MOC3041内部含有过零检测电路

合集下载

光耦MOC3041的接法例子

光耦MOC3041的接法例子

光耦MOC3041的接法例子“moc3041”的应用图2是带有双向晶闸管的PTZ控制的单电路图。

图中的光耦moc3041用于隔离晶闸管上的交流高压和直流低压控制信号。

其输出用于触发双向晶闸管,并选择STmicroelectronics公司的t4系列,内部集成有缓冲续流电路,不用在双向可控硅两端并联rc吸收电路,可以直接触发,电路设计比较简单。

p1。

0电机由晶闸管、交流接触器、过电流保护器和断相保护器控制。

图中只显示了带过零触发的双向晶闸管触发电路。

Moc3041是一种光耦合双向晶闸管驱动器,输入驱动电流为15mA,适用于220V交流电路。

1、moc3041的工作电流仅十余个毫安,直接驱动20瓦的功率非常勉强,不敢保证长时间工作不会烧坏,应该让3041驱动97a6的可控硅,再用可控硅驱动电磁阀。

2.实践证明,当51单片机驱动PNP管时,当工况接近临界点时,PNP管将连续关闭。

原因如下:(1)端口的高电平不是严格的VCC电压,而是略低于VCC。

这个稍低的电压足以为Q1形成非常小的偏置电压VBE。

虽然电压远低于0.7V,但在被三极管放大后,它会导致Q1集电极产生非常小的电流,尽管电流不足以使led用肉眼发光能看到的亮光,但是在密封的光耦合器内,却能够导致光耦合区工作;(2)pnp管要比npn极管有更大的穿透电流,即:在基极b完全断开的情况下,集电极仍然有极小的电流存在。

基于以上两点,本电路的设计存在不足,改进方法如下:1。

在moc3041和空气阀之间添加一个晶闸管(需要)2、建议改用npn管驱动,如果必须要用pnp管,就应该在b和e之间接一个10k左右的电阻;或者在发射极串入一个二极管,以起到钳位作用,即保证pnp管能可*关断;或者干脆将耦合器的1和2脚改接在发射极,并让集电极通过电阻接地。

1.不建议使用3041直接驱动电磁阀。

增加晶闸管是非常必要的。

2.可以用单片机直接驱动3041。

3、用2k电阻能可*驱动,因为内部的光耦合几乎是100%的耦合,只要微弱发光即可。

MOC系列光耦及过零检测

MOC系列光耦及过零检测

MOC 系列光耦及过零检测驱动大功率交流器件时常用双向可控硅进行功率控制,根据控制方式的不同有过零控制和移相控制。

不管哪种控制都要对零点进行检测,因为双向过控硅的特性是到了交流的零点,可控硅会自动关闭输出。

我们检测零点目的就是可控硅在零点关闭输出后,我们可以根据功率的需求选择时间来重新触发可控硅。

但对于单片机弱电直接控制交流肯定是不现实的,用继电器控制只能实现简单的慢速的开关量控制,而如果要实现功率调节,我们就需要用光特性的固态继电器,这种器件比较贵。

而假如用光耦肯定也是不行的,因为普通的光耦是单向器件,对于交流的网电它是不能实现控制的在这种情况下,我们最好的选择就是用MOC 系列的光控可控硅,用得最多的MOC3041 和MOC3021 ,它们的前端触发电流都是15mA ,隔离电压达到5000Vrms ,适合于对电绝缘特性要求高的医疗电子行业。

MOC3021 和MOC3041 的主要区别就是MOC3041 有过零检测,MOC3021 没有过零检测,对于有过零检测功能的MOC3041 ,它每次在过零点的时候会判断有没有光输入,即有没有前置电流If ,如果有If,那么在这个周期之内,它是导通的,所以它只能决定一个网电源周期内它是不是导通的,而不能决定在一个周期的某一个时刻开始导通。

基于这种特性我们可以用它来实现过零控制,过零控制的缺点是控制精度低,优点是对电网没有污染。

对于没有过零检测的MOC3021来说,它在有光输入的时刻开始到这个周期的结束它都是导通的。

基于这种特性,如果我们已经检测到了零点,我们就可以在零点的时刻开始延时一段时间来输入前置电流If,用它来实现移相检测。

对于两种电路我都做了相关的测试,结果与写的一致。

300表9三端双向晶闸管输出*|:川I:旌樓端,11片(不连劇.6LEG讹岌电占尊交夏聲止电压^(V TM=3V}I 标定mA max V max 工作电压阪刖值)MOC30C9 MOC3O10 MOC3011 MOC3012 MOG3020 MOC3021 MOC3022 MOC3023 MOC3031MOC3033MOC3O41MOC3CM2WOC3M3 MOC3061 祜003062 祜OC獅3 MOC30S1 袖OC3DS2Mocaoaa V min阴15103015101510&151051510515102020202020202020202020西炮5125125125125/220125/220125 '22 C125/220125125125125/2^0125/24012S/24026028028032032Q320*10厳密特触发器输出區i J. LjllJE J(*M)V/ufi1UU引脚;"冊臥062730S-04可调压固态继电器电路: 随机相位三端双向晶闸管驱动器输出□ 0 4类型零交叉三端双向晶闸管驱动器输岀06------类型6零交叉电路T。

光耦资料总结

光耦资料总结

有篇关于光耦的小文章推荐你看看:光电耦合器(简称光耦)是开关电源电路中常用的器件。

光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。

常用的4N系列光耦属于非线性光耦常用的线性光耦是PC817A—C系列。

非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于弄开关信号的传输,不适合于传输模拟量。

线性光耦的电流传输手特性曲线接进直线,并且小信号时性能较好,能以线性特性进行隔离控制。

开关电源中常用的光耦是线性光耦。

如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。

由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。

同时电源带负载能力下降。

在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。

常用的4脚线性光耦有PC817A--——C。

PC111 TLP521等常用的六脚线性光耦有:TLP632 TLP532 PC614 PC714 PS2031等。

常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。

以下是目前市场上常见的高速光藕型号:100K bit/S:6N138、6N139、PS87031M bit/S:6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8701、PS9613、PS9713、CNW4502、HCPL—2503、HCPL—4502、HCPL—2530(双路)、HCPL—2531(双路)10M bit/S:6N137、PS9614、PS9714、PS9611、PS9715、HCPL—2601、HCPL—2611、HCPL—2630(双路)、HCPL-2631(双路)光耦合器的增益被称为晶体管输出器件的电流传输比(CTR),其定义是光电晶体管集电极电流与LED正向电流的比率(ICE/IF)。

