2020年中考数学专题突破八:最短路径——胡不归点
中考专题- 胡不归专题(解析版)

专题03 胡不归专题在前面的最值问题中往往都是求某个线段最值或者形如P A +PB 最值,除此之外我们还可能会遇上形如“P A +kP ”这样的式子的最值,此类式子一般可以分为两类问题:(1)胡不归问题; (2)阿氏圆. 【故事介绍】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”)而如果先沿着驿道AC 先走一段,再走砂石地,会不会更早些到家?【模型建立】如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BCV V的值最小.V 1V 2V 1驿道砂石地ABCV 2V 1MNCBA【问题分析】121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =,即求BC +kAC 的最小值. 【问题解决】构造射线AD 使得sin ∠DAN =k ,即CHk AC=,CH =kAC .将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.M M【模型总结】在求形如“P A+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“P A+kPB”型问题转化为“P A+PC”型.而这里的PB必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB的等线段.例题1. 如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD 的最小值是_______.【分析】本题关键在于处理BD”,考虑tan A=2,△ABE三边之比为1:2sin∠,故作DH⊥AB交AB于H点,则DH=.问题转化为CD+DH最小值,故C、D、H共线时值最小,此时CD DH CH BE+===.【小结】本题简单在于题目已经将BA线作出来,只需分析角度的三角函数值,作出垂线DH,即可解决问题,若稍作改变,将图形改造如下:则需自行构造α,如下图,这一步正是解决“胡不归”问题关键所在.变式练习>>>1.如图,平行四边形ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB+的最小值等于________.【分析】考虑如何构造”,已知∠A=60°,且,故延长AD,作PH⊥AD延长线于H点,即可得PH,将问题转化为:求PB+PH最小值.当B、P、H三点共线时,可得PB+PH取到最小值,即BH的长,解直角△ABH即可得BH长.AB CDEHEDCBA AB CDEHαsinα5H EDCBAEDCBA BCD PMHPD CBA A BCD PHM例题2. 如图,AC是圆O的直径,AC=4,弧BA=120°,点D是弦AB上的一个动点,那么OD+BD的最小值为()A.B.C.D.【解答】解:∵的度数为120°,∵∵C=60°,∵AC是直径,∵∵ABC=90°,∵∵A=30°,作BK∵CA,DE∵BK于E,OM∵BK于M,连接OB.∵BK∵AC,∵∵DBE=∵BAC=30°,在Rt∵DBE中,DE=BD,∵OD+BD=OD+DE,根据垂线段最短可知,当点E与M重合时,OD+BD的值最小,最小值为OM,∵∵BAO=∵ABO=30°,∵∵OBM=60°,在Rt∵OBM中,∵OB=2,∵OBM=60°,∵OM=OB•sin60°=,∵DB+OD的最小值为,故选:B.变式练习>>>2.如图,∵ABC中,∵BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为2,则BC=﹣.【解答】解:如图将∵ABP绕点A顺时针旋转60°得到∵AMG.连接PG,CM.∵AB=AC,AH∵BC,∵∵BAP=∵CAP,∵P A=P A,∵∵BAP∵∵CAP(SAS),∵PC=PB,∵MG=PB,AG=AP,∵GAP=60°,∵∵GAP是等边三角形,∵P A=PG,∵P A+PB+PC=CP+PG+GM,∵当M,G,P,C共线时,P A+PB+PC的值最小,最小值为线段CM的长,∵AP+BP+CP的最小值为2,∵CM=2,∵∵BAM=60°,∵BAC=30°,∵∵MAC=90°,∵AM=AC=2,作BN∵AC于N.则BN=AB=1,AN=,CN=2﹣,∵BC===﹣.故答案为﹣.例题3. 等边三角形ABC的边长为6,将其放置在如图所示的平面直角坐标系中,其中BC边在x轴上,BC边的高OA在Y轴上.一只电子虫从A出发,先沿y轴到达G点,再沿GC到达C点,已知电子虫在Y轴上运动的速度是在GC上运动速度的2倍,若电子虫走完全程的时间最短,则点G的坐标为(0,).【解答】解:如图作GM∵AB于M,设电子虫在CG上的速度为v,电子虫走完全全程的时间t=+=(+CG),在Rt∵AMG中,GM=AG,∵电子虫走完全全程的时间t=(GM+CG),当C、G、M共线时,且CM∵AB时,GM+CG最短,此时CG=AG=2OG,易知OG=•×6=所以点G的坐标为(0,﹣).故答案为:(0,﹣).变式练习>>>3.如图,∵ABC在直角坐标系中,AB=AC,A(0,2),C(1,0),D为射线AO上一点,一动点P 从A出发,运动路径为A→D→C,点P在AD上的运动速度是在CD上的3倍,要使整个运动时间最少,则点D的坐标应为()A.(0,)B.(0,)C.(0,)D.(0,)解:假设P在AD的速度为3V,在CD的速度为1V,总时间t=+=(+CD),要使t最小,就要+CD最小,因为AB=AC=3,过点B作BH∵AC交AC于点H,交OA于D,易证∵ADH∵∵ACO,所以==3,所以=DH,因为∵ABC是等腰三角形,所以BD=CD,所以要+CD最小,就是要DH+BD最小,就要B、D、H三点共线就行了.因为∵AOC∵∵BOD,所以=,即=,所以OD=,所以点D的坐标应为(0,).例题4. 直线y=与抛物线y=(x﹣3)2﹣4m+3交于A,B两点(其中点A在点B的左侧),与抛物线的对称轴交于点C,抛物线的顶点为D(点D在点C的下方),设点B的横坐标为t(1)求点C的坐标及线段CD的长(用含m的式子表示);(2)直接用含t的式子表示m与t之间的关系式(不需写出t的取值范围);(3)若CD=CB.∵求点B的坐标;∵在抛物线的对称轴上找一点F,使BF+CF的值最小,则满足条件的点F的坐标是(3,).【解答】解:(1)抛物线y=(x﹣3)2﹣4m+3的对称轴为x=3,令x=3,则有y=×3=4,即点C的坐标为(3,4).抛物线y=(x﹣3)2﹣4m+3的顶点D的坐标为(3,﹣4m+3),∵点D在点C的下方,∵CD=4﹣(﹣4m+3)=4m+1.(2)∵点B在直线y=上,且其横坐标为t,则点B的坐标为(t,t),将点B的坐标代入抛物线y=(x﹣3)2﹣4m+3中,得:t=(t﹣3)2﹣4m+3,整理,得:m=﹣t+3.(3)∵依照题意画出图形,如图1所示.过点C作CE∵x轴,过点B作BE∵y轴交CE于点E.∵直线BC的解析式为y=x,∵BE=CE,由勾股定理得:BC==CE.∵CD=CB,∵有4m+1=(t﹣3)=(+﹣3),解得:m=﹣4,或m=1.当m=﹣4时,+4×(﹣4)=﹣<0,不合适,∵m=1,此时t=+=6,y=×6=8.故此时点B的坐标为(6,8).∵作B点关于对称轴的对称点B′,过点F作FM∵BC于点M,连接B′M、BB交抛物线对称轴于点N,如图2所示.∵直线BC的解析式为y=x,FM∵BC,∵tan∵FCM==,∵sin∵FCM=.∵B、B′关于对称轴对称,∵BF=B′F,∵BF+CF=B′F+FM.当点B′、F、M三点共线时B′F+FM最小.∵B点坐标为(6,8),抛物线对称轴为x=3,∵B′点的坐标为(0,8).又∵B′M∵BC,∵tan∵NB′F=,∵NF=B′N•tan∵NB′F=,∵点F的坐标为(3,).故答案为:(3,).变式练习>>>4.如图1,在平面直角坐标系中将y=2x+1向下平移3个单位长度得到直线l1,直线l1与x轴交于点C;直线l2:y=x+2与x轴、y轴交于A、B两点,且与直线l1交于点D.(1)填空:点A的坐标为(﹣2,0),点B的坐标为(0,2);(2)直线l1的表达式为y=2x﹣2;(3)在直线l1上是否存在点E,使S∵AOE=2S∵ABO?若存在,则求出点E的坐标;若不存在,请说明理由.(4)如图2,点P为线段AD上一点(不含端点),连接CP,一动点H从C出发,沿线段CP以每秒1个单位的速度运动到点P,再沿线段PD以每秒个单位的速度运动到点D后停止,求点H在整个运动过程中所用时间最少时点P的坐标.【解答】解:(1)直线l2:y=x+2,令y=0,则x=﹣2,令y=0,则x=2,故答案为(﹣2,0)、(0,2);(2)y=2x+1向下平移3个单位长度得到直线l1,则直线l1的表达式为:y=2x﹣2,故:答案为:y=2x﹣2;(3)∵S∵AOE=2S∵ABO,∵y E=2OB=4,将y E=4代入l1的表达式得:4=2x﹣2,解得:x=3,则点E的坐标为(3,4);(4)过点P、C分别作y轴的平行线,分别交过点D作x轴平行线于点H、H′,H′C交BD于点P′,直线l2:y=x+2,则∵ABO=45°=∵HBD,PH=PD,点H在整个运动过程中所用时间=+=PH+PC,当C、P、H在一条直线上时,PH+PC最小,即为CH′=6,点P坐标(1,3),故:点H在整个运动过程中所用最少时间为6秒,此时点P的坐标(1,3).例题5. 已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在(1)的条件下,抛物线上存在点P,使得∵ACP是以AC为直角边的直角三角形,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?【解答】解:(1)∵y=a(x+3)(x﹣1),∵点A的坐标为(﹣3,0)、点B两的坐标为(1,0),∵直线y=﹣x+b经过点A,∵b=﹣3,∵y=﹣x﹣3,当x=2时,y=﹣5,则点D的坐标为(2,﹣5),∵点D在抛物线上,∵a(2+3)(2﹣1)=﹣5,解得,a=﹣,则抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)∵A的坐标为(﹣3,0),C(0,3),∵直线AC的解析式为:y=x+3,∵∵∵ACP是以AC为直角边的直角三角形,∵CP∵AC,∵设直线CP的解析式为:y=﹣x+m,把C(0,3)代入得m=3,∵直线CP的解析式为:y=﹣x+3,解得,(不合题意,舍去),∵P(﹣,);∵∵∵ACP是以AC为直角边的直角三角形,∵AP∵AC,∵设直线CP的解析式为:y=﹣x+n,把A(﹣3,0)代入得n=﹣,∵直线AP的解析式为:y=﹣x﹣,解y=得,,∵P(,﹣),综上所述:点P的坐标为(﹣,)或(,﹣);(3)如图2中,作DM∵x轴交抛物线于M,作DN∵x轴于N,作EF∵DM于F,则tan∵DAN===,∵∵DAN=60°,∵∵EDF=60°,∵DE==EF,∵Q的运动时间t=+=BE+32DE=BE+EF,∵当BE和EF共线时,t最小,则BE∵DM,此时点E坐标(1,﹣4).变式练习>>>5.如图,已知抛物线y=﹣x2+bx+c交x轴于点A(2,0)、B(﹣8,0),交y轴于点C,过点A、B、C三点的∵M与y轴的另一个交点为D.(1)求此抛物线的表达式及圆心M的坐标;(2)设P为弧BC上任意一点(不与点B,C重合),连接AP交y轴于点N,请问:AP•AN是否为定值,若是,请求出这个值;若不是,请说明理由;(3)延长线段BD交抛物线于点E,设点F是线段BE上的任意一点(不含端点),连接AF.动点Q 从点A出发,沿线段AF以每秒1个单位的速度运动到点F,再沿线段FB以每秒个单位的速度运动到点B后停止,问当点F的坐标是多少时,点Q在整个运动过程中所用时间最少?【解答】解:(1)抛物线解析式为y=﹣(x+8)(x﹣2),即y=﹣x2﹣x+4;当x=0时,y=﹣x2﹣x+4=4,则C(0,4)∵BC=4,AC=2,AB=10,∵BC2+AC2=AB2,∵∵ABC为直角三角形,且∵ACB=90°,∵AB为直径,∵圆心M点的坐标为(﹣3,0);(2)以AP•AN为定值.理由如下:如图1,∵AB为直径,∵∵APB=90°,∵∵APB=∵AON,∵NAO=∵BAP,∵∵APB∵∵AON.∵AN:AB=AO:AP,∵AN•AP=AB•AO=20,所以AP•AN为定值,定值是20;(3)∵AB∵CD,∵OD=OC=4,则D(0,﹣4),易得直线BD的解析式为y=﹣x﹣4,过F点作FG∵x轴于G,如图2,∵FG∵OD,∵∵BFG∵∵BDO,∵=,即===,∵点Q沿线段FB以每秒个单位的速度运动到点B所用时间等于点Q以每秒1个单位的速度运动到G点的时间,∵当AF+FG的值最小时,点Q在整个运动过程中所用时间最少,作∵EBI=∵ABE,BI交y轴于I,作FH∵BI于H,则FH=FG,∵AF+FG=AF+FH,当点A、F、H共线时,AF+FH的值最小,此时AH∵BI,如图2,作DK∵BI,垂足为K,∵BE平分∵ABI,∵DK=DO=4,设DI=m,∵∵DIK=∵BIO,∵∵IDK∵∵IBO,∵===,∵BI=2m,在Rt∵OBI中,82+(4+m)2=(2m)2,解得m1=4(舍去),m2=,∵I(0,﹣),设直线BI的解析式为y=kx+n,把B(﹣8,0),I(0,﹣)代入得,解得,∵直线BI的解析式为y=﹣x﹣,∵AH∵BI,∵直线AH的解析式可设为y=x+q,把A(2,0)代入得+q=0,解得q=﹣,∵直线AH的解析式为y=x﹣,解方程组,解得,∵F(﹣2,﹣3),即当点F的坐标是(﹣2,﹣3)时,点Q在整个运动过程中所用时间最少.1. 