二次型,正定二次型
正定二次型的判别方法
正定二次型的判别方法正定二次型是指一个实数域上的二次齐次多项式,并且其对任意非零向量都有正的二次型值。
判断一个二次型是否为正定二次型,可以使用以下方法。
二次型可以表示为矩阵形式,即二次型矩阵。
设二次型为\[ q(x) = x^T A x \]x为n维列向量,A为对称矩阵。
A称为二次型矩阵。
判断一个二次型是否为正定,可以使用以下方法:1. 判断A的特征值是否全为正数。
A的特征值全为正数时,二次型为正定二次型。
证明:设A的特征值分别为λ1, λ2, ..., λn,对应的特征向量为v1, v2, ..., vn。
则对于任意非零向量x,有\[ x^T A x = x^T Q \Lambda Q^T x = (Q^T x)^T \Lambda (Q^T x) \]Q为特征向量构成的正交矩阵,Λ为对角矩阵,对角元素为特征值λ1, λ2, ..., λn。
令y=Q^T x,则有\[ x^T A x = y^T \Lambda y = \sum_{i=1}^{n} \lambda_i y_i^2 \]由于A的特征值全为正数,因此对于任意非零向量y,都有\[ \sum_{i=1}^{n} \lambda_i y_i^2 > 0 \]所以x^T A x > 0,即二次型为正定二次型。
定义:A的顺序主子式是指A的各个阶数(1到n)的主子式。
证明:设A的顺序主子式分别为detA1, detA2, ..., detAn,其中1<=i<=n。
若A的顺序主子式全为正数,则A为正定矩阵。
由于A为对称矩阵,所以A的特征值全为实数,且A可以分解为正交矩阵和对角矩阵的乘积,即\[ A = Q \Lambda Q^T \]Q为正交矩阵,Λ为对角矩阵,对角元素为A的特征值。
以上就是判断正定二次型的方法,通常直接使用特征值或顺序主子式来判断即可。
需要注意的是,当A为实对称矩阵时,其特征值都是实数,所以可以直接判断特征值是否为正数来判断正定性。
正定二次型
再证必要性。
nf xLeabharlann ki yi2 > 0 i1
用反证法:假设有 ks 0,则当 y es (单位坐标向量)
时,f Ces ks 0 。显然Ces 0 ,这与f 正定相矛盾。这就证明 了ki > 0i 1, 2, , n 。
推论
对称阵A 为正定的充分必要条件是A 的特征值全为正。
例1 判定二次型 f 2x2 6 y2 4z2 2xy 2xz 的正定性。
解 f 的矩阵为
2 1 1
A
1 1
6 0
0 4
,
a11
2
<
0,
a11 a21
a12 2 a22 1
1 11> 0,
6
A 38 < 0
根据定理3知,f 负定。
线性代数
这个定理称为惯性定理。
二次型的标准形中正系数的个数称为二次型的正惯性指数,
负系数的个数称为负惯性指数,若二次型f 的正惯性指数为p,秩 为r,则f 的规范形便可确定为
f y12
y
2 p
y2 p1
yr2
定义1
设有二次型 f x xT Ax ,如果对任何x≠0,都有f(x)>0(显然
f(0)=0),则称f 为正定二次型,并称对称阵A 是正定的;如果对任何 x≠0都有f(x)<0,则称f 为负定二次型,并称对称阵A 是负定的。
定理3 对称阵A 为正定的充分必要条件是A 的各阶主子式都为正,即
a11
>
0,
a11 a21
a12 > 0, a22
a11 ,
an1
a1n >0
ann
对称阵A 为负定的充分必要条件是奇数阶主子式为负,而偶数 阶主子式为正,即
向量的二次型和正定性
向量的二次型和正定性向量的二次型是数学中的一种重要概念,其中向量指代一维或多维度的向量空间,而二次型则是指这些向量的平方和。
在实际生活中,二次型很多时候会涉及到向量矩阵的运算,通过对它们的分析可以得出很多有用的结论。
其中最重要的概念之一就是正定性。
一、向量的二次型在正式介绍向量的二次型之前,我们先来了解一些基本的概念。
在数学中,一个向量可以被表示为有序的实数或虚数,通常用箭头(→)来标注。
例如,向量AB可以表示为→AB。
当我们谈到向量的平方时,它实际上指的是这个向量的每一维度的平方和。
在二次型中,向量被视为列向量(column vector)或者行向量(row vector),矩阵则指向量的组合。
最简单的向量是一维向量,也就是有一个实数或者虚数构成的向量。
一般来说,一维向量的二次型为:f(x) = ax^2其中a为任意实数或者虚数,x为一维向量。
当我们将向量扩展到二维或三维时,二次型的计算方式也会随之变化。
在二维向量的情况下,我们会使用2x2矩阵进行计算,而在三维向量的情况下,我们会使用3x3矩阵。
例如,在二维向量的情况下,二次型的一般形式如下:f(x) = ax^2 + 2bxy + cy^2其中a、b、c都是任意实数或者虚数,x和y是二维向量。
二、二次型的正定性在数学中,正定性通常用来表示一个二次型的正质性。
也就是说,如果二次型是正定(positive definite),那么它将对所有非零的向量都产生一个正值结果。
这一结论的重要性在于,正定性是定义了一个向量空间的性质,而正性向量空间中的矩阵对于很多重要的应用而言都是极其重要的。
举个例子,假设有一个两维向量,在坐标系中其坐标为(x,y)。
如果我们知道这个向量的范数(也就是它的长度)是多少,那么我们就可以计算出它在坐标系中的角度。
这个过程中的关键是定义一个内积(inner product),也就是两个向量的点积(dot product)。
当我们有了这个内积之后,就可以使用勾股定理来计算向量的长度了。
正定二次型
它的各阶顺序主子式