光电晶体管集电极电流与VCE有关,即集电极和发射极之间的电压。

光耦资料总结

光耦资料总结

有篇关于光耦的小文章推荐你看看:光电耦合器(简称光耦)是开关电源电路中常用的器件。

光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。

常用的4N系列光耦属于非线性光耦常用的线性光耦是PC817A—C系列。

非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于弄开关信号的传输,不适合于传输模拟量。

线性光耦的电流传输手特性曲线接进直线,并且小信号时性能较好,能以线性特性进行隔离控制。

开关电源中常用的光耦是线性光耦。

如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。

由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。

同时电源带负载能力下降。

在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。

常用的4脚线性光耦有PC817A----C。

PC111 TLP521等常用的六脚线性光耦有:TLP632 TLP532 PC614 PC714 PS2031等。

常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。

以下是目前市场上常见的高速光藕型号:100K bit/S:6N138、6N139、PS87031M bit/S:6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8701、PS9613、PS9713、CNW4502、HCPL-2503、HCPL-4502、HCPL-2530(双路)、HCPL-2531(双路)10M bit/S:6N137、PS9614、PS9714、PS9611、PS9715、HCPL-2601、HCPL-2611、HCPL-2630(双路)、HCPL-2631(双路)光耦合器的增益被称为晶体管输出器件的电流传输比(CTR),其定义是光电晶体管集电极电流与LED正向电流的比率(ICE/IF)。

光电晶体管集电极电流与VCE有关,即集电极和发射极之间的电压。

如何用单片机控制220V交流电的通断,不用继电器?

如何用单片机控制220V交流电的通断,不用继电器?

如何用单片机控制220V交流电的通断,不用继电器?
不用继电器,用单片机控制220V交流电的通断,我这里提供一种设计思路,或许还有更好的方案,仅供参考,下面详细说明。

我的方案是用一个双向可控硅以及一个专用的驱动芯片(MOC3041),双方可控硅是一种半控型器件,即可以控制开通,但无法控制关断。

这样的话只要在电源电压过零时,可控硅的触发端有信号,可控硅就会导通。

如果没有信号,可控硅就会关断,因此可以用于交流电的开通和关断;下图就是这部分的电路原理图。

这部分电路相对比较简单,图中电HOT和NEUTRAL之间接的是220V交流电源,MOC3041的第2脚接单片机的一个I/O口,第一脚通过一个阻值合适的电阻接到VCC,起限流作用。

下图是MOC3041的内部结构图:
该芯片输入与输出之间通过光信号传递以实现电气上的隔离,输出侧有电压过零检测电路,4,6PIN 之间接交流电压之后,只要单片
机输出低电平,那么输入侧LED点亮,在电源在过零的时候第4脚上会自动输出可控硅的触发信号,使双向可控硅导通。

反之,如果要使220V交流电被切断,只要使单片机输出高电平就可以了。

这样就实现了用单片机控制220V交流电压的接通与关断。

希望这个方案对你有帮助!。

光耦合双向可控硅驱动器电路

光耦合双向可控硅驱动器电路

光耦合双向可控硅驱动器电路
光耦合双向可控硅驱动器电路
这种器件是一种单片机输出与双向可控硅之间较理想的接口器件。

它由输入和输出两部分组成,输入部分是一砷化镓发光二极管。

该二极管在5~15mA正向电流作用下发出足够强度的红外线,触发输出部分。

输出部分是一硅光敏双向可控硅,在紫外线的作用下可双向导通。

该器件为六引脚双列直插式封装,其引脚配置和内部结构见下图:
有的型号的光耦合双向开关可控硅驱动器还带有过零检测器。

以保证电压为零(接近于零)时才可触发可控硅导通。

如MOC3030/31/32(用于115V交流),MOC3040/41(用于220V交流)。

下图是过零电压触发双向可控硅驱动器MOC3040系列的典型应用电路。

联系我们TEL:0 FAX: 欢迎索取免费详细资料、设计指南和光盘
中国传感器科技信息网:HTTP://
工控安防网:HTTP://
消费电子专用电路网:
地址:深圳市福田区福华路福庆街鸿图大厦1602室E-MAIL
电话:0
传真:2 邮编:518033 手机:(0)
MSN
技术支持: 3
深圳展销部:深圳华强北路赛格电子市场2583号TEL/FAX:9
北京分公司:北京海淀区知春路132号中发电子大厦3097号
TEL:0 FAX:0
上海分公司:上海市北京东路668号上海賽格电子市场2B35号
TEL:FAX:
西安分公司:西安高新开发区20所(中国电子科技集团导航技术研究所)
西安劳动南路88号电子商城二楼D23号
TEL:FAX:。

第3章 计算机控制系统的常用硬件6(执行机构)

第3章  计算机控制系统的常用硬件6(执行机构)

5.步进电机的驱动控制方法
典型的步进电机控制系统如图3-30所示。
步进电机控制系统主要是由步进控制器、功率放大器及步 进电机组成。步进控制器是由缓冲寄存器、环形分配器、控制 逻辑及正、反转控制门等组成。它的作用就是能把输入的脉冲 转换成环型脉冲,以便控制步进电机,并能进行正、反向控制。 功率放大器的作用是把控制器输出的环型脉冲加以放大,以驱 动步进电机转动。在这种控制方式中,由于步进控制器线路复 杂、成本高,因而限制了它的应用。
4.电磁阀的驱动控制方法
由于电磁阀也是由线圈的通断电来控 制的,其工作原理与继电器基本相同, 都是带动活动芯运动,故其与微型机 的接口与继电器相同,也是由光电隔 离及开关电路等来控制的。 对于交流电磁阀,由于线圈要求是 交流电,所以通常使用双向可控硅驱 动或使用一个直流继电器作为中间继 电器控制。

5)电磁阀
电磁阀是在气体或液体流动的管路中受电磁力控制开闭的阀体。广 泛应用于液压机械、空调系统、热水器、自动机床等系统中。它由线圈、 固定铁芯、可动铁芯和阀体等组成。当线圈不通电时,可动铁芯受弹簧 作用与固定铁芯脱离,阀门处于关闭状态;当线圈通电时,可动铁芯克 服弹簧力的作用而与固定铁芯吸合,阀门处于打开状态。这样,就控制 了液体和气体的流动。再通过流动的液体或气体推动油缸或汽缸来实现 物体的机械运动。
步进电动机
步进电动机控制器
步进电动机驱动器
执行机构的驱动
就接口技术而言,执行装置的接口与一般输出设备的接口 没什么两样,主要差别在于,要想驱动它们,必须具有较大 的输出功率,这就要求接口不仅能与微型机的TTL、CMOS等器 件连接,而且能向执行装置提供大电流、高电压驱动信号, 以带动其动作。 另一方面,由于各种执行装置的动作原理不尽相同,有的 用电动,有的用气动或液压,因此如何使微型机输出的信号 与之匹配,也是执行装置接口必须解决的重要问题。