如图,在平面直角坐标系中,点()3,3A ,点P 为x 轴上的一个动点,当OP AP 21+最小时,点P 的坐标为___________.[答案]:()0,2P2. 如图,四边形ABCD 是菱形,AB=4,且∠ABC=60°,点M 为对角线BD (不含点B )上的一动点,则BM AM 21+的最小值为___________.[答案]:323. 如图,在平面直角坐标系中,二次函数y =ax 2+bx +c 的图象经过点A (﹣1,0),B (0,﹣),C(2,0),其对称轴与x 轴交于点D .(1)求二次函数的表达式及其顶点坐标;(2)点M 为抛物线的对称轴上的一个动点,若平面内存在点N ,使得以A ,B ,M ,N 为顶点的四边形为菱形,求点M 的坐标;(3)若P 为y 轴上的一个动点,连接PD ,求PB +PD 的最小值.【解答】(1)由题意,解得,∵抛物线解析式为y=x2﹣x﹣,∵y=x2﹣x﹣=(x﹣)2﹣,∵顶点坐标(,﹣);(2)设点M的坐标为(,y).∵A(﹣1,0),B(0,﹣),∵AB2=1+3=4.∵以A为圆心AB为半径画弧与对称轴有两个交点,此时AM=AB,则(+1)2+y2=4,解得y=±,即此时点M的坐标为(,)或(,﹣);∵以B为圆心AB为半径画弧与对称轴有两个交点,此时BM=AB,则()2+(y+)2=4,解得y=﹣+或y=﹣﹣,即此时点M的坐标为(,﹣+)或(,﹣﹣);∵线段AB的垂直平分线与对称轴有一个交点,此时AM=BM,则(+1)2+y2=()2+(y+)2,解得y=﹣,即此时点M的坐标为(,﹣).综上所述,满足条件的点M的坐标为(,)或(,﹣)或(,﹣+)或(,﹣﹣)或(,﹣);(3)如图,连接AB,作DH∵AB于H,交OB于P,此时PB+PD最小.理由:∵OA=1,OB=,∵tan∵ABO==,∵∵ABO=30°,∵PH=PB,∵PB+PD=PH+PD=DH,∵此时PB+PD最短(垂线段最短).在Rt∵ADH中,∵∵AHD=90°,AD=,∵HAD=60°,∵sin60°=,∵DH=,∵PB+PD的最小值为.4. 【问题提出】如图∵,已知海岛A到海岸公路BD的距离为AB的长度,C为公路BD上的酒店,从海岛A到酒店C,先乘船到登陆点D,船速为a,再乘汽车,车速为船速的n倍,点D选在何处时,所用时间最短?【特例分析】若n=2,则时间t=+,当a为定值时,问题转化为:在BC上确定一点D,使得+的值最小.如图∵,过点C做射线CM,使得∵BCM=30°.(1)过点D作DE∵CM,垂足为E,试说明:DE=;(2)请在图∵中画出所用时间最短的登陆点D′.【问题解决】(3)请你仿照“特例分析”中的相关步骤,解决图∵中的问题.(写出具体方案,如相关图形呈现、图形中角所满足的条件、作图的方法等)【综合运用】(4)如图∵,抛物线y=﹣x2+x+3与x轴分别交于A,B两点,与y轴交于点C,E为OB中点,设F为线段BC上一点(不含端点),连接EF.一动点P从E出发,沿线段EF以每秒1个单位的速度运动到F,再沿着线段FC以每秒个单位的速度运动到C后停止.若点P在整个运动过程中用时最少,请求出最少时间和此时点F的坐标.【解答】解:(1)如图∵,∵DE∵CM,∵∵DEC=90°,在Rt∵BCM中,DE=CD sin30°=CD;(2)如图∵过点A作AE′∵CM交BC于点D′,则点D′即为所用时间最短的登陆点;(3)如图∵,过点C作射线CM,使得sin∵BCM=,过点A作AE∵CM,垂足为E交BC于点D,则点D为为所用时间最短的登陆点;(4)由题意得:t==EF+CF,过点C作CD∵x轴交抛物线于点D,过点F作GF∵CD交CD于点G,∵ACB=∵DCB=α,sin∵ABC==,则EF=CF,EF+CF=EF+FH,故当E、F、H三点共线且与CD垂直时,t最小,将点B、C坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+3,点E是OB中点,其坐标为:(3,0),当x=3时,对于y=﹣x+3,y=,点F坐标为(3,),t==EF+CF,当H、F、E三点共线时,EF+FH=OC=3,即:最小时间为3秒.5. 如图,∵ABC是等边三角形.(1)如图1,AH∵BC于H,点P从A点出发,沿高线AH向下移动,以CP为边在CP的下方作等边三角形CPQ,连接BQ.求∵CBQ的度数;(2)如图2,若点D为∵ABC内任意一点,连接DA,DB,DC.证明:以DA,DB,DC为边一定能组成一个三角形;(3)在(1)的条件下,在P点的移动过程中,设x=AP+2PC,点Q的运动路径长度为y,当x取最小值时,写出x,y的关系,并说明理由.【解答】(1)解:如图1中∵∵ABC是等边三角形,AH∵BC,∵∵CAP=∵BAC=30°,CA=CB,∵ACB=60°,∵∵PCQ是等边三角形,∵CP=CQ,∵PCQ=∵ACB=60°,∵∵ACP=∵BCQ,∵∵ACP∵∵BCQ,∵∵CBQ=∵CAP=30°.(2)证明:如图2中,将∵ADC绕当A顺时针旋转60°得到∵ABQ,连接DQ.∵∵ACD∵∵ABQ,∵AQ=AD,CD=BQ,∵∵DAQ=60°,∵∵ADQ是等边三角形,∵AD=DQ,∵DA,DB,DC为边一定能组成一个三角形(图中∵BDQ).(3)如图3中,作PE∵AB于E,CF∵AB于F交AH于G.∵PE=P A,∵P A+2PC=2(P A+PC)=2(PE+PC),根据垂线段最短可知,当E与F重合,P与G重合时,P A+2PC的值最小,最小值为2CF.由(1)可知∵ACP∵∵BCQ,可得BQ=P A,∵P A=BQ=AG=CG=y,FG=y,∵x=2(y+y),∵y=x.6. 如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与∵ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F 的坐标是多少时,点M在整个运动过程中用时最少?【解答】解:(1)抛物线y=(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∵A(﹣2,0),B(4,0).∵直线y=﹣x+b经过点B(4,0),∵﹣×4+b=0,解得b=,∵直线BD解析式为:y=﹣x+.当x=﹣5时,y=3,∵D(﹣5,3).∵点D(﹣5,3)在抛物线y=(x+2)(x﹣4)上,∵(﹣5+2)(﹣5﹣4)=3,∵k=.∵抛物线的函数表达式为:y=(x+2)(x﹣4).即y=x2﹣x﹣.(2)由抛物线解析式,令x=0,得y=﹣k,∵C(0,﹣k),OC=k.因为点P在第一象限内的抛物线上,所以∵ABP为钝角.因此若两个三角形相似,只可能是∵ABC∵∵APB或∵ABC∵∵P AB.∵若∵ABC∵∵APB,则有∵BAC=∵P AB,如答图2﹣1所示.设P(x,y),过点P作PN∵x轴于点N,则ON=x,PN=y.tan∵BAC=tan∵P AB,即:,∵y=x+k.∵P(x,x+k),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)=x+k,整理得:x2﹣6x﹣16=0,解得:x=8或x=﹣2(与点A重合,舍去),∵P(8,5k).∵∵ABC∵∵APB,∵,即,解得:k=.∵若∵ABC∵∵P AB,则有∵ABC=∵P AB,如答图2﹣2所示.设P(x,y),过点P作PN∵x轴于点N,则ON=x,PN=y.tan∵ABC=tan∵P AB,即:=,∵y=x+.∵P(x,x+),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)=x+,整理得:x2﹣4x﹣12=0,解得:x=6或x=﹣2(与点A重合,舍去),∵P(6,2k).∵∵ABC∵∵P AB,=,∵=,解得k=±,∵k>0,∵k=,综上所述,k=或k=.(3)方法一:如答图3,由(1)知:D(﹣5,3),如答图2﹣2,过点D作DN∵x轴于点N,则DN=3,ON=5,BN=4+5=9,∵tan∵DBA===,∵∵DBA=30°.过点D作DK∵x轴,则∵KDF=∵DBA=30°.过点F作FG∵DK于点G,则FG=DF.由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,∵t=AF+FG,即运动的时间值等于折线AF+FG的长度值.由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段.过点A作AH∵DK于点H,则t最小=AH,AH与直线BD的交点,即为所求之F点.∵A点横坐标为﹣2,直线BD解析式为:y=﹣x+,∵y=﹣×(﹣2)+=2,∵F(﹣2,2).综上所述,当点F坐标为(﹣2,2)时,点M在整个运动过程中用时最少.方法二:作DK∵AB,AH∵DK,AH交直线BD于点F,∵∵DBA=30°,∵∵BDH=30°,∵FH=DF×sin30°=,∵当且仅当AH∵DK时,AF+FH最小,点M在整个运动中用时为:t=,∵l BD:y=﹣x+,∵F X=A X=﹣2,∵F(﹣2,).7. 已如二次函数y=﹣x2+2x+3的图象和x轴交于点A、B(点A在点B的左侧),与y轴交于点C,(1)如图1,P是直线BC上方抛物线上一动点(不与B、C重合)过P作PQ∵x轴交直线BC于Q,求线段PQ的最大值;(2)如图2,点G为线段OC上一动点,求BG+CG的最小值及此时点G的坐标;(3)如图3,在(2)的条件下,M为直线BG上一动点,N为x轴上一动点,连接AM,MN,求AM+MN的最小值.【解答】解:(1)令y=0,即:﹣x2+2x+3=0,解得:x=3或﹣1,即点A、B的坐标分比为(﹣1,0)、(3,0),令x=0,则y=3,则点C的坐标为(0,3),直线BC过点C(0,3),则直线表达式为:y=kx+3,将点B坐标代入上式得:0=3k+3,解得:k=﹣1,则直线BC的表达式为:y=﹣x+3,设点P的坐标为(m,n),n=﹣m2+2m+3,则点Q坐标为(3﹣n,n),则PQ=m﹣(3﹣n)=﹣m2+3m,∵a=﹣1<0,则PQ有最大值,当m=﹣=,PQ取得最大值为;(2)过直线CG作∵GCH=α,使CH∵GH,当sinα=时,HG=GC,则BG+CG的最小值即为HG+GB的最小值,当B、H、G三点共线时,HG+GB最小,则∵GBO=α,∵sinα=,则cosα=,tanα=,OG=OB•tanα=3×=,即点G(0,),CG=3﹣=,而BG=,BG+CG的最小值为:;(3)作点A关于直线BG的对称点A′,过A′作A′N∵x轴,交BG于点M,交x轴于点N,则此时AM+MN取得最小值,即为A′N的长度,则:∵GBA=∵AA′N=∵OGB=α,AA′=2AB sin∵ABG=2×4×sinα=,A′N=A′A cosα=×=,即:AM+MN的最小值为.8. 如图,在Rt∵ABC中,∵ACB=90°,∵B=30°,AB=4,点D、F分别是边AB,BC上的动点,连接CD,过点A作AE∵CD交BC于点E,垂足为G,连接GF,则GF+FB的最小值是()A.B.C.D.【解答】解:延长AC到点P,使CP=AC,连接BP,过点F作FH∵BP于点H,取AC中点O,连接OG,过点O作OQ∵BP于点Q,∵∵ACB=90°,∵ABC=30°,AB=4,∵AC=CP=2,BP=AB=4∵∵ABP是等边三角形,∵∵FBH=30°∵Rt∵FHB 中,FH =FB∵当G 、F 、H 在同一直线上时,GF +FB =GF +FH =GH 取得最小值 ∵AE ∵CD 于点G ,∵∵AGC =90° ∵O 为AC 中点,∵OA =OC =OG =AC∵A 、C 、G 三点共圆,圆心为O ,即点G 在∵O 上运动 ∵当点G 运动到OQ 上时,GH 取得最小值 ∵Rt∵OPQ 中,∵P =60°,OP =3,sin∵P = ∵OQ =OP =,∵GH 最小值为故选:C .9. 抛物线2623663y x x =--+与x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C .点P 是直线AC 上方抛物线上一点,PF ⊥x 轴于点F ,PF 与线段AC 交于点E ;将线段OB 沿x 轴左右平移,线段OB的对应线段是O 1B 1,当12PE EC +的值最大时,求四边形PO 1B 1C 周长的最小值,并求出对应的点O 1的坐标.【分析】根据抛物线解析式得A ()32,0-、B ()2,0、C ()0,6,直线AC 的解析式为:363y x =+,可知AC 与x 轴夹角为30°. 根据题意考虑,P 在何处时,PE +2EC取到最大值. 过点E 作EH ⊥y 轴交y 轴于H 点,则∠CEH =30°,故CH =2EC, 问题转化为PE +CH 何时取到最小值.考虑到PE 于CH 并无公共端点,故用代数法计算,设2623,663P m m m ⎛⎫--+ ⎪ ⎪⎝⎭,则3,63E m m ⎛⎫+ ⎪ ⎪⎝⎭,30,63H m ⎛⎫+ ⎪ ⎪⎝⎭,2636PE m m =--,E B 1O 1P A BCFyx O H O xyFC BA P O 1B 1EC 1O xyF CBAP O 1B 1ECH=,22=PE CH m+=+∵当PE+EC的值最大时,x=﹣2,此时P(﹣2,),∵PC=2,∵O1B1=OB=,∵要使四边形PO1B1C周长的最小,即PO1+B1C的值最小,如图2,将点P向右平移个单位长度得点P1(﹣,),连接P1B1,则PO1=P1B1,再作点P1关于x轴的对称点P2(﹣,﹣),则P1B1=P2B1,∵PO1+B1C=P2B1+B1C,∵连接P2C与x轴的交点即为使PO1+B1C的值最小时的点B1,∵B1(﹣,0),将B1向左平移个单位长度即得点O1,此时PO1+B1C=P2C==,对应的点O1的坐标为(﹣,0),∵四边形PO1B1C周长的最小值为+3.。
最值模型之胡不归(学生版)-中考数学专题解析