D1 a11 1 0,
D2
a11 a21
a12 1 a22 1
1 0
2
1 1 0 1 1 0
D3 1 2 1 0 1 1 3 1 2 0 0 1 3 0 1 3
根据定理 5.5 可知所给二次型 f 是正定二次型。
1 1 0 解法 2 二次型 f 的矩阵为 A 1 2 1 ,矩阵 A 的特征多项式为
解法 3 将所给二次型配方,得
f x12 2x22 3x32 2x1x2 2x2 x3 (x12 2x1x2 x22 ) (x22 2x2 x3 x32 ) 2x32
(x1 - x2 ) 2 (x2 - x3 ) 2 2x32 0
而上式等号成立的充分必要条件是 x1 x2 x3 0
0 1 3
0 1 3
0 1 3
1 0 0
1 0 0
c3 c2 0
1
0
r3r2
0
1
0
0 1 2
0 0 2
于是已知的二次型经过合用变换后,所得标准形的正惯性指数分别为 1,1,2,
根据惯性定理可知,所给二次型 f 是正定二次型。
1 t 1 例 5.12 设矩阵 A t 1 2 是正定矩阵,求其中 t 的取值范围。
实用线性代数
正定二次型
正定二次型的概念 正定二次型的判定
1.1 正定二次型的概念
定定义义55..6 设 有 二 次 型 f (x1, x2 ,, xn ) xT Ax , 若 对 任 何
0 x Rn , 都有 f xT Ax 0 ,则称 f 为正定二次型。
正定二次型所对应的矩阵称为正定矩阵。
f (x) f (Cy) k1 y12 k2 y22 kn yn2
正定二次型
解: 用特征值判别法. 用特征值判别法. 二次型的矩阵为
2−λ 令 A − λE = 0 −2 0 4−λ 0
2 0 − 2 A = 0 4 0 , − 2 0 5
即知 A 是正定矩阵,故此二次型为正定二次型. 是正定矩阵,故此二次型为正定二次型.
−2 9 =0 5−λ ⇒ λ1 = 1, λ 2 = 4, λ 3 = 6.
可见A不是负定的,也不是正定的. 可见A不是负定的,也不是正定的.
正定矩阵的简单性质
定阵 为正定阵, 也为正定阵.
T −1 ∗
均为正定阵, 也为正定阵. 2. 若 A, B 均为正定阵,则 A + B 也为正定阵
思考题
设A, B分别为 m 阶, n阶正定矩阵 , 试判定分块 A 0 矩阵C = 是否为正定矩阵 . 0 B 解 C是正定的. T T T 因为, 设 z = ( x , y )为m + n维向量 , 其中x , y分 别是m 维和n维列向量 , 若z ≠ 0, 则x , y不同时为零向
例如
f ( x , y) = x 2 + 4 y2 f ( x , y, z ) = x + 4 y
2 2
正定二次型 为正定二次型 半正定二次型 为半正定二次型 负定二次型 为负定二次型
2 2
f ( x1 , x2 ) = − x − 3 x
2 1
2 1
2 2
f ( x1 , x2 , x3 ) = − x − 3 x
⇔
a12 M > 0. > 0 , L, A = M a22 an1 L ann
a11 L an1
判别二次型是否正定. 例1 判别二次型是否正定
正定二次型
§4 正定二次型一、正定二次型定义 设有实二次型f (n x x x ,,,21 ),如果对于任意一组不全为零的实数n c c c ,,,21 都有f (n c c c ,,,21 )>0.则称 f 为正定二次型。
如,二次型f (n x x x ,,,21 )=22221n x x x +++ 是正定的,因为只有在c 1=c 2=…=c n =0时,22221nc c c +++ 才为零. 正定性的判定 1.实二次型f (n x x x ,,,21 )= d 1x 12+d 2x 22+…+d n x n 2 是正定的当且仅当d i >0 ,i=1,2,…,n . .2.非退化线性替换不改变二次型的正定性 证明:设实二次型 f (n x x x ,,,21 )=∑∑==nj j i ijni x x a11 ,a ij =a ji , (1)是正定的,经过非退化实线性替换X =CY (2)变成二次型g (n y y y ,,,21 )=∑∑==nj j i ijni y y b11 , b ij =b ji (3)则n y y y ,,,21 的二次型g (n y y y ,,,21 )也是正定的,事实上,令y 1=k 1,y 2=k 2,…,y n =k n代入⑵的右端,就得n x x x ,,,21 对应的一组值.譬如说,是n c c c ,,,21 这就是说⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n c c c 21=C ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n k k k 21因为C 可逆,就有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n k k k 21=C -1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n c c c 21所以当n k k k ,,,21 是一组不全为零的实数时,n c c c ,,,21 也是一组不全为零的实数.显然g (n k k k ,,,21 )= f (n c c c ,,,21 )>0因为二次型⑶也可以经非退化实线性替换X C Y 1-=变到二次型⑴,所以按同样理由,当⑶正定时⑴也正定.这就是说,非退化实线性替换保持正定性不变。
正定二 次型
0 1 3 矩阵.
