最新平行线知识点归纳及典型题目练习(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线与平行线
1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这
种关系的两个角,互为_____________.
2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两
边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.
3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.
垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.
4.直线外一点到这条直线的垂线段的长度,叫做________________________.
5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个
角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.
6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关
系只有________与_________两种.
7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.
推论:如果两条直线都与第三条直线平行,那么_____________________.
8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平
行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.
⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:
________________________________________.
9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .
10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: ___
______________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .
11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是
已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.
12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变
换,简称_______.图形平移的方向不一定是水平的.
平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.
熟悉以下各题:
13. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点
A 到BC 的距离是_____,点
B 到A
C 的距离是_______,点A 、
B 两点的距离是_____,点
C 到AB 的距离是________.
14. 设a 、b 、c 为平面上三条不同直线,
a) 若//,//a b b c ,则a 与c 的位置关系是_________;
b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;
c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.
15. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,
求∠COE 、∠AOE 、∠AOG 的度数.
16. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试
判断OD 与OE 的位置关系,并说明理由.
17. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.
解:∠B +∠E =∠BCE
过点C 作CF ∥AB ,
则B ∠=∠____( )
又∵AB ∥DE ,AB ∥CF ,
∴____________( )
∴∠E =∠____( )
∴∠B +∠E =∠1+∠2
即∠B +∠E =∠BCE .
18. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.
⑴∵∠1=∠2
又∵∠2=∠3(对顶角相等)
∴∠1=∠3
∴a ∥b (同位角相等 两直线平行)
⑵∵a ∥b
∴∠1=∠3(两直线平行,同位角相等)
又∵∠2=∠3(对顶角相等)
∴∠1=∠2.
19.阅读理解并在括号内填注理由:
如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .
证明:∵AB ∥CD ,
∴∠MEB =∠MFD ( )
又∵∠1=∠2,
∴∠MEB -∠1=∠MFD -∠2,
即 ∠MEP =∠______
∴EP ∥_____.( )
20.已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.
21.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.
22.已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.
参考答案
1.邻补角
2.对顶角,对顶角相等
3.垂直有且只有垂线段最短
4.点到直线的距离
5.同位角内错角同旁内角
6.平行相交平行
7.平行这两直线互相平行
8.同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.
9.平行10.两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.11.命题题设结论由已知事项推出的事项题设结论真命题假命题12.平移相同平行且相等13.6cm 8cm 10cm 4.8cm.14.平行平行垂直15.28°118°59°16. OD⊥OE理由略17. 1(两直线平行,内错角相等)DE∥CF(平行于同一直线的两条直线平行)2(两直线平行,内错角相等).18.⑴∵∠1=∠2,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a∥b(同位角相等两直线平行)⑵∵a∥b∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等)∴∠1=∠2.19. 两直线平行,同位角相等MFQ FQ同位角相等两直线平行20.96°,12°.
21.,AD BC FE BC ⊥⊥Q 90EFB ADB ∴∠=∠=o
//EF AD ∴23∴∠=∠ //,31DG BA ∴∠=∠Q 1 2.∴∠=∠ 22. ∠A =∠F .∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。

相关文档
最新文档