光耦资料总结

光耦资料总结

型号-引脚功能说明脚位内部结构电路图AQY210 4引脚位,单组AQY214 4引脚位,单组AQY210S 4引脚位,单组AQY214Sx 4引脚位,单组AQV210 6引脚位,单组器件AQV212 6引脚位,单组器件AQV215 6引脚位,单组器件AQV217 6引脚位,单组器件AQV214 6引脚位,单组器件AQV216 6引脚位,单组器件AQV414 6引脚位,单组器件HCPL2530 高速光耦8引脚位Array HCPL2531 高速光耦8引脚位HCPL4502 高速光耦8引脚位HCPL2503 高速光耦HCPL2533 高速光耦8引脚位HCPL2601 高速光耦8引脚位HCPL2611 高速光耦8引脚位8引脚位HCPL2630 高速光耦8引脚位HCPL2631 高速光耦8引脚位HCPL2730 高速光耦8引脚位HCPL2731 高速光耦8引脚位K1010 三极管输出4N25 三极管输出6引脚位,单组器件4N26 三极管输出6引脚位,单组器件4N27 三极管输出6引脚位,单组器件4N28 三极管输出6引脚位,单组器件4N29 达林顿管输出6引脚位,单组器件4N30 达林顿管输出6引脚位,单组器件4N31 达林顿管输出6引脚位,单组器件4N32 达林顿管输出6引脚位,单组器件4N33 达林顿管输出6引脚位,单组器件4N35 三极管输出6引脚位,单组器件4N36 三极管输出6引脚位,单组器件4N37 三极管输出6引脚位,单组器件4N38 三极管输出6引脚位,单组器件4N38A 三极管输出6引脚位,单组器件4N39 单向晶闸管输出6引脚位,单组器件4N40 单向晶闸管输出6引脚位,单组器件6N135 高速光耦,高速光耦6N136 高速光耦6N137 逻辑高速输出TTL兼容6N138 高增益高速光耦6N139 高增益高速光耦CNX62A 三极管输出6引脚位,单组器件CNX72A 三极管输出6引脚位,单组器件CNX82A 三极管输出6引脚位,单组器件CNX83A 三极管输出6引脚位,单组器件CNY17-1 三极管输出6引脚位,单组器件CNY17-2 三极管输出6引脚位,单组器件CNY17-3 三极管输出6引脚位,单组器件CNY17-4 三极管输出6引脚位,单组器件CNY17-5 三极管输出6引脚位,单组器件CNY17F-1 三极管输出6引脚位,单组器件CNY17F-2 三极管输出6引脚位,单组器件CNY17F-3 三极管输出6引脚位,单组器件CNY17F-4 三极管输出6引脚位,单组器件6 CNY30 单向晶闸管输出CNY34 单向晶闸管输出CNY35 交流输入型光耦三极管输出6引脚位,单组器件CNY75A 三极管输出6引脚位,单组器件CNY75B 三极管输出6引脚位,单组器件CNY75C 三极管输出6引脚位,单组器件CQY80 三极管输出6引脚位,单组器件H11A1 三极管输出6引脚位,单组器件H11A2 三极管输出6引脚位,单组器件H11A3 三极管输出6引脚位,单组器件H11A4 三极管输出6引脚位,单组器件H11A5 三极管输出6引脚位,单组器件H11AA1 交流输入型光耦三极管输6引脚位,单组器件出H11AA2 交流输入型光耦三极管输6引脚位,单组器件出H11AA3 交流输入型光耦三极管输6引脚位,单组器件出H11AA4 交流输入型光耦三极管输6引脚位,单组器件出H11AV1 三极管输出6引脚位,单组器件H11AV2 三极管输出6引脚位,单组器件H11AV3 三极管输出6引脚位,单组器件H11B1 达林顿管输出6引脚位,单组器件H11B2 达林顿管输出6引脚位,单组器件H11B3 达林顿管输出6引脚位,单组器件H11C1 单向晶闸管输出6引脚位,单组器件Array H11C2 单向晶闸管输出6引脚位,单组器件H11C3 单向晶闸管输出6引脚位,单组器件H11C4 单向晶闸管输出6引脚位,单组器件H11C5 单向晶闸管输出6引脚位,单组器件H11C6 单向晶闸管输出6引脚位,单组器件H11D1 高耐压三极管输出6引脚位,单组器件H11D2 高耐压三极管输出6引脚位,单组器件H11D3 高耐压三极管输出6引脚位,单组器件H11D4 高耐压三极管输出6引脚位,单组器件H11F1 场效应管对称输出6引脚位,单组器件H11F2 场效应管对称输出6引脚位,单组器件H11F3 场效应管对称输出6引脚位,单组器件H11G2 达林顿管输出6引脚位,单组器件H11G3 达林顿管输出6引脚位,单组器件H11J1 双向可控硅非过零型光藕6引脚位,单组器件H11J2 双向可控硅非过零型光藕6引脚位,单组器件H11J3 双向可控硅非过零型光藕6引脚位,单组器件H11J4 双向可控硅非过零型光藕6引脚位,单组器件H11J5 双向可控硅非过零型光藕6引脚位,单组器件H11L1 施密特触发器输出H11L2 施密特触发器输出H11L3 施密特触发器输出H11L4 施密特触发器输出H24A1 三极管输出型光电藕合器件4引脚位,单组H24A2 三极管输出型光电藕合器件4引脚位,单组H24A3 三极管输出型光电藕合器件4引脚位,单组H24A4 三极管输出型光电藕合器件4引脚位,单组光藕型号引脚内部结构图IL1 三极管输出6引脚位,单组器件Array IL2 三极管输出6引脚位,单组器件IL5 三极管输出型6引脚位,单组器件IL74 三极管输出型6引脚位,单组器件ILD1 三极管输出8引脚位ILD2 三极管输出8引脚位ILD5 三极管输出8引脚位ILD74 三极管输出6,8,16引脚位,4组器件ILQ1 三极管输出16引脚位,4组器件ILQ2 三极管输出16引脚位,4组器件ILQ5 三极管输出16引脚位,4组器件ILQ74 三极管输出6引脚位,单组器件IS201 三极管输出型6引脚位,单组器件IS202 三极管输出型6引脚位,单组器件IS203 三极管输出型6引脚位,单组器件IS204 三极管输出型6引脚位,单组器件IS205 三极管输出6引脚位,单组器件IS205-1 三极管输出型光电藕合器件6引脚位,单组器件IS205-2 三极管输出型光电藕合器件6引脚位,单组器件IS206 三极管输出IS357 三极管输出IS4N45 高压达林顿管输出光电藕合器件IS4N46 高压达林顿管输出光电藕合器件IS6003 双向可控硅非过零型光藕6引脚位,单组器件IS6005 双向可控硅非过零型光藕6引脚位,单组器件IS6010 双向可控硅非过零型光藕6引脚位,单组器件IS6015 双向可控硅非过零型光藕6引脚位,单组器件IS6030 双向可控硅非过零型光藕6引脚位,单组器件IS604 交流信号输入三极管输出6引脚位,单组器件IS6051IS607 双向可控硅非过零型光藕6引脚位,单组器件IS608 双向可控硅非过零型光藕6引脚位,单组器件IS609 施密特触发器输出IS610 场效应管对称输出6引脚位,单组器件IS611 场效应管对称输出6引脚位,单组器件IS7000 