二次型的正定(负定)、半正定(半负定)统称为二次型及其矩阵的有定性,不具备有定性的二次型及其矩 阵称为不定的.
1.2 正定矩阵的判别法
对于半正定(半负定)矩阵,可以证明下列结论等价: ① 对称矩阵 A 是半正定(半负定)的; ② A 的所有主子式大于(小于)或等于零; ③ A 的全部特征值大于(小于)或等于零.
1.2 正定矩阵的判别法
例 4 已知二次型 f (x1 ,x2 ,x3 ) x12 4x22 4x32 2tx1x2 2x1x3 4x2 x3 是正定的,试求 t 的取值范围.
1.2 正定矩阵的判别法
定理 4 设 n 元实二次型 f ( x) xT Ax 的规范形为 f z12 z22
z
2 p
z2 p 1
zr2 ,则
(1)f 负定的充分必要条件是 p 0 且 r n (即负定二次型的规范形为 f z12 z22 zn2 ).
(2)f 半正定的充分必要条件是 p r n (即半正定二次型的规范形为 f z12 z22 zr2 ,r n ).
则
T i
D
i
di
0 (i
1,2,
,n) .
充分性.对任一非零向量 x,至少有 x 的某个分量 xk 0 ,又 dk 0 故 dk xk2 0 ;而当 i k 时 di xi2
n
此, xT Dx di xi2 0 ,即 D 为正定矩阵. i 1
0 .因
1.2 正定矩阵的判别法
推论 1 对称矩阵 A 正定的充分必要条件是它的特征值全大于零. 定理 3 矩阵 A 为正定矩阵的充分必要条件是 A 的正惯性指数 p n ,即 A 与 E 合同. 推论 2 若矩阵 A 为正定矩阵,则 A 0 . 证明 由定理 3 知存在可逆矩阵 C 使 A CTC ,于是 A CTC C 2 0.
正定二次型
定义 设n阶方阵 A (aij)nn
A1 a11
A2
a11 a21
a12 a22
L
都叫做矩阵的顺序主子式。
我们把n个行列式
a11 L a1n An L L L
an1 L ann
定理 (hurwitz定理)
二次型 f (x) xAx 为正定的充分必要条件是:
二次型的矩阵的所有顺序主子式大于0.
●判别正定二次型(矩阵)的三种方法 1.将二次型化为标准形 2.求出二次型矩阵的特征值 3.计算二次型矩阵的顺序主子式
作业
• 4.12 • 4.13
半正定 负定
f (x1, x2 , x3 ) x12 x22 3x32 2x1x2 半负定 f (x1, x2 , x3 ) x12 x22 3x32 2x1x2 不定
●判定二次型的正定性
性质4.5
若A是n阶实对称矩阵,则下列命题是等价的: (1)xTAx是正定二次型(或A是正定矩阵); (2)A的n个特征值全为正; (3)f的标准形的n个系数全为正; (4)A的正惯性指标为n; (5)A与单位矩阵I 合同; (6)存在可逆矩阵P,使得A=PTP;
所以 f 为负定二次型。
例 当 t 为何值时, 下列二次型是正定的
f (x1, x2 , x3 ) tx12 5x22 2x32 2x1x2
t 1 0
解
二次型的矩阵为
A
1
5
0
0 0 2
A的三个顺序主子式为
t1
A1 t,
A2 1
5t 1, 5
要使A正定,则应有 t 1 5
A3 A 25t 1
推论
二次型 f (x) xAx 为负定的充分必要条件是:
第五章5-7二次型及其标准型正定二次型
负平方项的个数r-p称为f的负惯性指数
它们差p-(r-p)=2p-r称为f的符号差.
二、二次型的表示方法
1.用和号表示 对二次型 2 2 2 f x1 , x 2 ,, x n a11 x1 a 22 x 2 a nn x n
2a12 x1 x 2 2a13 x1 x 3 2a n1,n x n1 x n
取 a ji aij , 则2 aij xi x j aij xi x j a ji x j xi ,于是 2 f a11 x1 a12 x1 x 2 a1n x1 x n 2 a 21 x 2 x1 a 22 x 2 a 2 n x 2 x n 2 a n1 x n x1 a n 2 x n x 2 a nn x n
对称矩阵 A 叫做二次型 f 的矩阵 ;
f 叫做对称矩阵 A 的二次型 ; 对称矩阵 A 的秩叫做二次型 f 的秩 .
