运筹学课件第八章 图与网络分析(1)
合集下载
运筹学胡运权第五版课件
V5 12 7
5
4
3
2
0
1 3
1
0 4
3
4 0
v7 ∞ 10 10 8
⑶ 构造任意两点间最多可经过3个中间点到达 的最短距离矩阵 D(2)= dij(2) 其中 dij(2)= min { dir(1)+ drj(1)}
r
i
dir
(1)
r
drj(1)
j
v1 v2 v3 v4 v5 v6 v7
• • •
悬挂边 孤立点 偶点 奇点
悬挂点的关联边,如 e8 次为0的点 次为偶数的点,如 v2 次为奇数的点, 如 v5
5、链:图中保持关联关系的点和边的交替序列,其 中点可重复,但边不能重复。 路:点不能重复的链。 圈:起点和终点重合的链。 回路:起点和终点重合的路。 连通图:任意两点之间至少存在一条链的图。 完全图:任意两点之间都有边相连的简单图。 n(n 1) 2 n阶完全图用Kn表示,边数= C n
狄克斯屈拉算法
既可以求两点之间的最短 距离,又可以确定最短路
求某两点之间的最短距离
(0)= V2 D
5
2
∞ ∞ ∞ ∞
5
0
∞ 2
7 0 2 7
7
6
∞ ∞
∞ ∞ 2
V3 2
∞ 0
∞ 4
V4 ∞ 2
V5 ∞ 7
∞ 6
0
1
1
0 6
3
6 0
V6 ∞ ∞ 4
v7 ∞ ∞ ∞ ∞ 3
注意:D(0)是一个对称矩阵,且对角线上的元素全是0.
⑵ 构造任意两点间直接到达、或者最多经过1 个中间点到达的最短距离矩阵D(1)= dij(1) 其中
运筹学课件 第8章 网络计划
• 美国海军武器局—计划评审技术PERT:类似流程 图的箭线图,它描绘出项目包含的各种活动的先 后顺序,表明每项活动的时间或相关的成本。主 要用于研究与开发项目。
基本概念
• 网络图(赋权有向图):由箭线和节点构成,用 来表示工作流程的有向、有序的网状图形。它反 映整个工程任务的分解和合成。
5
1
2
a
网络计划
网络图 时间参数的计算 网络计划的优化和实施管理 图解评审法简介
基本概念
• 网络计划是通过网络图的制作,进行计划的优化, 通过其关键路线,实现管理者对工程项目的进度 控制。简单说,就是用网络分析的方法进行工程 项目计划和控制的一项管理技术。
• 杜邦公司—关键路线法CPM:是一个动态系统, 会随着项目的进度不断更新。主要用于以往在类 似工程中已取得一定经验的承包工程。
还要注意以下规则:
(1)网络图只能有一个总起点事项,一个总终 点事项
3
4
1
6
7
9
2
5
8
(2)网络图是有向图,不允许有回路
3
5
1
2
6
7
4
(3)节点i、j之间不允许有两个或两个以上的工 作
b
1
2
a
(4)虚工序的运用
3
4
7
1
6
9
2
5
8
(5)必须正确表示工作之间的前行、后继关系
b a
c
a c
b
1a
c4
• 路线的长度:完成该路线上的各项工序持续时间 的长度之和。
• 关键路线:网路中花费时间最长的时间和活动的 序列
• 次关键路线:花费时间次长的时间和活动的序列 • 关键工序:关键路线上的工序 • 工序时间(权),完成工序的时间消耗
基本概念
• 网络图(赋权有向图):由箭线和节点构成,用 来表示工作流程的有向、有序的网状图形。它反 映整个工程任务的分解和合成。
5
1
2
a
网络计划
网络图 时间参数的计算 网络计划的优化和实施管理 图解评审法简介
基本概念
• 网络计划是通过网络图的制作,进行计划的优化, 通过其关键路线,实现管理者对工程项目的进度 控制。简单说,就是用网络分析的方法进行工程 项目计划和控制的一项管理技术。
• 杜邦公司—关键路线法CPM:是一个动态系统, 会随着项目的进度不断更新。主要用于以往在类 似工程中已取得一定经验的承包工程。
还要注意以下规则:
(1)网络图只能有一个总起点事项,一个总终 点事项
3
4
1
6
7
9
2
5
8
(2)网络图是有向图,不允许有回路
3
5
1
2
6
7
4
(3)节点i、j之间不允许有两个或两个以上的工 作
b
1
2
a
(4)虚工序的运用
3
4
7
1
6
9
2
5
8
(5)必须正确表示工作之间的前行、后继关系
b a
c
a c
b
1a