高压达林顿管输出光偶4引脚位,单组ISD201 三极管输出Array ISD202 三极管输出8引脚位ISD203 三极管输出ISD204 三极管输出ISD5 三极管输出8引脚位ISD74 三极管输出光偶8引脚位ISP321-1 三极管输出形式4引脚位,单组ISP321-2 三极管输出8引脚位ISP321-4 三极管输出16引脚位,4组器件ISP521-1 三极管输出形式4引脚位,单组ISP521-2 三极管输出8引脚位ISP521-4 三极管输出16引脚位,4组器件ISP620-1 交流信号输入三极管输出4引脚位,单组ISP620-2 交流信号输入三极管输出8引脚位ISP620-4 交流输入型光耦三极管输16引脚位,4组器件出ISP621-1 三极管输出形式4引脚位,单组ISP621-2 三极管输出8引脚位ISP621-4 三极管输出16引脚位,4组器件ISP624-1 三极管输出形式4引脚位,单组ISP624-2 三极管输出8引脚位ISP624-4 三极管输出16引脚位,4组器件ISP814 交流信号输入三极管输出4引脚位,单组ISP814-1 交流信号输入三极管输出4引脚位,单组ISP814-2 交流信号输入三极管输出4引脚位,单组ISP815 达林顿管输出4引脚位,单组ISP815-1 达林顿管输出4引脚位,单组ISP815-2 达林顿管输出4引脚位,单组ISP815-3 达林顿管输出4引脚位,单组ISP817 三极管输出形式4引脚位,单组ISP817-1 三极管输出4引脚位,单组ISP817-2 三极管输出 4 Pin4 Pin ISP817-3 三极管输出4引脚位,单组ISP824 交流信号输入三极管输出8引脚位ISP824-1 交流信号输入三极管输出8引脚位ISP824-2 交流信号输入三极管输出8引脚位ISP824-3 交流信号输入三极管输出8引脚位ISP825 达林顿管输出8引脚位Array ISP825-1 达林顿管输出8引脚位ISP825-2 达林顿管输出8引脚位ISP825-3 达林顿管输出8引脚位ISP827 三极管输出8引脚位ISP827-1 三极管输出光电藕合器件8引脚位ISP844 交流输入型光耦三极管输出16引脚位,4组器件ISP845 达林顿管输出16引脚位,4组器件ISP847 三极管输出16引脚位,4组器件ISPD60 达林顿管输出6引脚位,单组器件ISPD61 达林顿管输出6引脚位,单组器件ISPD62 达林顿管输出6引脚位,单组器件ISPD63 达林顿管输出6引脚位,单组器件ISPD64 达林顿管输出6引脚位,单组器件ISPD65 达林顿管输出6引脚位,单组器件ISQ1 三极管输出6引脚位,单组器件ISQ201 三极管输出16引脚位,4组器件ISQ202 三极管输出16引脚位,4组器件ISQ203 三极管输出16引脚位,4组器件ISQ204 三极管输出16引脚位,4组器件ISQ5 三极管输出16引脚位,4组器件ISQ74 三极管输出16引脚位,4组器件MCA2230 达林顿管输出6引脚位,单组器件MCA2231 达林顿管输出6引脚位,单组器件MCA2255 达林顿管输出6引脚位,单组器件MCA230 达林顿管输出6引脚位,单组器件MCA231 达林顿管输出6引脚位,单组器件MCA255 达林顿管输出6引脚位,单组器件MCS2400 单向晶闸管输出 6引脚位,单组器件MCT2 三极管输出型 6引脚位,单组器件MCT210 三极管输出型 6引脚位,单组器件MCT2200 三极管输出型 6引脚位,单组器件MCT2201 三极管输出型 6引脚位,单组器件MCT2202 三极管输出型 6引脚位,单组器件MCT270 三极管输出型 6引脚位,单组器件MCT271 三极管输出型 6引脚位,单组器件MCT272 三极管输出型 6引脚位,单组器件MCT273 三极管输出型 6引脚位,单组器件MCT274 三极管输出型 6引脚位,单组器件MCT275 三极管输出型 6引脚位,单组器件MCT276 三极管输出型 6引脚位,单组器件MCT277 三极管输出型 6引脚位,单组器件MCT2E 三极管输出型 6引脚位,单组器件MCT6 三极管输出8引脚位MCT6 三极管输出8引脚位MCT61 三极管输出光电藕合器件8引脚位MCT62 三极管输出8引脚位MCT66 三极管输出8引脚位MOC3009 双向可控硅非过零型光藕6引脚位,单组器件MOC3010 双向可控硅非过零型光藕6引脚位,单组器件MOC3011 双向可控硅非过零型光藕6引脚位,单组器件MOC3012 双向可控硅非过零型光藕6引脚位,单组器件MOC3020 双向可控硅非过零型光藕6引脚位,单组器件MOC3021 双向可控硅非过零型光藕6引脚位,单组器件MOC3022 双向可控硅非过零型光藕6引脚位,单组器件MOC3023 双向可控硅非过零型光藕6引脚位,单组器件MOC3030(M) 双向晶闸管过零检测输出6引脚位,单组器件MOC3031(M) 双向晶闸管过零检测输出6引脚位,单组器件MOC3032(M) 双向晶闸管过零检测输出6引脚位,单组器件MOC3033(M) 双向晶闸管过零检测输出6引脚位,单组器件MOC3040 双向晶闸管过零检测输出6引脚位,单组器件MOC3041(M) 双向晶闸管过零检测输出6引脚位,单组器件MOC3042(M) 双向晶闸管过零检测输出6引脚位,单组器件MOC3043(M) 双向晶闸管过零检测输出6引脚位,单组器件MOC3060 双向晶闸管过零检测输出6引脚位,单组器件MOC3061 双向晶闸管过零检测输出6引脚位,单组器件MOC3062 双向晶闸管过零检测输出6引脚位,单组器件MOC3063 双向晶闸管过零检测输出6引脚位,单组器件MOC3081 双向晶闸管过零检测输出6引脚位,单组器件MOC3082 双向晶闸管过零检测输出6引脚位,单组器件MOC3083 双向晶闸管过零检测输出6引脚位,单组器件MOC5007 施密特触发器输出ArrayMOC5008 施密特触发器输出MOC5009 施密特触发器输出MOC8020 达林顿管输出6引脚位,单组器件MOC8021 达林顿管输出6引脚位,单组器件MOC8030 达林顿管输出6引脚位,单组器件MOC8050 达林顿管输出6引脚位,单组器件MOC8080 达林顿管输出6引脚位,单组器件MOC8100 三极管输出型6引脚位,单组器件MOC8101 三极管输出6引脚位,单组器件MOC8102 三极管输出6引脚位,单组器件MOC8103 三极管输出6引脚位,单组器件MOC8104 三极管输出6引脚位,单组器件MOC8105 三极管输出6引脚位,单组器件MOC8106 三极管输出6引脚位,单组器件MOC8107 三极管输出6引脚位,单组器件MOC8108 三极管输出6引脚位,单组器件MOC8111 三极管输出6引脚位,单组器件MOC8112 三极管输出6引脚位,单组器件MOC8113 三极管输出6引脚位,单组器件PS2501-1 