2 2 2 例1 写出二次型 f x1 2 x2 3 x3 4 x1 x2 6 x2 x3
的矩阵表示式并求 f 的秩 .
解
0 x1 1 2 f ( x1 , x2 , x3 ) ( x1 , x2 , x3 ) 2 2 3 x2 . 0 3 3 x 3
都为二次型 .
只含有平方项的二次型 2 2 2 f k1 y1 k2 y2 kn yn
称为二次型的标准形.
2 2 2 f x1 , x2 , x3 x1 4 x2 4 x3 例如
为二次型的标准形.
只含有平方项的二次型 f k1 y k2 y kn y 称为二次型的标准形(或法式).
实二次型的分类 正定二次型
称为A的k阶顺序主子式.
定理4.5 实二次型f(x)=xTAx正定的充分必要条件是A 的所有顺次主子式全大于零. 例4.1 判别实二次型
f ( x1 , x2 , x3 )=x1 + 3x2 + 3x3 - 2 x1 x2
教学时间:2学时.
机动
目录
上页
下页
返回
结束§4 实二次型的分类 定二次型4.1实二次型的分类
定义4.1 对于实二次型f(x)=xTAx,
ⅰ)如果对任何的非零实向量x,都有f(x)>0,则称f为 正定二次型; ⅱ)如果对任何的非零实向量x,都有f(x) <0,则称f 为负定二次型; ⅲ)如果对任何的实向量x,都有f(x) ≥0,则称f为半 正定二次型; ⅳ)如果对任何的实向量x,都有f(x) <0,则称f为半 负定二次型; ⅴ)如果存在实向量x1及x2,使f(x1) >0,f(x2)<0,则 称f为不定二次型.
机动目录上页下页返回结束实二次型的分类正定二次型实二次型的分类正定二次型41实二次型的分类定义41对于实二次型fxxax如果对任何的非零实向量x都有fx0则称f为正定二次型
线性代数
机动
目录
上页
下页
返回
结束
§4 实二次型的分类 正定二次型
教学目的:通过本节的教学使学生理解二次型正定性 概念,掌握二次型正定性的判别方法. 教学要求:理解二次型正定性概念,掌握二次型正定 性的判定定理,会判定二次型的正定性. 教学重点:二次型正定性概念和二次型正定性的判定 定理. 教学难点:二次型正定性的证明.
线性代数第七章 n元实二次型 S2 正定二次型
故上述二次型是正定的.
8
定义3: 若对任意X≠0,恒有XTAX<0,则实二次型 XTAX称为负定二次型. 负定二次型的矩阵A称为负定矩阵. 记为A<0.
* 坐标变换(非退化线性替换)保持二次型的负定性不变.
9
非标准形的二次型是否负定的判定方法
○ n元实二次型负定 它的负惯性指数等于n.
−A>0. A=(aij) 的奇数阶顺序主子式为负,而偶数
则坐标变换 X=PY 化二次型
nn
f X T AX Y T (PT AP )Y a11 y12
bij yi y j
a11 y12 g( y2 , y3 , , yn )
i2 j2
则g(y2, y3,…, yn)的各阶顺序主子式为
b22 | Bj1 |
bj2
b2 j , ( j 2, 3, , n)
第七章 n元实二次型
§7.2 正定二次型
1
定义1:若对任意 X 0,恒有XTAX>0,则实二次型
XTAX称为正定二次型. 正定二次型的矩阵A称为正定矩阵. 记为A>0.
已知:n元二次型的标准形为
X T AX d1 x12 d2 x22 dn xn2
仅当所有n个系数 di>0 (i=1,2,…,n)时,它才是正定的.
7
例1 判别下面二次型是否正定.
f x1 , x2 , x3 5 x12 x22 5 x32 4 x1 x2 8 x1 x3 4 x2 x3
5
解: f x1, x2 , x3 的 矩 阵 为
2
2 4 1 2,
4 2 5
它的顺序主子式
5 0,
5
2 1 0,
21
求二次型标准形方法及正定二次型
例3. 化二次型 f 3x 2 x1 x2 2 x1 x3 4 x2 x3
2 1
成标准形, 并求所用的变换矩阵.