c4
• 路线的长度:完成该路线上的各项工序持续时间 的长度之和。
• 关键路线:网路中花费时间最长的时间和活动的 序列
• 次关键路线:花费时间次长的时间和活动的序列 • 关键工序:关键路线上的工序 • 工序时间(权),完成工序的时间消耗
管理运筹学 图与网络分析PPT教案
v1
2
A
4
v6
3
7
3
v2
5
v5
5
6
2
4
5
v3 2 v4
7
v7
第27页/共83页
支撑树的权:如果T=(V,E)是G的一个支撑树,则称E中所 有边的权之和为支撑树T的权,记为w(T)。即
w(T )
wij
[vi ,v j ]T
v1
2
A
4
v6
3
7
3
v2
5
v5
5
6
2
4
5
v3 2 v4
7
v7
上例中支撑树的权为 3+7+5+2+2+3+4=26
第34页/共83页
v1
2
A
4
v6
3
7
3
v2
5
v5
5
6
2
4
5
v3 2 v4
7
v7
第35页/共83页
课堂练习:1.分别用三种方法求下图的最小支撑树
v2
7
v5
5
2
3
4
v1
4
5
v4 3
1
1
v7
7
4
v3
v6
第36页/共83页
2. 某农场的水稻田用堤埂分割成很多小块。为了 用水灌溉,需要挖开一些堤埂。问最少挖开多少条 堤埂,才能使水浇灌到每小块稻田?
水源
第37页/共83页
作业 P221: 第3题
第38页/共83页
§3 最短路问题
1. 问题的提出 2. 最短路问题的Dijkstra算法 3. 求任意两点之间最短距离的矩阵算法
运筹学 第八章 图论 - 全
(a)明显为二部图,(b)也是二部图,但不明显,改画为(c) 时即可看出。
2017/7/13 11
图与网络的基本知识
次,奇点,偶点,孤立点 与某一个点vi相关联的边的数目称为 点vi的次(也叫做度),记作d(vi)。 右图中d(v1)=4,d(v3)=5,d(v5)=1。次 为奇数的点称作奇点,次为偶数的
2017/7/13
18
图与网络的基本知识
有向图 无向图
道路
回路
链
圈
道路(边的方向一致)
2017/7/13 19
图与网络的基本知识
连通图
定义10 一个图中任意两点间至少有一条链相连,则称此图为 连通图。任何一个不连通图总可以分为若干个连通子图,每 一个称为原图的一个分图(连通分支)。
连通图
2017/7/13
边,对余下的图重复这个步骤,直至无圈为止。
2、避圈法:每次增加一条边,且与已有边不构成圈,直至恰 有n-1条边为止。
2017/7/13
24
树
例1、下图是某建筑物的平面图,要求在其内部从每一房间都能走到 别的所有的房间,问至少要在墙上开多少门? 试给出一个开门的方案。
三
七
Байду номын сангаас
三 八 一 四 二 五
七 八 九 六
无向图
2017/7/13
有向图
8
图与网络的基本知识
环, 多重边, 简单图 如果边e的两个端点相重,称该边为 环。如右图中边e1为环。如果两个点 之间边多于一条,称为多重边,如右
v2 e5
多重边
e2
e1 v1
环
e3 v3
e4
图中的e4和e5,对无环、无多重边的
运筹学第八章--图与网络分析-胡运权PPT课件
定理1 顶点次数总和等于边数的两倍。n d(vi) 2m i 1
定理2 次为奇数的顶点必为偶数个。
2020/5/29
.--线性规划
10
G (V , E), G' (V ', E' )
◦ 若 V ' V , E' E ,则G’是G的子图,G是G’的母图 G' G ◦ 若 V ' V , E' E ,则G’是G的真子图,G' G ◦ 若 V ' V , E' E ,则G’是G的支撑(生成)图。
2020/5/29
.--线性规划
9
次(d):结点的关联边数目
◦ d(v3)=4,偶点
◦ d(v2)=3,奇点
◦ d(v1)=4 ◦ d(v4)=1,悬挂点 ◦ e6, 悬挂边 ◦ d(v5)=0,孤立点
出次:d+(vi) 入次:d-(vi)
d (vi ) d (vi )
d (vi) = d+(vi) + d-(vi)
17
生成(支撑)树 若 V ' V , E' E ,则G’是G的支撑(生成)树。
(a)
(b)
(c)
18