三极管输出形式4引脚位,单组PS2501-2 三极管输出8引脚位PS2501-4 三极管输出16引脚位,4组器件PS2502-1 达林顿管输出4引脚位,单组PS2502-2 达林顿管输出8引脚位PS2502-4 达林顿管输出16引脚位,4组器件PS2505-1 交流信号输入三极管输出4引脚位,单组PS2505-2 交流信号输入三极管输出8引脚位PS2505-4 交流输入型光耦三极管输出16引脚位,4组器件SFH600-0 三极管输出型6引脚位,单组器件SFH600-1 三极管输出型6引脚位,单组器件SFH600-2 三极管输出型6引脚位,单组器件SFH600-3 三极管输出型6引脚位,单组器件SFH600-4 三极管输出型6引脚位,单组器件SFH601-1 三极管输出型6引脚位,单组器件SFH601-2 三极管输出型6引脚位,单组器件SFH601-3 三极管输出型6引脚位,单组器件SFH601-4 三极管输出型6引脚位,单组器件SFH601-5 三极管输出型6引脚位,单组器件SFH609-1 三极管输出型6引脚位,单组器件SFH609-2 三极管输出型6引脚位,单组器件SFH609-3 三极管输出型6引脚位,单组器件SFH610-2 三极管输出形式4引脚位,单组SFH610-3 三极管输出形式4引脚位,单组SFH610-4 三极管输出形式4引脚位,单组SFH615A-1 三极管输出形式4引脚位,单组SFH615A-2 三极管输出形式4引脚位,单组SFH615A-3 三极管输出形式4引脚位,单组SFH615A-4 三极管输出形式4引脚位,单组SFH617A-1 三极管输出形式4引脚位,单组SFH617A-2 三极管输出形式4引脚位,单组SFH617A-3 三极管输出形式4引脚位,单组SFH617A-4 三极管输出形式4引脚位,单组SFH617G-1 三极管输出形式4引脚位,单组SFH617G-2 三极管输出形式4引脚位,单组SFH617G-3 三极管输出形式4引脚位,单组SFH617G-4 三极管输出形式4引脚位,单组SFH618-2 三极管输出形式4引脚位,单组SFH618-3 三极管输出形式4引脚位,单组SFH618-4 三极管输出形式4引脚位,单组SFH618A-2 三极管输出形式4引脚位,单组SFH618A-3 三极管输出形式4引脚位,单组SFH618A-4 三极管输出形式4引脚位,单组SFH620A-1 交流信号输入三极管输出4引脚位,单组SFH620A-1 交流信号输入4引脚位,单组三极管输出SFH620A-2 交流信号输入4引脚位,单组三极管输出SFH620A-3 交流信号输入4引脚位,单组三极管输出SFH628-2 交流信号输入4引脚位,单组三极管输出SFH628-3 交流信号输入三极管输出4引脚位,单组SFH628-4 交流信号输入三极管输出4引脚位,单组SFH6286-3 AC Input , Single6引脚位,单组器件TIL111 三极管输出型6引脚位,单组器件TIL113 达林顿管输出6引脚位,单组器件TIL114 三极管输出型6引脚位,单组器件TIL116 三极管输出型6引脚位,单组器件TIL117 三极管输出型6引脚位,单组器件TIL119 达林顿管输出6引脚位,单组器件TIL191 三极管输出形式4引脚位,单组TIL191A 三极管输出形式4引脚位,单组TIL191B 三极管输出形式4引脚位,单组TIL192 三极管输出8引脚位TIL192A 三极管输出8引脚位TIL192B 三极管输出8引脚位TIL193 三极管输出16引脚位,4组器件TIL193A 三极管输出16引脚位,4组器件TIL193B 三极管输出16引脚位,4组器件TIL194 交流信号输入三极管输出TIL194A 交流信号输入三极管输出4引脚位,单组TIL194B 交流信号输入三极管输出4引脚位,单组TIL195 交流信号输入三极管输出TIL195A 交流信号输入三极管输出8引脚位TIL195B 交流信号输入三极管输出8引脚位TIL196 交流信号输入三极管输出TIL196A 交流信号输入三极管输出16引脚位,4组器件TIL196B 交流信号输入三极管输出16引脚位,4组器件TIL197 达林顿管输出4引脚位,单组TIL197A 达林顿管输出4引脚位,单组TIL197B 达林顿管输出4引脚位,单组TIL198 达林顿管输出8引脚位TIL198A 达林顿管输出8引脚位TIL198B 达林顿管输出8引脚位TIL199 达林顿管输出16引脚位,4组器件TIL199A 达林顿管输出16引脚位,4组器件TIL199B 达林顿管输出16引脚位,4组器件TLP321 三极管输出形式4引脚位,单组TLP321-2 三极管输出8引脚位TLP321-4 三极管输出16引脚位,4组器件TLP421 三极管输出形式4引脚位,单组TLP521 三极管输出形式4引脚位,单组TLP521-2 三极管输出8引脚位TLP521-4 三极管输出16引脚位,4组器件TLP620 交流信号输入三极管输出4引脚位,单组TLP620-2 交流信号输入三极管输出8引脚位TLP620-4 交流输入型光耦三极管输出16引脚位,4组器件TLP621 三极管输出形式4引脚位,单组TLP621-2 三极管输出8引脚位TLP621-4 三极管输出16引脚位,4组器件TLP624 三极管输出形式4引脚位,单组TLP624-2 三极管输出8引脚位TLP624-4 三极管输出16引脚位,4组器件TLP721LTV702VA 三极管输出形式6引脚位,单组器件LTV702VB 三极管输出形式6引脚位,单组器件LTV702VC 三极管输出形式6引脚位,单组器件LTV702VD 三极管输出形式6引脚位,单组器件LTV817 三极管输出形式4引脚位,单组LTV817A 三极管输出形式4引脚位,单组LTV817B 三极管输出形式4引脚位,单组LTV817C 三极管输出形式4引脚位,单组LTV817D 三极管输出形式4引脚位,单组PC354 三极管输出4引脚位,单组PC355NT 三极管输出4引脚位,单组PC357 三极管输出 4 Pin4PC817PC1138PC829 三极管输出8引脚位PC849 三极管输出光电藕合器件16引脚位,4组器件PS2701-1 三极管输出4引脚位,单组PS2702-1 三极管输出4引脚位,单组PS2702-2 三极管输出8引脚位PS2702-4 三极管输出16引脚位,4组器件PS2705-1 三极管输出4引脚位,单组PC817 三极管输出光电藕4引脚位,单组合器件TLP121 三极管输出4引脚位,单组TLP126 三极管输出4引脚位,单组TLP181 三极管输出4引脚位,单组LAA110 8引脚位LBA110LCA1106引脚位,单组器件LBB110 8引脚位LCB1106引脚位,单组器件有篇关于光耦的小文章推荐你看看:光电耦合器(简称光耦)是开关电源电路中常用的器件。