最值模型之胡不归“PA+k·PB”型的最值问题是近几年中考考查的热点更是难点。
1.当k值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“饮马问题”模型来处理,即可以转化为轴对称问题来处理(见专题08);2.当k取任意不为1的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。
此类问题的处理通常以动点P所在图像的不同来分类,一般分为2类研究。
即点P在直线上运动和点P 在圆上运动。
(1)其中点P在直线上运动的类型称之为“胡不归”问题;(2)点P在圆周上运动的类型称之为“阿氏圆”问题(见专题11)。
胡不归:【模型建立】如图1:P是直线BC上的一动点,求PA+k·PB的最小值。
【作法】1.作∠CBE=α,使sinα=k,则PD=k·OP(图2)2.当AD最短,AD⊥BE时,则P为要求点。
(图3)AD长即为PA+k·PB的最小值.简记:胡不归,正弦作个角,作高求长即可.特别提醒:当k>1时,kAP+BP=k AP+1k BP按常规模型算即可1∠AOB=30°,OM=2,D为OB上动点,求MD+12OD的最小值.2(1)【问题探究】如图1,点E是等边△ABC高AD上的一定点,请在AB上找一点F,使EF=12AE,并说明理由;(2)【问题解决】如图2,在△ACD中,CO⊥AD,垂足为O,若AD=32,AC=2,OC=3,点P在OC上,求DP+12PC的最小值.(3)【问题拓展】如图3,△ABC中,AB=AC=10,tan∠A=2,BE⊥AC于点E,D是线段BE上的一个动点,求CD+ 55BD的最小值.1.实战训练1一.选择题(共8小题)1如图,在△ABC 中,P 为平面内的一点,连接AP 、PB 、PC ,若∠ACB =30°,AC =8,BC =10,则4PA +2PB +23PC 的最小值是()A.489B.36C.410+25+67D.1610-102如图,△ABC 为等边三角形,BD 平分∠ABC ,AB =2,点E 为BD 上动点,连接AE ,则AE +12BE 的最小值为()A.1B.2C.3D.23如图,在平面直角坐标系中,抛物线y =-49x 2+83x 与x 轴的正半轴交于点A ,B 点为抛物线的顶点,C 点为该抛物线对称轴上一点,则3BC +5AC 的最小值为()A.24B.25C.30D.364如图,在等边△ABC 中,AB =6,点E 为AC 中点,D 是BE 上的一个动点,则CD +12BD 的最小值是()A.3B.33C.6D.3+35如图,在菱形ABCD中,AB=AC=6,对角线AC、BD相交于点O,点M在线段AC上,且AM= 2,点P是线段BD上的一个动点,则MP+12PB的最小值是()A.2B.23C.4D.436如图,在Rt△ABC中,∠ACB=90°,∠A=30°,则AB=2BC.请在这一结论的基础上继续思考:若AC=2,点D是AB的中点,P为边CD上一动点,则AP+12CP的最小值为()A.1B.2C.3D.27如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD +55BD的最小值是()A.25B.45C.53D.108如图,在菱形ABCD中,∠ABC=60°,E是边BC的中点,P是对角线BD上的一个动点,连接AE,AP,若AP+12BP的最小值恰好等于图中某条线段的长,则这条线段是()A.ABB.AEC.BDD.BE2二.填空题(共9小题)1如图,AC垂直平分线段BD,相交于点O,且OB=OC,∠BAD=120°.(1)∠ABC=.(2)E为BD边上的一个动点,BC=6,当AE+12BE最小时BE=2 .2如图,在△ABC中,∠A=90°,∠C=30°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为.3如图,在平面直角坐标系中,直线y=-x+4的图象分别与y轴和x轴交于点A和点B.若定点P的坐标为(0,63),点Q是y轴上任意一点,则12PQ+QB的最小值为3 .4如图,直线y=x-3分别交x轴、y轴于B、A两点,点C(0,1)在y轴上,点P在x轴上运动,则2PC+PB的最小值为.5如图,抛物线y=x2-2x-3与x轴交于A、B两点,过B的直线交抛物线于E,且tan∠EBA=4 3,有一只蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点处觅食,则蚂蚁从A到E的最短时间是 649 s.6如图,在平面直角坐标系中,二次函数y=x2-2x+c的图象与x轴交于A、C两点,与y轴交于点B (0,-3),若P是x轴上一动点,点D(0,1)在y轴上,连接PD,则C点的坐标是,2PD+PC的最小值是.7如图,四边形ABCD是菱形,AB=4,且∠BAD=30°,P为对角线AC(不含A点)上任意一点,则DP+12AP的最小值为.8如图,四边形ABCD中,AB=62,∠ABC=45°,E是BD上一点,若∠ABD=15°,则AE+12BE的最小值为.9如图,矩形OABC中,点A、C分别在x轴,y轴的正半轴上,且OA=3,AB=1,点P为线段OA上一动点,则12OP+PB最小值为.3三.解答题(共5小题)1如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(-1,0),B(0,-3),C(2,0),其对称轴与x轴交于点D.(1)求二次函数的表达式及其顶点坐标;(2)点M为抛物线的对称轴上的一个动点,若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,求点M的坐标;(3)若P为y轴上的一个动点,连接PD,求12PB+PD的最小值.2如图抛物线y=ax2+bx-4与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C.(1)求抛物线解析式.(2)连接BC,点P为BC下方上一动点,连接BP,CP.当△PBC的面积最大时,求点P的坐标和△PBC 面积的最大值.(3)点N为线段OC上一点,连接AN,求AN+12CN的最小值.3如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c与x轴交于点A、B两点,其中A(1,0),与y轴交于点C(0,3).(1)求抛物线解析式;(2)如图1,过点B作x轴垂线,在该垂线上取点P,使得△PBC与△ABC相似,请求出点P坐标;(3)如图2,在线段OB上取一点M,连接CM,请求出CM+12BM的最小值.4(1)【问题探究】如图1,点E是等边△ABC高AD上的一定点,请在AB上找一点F,使EF=12AE,并说明理由;(2)【问题解决】如图2,在△ACD中,CO⊥AD,垂足为O,若AD=32,AC=2,OC=3,点P在OC上,求DP+12PC的最小值.(3)【问题拓展】如图3,△ABC中,AB=AC=10,tan∠A=2,BE⊥AC于点E,D是线段BE上的一个动点,求CD+ 55BD的最小值.。
2020年中考线段最值问题之胡不归问题

初中线段最值问题之---胡不归问题【引 入】胡不归问题是一个非常古老的数学问题,曾经是历史上非常著名的“难题”。
近年来陆续成为各地中考模拟题的小热门考点,学生做起题来失分非常高或是无从下手,今天我们一块来探究下。
【实际背景】话说,从前有一小伙子外出务工,某天不幸得知老父亲病危的消息,便立即赶路回家.小伙子略懂数学常识,考虑到“两点之间线段最短”的知识,就走布满沙石的路直线路径,而忽视了走折线虽然路程多但速度快的实际情况,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”这个问题引起了人们的思索,小伙子能否节省路上时间提前到家?如果可以,他应该选择一条怎样的路线呢?这就是流传千百年的“胡不归问题。
【模型建立】将上述问题归结为如下图(1)数学模型即是:如图,A 是出发点,B 是目的地,直线AC 是一条驿道,而驿道靠目的地一侧全是砂土,人们走在不同的道路上的速度不同,设走在驿站AC 的速度是m 米/秒,走在砂石道路上的速度是n 米/秒;1、如果小伙子直接从A 到B ,则他需要的时间就是:nAB 秒; 2、如果小伙子先走一段路程的驿站,即先走到D 点,在沿着DB 回到家,则他需要的时间就是:(nBD m AD +)秒。
现在问题就是n BD m AD +的结果有没有可能比n AB 更小呢? 【宏观分析】虽然沿着折线A -D -B 行走,路程变成长了,但是折线AD 的速度更快,所需要的时间更少;沿着AB 行走,虽然路程变短,但是速度变慢,所需要的时间更多,所以: n BD m AD +完全有可能比nAB 更小。
(图1)【理论分析】小伙子所需要的时间为:nBD m AD +,对它进行变形处理如下: )(1BD AD mn n n BD m AD +=+, 由于n m ,均为题目给定的定值,所以求BD AD mn +的值即可。
由于B A ,均是动点,而D 是动点,故转变为两条折线段之和,故想办法将两条折线段AD mn 和BD 拉直时,其值最小,因此需要在图中构造出一条线段,使得其长度刚好为AD m n ,如下图(2)所示:(图2)在直线AC 的一侧作射线AM ,过D 点作AM 的垂线'DH ,由ADDH 'sin =α可知, 线段AD DH ⋅=αsin ',令mn =αsin , ∴此时BD AD mn +=BD DH BD AD +=+⋅'sin α, 故由点到直线的距离垂线段最短可知:过B 点作AM 的垂线交AM 于点0H ,0BH 即为最小值。
2020中考 压轴 胡不归问题

【胡不归问题】模型分析:如图,在△ACE 中,CA=CE,∠CAE=30°,⊙O 经过点C,且圆的直径AB 在线段AE 上.设点 D1CD 的最小值.是线段AC 上任意一点(不含端点),连接OD,当AB=8 时,求OD +2例2(2019长沙)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动5BD的最小值是 .点,则CD+5如图,抛物线m mx x y 322+-=与x 轴交于A ,B 两点,与y 轴交于点C (0,-3). (1)求该抛物线的解析式;(2)点D 为抛物线上的一点,且在第二象限内,连接AC ,若∠DAB=∠AC0,求点D 的坐标;(3)若E 为线段OC 上一动点,试求EC AE 22+的最小值.例4 (2017广州24题)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=5cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.练习1 如图,在四边形ABCD 中,∠ABC=∠BCD=90°,∠BAD=60°,AB=4,AD=AB+CD ,DE 平分∠ADC ,与BC 交于点E ,连接AE. 若M 是AE 上的动点,求BM AM 21的最小值.练习2 (2018黄埔区 一模24题-删减)如图,在△ABC 中,AB=AC=m ,∠ABC=30°.(1)利用尺规作⊙O ,使⊙O 经过点A 和点B ,圆心O 在线段BC 上,该圆与BC 的另一交点为D (保留作图痕迹,不写作法).(2)设F 是线段AB 上任意一点(不与A ,B 重合),连接OF ,当AF+2OF 的最小值为16时,求m 的值.练习3 (2019•恩施州)如图,抛物线y=ax 2-2ax+c 的图象经过点C (0,-2),顶点D 的坐标为(1,-38),与x 轴交于A 、B 两点. (1)求抛物线的解析式.(2)连接AC ,E 为直线AC 上一点,当△AOC ∽△AEB 时,求点E 的坐标和AB AE 的值. (3)点F (0,y )是y 轴上一动点,当y 为何值时,55FC+BF 的值最小.并求出这个最小值. (4)点C 关于x 轴的对称点为H ,当55FC+BF 取最小值时,在抛物线的对称轴上是否存在点Q ,使△QHF 是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.。
初中数学中考复习专题 最短路径问题 (24张PPT)

【例题分层探究】 问题 1:边 CD 是定值,此问题可转化为计算 CE+DE 的最小值问题. 问题 2:线段 CD,EF 均为定值,此问题可借助轴对称 求最短路径的方法计算出 DE+CF 的最小值.
初中数学中考复习专题 最短路径问题 (24张PPT)
初中数学中考复习专题 最短路径问题 (24张PPT) 初中数学中考复习专题 最短路径问题 (24张PPT)
∵C(0,-5) ∴C′(0,5) ∴直线C′D为y=-7x+5
D(2,-9)
ME
x
AO
B
∴y=0 , 即-7x+5=0 ∴m=5 ∕ 7
∴x=5 ∕ 7
C D
初中数学中考复习专题 最短路径问题 (24张PPT)
初中数学中考复习专题 最短路径问题 (24张PPT)
中考链接
24 如图 Z8-3,在平面直角坐标系中,矩形 OACB 的
A
B l
在直线l上求一 点P,使 PA+PB值最小
作B关于l 的对称点 B',连A B'与l交 点即为P
图形
原理
两点之间线段 最短
PA+PB最小值 为AB
原理
两点之间线段 最短
PA+PB最小值 为AB
问题3
作法
l1
P
分别作点P关于
l2
两直线的对称
在直线l1、l2上 点P'和P",连 分别求点M P'P"与两直线
AM+MN+NB的 值最小.
作点A关于l2的 对称点A',作 点B关于l1的对 称点B',连A 'B'交l2于M
,交l1于N.
图形
原理
两点之间线段 最短.
AM+MN+NB 的最小值为线 段A'B'的
中考数学最值—胡不归问题(解析+例题)

中考数学最值——胡不归问题(点在直线上运动)(PA+k·PB型最值)【历史典故】从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路。
由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径A→B(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭。
邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?…”。
这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”。
【知识储备】①三角形三边关系:两边之和大于第三边;两边之差小于第三边。
②两点之间线段最短。
③连接直线外一点和直线上各点的所有线段中,垂线段最短。
【模型分析】①条件:已知A、B为定点,P为射线AC上一动点。
②问题:P在何处时,BP+nm AP最短(nm<1)。
③方法:第一步在AC的一侧,PB的异侧构造∠CAE=α,使得sinα=nm 第二步做BH⊥AE,交AC于P,点P就是所求位置,BH就是其最小值。
【模型分析】【问题提出】如图①,已知海岛A到海岸公路BD的距离为AB的长度,C为公路BD上的酒店,从海岛A到酒店C,先乘船到登陆点D,船速为a,再乘汽车,车速为船速的n倍,点D 选在何处时,所用时间最短?个运动过程中用时最少,请求出最少时间和此时点F的坐标。
【巩固训练】练习1:如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,M为对角线BD(不含B点)上BM的最小值为_____。
任意一点,则AM+12练习2:如图,等腰ΔABC中,AB=AC=3,BC=2,BC边上的高为A0,点D为射线A0上一点,一动点P从点A出发,沿AD-DC运动,动点P在AD上运动速度3个单位每秒,动点P在CD上运动的速度为1个单位每秒,则当 AD= 时,运动时间最短为秒。
中考数学专题复习几何最值之胡不归知识精讲