最小生成树问题就是指在一个赋权的连通的无向图G中找出一 个生成树,并使得这个生成树的所有边的权数之和为最小。
1、破圈算法 步骤: (1)在给定的赋权的连通图上任找一个圈。 (2)在所找的圈中去掉一个权数最大的边(如果有两条或两 条以上的边都是权数最大的边,则任意去掉其中一条)。 (3)如果所余下的图已不包含圈,则计算结束,所余下的图 即为最小树,否则返回第1步。
19
例8.1
20
2、避圈算法 步骤:
图与网络分析物流运筹学81页PPT
一、 图与网络的基本知识
(一)、图与网络的基本概念
E
A
D
B
C
1、一个图是由点和连线组成。(连线可带箭头,也可 不带,前者叫弧,后者叫边)
一个图是由点集 Vv和j 中元V素的无序对的一个集
合
E构成{ek的} 二元组,记为G =(V,E),其中 V 中的
元素 叫做顶点v j ,V 表示图 G 的点集合;E 中的元素
称矩阵A为网络G的邻接矩阵。
(vi,vj)E (vi,ቤተ መጻሕፍቲ ባይዱj)E
v1 4
v2
例
36
72
v6 4
3
3
v3
5
2
v6 e5 v5
(a)
v2
e1
e8
v1
e6 e7 v7
v6 e5
v5
(b)
子图
v2
v3
e1 v1
e9
e6
e7
v7
e10 e11
v4
v6
v5
(c)
支撑子图
在实际应用中,给定一个图G=(V,E)或有向图
D=(V,A),在V中指定两个点,一个称为始点(或
发点),记作v1 ,一个称为终点(或收点),记作vn ,
1
0
、
倚
南
窗
以
寄
傲
,
审
容
膝
之
易
安
。
图与网络分析在物流系统中的应用
(Graph Theory and Network Analysis)
图与网络的基本知识 树及最小树问题 最短路问题
A
C
D
B
哥尼斯堡七空桥
运筹学8图与网络分析
(8)考察V8点,只有一个T标号,T(V8)=15,令P(V8)=15),记录路 径(V7,V8),计算结束。
反推得最V1至V8的最短路为V1→V2 →V5 →V7 →V8,路长15。
8.2 最短路问题
一、Dijkstra算法:求无负权网络最短路问题。
计算步骤:
(1)给Vs以P标号,P(Vs)=0,其余各点给T标号, T(Vi)=+∞;
且仅得一个圈。
4)图中边数为:p-1(p为顶点数)
8.1 图与网络基本知识
例8-4:一个班级的学生共计选修A、B、C、D、 E、F六门课程,其中一部分人同时选修D、C、A, 一部分人同时选修B、C、F,一部分人同时选修 B、E,还有一部分人同时选修A、B,期终考试 要求每天考一门课,六天内考完,为了减轻学生 负担,要求每人都不会连续参加考试,试设计一 个考试日程表。
(2)若Vi点为刚得到P标号的点,考虑点Vj: (Vi,Vj) 属于E,且Vj为T标号。则修改T(Vj)
T(Vj)=min[T(Vj),P(Vi)+lij];
(3)比较所有T标号的点,把最小者改为P标号,即: P(Vi)=min[T(Vi)] 当存在两个以上最小者时,可同时改为P标号。
8.2 最短路问题
8.1 图与网络基本知识
三、有向图的有关概念:
有向图:
由点和弧组成。表示为:D=(V,A)
V--点集合 A--弧集合
始点和终点: 对弧a=(u,v), u为a的始点,v为a的
终点。
链(道路):
点弧交错序列。
圈(回路):
如一条链中起点和终点重合。
初等链(道路): 链中无重复的点和弧。
(3) 考察V5V6和V5V7两边: T(V6)=min[T(V6),P(V5)+l56]=min[+∞,8+5] =13 T(V7)=min[T(V7),P(V5)+l57]=min[+∞,8+6] =14
反推得最V1至V8的最短路为V1→V2 →V5 →V7 →V8,路长15。
8.2 最短路问题
一、Dijkstra算法:求无负权网络最短路问题。
计算步骤:
(1)给Vs以P标号,P(Vs)=0,其余各点给T标号, T(Vi)=+∞;
且仅得一个圈。
4)图中边数为:p-1(p为顶点数)
8.1 图与网络基本知识
