AD上的一动点,∴0≤x≤5.∵y>0,∴x﹣>0,∴x>2,∴函数的定义域为2<x≤5;(2)过点M作MH⊥BP于H,如图.∵AP=x=4,∴y=x﹣=3,∴MP=3,AM=1,∴BM==,BP==2.∵S△BMP=MP•AB=BP•MH,∴MH==,∴BH==,∴tan∠EBP==;(3)①若EB=EC,则有∠EBC=∠ECB.∵AD∥BC,∴∠AMB=∠EBC,∠DPC=∠ECB,∴∠AMB=∠DPC.在△AMB和△DPC中,,∴△AMB≌△DP C,∴AM=DP,∴x﹣y=5﹣x,∴y=2x﹣5,∴x﹣=2x﹣5,解得:x1=1,x2=4.∵2<x≤5,∴AP=x=4;②若CE=CB,则∠EBC=∠E.∵AD∥BC,∴∠EMP=∠EBC=∠E,∴PE=PM=y,∴PC=EC﹣EP=5﹣y,∴在Rt△DPC中,(5﹣y)2﹣(5﹣x)2=22,∴(10﹣x﹣y)(x﹣y)=4,∴(10﹣x﹣x+)(x﹣x+)=4,整理得:3x2﹣10x﹣4=0,解得:x3=,x4=(舍负).∴AP=x=.终上所述:AP的值为4或.点评:本题主要考查了相似三角形的判定与性质、全等三角形的判定与性质、矩形的性质、勾股定理、解一元二次方程、三角函数等知识,证到△ABM∽△APB是解决第(1)小题的关键,把∠EBP放到直角三角形中是解决第(2)小题的关键,运用勾股定理建立x 与y的等量关系是解决第(3)小题的关键.19.如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EB,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.考点:相似多边形的性质;全等三角形的判定与性质;勾股定理;菱形的性质.专题:几何综合题.分析:(1)利用相似多边形的对应角相等和菱形的四边相等证得三角形全等后即可证得两条线段相等;(2)连接BD交AC于点P,则BP⊥AC,根据∠DAB=60°得到BP=AB=1,然后求得EP=2,最后利用勾股定理求得EB的长即可求得线段GD的长即可.解答:(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)解:连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,∴BP=AB=1,AP==,AE=AG=,∴EP=2,∴EB===,∴GD=.点评:本题考查了相似多边形的性质,解题的关键是了解相似多边形的对应边的比相等,对应角相等.20.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.专题:证明题;压轴题;动点型.分析:(1)①证明△ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF的长度,再用平行线分线段成比例定理或者三角形相似定理求得的比值,即可以得到答案.(2)当点F靠近点C的时候点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,继而求得半径和对应的圆心角的度数,求得答案.点F靠近点B时,点P的路径就是过点B向AC做的垂线段的长度;解答:(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P的路径为:.所以,点P经过的路径长为或3.点评:本题考查了等边三角形性质的综合应用以及相似三角形的判定及性质的应用,解答本题的关键是注意转化思想的运用.21.如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.考点:相似三角形的判定与性质;全等三角形的判定与性质.分析:(1)由平行线的性质可得:∠A=∠FCE,再根据对顶角相等以及全等三角形的判定方法即可证明:△ADE≌△CFE;(2)由AB∥F C,可证明△GBD∽△GCF,根据给出的已知数据可求出CF的长,即AD的长,进而可求出AB的长.解答:(1)证明:∵AB∥FC,∴∠A=∠FCE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS);(2)解:∵AB∥FC,∴△GBD∽△GCF,∴GB:GC=BD:CF,∵GB=2,BC=4,BD=1,∴2:6=1:CF,∴CF=3,∵AD=CF,∴AB=AD+BD=4.点评:本题考查了全等三角形的判定和性质、相似三角形的判定和性质以及平行线的性质,题目的设计很好,难度一般.22.如图,正方形ABCD的边长为1,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.(1)求线段PQ的长;(2)问:点P在何处时,△PFD∽△BFP,并说明理由.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.分析:(1)由题意得:PD=PE,∠DPE=90°,又由正方形ABCD的边长为1,易证得△ADP≌△QPE,然后由全等三角形的性质,求得线段PQ的长;(2)易证得△DAP∽△PBF,又由△PFD∽△BFP,根据相似三角形的对应边成比例,可得证得PA=PB,则可求得答案.解答:解:(1)根据题意得:PD=PE,∠DPE=90°,∴∠APD+∠QPE=90°,∵四边形ABCD是正方形,∴∠A=90°,∴∠ADP+∠APD=90°,∴∠ADP=∠QPE,∵EQ⊥AB,∴∠A=∠Q=90°,在△ADP和△QPE中,,∴△ADP≌△QPE(AAS),∴PQ=AD=1;(2)∵△PFD∽△BFP,∴,∵∠ADP=∠EPB,∠CBP=∠A,∴△DAP∽△PBF,∴,∴=,∴PA=PB,∴PA=AB=∴当PA=时,△PFD∽△BFP.点评:此题考查了相似三角形的判定与性质、正方形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.23.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.考点:相似三角形的判定与性质;平行四边形的性质.专题:几何综合题.分析:(1)由四边形ABCD为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND与三角形CNB相似,由相似得比例,得到DN:BN=1:2,设OB=OD=x,表示出BN与DN,求出x的值,即可确定出BD的长;(2)由相似三角形相似比为1:2,得到CN=2MN,BN=2DN.已知△DCN的面积,则由线段之比,得到△MND与△CNB的面积,从而得到S△ABD=S△BCD=S△BCN+S△CND,最后由S四边形ABNM=S△ABD﹣S△MND 求解.