中考数学专题复习几何最值之胡不归知识精讲从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家。
由于着急只考虑到了"两点之间线段最短",虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭邻居告诉小伙子说,老人弥留之际不断念叨着"胡不归?胡不归?"看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.将这个问题数学化,我们不妨设总时间为,则,由可得,提取一个得,若想总的时间最少,就要使得最小,如图,过定点A在驿道下方作射线AE,夹角为,且,作DG⊥AE于点G,则,将转化为DG+DB,再过点B作BH⊥AE于点H,,则就是我们要找的点,此时DG+DB的最小值为BH,,综上,所需时间的最小值为,B路线回家,或许还能见到父亲的最后一面.解决此类问题的一般方法:第一步:将所求的线段和改写成的形式;第二步:构造一个角,使得;第三步:过目的地作所构造的角的一边的垂线,该垂线段的长度就是所求的最小值;第四步:计算.例1:如图,P为正方形ABCD对角线BD上一动点,若AB=2,求AP+BP+CP的最小值.【解析】连接AC,作∠DBE=∠30º,交AC于点E,过点A作AF⊥BF,垂足为F,如图所示:在Rt△PBF中,∵∠PBF=30º,的最小值即为线段AF的长。
在△ABF中,∵∠BAE=45º,∠ABE=75º,∴∠AEB=60º,解得,∴AP+BP+CP.例2:如图,矩形ABCD的两条对角线相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连结OP,一动点Q从点O出发,以1个单位每秒的速度沿线段OP匀速运动到点P,再以1.5个单位每秒的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.【解答】(1)见解析;(2【解析】(1)证明:∵四边形ABCD是矩形,∴AC=BD,∵AC与BD交于点O,且△COD、△CED关于CD对称,∴DO=OC,DO=ED,OC=CE,∴DO=OC=CE=ED,∴四边形OCED是菱形;(2)①设AE交CD于点K,∵四边形OCED是菱形,∴DE∥AC,DE=OC=OA,∴,又∵AB=CD=6,∴DK=2,CK=4,在Rt△ADK,。
中考数学经典几何模型之胡不归最值模型(解析版)

中考数学经典几何模型之胡不归最值模型(解析版)在数学中,经典几何模型是考试中经常出现的题型之一。
其中,胡不归最值模型是一种常见的最值问题。
这类问题通常涉及到形如“PA+kP”的式子,可以分为两类问题:胡不归问题和阿氏圆问题。
胡不归问题的故事源于一个少年外出求学,得知父亲病危后,他立即赶回家。
虽然他所在的位置到家的路上有一片砂石地,但他仍然义无反顾地走了这条路。
当他到家时,父亲已经去世了,他深感悔恨并痛哭流涕。
邻居告诉他,父亲在临终前一直念叨着“胡不归?胡不归?……”(“胡”同“何”)。
这个故事启发我们思考如何求解“PA+kP”型问题中的最值。
以胡不归问题为例,我们需要求解一个动点P在直线MN 外的运动速度为V1,在直线MN上运动的速度为V2,且V1<V2,A、B为定点,点C在直线MN上,确定点C的位置使得AC+BC的值最小,即求BC+kAC的最小值。
为了解决这个问题,我们可以构造射线AD使得sin∠DAN=k,即CH=kAC。
这样,我们可以将问题转化为求BC+CH最小值,过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小。
在解决“PA+kP”型问题时,关键是构造与kP相等的线段,将“PA+kP”型问题转化为“PA+PC”型。
而这里的P必须是一条方向不变的线段,方能构造定角利用三角函数得到kP的等线段。
举个例子,如图所示,在△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值为5.这个问题的关键在于处理“CD+BD”的式子,考虑tanA=2,△ABE三边之比为1:2:5,sin ABE⊥AB交AB于H点,则DH=BD/5.通过构造HD,我们可以将问题转化为求CD+CH的最小值,其中CH=kAC,k=sin∠DAN=BD/5.过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即CD+BD的最小值为5.综上所述,胡不归最值模型是一类常见的最值问题。
几何最值之胡不归知识精讲-冲刺2020年中考几何专项复习

几何最值之胡不归知识精讲
从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家。
由于着急只考虑到了"两点之间线段最短",虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭邻居告诉小伙子说,老人弥留之际不断念叨着"胡不归?胡不归?"
看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.
将这个问题数学化,我们不妨设总时间为,则,
由可得,提取一个得,
若想总的时间最少,就要使得最小,
如图,过定点A在驿道下方作射线AE,夹角为,且,
作DG⊥AE于点G,则,
将转化为DG+DB,
再过点B作BH⊥AE于点H DG+DB的最小值
为BH,
,
综上,所需时间的最小值为,
B路线回家,或许还能见到父亲的最后一面.
解决此类问题的一般方法:
第一步:将所求的线段和改写成的形式;
第二步:构造一个角,使得;
第三步:过目的地作所构造的角的一边的垂线,该垂线段的长度就是所求的最小值;
第四步:计算.
例1:如图,P为正方形ABCD对角线BD上一动点,若AB=2,求AP+BP+CP的最小值.
【解析】连接AC,作∠DBE=∠30º,交AC于点E,过点A作AF⊥BF,垂足为F,如图所示:。
2020中考专题9——最值问题之胡不归

2020中考专题9——最值问题之胡不归班级姓名.【模型解析】◆条件:A、B 为定点,P 为射线AC 上一个动点◆问题:点P 在何处,AP m n BP +(1<mn)最短。
◆方法:第一步.在AC 的一侧,PB 的异侧,构造∠CAE=α,使得mn=αsin ;第二步.作BH ⊥AE 于点E,交AC 于点P,此时点P 就是所求位置,BH 就是AP mnBP +的最小值.【例题分析】例1.【问题提出】如图①,已知海岛A 到海岸公路BD 的距离为AB ,C 为公路BD 上的酒店,从海岛A 到酒店C ,先乘船到登陆点D ,船速为a ,再乘汽车,车速为船速的n 倍,点D 选在何处时,所用时间最短?【特例分析】若n =2,则时间t =aCDa AD 2+,当a 为定值时,问题转化为:在BC 上确定一点D ,使得2CDAD +的值最小.如图②,过点C 做射线CM ,使得∠BCM =30°.(1)过点D 作DE ⊥CM ,垂足为E ,试说明:2CDDE =;(2)请在图②中画出所用时间最短的登陆点D ′,并说明理由.【问题解决】(3)请你仿照“特例分析”中的相关步骤,解决图①中的问题(写出具体方案,如相关图形呈现、图形中角所满足的条件、作图的方法等).【模型运用】(4)如图③,海面上一标志A 到海岸BC 的距离AB =300m ,BC =300m .救生员在C 点处发现标志A 处有人求救,立刻前去营救,若救生员在岸上跑的速度都是6m /s ,在海中游泳的速度都是2m /s ,求救生员从C 点出发到达A 处的最短时间.2.(2019•南通)如图,▱ABCD 中,∠DAB =60°,AB =6,BC =2,P 为边CD 上的一动点,则PB +23PD 的最小值等于.例2图例3图例3.(2019•长沙)如图,△ABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD +55BD 的最小值是()A .2B .4C .5D .10【巩固训练】1.(2018台州仙居县一模)如图1,菱形ABCD 中,∠ABC =60°,边长为3,P 是对角线BD 上的一个动点,则PC BP +21的最小值是()A.3B.233 C.3 D.23433+图1图2图32.(2015无锡二模)如图2,菱形ABCD 的对角线AC 上有一动点P ,BC=6,∠ABC=150°,则求PA+PB+PD的最小值为.3.如图3,△ABC 在直角坐标系中,AB=AC,A(0,22),C(1,0),D 为射线AO 上一点,一动点P 从A 出发,运动路径为A →D →C,点P 在AD 上的运动速度是在CD 上的3倍,要使整个运动时间最少,则点D 的坐标应为()A.(0,22)B.(0,22) C.(0,32) D.(0,42)图4图55.(2015内江)如图5,在△ACE 中,CA=CE ,∠CAE=30°,⊙O 经过点C ,且圆的直径AB 在线段AE 上.设点D 是线段AC 上任意一点(不含端点),连接OD ,当AB=8时,则21CD+OD 的最小值.中,BC=2,∠B=30°,求c bx ++的图象经过点A(-1,0)、图78.(2015日照)如图8,抛物线y=21x 2+mx+n 与直线y=-21x+3交于A,B 两点,交x 轴与D,C 两点,连接AC,BC,已知A(0,3),C(3,0).(1)求抛物线的解析式;(2)求tan∠BAC 的值;(3)设E 为线段AC 上一点(不含端点),连接DE,一动点M 从点D 出发,沿线段DE 以每秒一个单位速度运动到E 点,再沿线段EA 以每秒2个单位的速度运动到A 后停止,当点E 的坐标是多少时,点M 在整个运动中用时最少?图82020中考专题9——最值问题之胡不归答案例1.解:(1)如图①,∵DE ⊥CM ,∴∠DEC =90°,∴在Rt △BCM 中,DE =CD •sin30°,∴DE =.(2)如图①过点A 作AE ⊥CM 交CB 于点D ',则D '点即为所用时间最短的登陆点.理由如下:由第(1)问可知,D 'E '=.AD '+最短,即为AD '+D 'E ′最短.由直线外一点与这条直线上点的所有连线段中,垂线段最短.可知此时D '点即为所求.(3)如图②,过点C 做射线CM ,使得sin ∠BCM =n1,过点A 作AE ⊥CM ,垂足为E ,交CB 于点D ,则D 即为所用时间最短的登陆点.(4)∵救生员在岸上跑的速度都是6m /s ,在海中游泳的速度都是2m /s ,∴此时sin ∠BCM =,可得sin ∠DAB =,∴在Rt △ADB 中,AB =300,AD =225,DB =75,CD =300﹣75.∴时间为+=(50+100)s .例2.解:如图,过点P 作PE ⊥AD ,交AD 的延长线于点E ,∵AB ∥CD ∴∠EDP =∠DAB =60°,∴sin ∠EDP =∴EP =PD∴PB+PD=PB+PE∴当点B,点P,点E三点共线且BE⊥AD时,PB+PE有最小值,即最小值为BE,∵sin∠A==∴BE=3故答案为3例3.解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tan A==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.【巩固训练】答案1.解:如图作PM⊥AB于M,CH⊥AB于H.∵四边形ABCD 是菱形,∴∠PBM =∠ABC =30°,∴PM =PB ,∴PB +PC =PC +PM ,根据垂线段最短可知,CP +PM 的最小值为CH 的长,在Rt △CBH 中,CH =BC •sin60°=,∴PB +PC 的最小值为,故选:B .2.26 3.D4.964 5.32 6.327.【解答】解:(1)由题意解得,∴抛物线解析式为y =x 2﹣x ﹣,∵y =x 2﹣x ﹣=(x ﹣)2﹣,∴顶点坐标(,﹣).(2)如图1中,连接AB ,作DH ⊥AB 于H ,交OB 于P ,此时PB +PD 最小.理由:∵OA =1,OB =,∴tan ∠ABO ==,∴∠ABO =30°,∴PH =PB ,∴PB +PD =PH +PD =DH ,∴此时PB +PD 最短(垂线段最短).在Rt △ADH 中,∵∠AHD =90°,AD =,∠HAD =60°,∴sin60°=,∴DH =,∴PB +PD 的最小值为.故答案为.8.解:(Ⅰ)把A (0,3),C (3,0)代入y =x 2+mx +n ,得,解得:.∴抛物线的解析式为y=x2﹣x+3联立,解得:或,∴点B的坐标为(4,1).如图1.∵C(3,0),B(4,1),A(0,3),∴AB2=20,BC2=2,AC2=18,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴tan∠BAC===;(2)如图,过A作射线AF∥x轴,过D作射线DF∥y轴,DF与AC交于点E.∵A(0,3),C(3,0),∴l AC:y=﹣x+3.∵OA=OC,∠AOC=90°,∴∠ACO=45°,∵AF∥OC,∴∠FAE=45°.∴EF=AE•sin45°=.∴当且仅当AF⊥DF时,DE+EF取得最小值,点M在整个运动中用时最少为:t=+=DE+EF,∵抛物线的解析式为y=x2﹣x+3,且C(3,0),∴可求得D点坐标为(2,0)则E点横坐标为2,将x=2代入l AC:y=﹣x+3.,得y=1.所以E(2,1).9.(1)证明:∵四边形ABCD是矩形.∴OD=OB=OC=OA,∵△EDC和△ODC关于CD对称,∴DE=DO,CE=CO,∴DE=EC=CO=OD,∴四边形CODE是菱形.(2)①设AE交CD于K.∵四边形CODE是菱形,∴DE∥AC,DE=OC=OA,∴==∵AB=CD=6,∴DK=2,CK=4,在Rt△ADK中,AK===3,∴sin∠DAE==,②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,∵点Q的运动时间t=+=OP+AP=OP+PF,∴当O、P、F共线时,OP+PF的值最小,此时OF是△ACD的中位线,∴OF=CD=3.AF=AD=,PF=DK=1,∴AP==,∴当点Q沿上述路线运动到点A所需要的时间最短时,AP的长为cm,点Q走完全程所需的时间为3s.。
中考数学经典几何模型之胡不归最值模型(解析版)