例8-4:一个班级的学生共计选修A、B、C、D、 E、F六门课程,其中一部分人同时选修D、C、A, 一部分人同时选修B、C、F,一部分人同时选修 B、E,还有一部分人同时选修A、B,期终考试 要求每天考一门课,六天内考完,为了减轻学生 负担,要求每人都不会连续参加考试,试设计一 个考试日程表。
(2)若Vi点为刚得到P标号的点,考虑点Vj: (Vi,Vj) 属于E,且Vj为T标号。则修改T(Vj)
T(Vj)=min[T(Vj),P(Vi)+lij];
(3)比较所有T标号的点,把最小者改为P标号,即: P(Vi)=min[T(Vi)] 当存在两个以上最小者时,可同时改为P标号。
8.2 最短路问题
8.1 图与网络基本知识
三、有向图的有关概念:
有向图:
由点和弧组成。表示为:D=(V,A)
V--点集合 A--弧集合
始点和终点: 对弧a=(u,v), u为a的始点,v为a的
终点。
链(道路):
点弧交错序列。
圈(回路):
如一条链中起点和终点重合。
初等链(道路): 链中无重复的点和弧。
(3) 考察V5V6和V5V7两边: T(V6)=min[T(V6),P(V5)+l56]=min[+∞,8+5] =13 T(V7)=min[T(V7),P(V5)+l57]=min[+∞,8+6] =14
运筹学课件--第8章 网络计划
B
C D E F
A
A B C B,C
3
2 1 5 7
H
I J K L
D,F
E,F G,H H,I J,K
3
8 9 6 4
要求:画出网络图并计算各节点最早时间和最迟时间
18 OR:SM OR:SM
第二节 关键路线法
二、作业的时间参数
• 最早可能开工时间tES(i, j)
一个作业必须在其各紧前作业都完工后才能开工, 作业最早可能开工时间等于其箭尾事项的最早时间。 tES(i, j)= tE(i)
一、双代号网络图的表示方法
虚工作——表示工作之间的先后逻辑关系,不耗用资源,也不占用 时间。符号表示:
B、节点:表示工作之间的联系(起始节点,终止节点,中间节点)
开始
完成
i
“时点”
C、线路:线路的长度,即线路所需要的时间。(关键路线——总 持续时间最长的线路;非关键线路——除了关键线路之外的线 路。)
2
0 A 10 0 0 C 12 12 G 16 B 15 10 D 20 10 E 18 F 8
5
30 H 10
1
3
15
6
28
I 20
7
4
24 OR:SM OR:SM
网络时间参数计算实例
• 2、最早结束时间:任意一项作业的EF = 该作业的ES+该 作业的作业时间)
10
A 0 10 0 0 12 B 15 15 C 12
关键 作业
a -
c
d e f g
22
4
4 5 10 8
0
6 6 3 11
4
10 11 13 19
运筹学:chap8_图与网络分析
X={1}
P1=0
T2=2
2
6
1
2
3
1
10
5
9
3 T4=1 4
7
5
6
5
2
3
4
6
7
4
T6=3
min {T2, T4, T6}=min {2,1,3}=1
X={1,4}, P4=1
8 8
X={1,4}
P1=0
T2=2
2
6
1
2
3
1
10
P4=1
5
9
3
4
7
5
6
5
2
3
4
6
7
8
4
8
T6=3
T7=3
min {T2,T6, T7}=min {2,3,3}=2
■悬挂点: d(v)=1 对应的边为悬挂边
■孤立点: d(v) =0
e1
v5
v4
■奇点: d(v)为奇数 ■偶点: d(v)为偶数
v2
有向图:
e2
v1
e4
e3
e6
e5
v3
■出次 d+(v):以v为始点的边数 d (v) d (v)
■入次 d-(v):以v为终点的边数 vV
vV
次的定理1
定理1:任何图中,顶点次数的总和为边数的2倍。 证明思路:每条边必与两个顶点关联
d(v) 2m
vV
次的定理2
定理2:任何图中,奇点必为偶数个
证明思路:
d(v) d(v) 2m
vV1
vV2
Euler图的充要条件
定理3:无向连通图G是Euler图的充要条件是: G中无奇点
精选运筹学课件第八章图与网络分析资料
运筹学教程
v2
v6
e3
v3 e7
v5
运筹学教程