3 1 1 解 二次型的矩阵为 1 0 2 1 2 0 3 0 3 1 1 1 0 0 c 1 c 2 3 1 ( AE ) 1 0 2 0 1 0 r 1 r 0 1 3 2 3 1 5 1 2 0 0 0 1 1 3
其标准形为
f z z z
2 1 2 2
2 3
13 坐标变换矩阵为 C 0 0
0 0 1 1 0 3 2 5 1 1 0 0 0 c c 2 3 0 r r 0 1 0 2 3 0 0 1 1
a11 a12 a 21 a22 x1 , x2 , , xn a n1 a n 2
a11 a12 a 21 a 22 A a n1 a n 2
a1n x1 a 2 n x 2 x a nn n
二次型及其标准形的概念
定义1 含有n个变量 x1 , x2 ,, xn的二次齐次函数
f ( x1 , x2 , , xn ) a11 x12 2a12 x1 x2 2a13 x1 x3
2 a22 x2 2a23 x2 x3
2a1n x1 xn 2a 2 n x 2 x n
矩阵P称为把 A变为B的合同变换矩阵
合同矩阵有一下性质: (1)自反性(2)对称性(3) 传递性 定理 设 P 是一个可逆矩阵,若 A 为对称矩阵, 则 B P T AP 也为对称矩阵,且 R( A) R( B)
四、配方法求二次型的标准形
正定二次型
正定二次型正定二次型是线性代数中一种重要的二次型形式,它在数学和工程领域都有广泛的应用。
本文将介绍正定二次型的定义、性质以及一些应用。
1. 定义对于一个n维向量x=(x1,x2,...,x n)T,其中x i表示向量x的第i个分量。
正定二次型是指具有如下形式的二次型:Q(x)=x T Ax其中A是一个$n \\times n$的对称矩阵,x T表示向量x的转置。
如果对于任意的非零向量x,都有Q(x)>0,则称二次型Q(x)为正定二次型。
2. 性质正定二次型具有一些重要的性质,下面将介绍其中几个性质。
2.1 对称性正定二次型的矩阵A是一个对称矩阵,即A=A T。
这是因为对于任意的向量x,都有x T Ax=x T(A T x)=(x T Ax)T=x T A T x。
因此,正定二次型的矩阵A是对称的。
2.2 正定性与正定矩阵的关系正定二次型与正定矩阵之间有着紧密的联系。
一个$n \\times n$的对称矩阵A 是正定矩阵,当且仅当对于任意的非零向量x,都有x T Ax>0。
而正定二次型Q(x)是由矩阵A定义的,因此正定矩阵与正定二次型是等价的概念。
2.3 正定矩阵的特征值对于一个正定矩阵A,它的特征值都大于零。
这是因为如果A的一个特征值为$\\lambda$,对应的特征向量为x,那么有$Ax = \\lambda x$。
进而,我们可以得到$x^T A x = x^T (\\lambda x) = \\lambda (x^T x) > 0$。
由于x是非零向量,x T x> 0,因此必有$\\lambda > 0$。
2.4 正定矩阵的行列式对于一个正定矩阵A,它的行列式大于零。
这是因为正定矩阵的特征值都大于零,而行列式是特征值的乘积,因此正定矩阵的行列式也大于零。
3. 应用正定二次型在数学和工程领域有着广泛的应用。
下面将介绍两个典型的应用。
3.1 正定二次型在优化问题中的应用正定二次型经常出现在优化问题的目标函数中。
正定二次型
5..4 正定二次型一、定义:假设12(,)(),T n f x x x f X X AX == 为实二次型,TA A =,12(,)T n X x x x O =≠ ,则1、如果12(,)()0T n f x x x f X X AX ==> ,则称二次型12(,)()n f x x x f X = 为正定二次型,矩阵A 称为正定矩阵。
2、如果12(,)()0T n f x x x f X X AX ==< ,则称二次型12(,)()n f x x x f X = 为负定二次型,矩阵A 称为负定矩阵。
3、如果12(,)()0T n f x x x f X X AX ==≥ ,则称二次型12(,)()n f x x x f X = 为半正定二次型,矩阵A 称为半正定矩阵。
4、如果12(,)()0T n f x x x f X X AX ==≤ ,则称二次型12(,)()n f x x x f X = 为半负定二次型,矩阵A 称为半负定矩阵。
二、判定定理:1、二次型12(,)n f x x x 正定A ⇔为正定矩阵12(,)()0T n f x x x f X X AX ⇔==> 12(,)n f x x x ⇔ 的标准型2221122n n d y d y d y +++ 中的系数0,1,2i d i n >= 12(,)n f x x x ⇔ 的正惯性指数等于n 12(,)n f x x x ⇔ 的规范性为22212n y y y +++ A ⇔合同于单位矩阵E ⇔存在可逆矩阵C 使得TA C C =A ⇔的顺序主子式全大于零12(,)n f x x x ⇔- 负定。
证明:(1)二次型2221122n nd x d x d x +++ 正定0,1,2i d i n ⇔>= 事实上,如果0,1,2i d i n >= ,则对任意的12(,)n x x x O ≠ , 22211220n n d x d x d x +++> ,即2221122n nd x d x d x +++ 正定。