可控硅内部过零检测与门电路

可控硅内部过零检测与门电路

可控硅内部过零检测与门电路可控硅(Triac)是一种高功率电器,常用于交流电路中的开关控制。

可控硅内部过零检测与门电路是一种常见的电路结构,在可控硅转换开关状态时实现过零检测和门电路控制,以提高设备的性能和稳定性。

本文将详细介绍可控硅内部过零检测与门电路的原理、结构和应用。

可控硅内部过零检测与门电路的原理是基于交流电特性和可控硅工作原理的。

在交流电中,电流和电压是周期性变化的,有正负两个半周。

可控硅用于交流电路中,当电压达到一定阈值时,可控硅开始导通,允许电流通过。

因此,为了确保可控硅能够以正确的时间点进行开关,必须在交流信号过零点时触发可控硅的开关信号。

过零检测与门电路可以实现这一功能。

可控硅内部过零检测与门电路的结构包括一个过零检测电路和一个门控电路。

过零检测电路用于检测交流电信号的过零点,并产生一个触发信号。

门控电路接收过零检测电路的触发信号,并根据需要生成开关信号来控制可控硅的导通和截止。

过零检测电路通常采用零交叉检测器或光耦隔离器。

零交叉检测器是一种基于运算放大器的电路,通过比较输入交流信号与参考电压的大小来判断过零点的位置。

光耦隔离器基于光电转换原理,将输入交流信号转换为光信号,并通过光耦隔离器中的光敏二极管检测过零点。

不论采用哪种方式,过零检测电路的输出信号都是一个短脉冲,用于触发门控电路。

门控电路根据过零检测电路的触发信号来生成可控硅的控制信号。

门控电路常使用逻辑门电路或触发器实现。

逻辑门电路包括与门、或门、非门等,通过组合这些逻辑门电路可以实现不同的控制策略。

触发器是一种存储电路,可以记住之前的状态和输入信号,通过特定的时序控制,实现复杂的控制逻辑。

可控硅内部过零检测与门电路在很多应用中发挥重要的作用。

例如,交流调光器就是一种使用可控硅和过零检测与门电路实现的设备,可以调节灯的亮度。

在电动机控制中,可控硅内部过零检测与门电路可以实现电机的启动和停止,改变电机的转速和方向。

此外,可控硅内部过零检测与门电路还广泛应用于家电、电源控制、电焊机等领域。

光耦合双向可控硅驱动器电路

光耦合双向可控硅驱动器电路

光耦合双向可控硅驱动器电路
光耦合双向可控硅驱动器电路
这种器件是一种单片机输出与双向可控硅之间较理想的接口器件。

它由输入和输出两部分组成,输入部分是一砷化镓发光二极管。

该二极管在5~15mA正向电流作用下发出足够强度的红外线,触发输出部分。

输出部分是一硅光敏双向可控硅,在紫外线的作用下可双向导通。

该器件为六引脚双列直插式封装,其引脚配置和内部结构见下图:
有的型号的光耦合双向开关可控硅驱动器还带有过零检测器。

以保证电压为零(接近于零)时才可触发可控硅导通。

如MOC3030/31/32(用于115V交流),MOC3040/41(用于220V交流)。

下图是过零电压触发双向可控硅驱动器MOC3040系列的典型应用电路。

联系我们TEL:0 FAX:
欢迎索取免费详细资料、设计指南和光盘中国传感器科技信息网:HTTP://
工控安防网:HTTP://
消费电子专用电路网:
地址:深圳市福田区福华路福庆街鸿图大厦1602室E-MAIL 电话:0
传真:2 邮编:518033 手机:(0)
MSN
技术支持: 3
深圳展销部:深圳华强北路赛格电子市场2583号TEL/FAX:9
北京分公司:北京海淀区知春路132号中发电子大厦3097号
TEL:0 FAX:0
上海分公司:上海市北京东路668号上海賽格电子市场2B35号
TEL:FAX:
西安分公司:西安高新开发区20所(中国电子科技集团导航技术研究所)
西安劳动南路88号电子商城二楼D23号
TEL:FAX:。

MOC3041应用例程

MOC3041应用例程

MOC3041的应用例1图2就是用双向可控硅的云台控制单路电路图。

图中的光耦MOC3041就是用来隔离可控硅上的交流高压与直流低压控制信号的。

其输出用来触发双向可控硅,选用ST Microelectronics公司的T4系列,内部集成有缓冲续流电路,不用在双向可控硅两端并联RC吸收电路,可以直接触发,电路设计比较简单。

P1、0通过可控硅、交流接触器、过流保护器与断相保护器控制电机,图中仅给出带过零触发的双向晶闸管触发电路。

MOC3041为光耦合双向可控硅驱动器,输入端驱动电流为15mA,适用于220V交流电路。

1、MOC3041的工作电流仅十余个毫安,直接驱动20瓦的功率非常勉强,不敢保证长时间工作不会烧坏,应该让3041驱动97A6的可控硅,再用可控硅驱动电磁阀。

2、实践证明,51单片机驱动PNP管的时候,在工作条件接近临界点的时候,会出现关不断的现象,其原因在于:(1)端口的高电平并不就是严格的Vcc电压,而就是比Vcc略低,这种略低的电压足以形成给Q1一个很小的偏置电压Vbe,虽然该电压远小于0、7V,但经过三极管放大后,却能够造成Q1集电极有极小的电流存在,尽管该电流不足以导致LED发出用肉眼能瞧到的亮光,但就是在密封的光耦合器内,却能够导致光耦合区工作;(2)PNP管要比NPN极管有更大的穿透电流,即:在基极B完全断开的情况下,集电极仍然有极小的电流存在。

综合以上两点,该电路的设计就是存在缺欠的,改进方法如下:1、MOC3041与气阀之间加入一个可控硅(必须)2、建议改用NPN管驱动,如果必须要用PNP管,就应该在B与E之间接一个10K左右的电阻;或者在发射极串入一个二极管,以起到钳位作用,即保证PNP管能可*关断;或者干脆将耦合器的1与2脚改接在发射极,并让集电极通过电阻接地。

1、不推荐用3041直接驱动电磁阀,加一个可控硅非常有必要。

2、用单片机直接驱动3041就是可以的。

3、用2K电阻能可*驱动,因为内部的光耦合几乎就是100%的耦合,只要微弱发光即可。

过零双向可控硅输出光耦MOC3063,MOC3041,TLP363J内部工作原理及实际应用实例图

过零双向可控硅输出光耦MOC3063,MOC3041,TLP363J内部工作原理及实际应用实例图

过零双向可控硅输出光耦MOC3063,MOC3041,TLP363J 内部工作原理及实际应用实例图
MOC3063,MOC3041,TLP363J
关键词:过零可控硅光耦,过零双向可控硅光耦,ZC光耦
MOC3063,MOC3041,TLP363J是三款过零型双向可控硅输出光耦,内置过零检测模块,它在收到输入端的控制信号时,并不马上开启双向可控硅模块,而是等到“过零”后才触发双向可控硅进行导通,可选择4PIN或6PIN。