V= ( v1, v2,…... v6) E= ( e1, e2,…... e8) (e1)= (v1, v2) (e2)= (v1, v2) (e7)= (v3, v5) (e8)= (v4, v4) (e8)= (v4, v4),称为自回路(环); v6是孤立点,v5为悬挂点,e7为悬挂边,顶点v3的次为 4,顶点v4的次为4。
2l23+ 2l36+ l69+ l98+ l23+ 2l87+ 2l74+ l41+ l12=51
运筹学教程
第二步:调整可行方案,使重复边最多为一次
重复边 的总长:
v3
l69+ l98+ l41+ l12=21
5
v2
第三步:检查每个初等圈是否 5
v1
定理条件2,如果不满足,进行
2 v6 4 v9
例:求解网络的中国邮路问题
运筹学教程
v3
5
v2
5
v1
2 v6 4 v9
3
3
6 v5 4 v8
4
4
9
v4 4 v7
v3
5
v2
5
v1
2 v6 4 v9
3
3
6
v5 4 v8
4
4
9
v4 4 v7
第一步:确定初始可行方案
先检查图中是否有奇点,如果无奇点,为欧拉图;如果
有奇点,图中的奇点的个数比为偶数个,所以可以两两 配对,构造二重边。图中有4个奇点,v2,v4,v6,v8,配对 v2-v4,v6-v8,构造二重边。重复边 的总长:
运筹学8图与网络分析PPT课件
v2
[v3 ,v4],[v1 ,v4],
[v2 ,v4], [v3 ,v3]}
v3 v4
图8.4
第12页/共166页
图8.5 是一个有向图D=(V,A)
其中V={v1 ,v2 ,v3 ,v4 ,v5 ,v6 ,v7}
A={(v1,v2),(v1,v3),(v3 ,v2)(v3 ,v4),(v2 ,v4),(v4 ,v5),
定理8.1 所有顶点度数之和等于所有边数
的2倍。
证明:因为在计算各个点的度时,每条边
被它的两个端点个用了一次。
第18页/共166页
定理8.2 在任一图中,奇点的个数必为偶数。 证明:设 V1,V2 分别是图G中奇点和偶点的
集合,由定理8.1 ,有
d(v) d(v) d(v) 2q
vV1
随着科学技术的进步,特别是电子计算 机技术的发展,图论的理论获得了更进一步 的发展,应用更加广泛。如果将复杂的工程 系统和管理问题用图的理论加以描述,可以 解决许多工程项目和管理决策的最优问题。 因此,图论越来越受到工程技术人员和经营 管理人员的重视。
关于图的第一篇论文是瑞士数学家欧拉 (E. Euler)在1736年发表的解决“哥尼
(v4 ,v6),(v5 ,v3),(v5 ,v4), (v5 ,v6),(v6 ,v7)}
v3
v5
v7
v1 v6
v2
v4
图8.5
第13页/共166页
下面介绍一些常用的名词:
一 个 图 G 或 有 向 图 D 中 的 点 数 , 记 作 P(G) 或 P(D),简记作P,边数或者弧数,记作q(G)或者q(D), 简记作q 。
简单链:链中所含的边均不相同;
初等链:链中所含的点均不相同, 也称通路; 圈:若 v0 ≠ vn 则称该链为开链,否则称 为闭链或回路或圈;
运筹学―第八章 图与网络分析PPT课件
12
二、 图的生成树 定义10 设图 K(V,E1)是图G=(V , E )的一支撑子图, 如果图 K(V,E1) 是一个树,那么称K 是G 的一个生 成树(支撑树),或简称为图G的树。
作G=(V,E),连接点的边记作[vi , vj],或者[vj , vi]。
如果一个图是由点和弧所构成的,那么称它为有向图,
记作D=(V, A),其中V表示有向图D的点集合,A表示有向
图D的弧集合。一条方向从vi指向vj 的弧,记作(vi , vj)。
V = {v1 , v2 , v3 , v4 , v5 , v6 },
e1 {v1,v2} e2 {v1,v2}
v6
e3 {v2,v3} e4 {v3,v4}
e9
e5 {v1,v3} e6 {v3,v5}
e7 {v3,v5} e8 {v5,v6}
e9 {v6,v6} e10{v1,v6}
e1
e2
v2
e5 e3 e4 v4
e8
e6
v5 e7 v3
图8—2
3
如果一个图是由点和边所构成的,则称其为无向图,记
第八章 图与网络分析
第一节 图与网络的基本知识 一、 图与网络的基本概念
A