二次型判定方法及应用
二次型判定方法及应用二次型是高等数学中的重要概念,广泛应用于线性代数、微积分、物理学、经济学等领域。
二次型的判定方法主要有正定、负定、半正定和半负定四种类型,这些判定方法在实际问题中具有重要的应用价值。
首先,我们来回顾二次型的定义。
对于n元变量x1,x2,...,xn和常数a11,a12,...,ann,二次型可以表示为:Q(x) = a11x1^2 + a22x2^2 + ... + annxn^2 + 2a12x1x2 + 2a13x1x3 + ... + 2an-1nxn-1xn其中,a11,a22,...,ann为二次型的系数,x1,x2,...,xn为变量,Q(x)表示该二次型。
接下来,我们将讨论四个二次型判定方法的定义、性质和应用。
1. 正定:若对于任意非零的n元列向量x=(x1,x2,...,xn)T,都有Q(x)>0,称二次型Q(x)为正定二次型。
正定二次型的系数满足以下性质:- 系数矩阵A=(aij)为实对称正定矩阵;- 系数aii>0,1≤i≤n;- 正定二次型的极值点为唯一的极小值点,且该极小值点为原点。
正定二次型在优化问题中经常出现,例如,最优化问题的约束条件若是等式形式,将其通过拉格朗日乘数法转化为等价的含有二次项的目标函数,然后利用正定二次型的特性来求解最优解。
2. 负定:若对于任意非零的n元列向量x=(x1,x2,...,xn)T,都有Q(x)<0,称二次型Q(x)为负定二次型。
负定二次型的系数满足以下性质:- 系数矩阵A=(aij)为实对称负定矩阵;- 系数aii<0,1≤i≤n;- 负定二次型的极值点为唯一的极大值点,且该极大值点为原点。
负定二次型在最优化问题中也有应用,例如,在极大极小值问题中,如果一个目标函数的Hessian矩阵是负定的,那么该函数在极小值点处取得极小值。
3. 半正定:若对于任意的n元列向量x=(x1,x2,...,xn)T,都有Q(x)≥0,称二次型Q(x)为半正定二次型。
正定二次型
T
T
故
f xT Ax 是正定的。
T
f ( x1, x2 ,, xn ) x Ax
x Cy
g ( y1, y2 ,, yn ) yT By 其中 B CT AC
二 正定的判断方法
1:惯性指数判别法 定理 n 元实二次型 f xT Ax 为正定的当且仅当f 的正惯性指数 p n 推论 矩阵A是正定的当且仅当A的全部特征值均为正 例 设n 阶矩阵A是正定矩阵, 证明 A1 , A , Am
为t满足什么条件时,二次型是正定的; t满足什么条件时,
二次型是负定的;
t 1 1 则 A 1 t 1 解:二次型矩阵为 1 1 t t 1 1 2 t 1 2 A3 1 t 1 t 1 (t 2) A2 t 1 A1 t 1 t 1 1 t
(m为正整数)也正定矩阵
注 n 元实二次型 f xT Ax 为负定的当且仅当
的负惯性指数为 n
2 主子式判别法 (1)定义 设n 阶方阵
a11 a21 A an1 a11 Ak a21 ak 1 a12 a1n a22 a2 n an 2 ann a12 a1n
注 设 f xT Ax为实二次型,若对任何
x0
都有 f 0 f 0 , 则称二次型是半正定的 (半负定的),
并称其对应的矩阵A为半正定矩阵(半负定)矩阵。 2 二次型的正定性与可逆线性变换 定理 设有实二次型 f ( x1 , x2 ,, xn ) xT Ax 经可逆线性变换 x Cy
k 1, 2,, n
方阵A的前k行和前k列所成的子式
a22 a2 n ak 2 akn
第5.4节 正定二次型
A 2(11 6t 2 ) 0
2 2 t 0 解 得 2 11 6t 0
即当 t
11 时, f 是正定的. 6
负定、半正定、半负定二次型判定定理 定理4 (1) n元二次型f (x1,x2,…,xn) =xTAx负定的充分必要条件是 标准形中n个系数均为负数. (2) n元二次型f =xTAx负定的充分必要条件是负惯性指数等于n. (3) n元二次型f =xTAx负定的充分必要条件是A的特征值都小于零.
a21 ai 1
例6 讨论二次型f 的正定性,其中
2 2 2 f ( x1 , x2 , x3 ) 5 x1 6 x2 4 x3 4 x1 x2 4 x1 x3
2 5 2 解 二次型f 的矩阵 A 2 6 0 2 0 4
A的各阶顺序主子式
负定二次型 半负定二次型
二、正定二次型(正定矩阵)的判别法
定理1 n元二次型f (x1, x2 ,· · · ,xn) =xTAx正定(或A>0)的 充分必要条件是标准形中n个系数均为正数. 证 若存在可逆线性变换x=Cy使
2 2 f x Ax yT (C T AC ) y yT y 1 y1 2 y2 T x Cy 2 n yn
思考练习
1.判定二次型 f 2 x1 x2 2 x1 x3 2 x1 x4 2 x2 x3 2 x2 x4 2 x3 x4
2 2 2 2 的正定性.已知其标准形为 f 3 y1 y2 y3 y4 .