解答:解:(1)∵平行四边形ABCD,∴AD∥BC,AD=BC,OB=OD,∴∠DMN=∠BCN,∠MDN=∠NBC,∴△MND∽△CNB,∴=,∵M为AD中点,∴MD=AD=BC,即=,∴=,即BN=2DN,设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,∴x+1=2(x﹣1),解得:x=3,∴BD=2x=6;(2)∵△MND∽△CNB,且相似比为1:2,∴MN:CN=DN:BN=1:2,∴S△MND=S△CND=1,S△BNC=2S△CND=4.∴S△ABD=S△BCD=S△BCN+S△CND=4+2=6∴S四边形ABNM=S△ABD﹣S△MND=6﹣1=5.点评:此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.24.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.考点:相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt△BDO中,利用勾股定理列式求解即可.解答:(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠PAE+∠OAD=90°,∴∠AOD=∠PAE,在△AOD和△PAE中,,∴△AOD≌△PAE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即解得k=1,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3在Rt△BDO中,由勾股定理得:BO===3.点评:本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.。
初中数学 图形的相似章末复习考试卷及答案 (新版)北师大版
xx学校xx学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:线段a、b、c、d是成比例线段,a=4、b=2、c=2,则d的长为( )A.1 B.2 C.3 D.4试题2:如图,已知AB∥CD∥EF,那么下列结论正确的是( )A.=B.=C.=D.=试题3:若两个相似三角形的面积之比为1∶4,则它们的周长之比为( )A.1∶2 B.1∶4 C.1∶5 D.1∶16试题4:关于相似的下列说法正确的是( )A.所有直角三角形相似B.所有等腰三角形相似评卷人得分C.有一角是80°的等腰三角形相似D.所有等腰直角三角形相似试题5:已知△ABC∽△A′B′C′,△ABC的边长分别为3,4,5,△A′B′C′中最小的边长为7,求△A′B′C′的周长.试题6:如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.试题7:如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为( )A.(3,3) B.(4,3) C.(3,1) D.(4,1)试题8:如图,为测量学校旗杆的高度,小东用长为3.2 m的竹竿作测量工具,移动竹竿,使竹竿顶端与旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8 m,与旗杆相距22 m,则旗杆的高为( )A.8.8 m B.10 m C.12 m D.14 m试题9:如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a∶b=( )A.2∶1 B.∶1 C.3∶ D.3∶2试题10:如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过A,B,C,则边AC的长为________.试题11:△OAB的坐标分别为O(0,0),A(0,4),B(3,0),以原点为位似中心,在第一象限将△OAB扩大,使变换得到的△OEF与△OAB对应边的比为2∶1,(1)画出△OEF;(2)求四边形ABFE的面积.试题12:小红用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面点E处放一面平面镜,镜子与教学大楼的距离AE=20米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米,请你帮助小红测量出大楼AB的高度(注:反射角=入射角).试题13:.如图,等腰△ABC中,AB=AC,D是BC中点,∠EDF=∠B.求证:(1)=;(2)△BDE∽△DFE.试题1答案:A试题2答案:A试题3答案:A试题4答案:D试题5答案:△ABC的周长为3+4+5=12,设△A′B′C′的周长为x,∵△ABC∽△A′B′C′,∴=.解得x=28.∴△A′B′C′的周长为28.试题6答案:证明:在△A BC中,AB=AC,BD=CD,∴AD⊥BC.∵CE⊥AB,∴∠ADB=∠CEB=90°.又∠B=∠B,∴△ABD∽△CBE.试题7答案:A试题8答案:C试题9答案:B试题10答案:试题11答案:(1)图略.(2)由题意得:OA=4,OB=3,OE=8,OF=6,△OAB与△EOF都为直角三角形,则S四边形ABFE=S△OEF-S△OAB=OF·OE -OB·OA=×6×8-×3×4=24-6=18.试题12答案:∵根据反射定律知:∠FEB=∠FED,∴∠BEA=∠DEC.∵∠BAE=∠DCE=90°,∴△BAE∽△DCE.∴=.∵CE=2.5米,DC=1.6米,AE=20米,∴=.∴AB=12.8.∴大楼AB的高为12.8米.试题13答案:证明:(1)∵AB=AC,∴∠C=∠B.∵∠EDC=∠B+∠BED,∴∠EDF+∠FDC=∠B+∠BED.又∵∠EDF=∠B,∴∠FDC=∠BED.∴△BDE∽△CFD.∴=.(2)∵D是BC中点,∴BD=CD.由(1)得=,∴=,即=.又∵∠EDF=∠B,∴△B DE∽△DFE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.1相似的图形
1、请看下图,并回答下面的问题:
(1)在图(1)中,两个足球的形状相同吗?它们的大小呢?
(2)在图(2)中,两个正方形物体的形状相同吗?
2、生活中存在大量的形状相同的图形,试举出几例。
3、在实际生活和数学学习中,我们常常会看到许多开头相同的图形,下图形状相同的图形
分别是、、、、(填序号)
4、 如右图,放大镜中的三角形与原三角形具有怎样的关系?
5、提高:在直角坐标系中描出点O (0,0)、A (1,2)、B (2, 4)、C (3,2)、D (4,0).先用线段顺次连接点O, A 、B,C, D ,然后再用线段连结A 、C 两点.
(1)你得到了一个什么图形?
(2)填写表1,在直角坐标系中描出点O,、1A 、1B 、1C 、1D ,并按同样的方式连结各点.你
得到一个什么图形?
填写表2,你又得到一个什么图形?
填写表3呢?
(3)在上述的图个图形中,哪两个图形的形状相同?。