C
D
A
C
D
B 图8—1(a)
B 图8—1(b)
1
整体概述
概述一
点击此处输入
相关文本内容
概述二
点击此处输入
相关文本内容
概述三
点击此处输入
相关文本内容
2
定义1 一个图是由点集 Vvj和 V 中元素的无序对的一
个集合 E {ek}构成的二元组,记为G=(V,E),其中V中的
二、 图的生成树 定义10 设图 K(V,E1)是图G=(V , E )的一支撑子图, 如果图 K(V,E1) 是一个树,那么称K 是G 的一个生 成树(支撑树),或简称为图G的树。
作G=(V,E),连接点的边记作[vi , vj],或者[vj , vi]。
如果一个图是由点和弧所构成的,那么称它为有向图,
记作D=(V, A),其中V表示有向图D的点集合,A表示有向
图D的弧集合。一条方向从vi指向vj 的弧,记作(vi , vj)。
V = {v1 , v2 , v3 , v4 , v5 , v6 },
e1 {v1,v2} e2 {v1,v2}
v6
e3 {v2,v3} e4 {v3,v4}
e9
e5 {v1,v3} e6 {v3,v5}
e7 {v3,v5} e8 {v5,v6}
e9 {v6,v6} e10{v1,v6}
e1
e2
v2
e5 e3 e4 v4
e8
e6
v5 e7 v3
图8—2
3
如果一个图是由点和边所构成的,则称其为无向图,记
第八章 图与网络分析
第一节 图与网络的基本知识 一、 图与网络的基本概念
A
C
D
A
C
D
B 图8—1(a)
B 图8—1(b)
1
整体概述
概述一
点击此处输入
相关文本内容
概述二
点击此处输入
相关文本内容
概述三
点击此处输入
相关文本内容
2
定义1 一个图是由点集 Vvj和 V 中元素的无序对的一
个集合 E {ek}构成的二元组,记为G=(V,E),其中V中的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学
3)求最小树的方法:
方法一(避圈法) 开始选一条最小权的边,以后每一步中, 总从未被选取的边中选一条权最小的边,并使之与已选取 的边不构成圈。
方法二(破圈法) 任取一个圈,从圈中去掉一条权最大的边。 在余下的图中,重复这个步骤,一直到一个不含圈的图为 止,这时的图便是最小树。
例 用破圈法求下图的最小树
4、寻找支撑树的方法
1)破圈法:在图中任取一个圈,从圈中去掉 任一边,对余下的图重复上述操作,即可 得到一个支撑树。
2)避圈法:每一步选取与已选的边构不成圈 的边,直到不能继续为止。
2019/9/21
运筹学
5、最小支撑树
1)赋权图:给图G=(V,E) ,对G中的每一条边 [vi,vj],相应地有一个数wij,则称这样的图G为赋 权图,wij称为边[vi,vj]上的权。
2、树的性质:
1)图G是树的充分必要条件是任意两个顶点 之间恰有一条链。
2)在树中去掉任意一条边则构成一个不连通 图,不再是树;在树中不相邻的两点之间 添加一条边,恰好形成了一个圈,也就不 再是树。
3)树中顶点的个数为P,则其边数必为P-1。
2019/9/21
运筹学
3、支撑树:设图T=(V,E’) 是图G(V,E)的 支撑子图,如果图T=(V, E’) 是一个树,则 称T是G的一个支撑树。
2)最小支撑树:如果T=(V,E’) 是G的一个支撑树, 称E’中所有边的权之和为支撑树T的权,记为 w(T),即
w(T)=Σ wij (vi,vj)∈T
如果支撑树T*的权w(T*)是G的所有支撑树的权中最 小者,则称T*是G的最小支撑树(简称最小树)
w(T*)=min w(T)
T
2019/9/21
7、路:如果(vi1,ai1,vi2,ai2,…,vik-1,aik-1,vik)是D 中的一条链,并且对t=1,2,…,k-1,均有 ait=(vit,vit+1),称之为从vi1到vik的一条路。
8、回路:若路的第一个点和最后一点相同,则称 之为回路。
2019/9/21
运筹学
六、图的矩阵表示
1、网络(赋权图)G=(V,E),其边(vi,vj)有权wij, 构 造矩阵A=(aij)n×n,其中: wij(vi,vj)∈E 0 其他