中考数学经典几何模型之胡不归最值模型名师点睛 拨开云雾 开门见山在前面的最值问题中往往都是求某个线段最值或者形如P A +PB 最值,除此之外我们还可能会遇上形如“P A +kP ”这样的式子的最值,此类式子一般可以分为两类问题:(1)胡不归问题;(2)阿氏圆. 【故事介绍】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”)而如果先沿着驿道AC 先走一段,再走砂石地,会不会更早些到家?2驿道【模型建立】如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BCV V +的值最小. 2M【问题分析】121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =,即求BC +kAC 的最小值. 【问题解决】构造射线AD 使得sin ∠DAN =k ,即CHk AC=,CH =kAC .M将问题转化为求BC+CH最小值,过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.M【模型总结】在求形如“P A+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“P A+kPB”型问题转化为“P A+PC”型.而这里的PB必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB的等线段.典题探究启迪思维探究重点例题1. 如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD的最小值是_______.AB CDEHEDCBA AB CDEH【分析】本题关键在于处理”,考虑tan A=2,△ABE三边之比为1:2sin∠,故作DH⊥AB 交AB 于H 点,则55DH BD =.问题转化为CD +DH 最小值,故C 、D 、H 共线时值最小,此时45CD DH CH BE +===.【小结】本题简单在于题目已经将BA 线作出来,只需分析角度的三角函数值,作出垂线DH ,即可解决问题,若稍作改变,将图形改造如下:则需自行构造α,如下图,这一步正是解决“胡不归”问题关键所在.αsin α=55HEDC BAEDCB变式练习>>>1.如图,平行四边形ABCD 中,∠DAB =60°,AB =6,BC =2,P 为边CD 上的一动点,则32PB PD +的最小值等于________.ABCDPMHPDCBAABCDP HM【分析】考虑如何构造“32PD ”,已知∠A =60°,且sin60°=32,故延长AD ,作PH ⊥AD 延长线于H 点,即可得32PH PD =,将问题转化为:求PB +PH 最小值.当B 、P 、H 三点共线时,可得PB +PH 取到最小值,即BH 的长,解直角△ABH 即可得BH 长.例题2. 如图,AC 是圆O 的直径,AC =4,弧BA =120°,点D 是弦AB 上的一个动点,那么OD +BD 的最小值为( )A .B .C .D .【解答】解:∵的度数为120°,∴∠C =60°,∵AC 是直径,∴∠ABC =90°,∴∠A =30°,作BK∥CA,DE⊥BK于E,OM⊥BK于M,连接OB.∵BK∥AC,∴∠DBE=∠BAC=30°,在Rt△DBE中,DE=BD,∴OD+BD=OD+DE,根据垂线段最短可知,当点E与M重合时,OD+BD的值最小,最小值为OM,∵∠BAO=∠ABO=30°,∴∠OBM=60°,在Rt△OBM中,∵OB=2,∠OBM=60°,∴OM=OB•sin60°=,∴DB+OD的最小值为,故选:B.变式练习>>>2.如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为2,则BC=﹣.【解答】解:如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∵AB=AC,AH⊥BC,∴∠BAP=∠CAP,∵P A=P A,∴△BAP≌△CAP(SAS),∴PC=PB,∵MG=PB,AG=AP,∠GAP=60°,∴△GAP是等边三角形,∴P A=PG,∴P A+PB+PC=CP+PG+GM,∴当M,G,P,C共线时,P A+PB+PC的值最小,最小值为线段CM的长,∵AP+BP+CP的最小值为2,∴CM=2,∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,作BN⊥AC于N.则BN=AB=1,AN=,CN=2﹣,∴BC===﹣.故答案为﹣.例题3. 等边三角形ABC的边长为6,将其放置在如图所示的平面直角坐标系中,其中BC边在x轴上,BC 边的高OA在Y轴上.一只电子虫从A出发,先沿y轴到达G点,再沿GC到达C点,已知电子虫在Y 轴上运动的速度是在GC上运动速度的2倍,若电子虫走完全程的时间最短,则点G的坐标为(0,).【解答】解:如图作GM⊥AB于M,设电子虫在CG上的速度为v,电子虫走完全全程的时间t=+=(+CG),在Rt△AMG中,GM=AG,∴电子虫走完全全程的时间t=(GM+CG),当C、G、M共线时,且CM⊥AB时,GM+CG最短,此时CG=AG=2OG,易知OG=•×6=所以点G的坐标为(0,﹣).故答案为:(0,﹣).变式练习>>>3.如图,△ABC在直角坐标系中,AB=AC,A(0,2),C(1,0),D为射线AO上一点,一动点P 从A出发,运动路径为A→D→C,点P在AD上的运动速度是在CD上的3倍,要使整个运动时间最少,则点D的坐标应为()A.(0,)B.(0,)C.(0,)D.(0,)解:假设P在AD的速度为3V,在CD的速度为1V,总时间t=+=(+CD),要使t最小,就要+CD最小,因为AB=AC=3,过点B作BH⊥AC交AC于点H,交OA于D,易证△ADH∽△ACO,所以==3,所以=DH,因为△ABC是等腰三角形,所以BD=CD,所以要+CD最小,就是要DH+BD最小,就要B、D、H三点共线就行了.因为△AOC∽△BOD,所以=,即=,所以OD=,所以点D的坐标应为(0,).例题4. 直线y=与抛物线y=(x﹣3)2﹣4m+3交于A,B两点(其中点A在点B的左侧),与抛物线的对称轴交于点C,抛物线的顶点为D(点D在点C的下方),设点B的横坐标为t(1)求点C的坐标及线段CD的长(用含m的式子表示);(2)直接用含t的式子表示m与t之间的关系式(不需写出t的取值范围);(3)若CD=CB.①求点B的坐标;②在抛物线的对称轴上找一点F,使BF+CF的值最小,则满足条件的点F的坐标是(3,).【解答】解:(1)抛物线y=(x﹣3)2﹣4m+3的对称轴为x=3,令x=3,则有y=×3=4,即点C的坐标为(3,4).抛物线y=(x﹣3)2﹣4m+3的顶点D的坐标为(3,﹣4m+3),∵点D在点C的下方,∴CD=4﹣(﹣4m+3)=4m+1.(2)∵点B在直线y=上,且其横坐标为t,则点B的坐标为(t,t),将点B的坐标代入抛物线y=(x﹣3)2﹣4m+3中,得:t=(t﹣3)2﹣4m+3,整理,得:m=﹣t+3.(3)①依照题意画出图形,如图1所示.过点C作CE∥x轴,过点B作BE∥y轴交CE于点E.∵直线BC的解析式为y=x,∴BE=CE,由勾股定理得:BC==CE.∵CD=CB,∴有4m+1=(t﹣3)=(+﹣3),解得:m=﹣4,或m=1.当m=﹣4时,+4×(﹣4)=﹣<0,不合适,∴m=1,此时t=+=6,y=×6=8.故此时点B的坐标为(6,8).②作B点关于对称轴的对称点B′,过点F作FM⊥BC于点M,连接B′M、BB交抛物线对称轴于点N,如图2所示.∵直线BC的解析式为y=x,FM⊥BC,∴tan∠FCM==,∴sin∠FCM=.∵B、B′关于对称轴对称,∴BF=B′F,∴BF+CF=B′F+FM.当点B′、F、M三点共线时B′F+FM最小.∵B点坐标为(6,8),抛物线对称轴为x=3,∴B′点的坐标为(0,8).又∵B′M⊥BC,∴tan∠NB′F=,∴NF=B′N•tan∠NB′F=,∴点F的坐标为(3,).故答案为:(3,).变式练习>>>4.如图1,在平面直角坐标系中将y=2x+1向下平移3个单位长度得到直线l1,直线l1与x轴交于点C;直线l2:y=x+2与x轴、y轴交于A、B两点,且与直线l1交于点D.(1)填空:点A的坐标为(﹣2,0),点B的坐标为(0,2);(2)直线l1的表达式为y=2x﹣2;(3)在直线l1上是否存在点E,使S△AOE=2S△ABO?若存在,则求出点E的坐标;若不存在,请说明理由.(4)如图2,点P为线段AD上一点(不含端点),连接CP,一动点H从C出发,沿线段CP以每秒1个单位的速度运动到点P,再沿线段PD以每秒个单位的速度运动到点D后停止,求点H在整个运动过程中所用时间最少时点P的坐标.【解答】解:(1)直线l2:y=x+2,令y=0,则x=﹣2,令y=0,则x=2,故答案为(﹣2,0)、(0,2);(2)y=2x+1向下平移3个单位长度得到直线l1,则直线l1的表达式为:y=2x﹣2,故:答案为:y=2x﹣2;(3)∵S△AOE=2S△ABO,∴y E=2OB=4,将y E=4代入l1的表达式得:4=2x﹣2,解得:x=3,则点E的坐标为(3,4);(4)过点P、C分别作y轴的平行线,分别交过点D作x轴平行线于点H、H′,H′C交BD于点P′,直线l2:y=x+2,则∠ABO=45°=∠HBD,PH=PD,点H在整个运动过程中所用时间=+=PH+PC,当C、P、H在一条直线上时,PH+PC最小,即为CH′=6,点P坐标(1,3),故:点H在整个运动过程中所用最少时间为6秒,此时点P的坐标(1,3).例题5. 已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在(1)的条件下,抛物线上存在点P,使得△ACP是以AC为直角边的直角三角形,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?【解答】解:(1)∵y=a(x+3)(x﹣1),∴点A的坐标为(﹣3,0)、点B两的坐标为(1,0),∵直线y=﹣x+b经过点A,∴b=﹣3,∴y=﹣x﹣3,当x=2时,y=﹣5,则点D的坐标为(2,﹣5),∵点D在抛物线上,∴a(2+3)(2﹣1)=﹣5,解得,a=﹣,则抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)∵A的坐标为(﹣3,0),C(0,3),∴直线AC的解析式为:y=x+3,①∵△ACP是以AC为直角边的直角三角形,∴CP⊥AC,∴设直线CP的解析式为:y=﹣x+m,把C(0,3)代入得m=3,∴直线CP的解析式为:y=﹣x+3,解得,(不合题意,舍去),∴P(﹣,);②∵△ACP是以AC为直角边的直角三角形,∴AP⊥AC,∴设直线CP的解析式为:y=﹣x+n,把A(﹣3,0)代入得n=﹣,∴直线AP的解析式为:y=﹣x﹣,解y=得,,∴P(,﹣),综上所述:点P的坐标为(﹣,)或(,﹣);(3)如图2中,作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,则tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==EF,∴Q的运动时间t=+=BE+32DE=BE+EF,∴当BE和EF共线时,t最小,则BE⊥DM,此时点E坐标(1,﹣4).变式练习>>>5.如图,已知抛物线y=﹣x2+bx+c交x轴于点A(2,0)、B(﹣8,0),交y轴于点C,过点A、B、C三点的⊙M与y轴的另一个交点为D.(1)求此抛物线的表达式及圆心M的坐标;(2)设P为弧BC上任意一点(不与点B,C重合),连接AP交y轴于点N,请问:AP•AN是否为定值,若是,请求出这个值;若不是,请说明理由;(3)延长线段BD交抛物线于点E,设点F是线段BE上的任意一点(不含端点),连接AF.动点Q 从点A出发,沿线段AF以每秒1个单位的速度运动到点F,再沿线段FB以每秒个单位的速度运动到点B后停止,问当点F的坐标是多少时,点Q在整个运动过程中所用时间最少?【解答】解:(1)抛物线解析式为y=﹣(x+8)(x﹣2),即y=﹣x2﹣x+4;当x=0时,y=﹣x2﹣x+4=4,则C(0,4)∴BC=4,AC=2,AB=10,∵BC2+AC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴AB为直径,∴圆心M点的坐标为(﹣3,0);(2)以AP•AN为定值.理由如下:如图1,∵AB为直径,∴∠APB=90°,∵∠APB=∠AON,∠NAO=∠BAP,∴△APB∽△AON.∴AN:AB=AO:AP,∴AN•AP=AB•AO=20,所以AP•AN为定值,定值是20;(3)∵AB⊥CD,∴OD=OC=4,则D(0,﹣4),易得直线BD的解析式为y=﹣x﹣4,过F点作FG⊥x轴于G,如图2,∵FG∥OD,∴△BFG∽△BDO,∴=,即===,∴点Q沿线段FB以每秒个单位的速度运动到点B所用时间等于点Q以每秒1个单位的速度运动到G点的时间,∴当AF+FG的值最小时,点Q在整个运动过程中所用时间最少,作∠EBI=∠ABE,BI交y轴于I,作FH⊥BI于H,则FH=FG,∴AF+FG=AF+FH,当点A、F、H共线时,AF+FH的值最小,此时AH⊥BI,如图2,作DK⊥BI,垂足为K,∵BE平分∠ABI,∴DK=DO=4,设DI=m,∵∠DIK=∠BIO,∴△IDK∽△IBO,∴===,∴BI=2m,在Rt△OBI中,82+(4+m)2=(2m)2,解得m1=4(舍去),m2=,∴I(0,﹣),设直线BI的解析式为y=kx+n,把B(﹣8,0),I(0,﹣)代入得,解得,∴直线BI的解析式为y=﹣x﹣,∵AH ⊥BI ,∴直线AH 的解析式可设为y =x +q ,把A (2,0)代入得+q =0,解得q =﹣,∴直线AH 的解析式为y =x ﹣,解方程组,解得,∴F (﹣2,﹣3),即当点F 的坐标是(﹣2,﹣3)时,点Q 在整个运动过程中所用时间最少.达标检测 领悟提升 强化落实1. 如图,在平面直角坐标系中,点()3,3A ,点P 为x 轴上的一个动点,当OP AP 21+最小时,点P 的坐标为___________.[答案]:()0,2P2. 如图,四边形ABCD 是菱形,AB=4,且∠ABC=60°,点M 为对角线BD (不含点B )上的一动点,则BM AM 21+的最小值为___________.2[答案]:33. 如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(0,﹣),C(2,0),其对称轴与x轴交于点D.(1)求二次函数的表达式及其顶点坐标;(2)点M为抛物线的对称轴上的一个动点,若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,求点M的坐标;(3)若P为y轴上的一个动点,连接PD,求PB+PD的最小值.【解答】解:(1)由题意,解得,∴抛物线解析式为y=x2﹣x﹣,∵y=x2﹣x﹣=(x﹣)2﹣,∴顶点坐标(,﹣);(2)设点M的坐标为(,y).∵A(﹣1,0),B(0,﹣),∴AB2=1+3=4.①以A为圆心AB为半径画弧与对称轴有两个交点,此时AM=AB,则(+1)2+y2=4,解得y=±,即此时点M的坐标为(,)或(,﹣);②以B为圆心AB为半径画弧与对称轴有两个交点,此时BM=AB,则()2+(y+)2=4,解得y=﹣+或y=﹣﹣,即此时点M的坐标为(,﹣+)或(,﹣﹣);③线段AB的垂直平分线与对称轴有一个交点,此时AM=BM,则(+1)2+y2=()2+(y+)2,解得y=﹣,即此时点M的坐标为(,﹣).综上所述,满足条件的点M的坐标为(,)或(,﹣)或(,﹣+)或(,﹣﹣)或(,﹣);(3)如图,连接AB,作DH⊥AB于H,交OB于P,此时PB+PD最小.理由:∵OA=1,OB=,∴tan∠ABO==,∴∠ABO=30°,∴PH=PB,∴PB+PD=PH+PD=DH,∴此时PB+PD最短(垂线段最短).在Rt△ADH中,∵∠AHD=90°,AD=,∠HAD=60°,∴sin60°=,∴DH=,∴PB+PD的最小值为.4. 【问题提出】如图①,已知海岛A到海岸公路BD的距离为AB的长度,C为公路BD上的酒店,从海岛A到酒店C,先乘船到登陆点D,船速为a,再乘汽车,车速为船速的n倍,点D选在何处时,所用时间最短?【特例分析】若n=2,则时间t=+,当a为定值时,问题转化为:在BC上确定一点D,使得+的值最小.如图②,过点C做射线CM,使得∠BCM=30°.(1)过点D作DE⊥CM,垂足为E,试说明:DE=;(2)请在图②中画出所用时间最短的登陆点D′.【问题解决】(3)请你仿照“特例分析”中的相关步骤,解决图①中的问题.(写出具体方案,如相关图形呈现、图形中角所满足的条件、作图的方法等)【综合运用】(4)如图③,抛物线y=﹣x2+x+3与x轴分别交于A,B两点,与y轴交于点C,E为OB中点,设F为线段BC上一点(不含端点),连接EF.一动点P从E出发,沿线段EF以每秒1个单位的速度运动到F,再沿着线段FC以每秒个单位的速度运动到C后停止.若点P在整个运动过程中用时最少,请求出最少时间和此时点F的坐标.【解答】解:(1)如图①,∵DE⊥CM,∴∠DEC=90°,在Rt△BCM中,DE=CD sin30°=CD;(2)如图①过点A作AE′⊥CM交BC于点D′,则点D′即为所用时间最短的登陆点;(3)如图②,过点C作射线CM,使得sin∠BCM=,过点A作AE⊥CM,垂足为E交BC于点D,则点D为为所用时间最短的登陆点;(4)由题意得:t==EF+CF,过点C作CD∥x轴交抛物线于点D,过点F作GF⊥CD交CD于点G,∠ACB=∠DCB=α,sin∠ABC==,则EF=CF,EF+CF=EF+FH,故当E、F、H三点共线且与CD垂直时,t最小,将点B、C坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+3,点E是OB中点,其坐标为:(3,0),当x=3时,对于y=﹣x+3,y=,点F坐标为(3,),t==EF+CF,当H、F、E三点共线时,EF+FH=OC=3,即:最小时间为3秒.5. 如图,△ABC是等边三角形.(1)如图1,AH⊥BC于H,点P从A点出发,沿高线AH向下移动,以CP为边在CP的下方作等边三角形CPQ,连接BQ.求∠CBQ的度数;(2)如图2,若点D为△ABC内任意一点,连接DA,DB,DC.证明:以DA,DB,DC为边一定能组成一个三角形;(3)在(1)的条件下,在P点的移动过程中,设x=AP+2PC,点Q的运动路径长度为y,当x取最小值时,写出x,y的关系,并说明理由.【解答】(1)解:如图1中∵△ABC是等边三角形,AH⊥BC,∴∠CAP=∠BAC=30°,CA=CB,∠ACB=60°,∵△PCQ是等边三角形,∴CP=CQ,∠PCQ=∠ACB=60°,∴∠ACP=∠BCQ,∴△ACP≌△BCQ,∴∠CBQ=∠CAP=30°.(2)证明:如图2中,将△ADC绕当A顺时针旋转60°得到△ABQ,连接DQ.∵△ACD≌△ABQ,∴AQ=AD,CD=BQ,∵∠DAQ=60°,∴△ADQ是等边三角形,∴AD=DQ,∴DA,DB,DC为边一定能组成一个三角形(图中△BDQ).(3)如图3中,作PE⊥AB于E,CF⊥AB于F交AH于G.∵PE=P A,∴P A+2PC=2(P A+PC)=2(PE+PC),根据垂线段最短可知,当E与F重合,P与G重合时,P A+2PC的值最小,最小值为2CF.由(1)可知△ACP≌△BCQ,可得BQ=P A,∴P A=BQ=AG=CG=y,FG=y,∴x=2(y+y),∴y=x.6. 如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F 的坐标是多少时,点M在整个运动过程中用时最少?【解答】解:(1)抛物线y=(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+b经过点B(4,0),∴﹣×4+b=0,解得b=,∴直线BD解析式为:y=﹣x+.当x=﹣5时,y=3,∴D(﹣5,3).∵点D(﹣5,3)在抛物线y=(x+2)(x﹣4)上,∴(﹣5+2)(﹣5﹣4)=3,∴k=.∴抛物线的函数表达式为:y=(x+2)(x﹣4).即y=x2﹣x﹣.(2)由抛物线解析式,令x=0,得y=﹣k,∴C(0,﹣k),OC=k.因为点P在第一象限内的抛物线上,所以∠ABP为钝角.因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△P AB.①若△ABC∽△APB,则有∠BAC=∠P AB,如答图2﹣1所示.设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠BAC=tan∠P AB,即:,∴y=x+k.∴P(x,x+k),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)=x+k,整理得:x2﹣6x﹣16=0,解得:x=8或x=﹣2(与点A重合,舍去),∴P(8,5k).∵△ABC∽△APB,∴,即,解得:k=.②若△ABC∽△P AB,则有∠ABC=∠P AB,如答图2﹣2所示.设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠ABC=tan∠P AB,即:=,∴y=x+.∴P(x,x+),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)=x+,整理得:x2﹣4x﹣12=0,解得:x=6或x=﹣2(与点A重合,舍去),∴P(6,2k).∵△ABC∽△P AB,=,∴=,解得k=±,∵k>0,∴k=,综上所述,k=或k=.(3)方法一:如答图3,由(1)知:D(﹣5,3),如答图2﹣2,过点D作DN⊥x轴于点N,则DN=3,ON=5,BN=4+5=9,∴tan∠DBA===,∴∠DBA=30°.过点D作DK∥x轴,则∠KDF=∠DBA=30°.过点F作FG⊥DK于点G,则FG=DF.由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,∴t=AF+FG,即运动的时间值等于折线AF+FG的长度值.由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段.过点A作AH⊥DK于点H,则t最小=AH,AH与直线BD的交点,即为所求之F点.∵A点横坐标为﹣2,直线BD解析式为:y=﹣x+,∴y=﹣×(﹣2)+=2,∴F(﹣2,2).综上所述,当点F坐标为(﹣2,2)时,点M在整个运动过程中用时最少.方法二:作DK∥AB,AH⊥DK,AH交直线BD于点F,∵∠DBA=30°,∴∠BDH=30°,∴FH=DF×sin30°=,∴当且仅当AH⊥DK时,AF+FH最小,点M在整个运动中用时为:t=,∵l BD:y=﹣x+,∴F X=A X=﹣2,∴F(﹣2,).7. 已如二次函数y=﹣x2+2x+3的图象和x轴交于点A、B(点A在点B的左侧),与y轴交于点C,(1)如图1,P是直线BC上方抛物线上一动点(不与B、C重合)过P作PQ∥x轴交直线BC于Q,求线段PQ的最大值;(2)如图2,点G为线段OC上一动点,求BG+CG的最小值及此时点G的坐标;(3)如图3,在(2)的条件下,M为直线BG上一动点,N为x轴上一动点,连接AM,MN,求AM+MN 的最小值.【解答】解:(1)令y=0,即:﹣x2+2x+3=0,解得:x=3或﹣1,即点A、B的坐标分比为(﹣1,0)、(3,0),令x=0,则y=3,则点C的坐标为(0,3),直线BC过点C(0,3),则直线表达式为:y=kx+3,将点B坐标代入上式得:0=3k+3,解得:k=﹣1,则直线BC的表达式为:y=﹣x+3,设点P的坐标为(m,n),n=﹣m2+2m+3,则点Q坐标为(3﹣n,n),则PQ=m﹣(3﹣n)=﹣m2+3m,∵a=﹣1<0,则PQ有最大值,当m=﹣=,PQ取得最大值为;(2)过直线CG作∠GCH=α,使CH⊥GH,当sinα=时,HG=GC,则BG+CG的最小值即为HG+GB的最小值,当B、H、G三点共线时,HG+GB最小,则∠GBO=α,∵sinα=,则cosα=,tanα=,OG=OB•tanα=3×=,即点G(0,),CG=3﹣=,而BG=,BG+CG的最小值为:;(3)作点A关于直线BG的对称点A′,过A′作A′N⊥x轴,交BG于点M,交x轴于点N,则此时AM+MN取得最小值,即为A′N的长度,则:∠GBA=∠AA′N=∠OGB=α,AA ′=2AB sin ∠ABG =2×4×sin α=,A ′N =A ′A cos α=×=, 即:AM +MN 的最小值为.8. 如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =4,点D 、F 分别是边AB ,BC 上的动点,连接CD ,过点A 作AE ⊥CD 交BC 于点E ,垂足为G ,连接GF ,则GF +FB 的最小值是( )A .B .C .D .【解答】解:延长AC 到点P ,使CP =AC ,连接BP ,过点F 作FH ⊥BP 于点H ,取AC 中点O ,连接OG ,过点O 作OQ ⊥BP 于点Q , ∵∠ACB =90°,∠ABC =30°,AB =4,∴AC =CP =2,BP =AB =4 ∴△ABP 是等边三角形,∴∠FBH =30° ∴Rt △FHB 中,FH =FB∴当G 、F 、H 在同一直线上时,GF +FB =GF +FH =GH 取得最小值 ∵AE ⊥CD 于点G ,∴∠AGC =90° ∵O 为AC 中点,∴OA =OC =OG =AC∴A 、C 、G 三点共圆,圆心为O ,即点G 在⊙O 上运动 ∴当点G 运动到OQ 上时,GH 取得最小值 ∵Rt △OPQ 中,∠P =60°,OP =3,sin ∠P = ∴OQ =OP =,∴GH 最小值为故选:C .9. 抛物线2623663y x x =--+与x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C .点P 是直线AC 上方抛物线上一点,PF ⊥x 轴于点F ,PF 与线段AC 交于点E ;将线段OB 沿x 轴左右平移,线段OB 的对应线段是O 1B 1,当12PE EC +的值最大时,求四边形PO 1B 1C 周长的最小值,并求出对应的点O 1的坐标.E B 1O 1P A BCFy xO【分析】根据抛物线解析式得A ()32,0-、B ()2,0、C ()0,6,直线AC 的解析式为:363y x =+,可知AC 与x 轴夹角为30°. 根据题意考虑,P 在何处时,PE +2EC取到最大值.过点E 作EH ⊥y 轴交y 轴于H 点,则∠CEH =30°,故CH =2EC, 问题转化为PE +CH 何时取到最小值.考虑到PE 于CH 并无公共端点,故用代数法计算,设2623,663P m m m ⎛⎫--+ ⎪ ⎪⎝⎭,则3,63E m m ⎛⎫+ ⎪ ⎪⎝⎭,30,63H m ⎛⎫+ ⎪ ⎪⎝⎭,2636PE m m =--,33CH m =-,()22643646=226363PE CH m m m +=---++∴当PE +EC 的值最大时,x =﹣2,此时P (﹣2,),∴PC =2,∵O 1B 1=OB =,∴要使四边形PO 1B 1C 周长的最小,即PO 1+B 1C 的值最小,如图2,将点P 向右平移个单位长度得点P 1(﹣,),连接P 1B 1,则PO 1=P 1B 1, 再作点P 1关于x 轴的对称点P 2(﹣,﹣),则P 1B 1=P 2B 1, ∴PO 1+B 1C =P 2B 1+B 1C ,∴连接P 2C 与x 轴的交点即为使PO 1+B 1C 的值最小时的点B 1, ∴B 1(﹣,0),将B 1向左平移个单位长度即得点O 1,此时PO 1+B 1C =P 2C ==,对应的点O 1的坐标为(﹣,0),∴四边形PO 1B 1C 周长的最小值为+3.H O yFC BA P O 1B 1EC 1O yF CBAP O 1B 1E。
胡不归最值问题(解析版)

