(新)高中数学第一章常用逻辑用语1_1_2量词学案新人教B版选修2-1

合集下载

2020版高中数学第一章常用逻辑用语1.2.1“且”与“或”学案新人教B版

2020版高中数学第一章常用逻辑用语1.2.1“且”与“或”学案新人教B版

1.2.1 “且”与“或”学习目标 1.了解联结词“且”“或”的含义.2.会用联结词“且”“或”联结或改写某些数学命题,并判断新命题的真假.3.掌握根据命题真假求参数取值范围的方法.知识点一“且”1.定义:用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q,读作“p且q”.当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q是假命题.将命题p和命题q以及p∧q的真假情况绘制为命题“p∧q”的真值表如下:命题“p∧q”的真值表可简单归纳为“同真则真”,“有假则假”.2.“且”是具有“兼有性”的逻辑联结词,对“且”的理解,可联系集合中“交集”的概念,A∩B={x|x∈A且x∈B}中的“且”是指“x∈A”与“x∈B”这两个条件都要同时满足.3.我们也可以用串联电路来理解联结词“且”的含义,如图所示,若开关p,q的闭合与断开分别对应命题p,q的真与假,则整个电路的接通与断开对应命题p∧q的真与假.知识点二“或”1.定义:一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q,读作“p或q”.当p,q两个命题有一个命题是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题.将命题p和命题q以及p∨q的真假情况绘制为命题“p∨q”的真值表如下:命题“p∨q”的真值表可简单归纳为“假假才假”.2.对“或”的理解:我们可联系集合中“并集”的概念A∪B={x|x∈A或x∈B}中的“或”,它是指“x∈A”,“x∈B”中至少有一个是成立的,即可以是x∈A且x∉B,也可以是x∉A且x∈B,也可以是x∈A且x∈B.3.我们可以用并联电路来理解联结词“或”的含义,如图所示,若开关p,q的闭合与断开对应命题p,q的真与假,则整个电路的接通与断开分别对应命题p∨q的真与假.1.逻辑联结词“且”“或”只能出现在命题的结论中.( ×)2.命题“p∨q”是真命题,p,q至少有一个是真命题.( √)3.梯形的对角线相等且平分是“p∨q”形式的命题.( ×)题型一含有“且”“或”命题的构成命题角度1 命题形式的区分例1 指出下列命题的形式及构成它的命题.(1)向量既有大小又有方向;(2)矩形有外接圆或有内切圆;(3)2≥2.解(1)是p∧q形式的命题.其中p:向量有大小,q:向量有方向.(2)是p∨q形式的命题.其中p:矩形有外接圆,q:矩形有内切圆.(3)是p∨q形式的命题.其中p:2>2,q:2=2.反思感悟不含有逻辑联结词的命题是简单命题;由简单命题与逻辑联结词“或”“且”构成的命题称之为复合命题.判断一个命题是简单命题还是复合命题,不能仅从字面上看它是否含有“或”“且”等逻辑联结词,而应从命题的结构来看是否用逻辑联结词联结两个命题.跟踪训练1 指出下列命题的形式及构成它的简单命题:(1)24既是8的倍数,也是6的倍数;(2)菱形是圆的内接四边形或是圆的外切四边形.解(1)这个命题是“p∧q”的形式,其中p:24是8的倍数,q:24是6的倍数.(2)这个命题是“p∨q”的形式,其中p:菱形是圆的内接四边形,q:菱形是圆的外切四边形.命题角度2 用逻辑联结词构造新命题例2 分别写出下列命题的“p且q”“p或q”形式的命题.(1)p:梯形有一组对边平行,q:梯形有一组对边相等;(2)p:-1是方程x2+4x+3=0的解,q:-3是方程x2+4x+3=0的解.解(1)p或q:梯形有一组对边平行或梯形有一组对边相等.p且q:梯形有一组对边平行且梯形有一组对边相等.(2)p或q:-1或-3是方程x2+4x+3=0的解.p且q:-1与-3是方程x2+4x+3=0的解.反思感悟用逻辑联结词“或”“且”联结p,q构成新命题时,在不引起歧义的前提下,可以把p,q中的条件或结论合并.跟踪训练2 分别写出由下列命题构成的“p∧q”“p∨q”的形式.(1)p:函数y=3x2是偶函数,q:函数y=3x2是增函数;(2)p:3是无理数,q:3是实数;(3)p:三角形的外角等于与它不相邻的两个内角的和,q:三角形的外角大于与它不相邻的任何一个内角.解(1)p∧q:函数y=3x2是偶函数且是增函数;p∨q:函数y=3x2是偶函数或是增函数.