从上图可知,3脚与5脚是闲置的,因此它6PIN中的这两个脚去掉就可以封装成4PIN了。

还可看出,它与门级直接做成光接收模块的任意电平启动的双向可控硅光耦不一样,它的门极由零交叉电路控制,收到LED发出的光以后并不直接输出一个信号去开启双向可控硅,零交叉电路的输出受LED与电源电压的控制,只有在受到LED的信号后,等待至电源电压过零点时才发出触发信号,双向可控硅收到触发信号,
在过零后进行开启,具体动作过程如下图。

有图可以看出,可以通过控制输入来调整输出电压的波形个数,并且是在零点附近进行启动,能有效地防止对负载和电网的冲击,减少电磁干扰,因此它们可以应用在一些可控硅调功器,电机控制与驱动,以及一些家用电器中。

实际应用
潮光光耦网整理编辑,转载请注明潮光光耦。

光电耦合器MOC3041应用之上篇

光电耦合器MOC3041应用之上篇

光电耦合器MOC3041应用之上篇例1图中的光耦MOC3041是用来隔离可控硅上的交流高压和直流低压控制信号的。

其输出用来触发双向可控硅,选用STMicroelectronics公司的T4系列,内部集成有缓冲续流电路,不用在双向可控硅两端并联RC吸收电路,可以直接触发,电路设计比较简单。

P1.0通过可控硅、交流接触器、过流保护器和断相保护器控制电机,图中仅给出带过零触发的双向晶闸管触发电路。

MOC3041为光耦合双向可控硅驱动器,输入端驱动电流为15mA,适用于220V交流电路。

1、MOC3041的工作电流仅十余个毫安,直接驱动20瓦的功率非常勉强,不敢保证长时间工作不会烧坏,应该让3041驱动97A6的可控硅,再用可控硅驱动电磁阀。

2、实践证明,51单片机驱动PNP管的时候,在工作条件接近临界点的时候,会出现关不断的现象,其原因在于:(1)端口的高电平并不是严格的Vcc电压,而是比Vcc略低,这种略低的电压足以形成给Q1一个很小的偏置电压Vbe,虽然该电压远小于0.7V,但经过三极管放大后,却能够造成Q1集电极有极小的电流存在,尽管该电流不足以导致LED发出用肉眼能看到的亮光,但是在密封的光耦合器内,却能够导致光耦合区工作;(2)PNP管要比NPN极管有更大的穿透电流,即:在基极B完全断开的情况下,集电极仍然有极小的电流存在。

综合以上两点,该电路的设计是存在缺欠的,改进方法如下:1、MOC3041与气阀之间加入一个可控硅(必须)2、建议改用NPN管驱动,如果必须要用PNP管,就应该在B和E之间接一个10K左右的电阻;或者在发射极串入一个二极管,以起到钳位作用,即保证PNP管能可*关断;或者干脆将耦合器的1和2脚改接在发射极,并让集电极通过电阻接地。

1、不推荐用3041直接驱动电磁阀,加一个可控硅非常有必要。

2、用单片机直接驱动3041是可以的。

3、用2K电阻能可*驱动,因为内部的光耦合几乎是100%的耦合,只要微弱发光即可。

过零检测电路

过零检测电路

过零检测电路如下,光耦我用的 pc817检测过零点,然后输入单片机 INT0 ,过零后单片机中断延时,来控制可控硅光耦 M OC3061 导通时间,隔离后控制双向可控硅,负载用的是交流单相电机。

但是调节到一定速度(低速时)电机会出现抖动,这是什么原因?电路与下图相似单片机程序如下:#include <reg52.h> unsigned char time; sbit bb1=P2^0; sbit key1 = P2^4; sbit key2 = P2^5; sbit key3 = P2^6; sbit key4 = P2^7;unsigned char k;void delay(unsigned int t) // 延时子程序,入口参数 ms, 延迟时间=t*1ms,t=0~65535{unsigned char j; //j=0~255while(t--) //t 的值等于 while()下面{}的语句执行的次数{for(j = 0; j < 30; j++);//j 进行的内部循环,j=j+1,每执行一次加 1,大约消耗单片机处理时间//8us, 那么执行一次 for() ,注意 for() 后面加了分号。

大约消耗CPU 8us*125=1000us=1ms}}void int0() interrupt 0{TR0=1;}void PWM (void){if(key1==0) //按下相应的按键{k=0;}else if (key2==0) // 按下相应的按键{k=10;else if (key3==0) // 按下相应的按键{k=15;}else if (key4 ==0) // 按下相应的按键{k=30;}}void timer0() interrupt 1TH0=(65536-3000)/256; TL0=(65536-3000)%256; time=0;}void main(){bb1=1;time=1;TMOD=0x01;TH0=(65536-3000)/256; TL0=(65536-3000)%256; EA=1;EX0=1;IT0=1;ET0=1;k=0;while(1) {if(time==0) {time=1; PWM();bb1=0; delay(k);TR0=0; }}}。

光耦MOC3041的接法例子说课讲解

光耦MOC3041的接法例子说课讲解

光耦M O C3041的接法例子“MOC3041”的应用图2是用双向可控硅的云台控制单路电路图。

图中的光耦MOC3041是用来隔离可控硅上的交流高压和直流低压控制信号的。

其输出用来触发双向可控硅,选用STMicroelectronics公司的T4系列,内部集成有缓冲续流电路,不用在双向可控硅两端并联RC吸收电路,可以直接触发,电路设计比较简单。

P1.0通过可控硅、交流接触器、过流保护器和断相保护器控制电机,图中仅给出带过零触发的双向晶闸管触发电路。

MOC3041为光耦合双向可控硅驱动器,输入端驱动电流为15mA,适用于220V交流电路。

1、MOC3041的工作电流仅十余个毫安,直接驱动20瓦的功率非常勉强,不敢保证长时间工作不会烧坏,应该让3041驱动97A6的可控硅,再用可控硅驱动电磁阀。

2、实践证明,51单片机驱动PNP管的时候,在工作条件接近临界点的时候,会出现关不断的现象,其原因在于:(1)端口的高电平并不是严格的Vcc 电压,而是比Vcc略低,这种略低的电压足以形成给Q1一个很小的偏置电压Vbe,虽然该电压远小于0.7V,但经过三极管放大后,却能够造成Q1集电极有极小的电流存在,尽管该电流不足以导致LED发出用肉眼能看到的亮光,但是在密封的光耦合器内,却能够导致光耦合区工作;(2)PNP管要比NPN极管有更大的穿透电流,即:在基极B完全断开的情况下,集电极仍然有极小的电流存在。