胡不归最值问题【专题说明】胡不归模型问题解题步骤如下;1、将所求线段和改写为“PA +b a PB ”的形式b a <1 ,若b a>1,提取系数,转化为小于1的形式解决。
2、在PB 的一侧,PA 的异侧,构造一个角度α,使得sin α=b a 3、最后利用两点之间线段最短及垂线段最短解题【模型展示】如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使AC V 2+BC V 1的值最小.ACV 2+BC V 1=1V 1BC +V 1V 2AC ,记k =V 1V 2,即求BC +kAC 的最小值.构造射线AD 使得sin ∠DAN =k ,CH /AC =k ,CH =kAC .将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.【模型总结】在求形如“PA +kPB ”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA +kPB ”型问题转化为“PA +PC ”型.而这里的PB 必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB 的等线段.【练习】1.如图,AC 是圆O 的直径,AC =4,弧BA =120°,点D 是弦AB 上的一个动点,那么OD +12BD 的最小值为( )A.32B.3C.1+32D.1+3【解答】解:∵BA 的度数为120°,∴∠C =60°,∵AC 是直径,∴∠ABC =90°,∴∠A =30°,作BK ⎳CA ,DE ⊥BK 于E ,OM ⊥BK 于M ,连接OB .∵BK ⎳AC ,∴∠DBE =∠BAC =30°,在Rt ΔDBE 中,DE =12BD ,∴OD +12BD =OD +DE ,根据垂线段最短可知,当点E 与M 重合时,OD +12BD 的值最小,最小值为OM ,∵∠BAO =∠ABO =30°,∴∠OBM =60°,在Rt ΔOBM 中,∵OB =2,∠OBM =60°,∴OM =OB ⋅sin60°=3,∴12DB +OD 的最小值为3,故选:B .2.如图,在ΔABC 中,∠A =15°,AB =10,P 为AC 边上的一个动点(不与A 、C 重合),连接BP ,则22AP +PB 的最小值是( )A.52 B.53 C.1033 D.8【解答】解:如图,以AP 为斜边在AC 下方作等腰Rt ΔADP ,过B 作BE ⊥AD 于E ,∵∠PAD =45°,∴sin ∠PAD =DP AP =22,∴DP =22AP ,∴22AP+PB=DP+PB≥BE,∵∠BAC=15°,∴∠BAD=60°,∴BE=AB sin60°=53,∴22AP+PB的最小值为53.故选:B.3.ΔABC中,∠A=90°,∠B=60°,AB=2,若点D是BC边上的动点,则2AD+DC的最小值为( )A.4B.3+3C.6D.23+3【解答】解:过点C作射线CE,使∠BCE=30°,再过动点D作DF⊥CE,垂足为点F,连接AD,如图所示:在RtΔDFC中,∠DCF=30°,∴DF=12DC,∵2AD+DC=2AD+12DC=2(AD+DF),∴当A,D,F在同一直线上,即AF⊥CE时,AD+DF的值最小,最小值等于垂线段AF的长,此时,∠B=∠ADB=60°,∴ΔABD是等边三角形,∴AD=BD=AB=2,在RtΔABC中,∠BAC=90°,∠B=60°,AB=2,∴BC=4,∴DC=2,∴DF=12DC=1,∴AF=AD+DF=2+1=3,∴2(AD+DF)=2AF=6,∴2AD+DC的最小值为6,故选:C.4.如图所示,菱形ABCO的边长为5,对角线OB的长为45,P为OB上一动点,则AP+55OP的最小值为( )A.4B.5C.25D.35【解答】解:如图,过点A作AH⊥OC于点H,过点P作PF⊥OC于点F,连接AC交OB于点J.∵四边形OABC是菱形,∴AC⊥OB,∴OJ=JB=25,CJ=OC2-OJ2=52-(25)2=5,∴AC=2CJ=25,∵AH⊥OC,∴OC⋅AH=12⋅OB⋅AC,∴AH=12×45×255=4,∴sin∠POF=PFOP=CJOC=55,∴PF=55OP,∴AP+55OP=AP+PF,∵AP+PF≥AH,∴AP+55OP≥4,∴AP+55OP的最小值为4,故选:A.5.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,AB=16,∠ABC=60°,D为弧AC的中点,M是弦AC上任意一点(不与端点A、C重合),连接DM,则12CM+DM的最小值是( )A.43B.33C.23D.4【解答】解:过点M作ME⊥OC于E,过点D作DF⊥OC于F,连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵∠ABC=60°,∴∠BAC=30°,∵OA=OC,∴∠ACO=∠CAO=30°,∴ME=12MC,∴12CM+DM=ME+DM,∴ME +DM 的最小值为DF 的长,∵D 为弧AC 的中点,∴∠AOD =∠COD =60°,在Rt ΔODF 中,sin ∠DOF =sin60°=DF OD =32,∴DF =32OD =43,∴12CM +DM 的最小值为:43,故选:A .6.在ΔABC 中,∠ACB =90°,P 为AC 上一动点,若BC =4,AC =6,则2BP +AP 的最小值为( )A.5B.10C.52D.102【解答】解:以A 为顶点,AC 为一边在下方作∠CAM =45°,过P 作PF ⊥AM 于F ,过B 作BD ⊥AM 于D ,交AC 于E ,如图:2BP +AP =2BP +22AP ,要使2BP +AP 最小,只需BP +22AP 最小,∵∠CAM =45°,PF ⊥AM ,∴ΔAFP 是等腰直角三角形,∴FP =22AP ,∴BP +22AP 最小即是BP +FP 最小,此时P 与E 重合,F 与D 重合,即BP +22AP 最小值是线段BD 的长度,∵∠CAM =45°,BD ⊥AM ,∴∠AED =∠BEC =45°,∵∠ACB =90°,∴sin ∠BEC =sin45°=BC BE ,tan ∠BEC =BC CE,又BC =4,∴BE =42,CE =4,∵AC =6,∴AE =2,而sin ∠CAM =sin45°=DE AE ,∴DE=2,∴BD=BE+DE=52,∴2BP+AP的最小值是2BD=10,故选:B.7.【问题探究】在等边三角形ABC中,AD⊥BC于点D,AB=2.(1)如图1.E为AD的中点,则点E到AB的距离为 34 ;(2)如图2,M为AD上一动点.则12AM+MC的最小值为 ;【问题解决】如图3,A,B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路,点B到AC的距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍,那么为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,中转站M应修在距A地 km处.【解答】解:(1)∵ΔABC是等边三角形,∴AB=BC=2,∠BAC=∠ACB=∠ABC=60°,∵AD⊥BC,∴∠BAD=30°,BD=1,∴AD=3,过E作EM⊥AB,垂足为M,∵E为AD的中点,∴AE=32,∴EM=12AE=34,故答案为:3 4;(2)如图,作CN⊥AB,垂足为N,此时12AM+MC最小,最小值等于CN,∵在正三角形ABC中,AB=BC=AC=2,CN⊥AB,∴∠ACN=∠BCN=30°,∴AN=12AC=1,由勾股定理得,CN=AC2-AN2=22-12=3,由(1)知,MN=12AM,∴MN+CM=12AM+MC=CN=3,即12AM+MC的最小值为3,故答案为:3;【问题解决】如图,作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于M,则点M即为所求,在RtΔABD中,AB=600km,BD=360km,∴AD=6002-3602=480,易知∠MB D=∠MAF=30°,在RtΔMBD中,∠MB D=30°,BD=360km,则MB=2MD,由勾股定理得MD=1203km,∴AM=AD-MD=(480-1203)km.故答案为(480-1203).8.如图,在菱形ABCD中,AB=AC=10,对角线AC、BD相交于点O,点M在线段AC上,且AM= 3,点P为线段BD上的一个动点,则MP+12PB的最小值是 732 .【解答】解:如图,过点P作PE⊥BC于E,∵四边形ABCD是菱形,AB=AC=10,∴AB=BC=AC=10,∠ABD=∠CBD,∴ΔABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠CBD=30°,∵PE⊥BC,∴PE=12PB,∴MP+12PB=PM+PE,∴当点M,点P,点E共线且ME⊥BC时,PM+PE有最小值为ME,∵AM=3,∴MC=7,∵sin∠ACB=MEMC=3 2,∴ME=732,∴MP+12PB的最小值为732,故答案为73 2.9.如图,直角三角形ABC中,∠A=30°,BC=1,AC=3,BD是∠ABC的平分线,点P是线段BD上的动点,求CP+12BP的最小值 32 .【解答】解:如图,过点P作PE⊥AB于E,∵∠A=30°,BC=1,∠ACB=90°,∴AB=2BC=2,∠ABC=60°,∵BD是∠ABC的平分线,∴∠ABD=∠CBD=30°,∵PE⊥AB,∴PE=12PB,∴CP+12PB=CP+PE,∴当点P,点C,点E三点共线,且CE⊥AB时,CP+12PB有最小值为CE,∴CE=AC×BCAB=1×32=32,故答案为:3 2.10.如图,已知RtΔABC中,∠ACB=90°,∠BAC=30°,延长BC至D使CD=BC,连接AD,且AD=4,点P为线段AC上一动点,连接BP.则2BP+AP的最小值为 43 .【解答】解:如图中,作PF⊥AD于F,BF′⊥AD于F′,交AC于P′.∵∠PAF=30°,∠PFA=90°,∴PF=12PA,∴2BP+AP=2PB+12PA=2(PB+PF),∴当B、P、F共线时,即BF′⊥AD时,PB+PF最短,最小值为线段BF′,在Rt△DF′B中,∵∠D=60°,DB=4,∴BF′=DB∙sin60°=23,∴2BP+AP的最小值为43,故答案为:43.11.如图,▱ABCD 中,∠DAB =60°,AB =6,BC =2,P 为边CD 上的一动点,则PB +32PD 的最小值等于 33 .【解答】解:如图,过点P 作PE ⊥AD ,交AD 的延长线于点E ,∵AB ⎳CD∴∠EDP =∠DAB =60°,∴sin ∠EDP =EP DP =32∴EP =32PD∴PB +32PD =PB +PE ∴当点B ,点P ,点E 三点共线且BE ⊥AD 时,PB +PE 有最小值,即最小值为BE ,∵sin ∠A =BE AB=32∴BE =33故答案为:3312.如图,在平面直角坐标系中,直线y =-x +4的图象分别与y 轴和x 轴交于点A 和点B .若定点P 的坐标为(0,63),点Q 是y 轴上任意一点,则12PQ +QB 的最小值为 53 .【解答】解:过点P 作直线PD 与y 轴的夹角∠OPD =30°,作B 点关于y 轴的对称点B ,过B 点作B E ⊥PD 交于点E 、交y 轴于点Q ,∵B E ⊥PD ,∠OPE =30°,∴QE =12PQ ,∵BQ =B Q ,∴12PQ +QB =QE +B Q =B E ,此时12PQ +QB 取最小值,∵∠OPD =30°,∠POD =90°,∴PD =2OD ,∠ODP =60°,∵P 的坐标为(0,63),∴PO =63,∴OD 2+(63)2=(2OD )2,∴OD =6,∵直线y =-x +4的图象分别与y 轴和x 轴交于点A 和点B ,∴A (0,4),B (4,0),∴OB =4,∴OB =4,∴B D =10,∵B E ⊥PD ,∠ODP =60°,∴∠EB D =30°,∴DE =12B D =5,∴B E =B D 2-DE 2=102-52=53,∴12PQ +QB 取最小值为53,故答案为:53.13.如图,在ΔABC 中,AB =5,AC =4,sin A =45,BD ⊥AC 交AC 于点D .点P 为线段BD 上的动点,则PC +35PB 的最小值为 165 .【解答】解:过点P 作PE ⊥AB 于点E ,过点C 作CH ⊥AB 于点H ,∵BD ⊥AC ,∴∠ADB =90°,∵sin A =BD AB=45,AB =5,∴BD =4,由勾股定理得AD =AB 2-BD 2=52-42=3,∴sin ∠ABD =AD AB =PE BP =35,∴EP =35BP ,∴PC +35PB =PC +PE ,即点C 、P 、E 三点共线时,PC +35PB 最小,∴PC +35PB 的最小值为CH 的长,∵S ΔABC =12×AC ×BD =12×AB ×CH ,∴4×4=5×CH ,∴CH =165.∴PC +35PB 的最小值为165.故答案为:165.14.如图,在ΔABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,那么:(1)AE = 25 ;(2)CD +55BD 的最小值是 .【解答】解:(1)∵tan A =2,BE ⊥AC ,∴BE AE=2,∴设BE =2x ,AE =x ,∴x 2+(2x )2=102,∴x =25(负值舍去),∴AE =25,故答案为25;(2)作DF ⊥AB 于F ,CH ⊥AB 于H ,∵AE =25,AB =10,∴AE AB=2510=55,∴sin ∠ABD =DF BD =55,∴DF =55BD ,∴CD +55BD =CD +DF ,要想CD +DF 最小,只要C 、D 、F 三点共线,即最小值为CH ,∵AB =AC ,根据等积法可知:CH =BE ,由(1)知:BE =2AE =45,∴CD +55BD 的最小值是45,故答案为:45.15.如图,在ΔABC 中,∠A =90°,∠B =60°,AB =2,若D 是BC 边上的动点,则2AD +DC 的最小值为 6 .【解答】解:如图所示,作点A 关于BC 的对称点A ,连接AA ,A D ,过D 作DE ⊥AC 于E ,∵ΔABC 中,∠BAC =90°,∠B =60°,AB =2,∴BH =1,AH =3,AA =23,∠C =30°,∴Rt ΔCDE 中,DE =12CD ,即2DE =CD ,∵A 与A 关于BC 对称,∴AD =A D ,∴AD +DE =A D +DE ,∴当A ,D ,E 在同一直线上时,AD +DE 的最小值等于A E 的长,此时,Rt △AA E 中,A E =sin60°×AA =32×23=3,∴AD +DE 的最小值为3,即2AD +CD 的最小值为6,故答案为:6.16.如图,在平面直角坐标系中,二次函数y =ax 2+bx +c 的图象交x 轴于A 、B 两点,交y 轴于C 点,P 为y 轴上的一个动点,已知A (-2,0)、C (0,-23),且抛物线的对称轴是直线x =1.(1)求此二次函数的解析式;(2)连接PB ,则12PC +PB 的最小值是 33 ;【解答】解:(1)将A ,C 点坐标代入函数解析式,及对称轴,得4a -2b +c =0c =-23-b 2a =1,解得a =34b =-32c =-23,抛物线的解析式为y =34x 2-32x -23,(2)连接AC ,作BH ⊥AC 于H ,交OC 于P ,如图1,此时12PC +PB 最小.理由:当y =0时,34x 2-32x -23=0,解得x =-2(舍)x =4,即B (4,0),AB =4-(-2)=6.∵OA =2,OC =23,∴tan ∠ACO =OA OC=33,∴∠ACO =30°,∴PH =12PC ,∴12PC +PB =PH +PB =BH ,∴此时12PB +PD 最短(垂线段最短).在Rt ΔABH 中,∵∠AHB =90°,AB =4-(-2)=6,∠HAB =60°,∴sin60°=BHAB=3 2,∴BH=6×32=33,∴12PC+PB的最小值为33,故答案为:33.17.已知:如图1,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点D(0,-6),直线y=-13x+2交x轴于点B,与y轴交于点C.(1)求抛物线的函数解析式;(2)在线段OB上有一动点P,直接写出10DP+BP的最小值和此时点P的坐标.【解答】解:(1)∵直线y=-13x+2过点B,C,令y=0,则-13x+2=0,∴x=6,令x=0,则y=2,∴B(6,0),C(0,2),∵抛物线y=x2+bx+c经过点B(6,0)和D(0,-6),∴36+6b+c=0 c=-6,∴b=-5 c=-6 ,∴抛物线的解析式为y=x2-5x-6;(2)如图,以点D为直角顶点作RtΔPDM,使DM=3DP,在RtΔPDM中,根据勾股定理,PM=DM2+DP2=10DP,要使10DP+BP最小,则有点B,P,M在同一条线上,而点B,P在x轴上,所以,点M在x轴上时,10DP+BP最小,此时,点M记作M ,点P记作P ,设P (m,0),∵∠DOP =∠M DP =90°,∠OP D=∠DP M ,∴ΔDOP ∽△M DP ,∴DP P M =OP DP ,∴m DP =DP10DP ,∴DP =10m,在RtΔDOP 中,OD=6,根据勾股定理得,(10m)2-m2=36,∴m=2或m=-2(舍),∴P(2,0),∴10DP+BP=10×210+(6-2)=24,即10DP+BP的最小值为24,此时点P的坐标为(2,0).18.如图,已知抛物线y=k8(x+2)(x-4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=-33x+b与抛物线的另一交点为D.(1)若点D的横坐标为-5,求抛物线的函数表达式;(2)在(1)条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止.当点F的坐标是多少时,点M在整个运动过程中用时最少?【解答】解:(1)将点B(4,0)代入y=-33x+b,得-33×4+b=0,∴b=433,∴BD:y=-33x+433,当x=-5时,y=-33×(-5)+433=33,∴D(-5,33),将点D代入y=k8(x+2)(x-4),得:k8×(-5+2)×(-5-4)=33,∴k=839,∴抛物线的表达式为:y=39(x+2)(x-4)=39x2-239x-839,(2)由题意得:点M的运动时间为AF+12DF,过点D作DE⊥x轴于点E,∵D(-5,33),B(4,0),∴DE=33,EB=9,BD=63,∴∠DBE=30°,过点D和点F分别作x轴的平行线和y轴的平行线,交于点N,∴∠DBE =∠FDN =30°,∴NF =12DF ,∴AF +12DF =AF +NF ,过点A 作AH ⊥DN 于点H ,此时(AF +NF )min =AH ,∴AH 与直线BD 的交点即为所求点F ,∵A (-2,0),∴当x =-2时,y =-33×(-2)+433=23,∴点F 的坐标为(-2,23)时,点M 在整个运动过程中用时最少.19.抛物线y =-x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,且B (-1,0),C (0,3).(1)求抛物线的解析式;(2)如图,点D 是抛物线的顶点,将抛物线沿CD 方向平移,使点D 落在点D 处,且DD =2CD ,点M 是平移后所得抛物线上位于D 左侧的一点,MN ⎳y 轴交直线OD 于点N ,连结CN .当55D N +CN 的值最小时,求MN 的长.【解答】解:(1)∵y =-x 2+bx +c 经过B (-1,0),C (0,3),∴c =3-1-b +c =0 ,解得b =2c =3,∴抛物线的解析式为y =-x 2+2x +3.(2)如图,连接AD ′,过点N 作NJ ⊥AD ′于J ,过点C 作CT ⊥AD ′于T .∵抛物线y =-x 2+2x +3=-(x -1)2+4,∴顶点D (1,4),∵C (0,3),∴直线CD 的解析式为y =x +3,CD =2,∵DD ′=2CD ,∵DD ′=22,CD ′=32,∴D ′(3,6),∵A (3,0),∴AD ′⊥x 轴,∴OD ′=OA 2+D ′A 2=32+62=35,∴sin∠OD′A=OAOD′=5 5,∵CT⊥AD′,∴CT=3,∵NJ⊥AD′,∴NJ=ND′⋅sin∠OD′A=55D′N,∴55D N+CN=CN+NJ,∵CN+NJ≥CT,∴55D N+CN≥3,∴55D N+CN的最小值为3,此时N为OD 与CT的交点,∴N(1.5,3),∵平移后抛物线的解析式为y=-(x-3)2+6,MN平行y轴,将x=1.5代入抛物线解析式,∴M(1.5,3.75),∴MN=0.7520.如图,矩形ABCD的对角线AC,BD相交于点O,ΔCOD关于CD的对称图形为ΔCED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=5cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.【解答】(1)证明:∵四边形ABCD是矩形.∴OD=OB=OC=OA,∵ΔEDC和ΔODC关于CD对称,∴DE=DO,CE=CO,∴DE=EC=CO=OD,∴四边形CODE是菱形.(2)①设AE交CD于K.∵四边形CODE是菱形,∴DE⎳AC,DE=OC=OA,∴DK KC=DEAC=12∵AB =CD =6,∴DK =2,CK =4,在Rt ΔADK 中,AK =AD 2+DK 2=(5)2+22=3,∴sin ∠DAE =DK AK=23,②作PF ⊥AD 于F .易知PF =AP ⋅sin ∠DAE =23AP ,∵点Q 的运动时间t =OP 1+AP 32=OP +23AP =OP +PF ,∴当O 、P 、F 共线时,OP +PF 的值最小,此时OF 是ΔACD 的中位线,∴OF =12CD =3.AF =12AD =52,PF =12DK =1,∴AP =52 2+12=32,∴当点Q 沿上述路线运动到点A 所需要的时间最短时,AP 的长为32cm ,点Q 走完全程所需的时间为3s .。
2020年深圳中考数学压轴题专题总结----胡不归问题总结(word版)