(2)p∧q:3是无理数且是实数;p∨q:3是无理数或是实数.(3)p∧q:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任何一个内角;p∨q:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任何一个内角.题型二“p∧q”和“p∨q”形式命题的真假判断例3 分别指出“p∨q”“p∧q”的真假.(1)p :函数y =sin x 是奇函数;q :函数y =sin x 在R 上单调递增; (2)p :直线x =1与圆x 2+y 2=1相切;q :直线x =12与圆x 2+y 2=1相交;(3)p :不等式x 2-2x +1>0的解集为R ;q :不等式x 2-2x +2≤1的解集为∅. 解 (1)∵p 真,q 假,∴“p ∨q ”为真,“p ∧q ”为假. (2)∵p 真,q 真,∴“p ∨q ”为真,“p ∧q ”为真. (3)∵p 假,q 假,∴“p ∨q ”为假,“p ∧q ”为假. 反思感悟 判断p ∧q 与p ∨q 形式命题的真假的步骤 (1)首先判断命题p 与q 的真假.(2)对于p ∧q ,“一假则假,全真则真”,对于p ∨q ,只要有一个为真,则p ∨q 为真,全假为假.跟踪训练3 分别指出由下列各组命题构成的“p 或q ”“p 且q ”形式的命题的真假. (1)p :∅{0},q :0∈∅;(2)p :3是无理数,q :π不是无理数; (3)p :集合A =A ,q :A ∪A =A ;(4)p :函数y =x 2+3x +4的图象与x 轴有公共点,q :方程x 2+3x -4=0没有实数根. 解 (1)∵p 真,q 假,∴“p 或q ”为真,“p 且q ”为假. (2)∵p 真,q 假,∴“p 或q ”为真,“p 且q ”为假. (3)∵p 真,q 真,∴“p 或q ”为真,“p 且q ”为真. (4)∵p 假,q 假,∴“p 或q ”为假,“p 且q ”为假.由复合命题的真假求参数的范围典例 已知p :方程x 2+mx +1=0有两个不等的负实数根;q :方程4x 2+4(m -2)x +1=0无实数根,若“p ∨q ”是真命题,“p ∧q ”是假命题,求实数m 的取值范围. 考点 “或”“且”的综合问题 题点 由复合命题的真假求参数的范围解 p :方程x 2+mx +1=0有两个不等的负实数根⇔⎩⎪⎨⎪⎧Δ=m 2-4>0,-m <0⇔m >2.q :方程4x 2+4(m -2)x +1=0无实数根⇔Δ=16(m -2)2-16<0⇔1<m <3.因为“p ∨q ”是真命题,“p ∧q ”是假命题, 所以p 为真且q 为假,或p 为假且q 为真. (1)当p 为真且q 为假时,由⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3,解得m ≥3;(2)当p 为假且q 为真时,由⎩⎪⎨⎪⎧m ≤2,1<m <3,解得1<m ≤2.综上所述,实数m 的取值范围是(1,2]∪[3,+∞).[素养评析] (1)解决逻辑联结词的应用问题,一般是先假设p ,q 分别为真,化简其中的参数的取值范围,然后当它们为假时取其补集,最后确定参数的取值范围.(2)理解运算对象,选择运算方法,设计运算程序,有利于形成程序化思维,能促进数学思维的发展,培养程序化思考问题的品质.1.命题“方程x 2=1的解是x =±1”中,使用逻辑联结词的情况是( ) A .没有使用逻辑联结词 B .使用了逻辑联结词“或” C .使用了逻辑联结词“且” D .使用了逻辑联结词“或”与“且” 答案 B2.命题“xy ≠0”是指( ) A .x ≠0且y ≠0B .x ≠0或y ≠0C .x ,y 至少有一个不为0D .不都是0答案 A解析 满足xy ≠0,即x ,y 两个都不为0,故选A.3.已知p :∅⊆{0},q :{1}∈{1,2}.在命题“p ”,“q ”,“p ∧q ”,和“p ∨q ”中,真命题有( )A .1个B .2个C .3个D .0个 答案 B解析 容易判断命题p :∅⊆{0}是真命题,命题q :{1}∈{1,2}是假命题,所以p ∧q 是假命题,p ∨q 是真命题, 故选B.4.“p ∧q 是真命题”则下列结论错误的是( ) A .p 是真命题 B .q 是真命题 C .p ∨q 是真命题 D .p ∨q 是假命题答案 D解析 p ∧q 是真命题⇒p 是真命题且q 是真命题⇒p ∨q 是真命题,故选D.5.