2.判定下列二次型的正定性
2 2 2 f ( x1 , x2 , x3 ) 3 x1 x2 4 x3
2 5 2 解 二次型f 的矩阵 A 2 6 0 2 0 4
正定二次型的判定方法
正定二次型的判定方法首先,介绍一下什么是正定二次型。
正定二次型是指对于任意非零向量x,都有x^TAx>0,其中A为n阶对称矩阵。
这意味着二次型的值对于所有非零向量都是正的,反之,若存在一些非零向量使得二次型的值为负或0,则称为负定二次型或半定二次型。
接下来,我们来介绍正定二次型的判定方法,包括特征值法、配方法、主元法等。
1.特征值法:特征值法是判定二次型正定性的重要方法。
首先求矩阵A的特征值λi及其对应的特征向量xi,然后判断特征值是否全部大于0。
如果全部大于0,则二次型是正定的;如果有一个特征值小于等于0,则二次型不是正定的。
2.配方法:配方法是判定二次型正定性的常用方法。
对于n阶矩阵A,通过对A进行合同变换,将A化为对角矩阵D,即D=P^TAP,其中P为可逆矩阵,D为对角矩阵。
若D的对角元素d1, d2, ..., dn全大于0,则二次型是正定的。
否则,若存在一些对角元素di小于等于0,则二次型不是正定的。
3.主元法:主元法也是一种常用的判定正定二次型的方法。
将n阶对称矩阵A化为标准型,即E=T^TAT,其中E为对角矩阵,T为可逆矩阵。
对于标准型E,若E的主对角线元素全大于0,则二次型是正定的。
若存在一些主对角线元素小于等于0,则二次型不是正定的。
4.结构法:结构法是一种基于矩阵A的结构特点进行判定的方法。
对于n阶对称矩阵A,若存在n个线性无关的向量,将其拼接为矩阵B,即B=[b1,b2, ..., bn],且满足B^TAB是对角矩阵,则二次型是正定的。
否则,二次型不是正定的。
以上是常见的几种判定正定二次型的方法,下面我们通过一个具体的例子来演示这些方法。
设二次型Q(x)=x^TAx=x1^2+4x1x2+3x2^2,其中A是2阶对称矩阵。
我们通过以上方法来判定二次型的正定性。
1.特征值法:求矩阵A的特征值λi及其对应的特征向量xi,有:1-lambda, 22, 3-lambda解特征方程det(A-lambdaI)=0,得到特征值为λ1=4和λ2=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t 1 时二次型是负定的 即 t 0 , t 1 0, t 1 ( t 2) 0 当
2 2
A 0 例3 设矩阵A,B矩阵正定矩阵,证明 A B , 0 B
f 叫做对称矩阵 A的二次型;
对称矩阵 A的秩叫做二次型 f 的秩.
注意 1. 二次型的矩阵总是对称矩阵,即A A. 2. 二次型与它的矩阵相互唯一确定,即 若 X AX X BX 且 A A, B B ,则 A B. (这表明在选定文字 x1 , x2 ,..., xn 下,二次型
an1 xn x1 an 2 xn x2 ann x
aij xi x j .
i 1 j 1 n n
2 n
②
§5.1 二次型及其矩阵表示
a11 a21 令 A a n1
a12 a22 an 2
... ... ...
a1n a2 n ann
x Cy
g ( y1, y2 ,, yn ) yT By 其中 B CT AC
二 正定的判断方法
惯性指数判别法
定理 n 元实二次型 f xT Ax 为正定的当且仅当f 的正惯性指数 p n 推论 矩阵A是正定的当且仅当A的全部特征值均为正 例 设n 阶矩阵A是正定矩阵, 证明 A1 , A , Am
定义法
均是正定矩阵。 证明: 对任意的 x 0 ,
T T x Ax x Bx 0 x A B x
T
, 为n维向量 y , 其中 对任意的2n维 y 0 , 记 由 y 0 可得 0 或 0 故
故A Hale Waihona Puke B是正定矩阵。称为二次型.
当aij 是复数时, f称为 复二次型
当aij 是实数时, f称为 实二次型
(我们仅讨论实二次型)
二、二次型的矩阵及秩
在二次型的矩阵表示中,任给一个二次型, 就唯一地确定一个对称矩阵;反之,任给一个对 称矩阵,也可唯一地确定一个二次型.这样,二 次型与对称矩阵之间存在一一对应的关系.
对称矩阵 A叫做二次型 f 的矩阵;
( A P nn )
则矩阵A称为二次型 f ( x1 , x2 ,, xn ) 的矩阵
(matrix).
§5.1 二次型及其矩阵表示
(2)
a11 a X AX ( x1 , x2 ,..., xn ) 21 a n1
a12 a22 an 2
... ... ...