4、多重边:图中某两点之间有多余一条的边,称之为多重
边。
多重图:含有多重边的图。
5、简单图:无环、无多重边的图。
2019/9/21
运筹学
二、连通图
1、链:给定一个图G=(V,E),一个点边的交错序列 (vi1, ei1, vi2, ei2,…,vik-1,eik-1,vik),如果满足 eit=[vit,vit+1] (t=1,2,…,k-1),则称为一条联结vi1和 vik的链,称点vi2, vi3,…,vik-1为链的中间点。
4
V8
2
V9
6 V4
4 V1
2019/9/21
4
6
2
V6
V5
2
3
4
4
V2
运筹学V3
二、最短路算法
1、情况一: wij≥0(E.W.Eijkstra算法) 原理:Bellman最优性定理 方法:图上作业法(标号法) 标号:对于点,若已求出到Vi的最短值,标号(αi,βi)
αi :表示到的最短路值 βi:表示最短路中最后经过的点 标号法步骤: 1)给V1标号(0, Vs) 2)把所有顶点分成两部分,X:已标号的点;X’未标号的点 考虑X,与Vj已∈标X号’若点不相存邻在的,弧此是问存题在无这解样,的否弧则(转V3i),Vj ), Vi ∈ 3)算选:m取i未n{标αi 号+ w中ij所}=有αj入线的起点与未标号的点Vj进行计 并对其进行标号(αj, Vi),重复2)
4 12 32
5
2019/9/21
23 2
34
运筹学
2
12
2
2
3
四、一笔划问题
1、次:图中的点V,以V为端点的边的个数,称为V的 次,记为d(V)。
2、定理1:图G=(V,E)中,所有点的次之和是边数的两 倍,即设q边数,则Σd(vi)=2q ,其中viV
3、奇点:次为奇数的点。否则称为偶点。 4、任一图中,奇点的个数为偶数。 5、一笔划: 可以一笔划:没有或仅有两个奇次点的图形
2)E中每一条线ei是以V中两个点Vs,Vt为端点 3)E中任意两条线之间除端点之外无公共点.
则由V、E构成的二元组合G=(V, E)就是图。
2、子图:已知图G1(V1,E1)若V1 V, E1 E 则称图G1(V1,E1)是图G=(V, E)的子图
3、若在图G中,某个边的两个端点相同,则称e是环。
第八章 图与网络分析
图的基本知识 最短路径问题 网络最大流问题 网络最小费用流问题
2019/9/21
运Байду номын сангаас学
§1.图的基本知识
一、图
1、图:由一些点及一些点的连线所组成的图形。
若V={V1,V2,…, Vn}是空间n个点的集合 E= { e1,e2,…, em}是空间m个点的集合
满足1)V非空
称矩阵A为网络G的权矩阵。
2、对于图G=(V,E), ∣V ∣=n,构造一个矩阵A=
(aij)n×n,其中: wij(vi,vj)∈E 0 其他
称矩阵A为网络G的权。
2019/9/21
运筹学
第二节 最短路问题
一、引例:
如下图中V1:油田,V9:原油加工厂 求使从V1到V9总铺路设管道最短方案。
V7
4、环:某一条孤起点=终点,称为环。
5、基础图:给定一个有向图D=(V,A) ,从D中去掉所 有弧上的箭头,所得到的无向图。记之为G(D)。
2019/9/21
运筹学
6、链:设(vi1,ai1,vi2,ai2,…,vik-1,aik-1,vik)是D中 的一个点弧交错序列,如果这个序列在基础图 G(D)中所对应的点边序列是一条链,则称这个点 弧交错序列是D的一条链。
如没有奇次点:任取一点,它既是起点又是终点。 两个奇次点:分别选为起点和终点。
2019/9/21
运筹学
五、有向图
1、无向图:G(V,E)点集+边集
2、弧:点与点之间有方向的边,叫做弧。 弧集:A={a1,a1,…,am}
3、有向图:由点及弧所构成的图,记为D=(V,A),V,A 分别是D的点集合和弧集合。
2、圈:链(vi1,vi2,…,vik)中,若vi1=vik,,则称之为一 个圈。
3、简单链:若链(vi1,vi2,…,vik)中,点 vi1,vi2,…,vik都是不同的,则称之为简单链。
4、连通图:图G中,若任何两个点之间,至少有一 条链。
2019/9/21
运筹学
三、树
1、定义:一个无圈的连通图称为树。