已知命题p :函数f (x )=(2a -1)x +b 在R 上是减函数;命题q :函数g (x )=x 2+ax 在[1,2]上是增函数,若p ∧q 为真,则实数a 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫-2,12 解析 命题p :由函数f (x )在R 上为减函数得2a -1<0,解得a <12,命题q :由函数g (x )=x 2+ax 在[1,2]上是增函数, 得-a2≤1,解得a ≥-2.由p ∧q 为真得p ,q 都为真,故a 的取值范围为⎝ ⎛⎭⎪⎫-∞,12∩[)-2,+∞,即为⎣⎢⎡⎭⎪⎫-2,12.1.判断含有逻辑联结词的命题构成形式的关键是:弄清构成它的命题的条件、结论. 2.对用逻辑联结词联结的复合命题的真假进行判断时,首先找出构成复合命题的简单命题,判断简单命题的真假,然后分析构成形式,根据构成形式判断复合命题的真假. (1)“p ∧q ”形式的命题简记为:同真则真,一假则假; (2)“p ∨q ”形式的命题简记为:同假则假,一真则真.一、选择题1.已知命题p ,q ,若p 为真命题,则( ) A .p ∧q 必为真 B .p ∧q 必为假 C .p ∨q 必为真 D .p ∨q 必为假答案 C解析 p ∨q ,见真则真,故必有p ∨q 为真. 2.给出下列命题: ①2>1或1>3;②方程x 2-2x -4=0的判别式大于或等于0; ③25是6或5的倍数;④集合A ∩B 是A 的子集,且是A ∪B 的子集. 其中真命题的个数为( ) A .1B .2C .3D .4 答案 D解析 由于2>1是真命题,所以“2>1或1>3”是真命题;由于方程x 2-2x -4=0的判别式大于0,所以“方程x 2-2x -4=0的判别式大于或等于0”是真命题;由于25是5的倍数,所以命题“25是6或5的倍数”是真命题;由于()A ∩B ⊆A ,()A ∩B ⊆()A ∪B ,所以命题“集合A ∩B 是A 的子集,且是A ∪B 的子集”是真命题.3.命题p ∧q 是假命题,命题p ∨q 是真命题,则下列判断正确的是( ) A .命题p 真q 假 B .命题p 假q 真 C .命题p 与q 真假相同 D .命题p 与q 真假不同答案 D解析 由命题p ∧q 是假命题,命题p ∨q 是真命题,得命题p ,q 一真一假.故选D. 4.命题p :点P 在直线y =2x -3上;q :点P 在曲线y =-x 2上,则使“p 且q ”为真命题的一个点P (x ,y )是( ) A .(0,-3) B .(1,2) C .(1,-1) D .(-1,1)答案 C解析 点(x ,y )满足⎩⎪⎨⎪⎧y =2x -3,y =-x 2,解得P (1,-1)或P (-3,-9),故选C.5.设命题p :函数y =sin2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( ) A .p 为真 B .q 为真 C .p ∧q 为假 D .p ∨q 为真答案 C解析 函数y =sin2x 的最小正周期为2π2=π,故命题p 为假命题;x =π2不是y =cos x 的对称轴,故命题q 为假命题,故p ∧q 为假.故选C.6.给出命题p :3≥3;q :函数f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0在R 上的值域为[-1,1].在下列命题:“p ”“q ”“p ∧q ”“p ∨q ”中,真命题的个数为( ) A .0B .1C .2D .3 答案 C7.p :方程x 2+2x +a =0有实数根,q :函数f (x )=(a 2-a )x 是增函数,若“p ∧q ”为假命题,“p ∨q ”为真命题,则实数a 的取值范围是( ) A .a >0B .a ≥0C.a >1D .a ≥1 答案 B解析 ∵方程x 2+2x +a =0有实数根,∴Δ=4-4a ≥0,解得a ≤1. ∵函数f (x )=(a 2-a )x 是增函数, ∴a 2-a >0,解得a <0或a >1. ∵p ∧q 为假命题,p ∨q 为真命题, ∴p ,q 中一真一假.①当p 真q 假时,得0≤a ≤1; ②当p 假q 真时,得a >1.由①②得所求a 的取值范围是a ≥0. 二、填空题8.分别用“p ∨q ”“p ∧q ”填空: (1)命题“集合A B ”是________的形式;(2)命题“x -2+4≥2”是________的形式;(3)命题“60是10与12的公倍数”是________的形式. 答案 (1)p ∧q (2)p ∨q (3)p ∧q 9.已知p :x 2-2x -3<0;q :1x -2<0,若p 且q 为真,则x 的取值范围是________. 