2020年深圳中考数学压轴题专题总结----胡不归问题为了方便同学们掌握,以下为简化版胡不归问题从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路。
由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径A→B(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭。
邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?…”。
这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”。
例题精讲例1、如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,过B的直线交抛物线于E,且tan ∠EBA=,有一只蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点处觅食,则蚂蚁从A到E的最短时间是s.【解答】解:过点E作y轴的平行线,再过D点作y轴的平行线,两线相交于点H,如图,∵EH∥AB,∴∠HEB=∠ABE,∴tan∠HED=tan∠EBA==,设DH=4m,EH=3m,则DE=5m,∴蚂蚁从D爬到E点的时间==4(s)若设蚂蚁从D爬到H点的速度为1单位/s,则蚂蚁从D爬到H点的时间==4(s),∴蚂蚁从D爬到E点所用的时间等于从D爬到H点所用的时间相等,∴蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点所用时间等于它从A以1单位/s的速度爬到D点,再从D点以1单位/s 速度爬到H点的时间,作AG⊥EH于G,则AD+DH≥AH≥AG,∴AD+DH的最小值为AQ的长,当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),直线BE交y轴于C点,如图,在Rt△OBC中,∵tan∠CBO==,∴OC=4,则C(0,4),设直线BE的解析式为y=kx+b,把B(3,0),C(0,4)代入得,解得,∴直线BE的解析式为y=﹣x+4,解方程组得或,则E 点坐标为(﹣,),∴AQ=,∴蚂蚁从A 爬到G 点的时间==(s ),即蚂蚁从A 到E 的最短时间为s .故答案为.例2、如图,已知抛物线)4)(2(8-+=x x k y (k 为常数,且0>k )与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B 的直线b x y +-=33与抛物线的另一交点为D .(1)若点D 的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与△ABC 相似,求k 的值;(3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止。
中考数学几何最值模型第2讲胡不归问题

