等腰三角形经典练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形练习题
一、计算题: 1.
如
图
,
△
ABC
中,
AB=AC,BC=BD,AD=DE=EB 求∠A 的度数
设∠ABD 为x,则∠A 为2x 由8x=180° 得∠A=2x=45°
2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 设∠A 为x, 由5x=180°
F
D
A
B
得∠A=36°
3. 如图,△ABC 中,AB=AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°, 求∠AFD 的度数 ∠AFD=160°
4. 如图,△ABC 中,AB=AC,BC=BD=ED=EA 求∠A 的度数 设∠A 为x
∠A=7180
C
B
5. 如图,△ABC中,AB=AC,D在BC上, ∠BAD=30°,在AC上取点E,使AE=AD, 求∠EDC的度数
设∠ADE为x Array
2x
∠EDC=∠AED-∠
B
x-15°
6. 如图,△ABC 中,∠C=90°,D 为AB 上一点,作
DE ⊥BC
于
E ,若
BE=AC,BD=21,DE+BC=1, 求∠ABC 的度数
延长DE 到点F,使EF=BC 可证得:△ABC ≌△BFE 所以∠1=∠F 由∠2+∠F=90°, 得∠1+∠F=90°
在Rt △DBF 中, BD=21,DF=1 所以∠F =∠1=30°
7. 如图,△ABC 中,AD 平分∠BAC ,若
F
AC=AB+BD 求∠B :∠C 的值
在AC 上取一点E,使AE=AB 可证△ABD ≌△ADE 所以∠B=∠AED
由AC=AB+BD,得DE=EC, 所以∠AED=2∠C 故∠B :∠C=2:1
二、证明题:
8. 如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E
求证:DE=BD+AE
C B
A
D
E
P
A
B
C
D
E
证明△PBD 和△PEA 是等腰三角形
9. 如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于
点A ,问:DF 、AD 、AE 间有什么样的大小关系 DF+AD=AE
在AE 上取点B,使AB=AD
A
D
F
E
B
10. 如图,△ABC 中,∠B=60°,角平分线AD 、
CE 交于点O 求证:AE+CD=AC 在AC 上取点F,使AF=AE 易证明△AOE ≌△AOF, 得∠AOE=∠AOF
由∠B=60°,角平分线AD 、CE, 得∠AOC=120°
所以∠AOE=∠AOF=∠COF=∠COD=60° 故△COD ≌△COF,得CF=CD 所以AE+CD=AC
O
A B
C D
E
F