答案 (-1,2)解析 当p 为真命题时,x 2-2x -3<0,则-1<x <3; 当q 为真命题时,x -2<0,则x <2. 当p 且q 为真命题时,p 和q 均为真命题, 从而x 的取值范围是-1<x <2. 10.已知命题p :不等式⎪⎪⎪⎪⎪⎪x x -1>x x -1的解集为{x |0<x <1}.命题q :“a =b ”是“a 2=b 2”成立的必要不充分条件,则下列结论正确的是________.(填序号) ①“p ∧q ”为真;②“p ∧q ”为假;③“p ∨q ”为真;④“p ∨q ”为假. 答案 ②③ 解析 由⎪⎪⎪⎪⎪⎪x x -1>x x -1,得x x -1<0⇒0<x <1,故p 为真命题,由a 2=b 2不一定有a =b , 故q 为假命题.∴p ∧q 为假,p ∨q 为真.11.设p :关于x 的不等式a x>1(a >0且aD =/1)的解集是{x |x <0},q :函数y =lg(ax 2-x +a )的定义域为R ,如果p 且q 为假,p 或q 为真,则a 的取值范围为________.答案 ⎝⎛⎦⎥⎤0,12∪()1,+∞解析 若p 真,则0<a <1, 若p 假,则a >1.若q 真,有⎩⎪⎨⎪⎧a >0,Δ=1-4a 2<0,解得a >12.若q 假,则a ≤12,又由题意知,p 和q 有且仅有一个为真, ∴当p 真q 假时,0<a ≤12,当p 假q 真时,a >1,综上所述,a ∈⎝ ⎛⎦⎥⎤0,12∪(1,+∞). 三、解答题12.判断下列复合命题的真假.(1)等腰三角形顶角的平分线平分底边并且垂直于底边;(2)不等式x 2-2x +1>0的解集为R 且不等式x 2-2x +2≤1的解集为∅.解 (1)这个命题是“p 且q ”形式的复合命题,其中p :等腰三角形顶角的平分线平分底边,q :等腰三角形顶角的平分线垂直于底边,因为p 真q 真,则“p 且q ”为真,所以该命题是真命题.(2)这个命题是“p 且q ”形式的复合命题,其中p :不等式x 2-2x +1>0的解集为R ,q :不等式x 2-2x +2≤1的解集为∅.因为p 假q 假,所以“p 且q ”为假,故该命题为假命题. 13.已知p :函数y =x 2+mx +1在(-1,+∞)上单调递增,q :函数y =4x 2+4(m -2)x +1大于零恒成立.若p 或q 为真,p 且q 为假,求m 的取值范围.解 若函数y =x 2+mx +1在(-1,+∞)上单调递增,则-m2≤-1,∴m ≥2,即p :m ≥2;若函数y =4x 2+4(m -2)x +1恒大于零, 则Δ=16(m -2)2-16<0, 解得1<m <3,即q :1<m <3.因为p 或q 为真,p 且q 为假,所以p ,q 一真一假,当p 真q 假时,由⎩⎪⎨⎪⎧m ≥2m ≥3或m ≤1,得m ≥3,当p 假q 真时,由⎩⎪⎨⎪⎧m <21<m <3,得1<m <2.综上,m 的取值范围是{m |m ≥3或1<m <2}.14.设命题p :函数f (x )=lg ⎝ ⎛⎭⎪⎫ax 2-x +a 4的定义域为R ,命题q :关于x 的不等式3x -9x<a对一切正实数都成立.若“p 或q ”为真命题,“p 且q ”为假命题,则实数a 的取值范围是________. 答案 [0,1]解析 由题意,得对命题p :ax 2-x +a4>0 在R 上恒成立,当a =0时,不符合,故⎩⎪⎨⎪⎧a >0,Δ=-2-4a ·a4<0,得a >1.对命题q :令3x =t (t >1),则3x -9x=-⎝ ⎛⎭⎪⎫t -122+14<0,故a ≥0.由p 或q 为真,p 且q 为假,得p ,q 一真一假, 当p 真q 假时,无解;当p 假q 真时,得0≤a ≤1.15.已知命题p :方程a 2x 2+ax -2=0在[-1,1]上有解;命题q :只有一个实数x 满足不等式x 2+2ax +2a ≤0,若命题“p ∨q ”是假命题,求实数a 的取值范围. 解 由a 2x 2+ax -2=0,得(ax +2)(ax -1)=0. 显然a ≠0,∴x =-2a 或x =1a.若命题p 为真,∵x ∈[-1,1],故⎪⎪⎪⎪⎪⎪-2a ≤1或⎪⎪⎪⎪⎪⎪1a ≤1,∴|a |≥1.若命题q 为真,即只有一个实数x 满足x 2+2ax +2a ≤0, 即抛物线y =x 2+2ax +2a 与x 轴只有一个交点, ∴Δ=4a 2-8a =0,∴a =0与a =2. ∵命题“p ∨q ”为假命题, ∴q ,p 同时为假命题.∴a 的取值范围是{a |-1<a <0或0<a <1}.。