(m为正整数)也正定矩阵
注 n 元实二次型 f xT Ax 为负定的当且仅当
的负惯性指数为 n
主子式判别法
(1)定义 设n 阶方阵
a11 a21 A an1 a11 Ak a21 ak 1 a12 a1n a22 a2 n an 2 ann a12 a1n
x
T
A A x xA Ax x
T
T
T
AT Ax
T
2
0
故 AT A是正定二次型矩阵。
例5 设A是正定矩阵, B 反对称矩阵, 证明
A B 是正定矩阵,
证明: 对任意的 x 0 , 由 A 是正定矩阵, B 反对称矩阵,得
xT Ax 0 , xT Bx 0
A 0 T T y y A A 0 0 B
T
T A 例4 设 Amn 满足R Amn n 证明 A是正定二次型矩阵。
证明: A A A
T T
T
A
T T
AT A , 故A是对称矩阵。
对任意的 x 0 , 由 R Amn n 可得 Amn x 0 记 Amn x 则 0
对称性(symmetry):
B C AC ,| C | 0 A (C 1 ) B(C 1 )
§5.1 二次型及其矩阵表示
§5.1 二次型及其矩阵表示
positive definite quadratic form
正定二次型
判定方法
1. 特征值法:对称矩阵A正定的充要条件是A的特征值全大于0。
2. 化标准形法:将二次型矩阵化为标准型看系数是否都为正。 3. 定义法: 用正定矩阵的定义进项判定。 4. 顺序主子式法:对称矩阵A正定的充要条件是A的所有顺序主子式 全大于0。 5. 惯性指数判别法:一个对称矩阵(或相应二次型)的惯性指数其 中1的个数p称为正惯性指数 6. 合同法:实对称矩A正定的充要条件是A与单位矩阵E合同。
1
由 C 1可逆矩阵可知道 y 0 ;又
T 1 T 1 x C C A CC x f x Ax T 1 C x C T AC C 1 x yT By 0 .
T
T
故
f xT Ax 是正定的。
T
f ( x1, x2 ,, xn ) x Ax
证明:必要性: 对任意的 y 0 记 Cy 为 x , 即 x Cy
由C 可逆矩阵可知道 x 0 ; 又
T T T
g y By y C ACy Cy A Cy xT Ax T g y By 是正定的。 故
T
0.
1 y C x y , 充分性:对任意的x 0记 C x 为 即
§5.1 二次型及其矩阵表示
x1 x2 令X x n
x1 a1 j x j x2 a2 j x j xn anj x j
j 1 j 1 j 1
n
n
n
( xi aij x j ) aij xi x j
k
T T 为负定的当且仅当二次型 x Ax f x Ax 证明: T T x A x 即二次型 x A x 为正定的。 显然二次型
的k阶主子式为 (1) Ak
k
故由定理可得。
2 2 2 例1 二次型 f tx1 tx2 tx3 2x1x2 2x1x3 2x2 x3
i 1 j 1 i 1 j 1
n
n
n
n
于是有 f ( x 1 , x 2 ,..., xn ) X AX .
§5.1 二次型及其矩阵表示
二、非退化线性替换
1、定义
x1 , x2 ,, xn ; y1 , y2 ,, yn 是两组文字,
cij P , i , j 1,2,...n
a1n x1 a2 n x2 x ann n
n a1 j x j 1 jn a x 2j j ( x1 , x2 ,..., xn ) j 1 n anj x j j 1
k 1, 2,, n
方阵A的前k行和前k列所成的子式
a22 a2 n ak 2 akn
称为矩阵A的k阶主子式
(2)
定理 n 元实二次型 f xT Ax 为正定的当且仅当
对称矩阵A的各阶主子式都大于零。 注 n 元实二次型 f xT Ax 为负定的当且仅当 对称矩阵A的各阶满足 (1) Ak 0 ,其中 k 1, 2,, n
x1 c11 y1 c12 y2 c1n yn x2 c11 y1 c12 y2 c1n yn 关系式 x c y c y c y nn n n n1 1 n 2 2
③
称为由 x1 , x2 ,, xn到y1 , y2 ,, yn 的一个线性替换; 若系数行列式|cij|≠0,则称③为非退化线性替换 (non-degenerate linear transformation).
为t满足什么条件时,二次型是正定的; t满足什么条件时,
二次型是负定的;
t 1 1 则 A 1 t 1 解:二次型矩阵为 1 1 t t 1 1 2 t 1 2 A3 1 t 1 t 1 (t 2) A2 t 1 A1 t 1 t 1 1 t
正定二次型
一 正定二次型的定义
1 定义 都有 f 0 设 f xT Ax 为实二次型,若对任何
x0
f
0 , 则称二次型是正定的(负定的),
并称其对应的矩阵 A 为正定矩阵 (负定矩阵) 。
2 2 2 2 f ( x , x , x , x ) x x 5 x 3 x 例 1 2 3 4 1 2 3 4 是正定的 2 2 不是正定的 f ( x1, x2 , x3 , x4 ) x12 3x2 2x3
对任意的 x 0 有
xT A B x xT Ax xT Bx 0
故 A B 是正定矩阵,
合同法
1、定义
nn A , B P 设 ,若存在可逆矩阵
C P nn , 使 B C AC,则称A与B合同(congruent).
注意 1. 合同具有 反身性(reflexivity):A E AE
quadratic form
二次型
一、二次型及其标准形的概念
定义1 含有n个变量 x1 , x2 , , xn的二次齐次函数
2 2 2 f x1 , x2 , , xn a11 x1 a22 x2 ann xn
2a12 x1 x2 2a13 x1 x3 2an 1,n xn 1 xn
f ( x1 , x2 ,..., xn ) X AX 完全由对称矩阵A决定.)
正因为如此,讨论二次型时 矩阵是一个有力的工具.