综合以上两点,该电路的设计是存在缺欠的,改进方法如下:1、MOC3041与气阀之间加入一个可控硅(必须)2、建议改用NPN管驱动,如果必须要用PNP管,就应该在B和E之间接一个10K左右的电阻;或者在发射极串入一个二极管,以起到钳位作用,即保证PNP 管能可*关断;或者干脆将耦合器的1和2脚改接在发射极,并让集电极通过电阻接地。

1、不推荐用3041直接驱动电磁阀,加一个可控硅非常有必要。

2、用单片机直接驱动3041是可以的。

moc3021或moc3041驱动可控硅

moc3021或moc3041驱动可控硅

moc3021或moc3041驱动可控硅
如何用moc3021或moc3041正确的驱动可控硅,如果简单的做成用单片机控制开关怎么实现 60
用moc3021,尝试了很多次,都没有实现调光,调速。

不知道是不是可控硅和moc3021没有接好,要怎么才能正确的控制可控硅呢,网上找了很多办法,moc3021需要过零检测,moc3041不需要,都试了下,可还是不对。

不清楚哪里出了问题。

是参照的这个电路图,在没有用单片机给导通信号的时候,插电后灯泡就亮了,后来把330欧电阻弄断就不亮了,再导通光耦也不亮

如果光耦的2脚一直是低电平则灯泡一直亮。

单片机是典型的嵌入式微控制器(Microcontroller Unit),由运算器,控制器,存储器,输入输出设备等构成,相当于一个微型的计算机。

与应用在个人电脑中的通用型微处理器相比,它更强调自供应(不用外接硬件)和节约成本。

它的最大优点是体积小,可放在仪表内部,但存储量小,输入输出接口简单,功能较低。

由于其发展非常迅速,旧的单片机的定义已不能满足,所以在很多应用场合被称为范围更广的微控制器;从上世纪80年代,由当时的4位、8位单片机,已经发展到现在的32位300M的高速单片机。

MOC系列光耦及过零检测

MOC系列光耦及过零检测

MOC系列光耦及过零检测驱动大功率交流器件时常用双向可控硅进行功率控制,根据控制方式地不同有过零控制和移相控制.不管哪种控制都要对零点进行检测,因为双向过控硅地特性是到了交流地零点,可控硅会自动关闭输出.我们检测零点目地就是可控硅在零点关闭输出后,我们可以根据功率地需求选择时间来重新触发可控硅.但对于单片机弱电直接控制交流肯定是不现实地,用继电器控制只能实现简单地慢速地开关量控制,而如果要实现功率调节,我们就需要用光特性地固态继电器,这种器件比较贵.而假如用光耦肯定也是不行地,因为普通地光耦是单向器件,对于交流地网电它是不能实现控制地在这种情况下,我们最好地选择就是用MOC系列地光控可控硅,用得最多地MOC3041和MOC3021,它们地前端触发电流都是15mA,隔离电压达到5000Vrms,适合于对电绝缘特性要求高地医疗电子行业.MOC3021和MOC3041地主要区别就是MOC3041有过零检测,MOC3021没有过零检测,对于有过零检测功能地MOC3041,它每次在过零点地时候会判断有没有光输入,即有没有前置电流If,如果有If,那么在这个周期之内,它是导通地,所以它只能决定一个网电源周期内它是不是导通地,而不能决定在一个周期地某一个时刻开始导通.基于这种特性我们可以用它来实现过零控制,过零控制地缺点是控制精度低,优点是对电网没有污染.对于没有过零检测地MOC3021来说,它在有光输入地时刻开始到这个周期地结束它都是导通地.基于这种特性,如果我们已经检测到了零点,我们就可以在零点地时刻开始延时一段时间来输入前置电流If,用它来实现移相检测.对于两种电路我都做了相关地测试,结果与写地一致.可调压固态继电器电路:版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。

实验室照明控制系统设计

实验室照明控制系统设计

实验室照明控制系统设计周永强【摘要】本文介绍了基于单片机的实验室照明控制系统,可以有效的节约教室照明系统所耗能源。

系统以单片机为核心,辅以红外检测模块,光照检测模块,报警声光模块以及灯光控制模块组成完整的控制系统。

【期刊名称】《电子制作》【年(卷),期】2014(000)014【总页数】2页(P37-37,38)【关键词】单片机;红外线;光照;照明控制【作者】周永强【作者单位】四川师范大学成都学院 611745【正文语种】中文随着国民经济的快速发展,高等教育越来越被政府关注和重视,我院规模也随着高等教育规模的扩大而扩大,实验室的数量也大幅度增加。

为使师生有舒适的作业环境,在实验室的面积、设施和照度方面,学校在力所能及的范围内予以最大的改善。

由于我院设置多间开放实验室,以及部分学生的节能意识的淡薄,实验室在白天室内照度很高的情况下,仍然普遍存在开灯作业;夜间许多实验室,即使仅有几个学生在作业,但室内照明设施全部开启;另外,长明灯比比皆是,人走不熄灯的现象到处存在。

为了建设绿色节约型社会,本文设计了一种智能照明控制系统,可以合理有效地利用照明灯光,从而大大地减少实验室照明能源浪费的现象。

本文设计的系统采用分布式智能控制,做到人在灯在,人走灯关。

系统采用单片机和热释电红外感应传感器自动检测人体信号,不需要人工干预,实现了照明控制的自动化。

同时系统设计了声光报警模块,通知系统的关灯动作,使产品更加人性化。

本系统应用方便,适用范围广,既节约了能源也减少了人工管理成本。

系统采用以单片机为核心,设计外围控制电路,构成控制系统。

除单片机外,系统还包括红外检测模块,光照检测模块,报警声光模块,以及照明设备控制模块。

其构成框图如图1所示:将教室划分4个区域,分别由4个热释红外线传感器模块监测,为单片机提供每个区域是否有人作业的信息。

当探测到某个区域有人作业时,启动光照强度检测,以判断是否开启照明设备,若需开起照明设备,在根据光照强弱来调节灯照亮度,提高教室的照明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MOC3041内部含有过零检测电路,当输入引脚1输入15mA的电流,输出端6引脚、4引脚之间的电压稍过零时,内部双向晶闸管导通,触发外部晶闸管导通,当MOC3041输入引脚输入电流为0时,内部双向晶闸管关断,从而外部晶闸管也关断。

可控硅可以较好地实现对交流电的开关功能,但是如果在交流电非过零点时启动或切断电源,会对电源造成很大的干扰。

此外,如果直接用单片机的输出去控制可控硅的控制端,在可控硅开关时会将干扰引入单片机,造成严重后果。

因此本系统选用了一个具有过零触发和光电隔离功能的可控硅驱动芯片MOC3041去控制可控硅。

电路如图4所示。

其中Di是单片机通过锁存器输出的控制信号,电阻Ri阻值的选择要使MOC3041端口l的输入电流为15mA。

负载端的电阻电容值是经计算使干扰最小的值。

如果负载功率因子小于0.5,则需将39Ω电阻改为380Ω。

相关文档
最新文档