A
G
P
H
B
H
C
课堂练习
4.等边三角形ABC的边长为6,将其放置在如图所示的平面直角坐标系中,其中BC边
在X轴上,BC边的高OA在y轴上,一只电子虫从A出发,先沿y轴到达G点,再沿GC到
达C点,已知电子虫在y轴上运动的速度是在GC上运动速度的2倍。若电子虫走完全程
_x001A_0, −_x001A__x001B_3_x001B__x001B_
一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,
小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念
叨着“胡不归? 胡不归? …”(“胡”同“何”)而如果先沿着驿道AC先
走一段,再走砂石地,会不会更早些到家?
故事介绍
从前有个少年外出求学,某天不幸得知老父亲
病危的消息,便立即赶路回家.根据“两点之
H
∵AE⊥CD于点G,∴∠AGC=90°
Q
∵O为AC中点, ∴OA=OC=OG=_x001A_1_x001B_2_x001B_AC
P
∴A,C, G三点共圆, 圆心为O,即点G在圆O上运动,
课堂练习
1.如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,点M为对角线BD(不含点B)上的
一动点,则AM+_x001A_1_x001B_2_x001B_的最小值为_______.
BN=_x001A_1_x001B_2_x001B_=1,=_x001A__x001B
_3_x001B_,CN=2−_x001A__x001B_3_x001B_,
∴BC=_x001A__x001B__x001A__x001B_2_x001B_+_x00
1A_C_x001B_2_x001B__x001B_=_x001A__x001B__x001
胡不归数学模型

胡不归数学模型
XXX问题是一个历史悠久的数学难题,近年来成为了各
地中考的小热门考点,对学生来说难度较大。
这个问题的起源可以追溯到古代,据说有一个小伙子在外出务工时得知老父亲病危的消息,便急匆匆地赶回家去。
他选择了一条直线路径,但实际上这条路线并不是最短的,因为折线路径可能会更快。
当他到家时,老人已经去世了,临终前老人不断念叨着“胡不归?XXX不归?”,这个故事引起了人们的思考,如何才能选
出最短的路线呢?
在这个问题中,假设A是出发点,B是目的地,直线AC
是一条驿道,而驿道靠目的地一侧全是砂土。
为了选出最短的路线,小伙子需要在AC上选取一点D,再折往至B。
不同路
面的速度不同,驿道速度为a米/秒,砂土速度为b米/秒。
因此,小伙子需要在AC上选择一个最优的点D,以便节省时间
提前到家。
练题1:在直角三角形ABC中,∠C=90°,∠A=30°,
BC=1,P是边AC上的一个动点,则CP+2PB的最小值是多少?
练题2:四边形ABCD是菱形,AB=6,且∠ABC=60°,M为对角线BD(不含B点)上任意一点,则
AM+1/2PA+1/2PB+BM的最小值是多少?
变式思考:如果本题要求“2AM+BM”的最小值,你会如何求解?如果本题要求“AM+BM+CM”的最小值,你会如何求解?。
中考数学专题 '胡不归'经典讲解

胡不归知识背景:从前,有一个小伙子在外地当学徒,当他获悉在家乡的年老父亲病危的消息后,便立即启程日夜赶路。
由于思念心切,他选择了全是沙砾地带的直线路径A--B (如图1所示:A 是出发地,B 是目的地,AC 是一条驿道,而驿道靠目的地的一侧全是沙砾地带),当他气喘吁吁地赶到父亲眼前时,老人刚刚咽了气,小伙子不觉失声痛哭,邻舍劝慰小伙子时告诉说,老人在弥留之际还不断喃喃地叨念:胡不归?胡不归?这个古老的传说,引起了人们的思索,小伙子要提前到家是否有可能呢?倘有可能,他应该选择条怎样的路线呢?这就是风靡千年的“胡不归问题”.由于在驿道和沙砾地的行走速度不一样,那么,小伙子有没有可能先在驿道上走一程后,再走沙砾地,虽然多走了路,但反而总用时更短呢? 设在沙砾地行驶速度为1v ,在驿道行驶速度为2v ,显然1v <2v . 思路:不妨假设从C 处进入砂砾地.设总共用时为t,t=1v BC +2v AC =1v 1(BC+21v vAC). 因为1v ,2v 是确定的,所以只要(BC+21v v AC)最小,用时就最少。
可以A 为顶点作一条射线ON ,使得∠MAN=α,且sin α=21v v ,过点C 作AN 的垂线,交于点E ,这样21v v AC=CE,当点B 、C 、E 在一条直线上时,即过点B 作AN 的垂线交AM 于点D ,交AN 于点F ,即(BC+21v v AC)的值最小为BF ,小伙子可以先在驿道上走到点D 处,然后再走砂砾地。
这样时间可以更短。
总结:在驿道上从点A走到点D的距离,其实就相当于,在砂砾上走了DF的距离,而 AB>BF,所以从点A直接到点B,用的时间肯定比先从点A到D再从点D到B所有的时间。
“胡不归”模型建立:如图所示,已知sin∠MBN=k,点 P为角∠MBN其中一边 BM上的一个动点,点A在射线BM、BN的同侧,连接AP,则当“PA+k·PB”最小时,P点的位置如何确定? (构造的角的正弦值为PB线段的系数值)分析:本题的关键在于如何确定“k·PB”系数化为1,过点P作PQ⊥BN垂足为Q,则k·PB=PB·sin∠MBN=PQ, “PA+k·PB”的最小值转化为求“PA+PQ”的最小值,即A、P、Q三点共线时最小。