高二数学选修课件:1-1-2量词

高二数学选修课件:1-1-2量词
人 教 B 版 数 学
有”.因此,要结合具体问题做正确的判断.
存在性命题中的存在量词有“存在一个”、“至少有 一个”、“有些”、“有一个”、“对某个”、“有的” 等.
第一章
常用逻辑用语
2.全称命题的真假判定,要判定一个全称命题为真,
必须限定集合M中的每一个x验证P(x)成立,一般用代数推 理的方法加以证明,要判定一个全称命题为假,只需举出 一个反例即可. 存在性命题的真假判定,要判定一个存在性命题为真,
人 教 B 版 数 学
实数 x 的取值范围.
[分析] 首先将三角方程进行化简,再结合三角函数 图像求出x的范围,最后写成全称命题.
第一章
常用逻辑用语
[解析]
由 1-sin2x=sinx-cosx
得, sin2x+cos2x-2sinxcosx=sinx-cosx, ∴ (sinx-cosx)2=sinx-cosx, 即|sinx-cosx|=sinx-cosx. ∴sinx≥cosx. π 5π 结合三角函数线得 2kπ+ ≤x≤2kπ+ (k∈Z),此即为 4 4 所求 x 的范围.即
质,那么存在性命题就是形如“存在集合M中的元素x, q(x)”的命题,用符号简记为________. [答案] 1.所有 ∀ 全称 ∃ ∀x∈M,P(x) 存在性 ∃x∈M,q(x) 2.有些 至少有一个
人 教 B 版 数 学
第一章
常用逻辑用语
人 教 B 版 数 学
第一章
常用逻辑用语
[例1] 判断下列全称命题的真假: (1)p:所有的单位向量都相等; (2)p:任一等比数列{an}的公比q≠0.
第一章
常用逻辑用语
判定下列存在性命题的真假: (1)有一个实数x,使x2+2x+3=0; (2)存在两个相交平面垂直于同一条直线;

高中数学选修1-1(人教B版)第一章常用逻辑用语1.3知识点总结含同步练习题及答案

高中数学选修1-1(人教B版)第一章常用逻辑用语1.3知识点总结含同步练习题及答案

q ”,那么
1 时,mx 2 − x + 1 = 0 无实数根; 4
1 ,则 mx 2 − x + 1 = 0 无实数根,真命题; 4
写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假. (1)若 m ⋅ n < 0 ,则方程 mx 2 − x + n = 0 有实数根; (2)若 m ⩽ 0 或 n ⩽ 0,则 m + n ⩽ 0 . 解:(1)逆命题:若方程 mx 2 − x + n = 0 有实数根,则 m ⋅ n < 0 ,假命题 ; 否命题:若 m ⋅ n ⩾ 0 ,则方程 mx2 − x + n = 0 没有实数根,假命题 ; 逆否命题:若方程 mx 2 − x + n = 0 没有实数根,则 m ⋅ n ⩾ 0 ,真命题. (2)逆命题:若 m + n ⩽ 0 ,则 m ⩽ 0 或 n ⩽ 0 ,真命题; 否命题:若 m > 0 且 n > 0,则 m + n > 0 ,真命题 ; 逆否命题:若 m + n > 0 ,则 m > 0 且 n > 0 ,假命题 .
因为 p 是 q 的充分不必要条件,所以 A ⫋ B.故
{ 1 + m ⩾ 10, 或{ 1 + m > 10, 1 − m < −2, 1 − m ⩽ −2,
解得 m ⩾ 9 ,故实数 m 的取值范围是 [9, +∞).
2.若则命题的四种形式 描述: 若则命题 命题的常见形式为“若 p 则 q ”,其中 p 叫做命题的条件, q 叫做命题的结论. 逆命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称 为互逆命题.其中一个命题称为原命题(original proposition),另一个称为原命题的逆命 题(inverse proposition).也就是说,如果原命题为“若 p ,则 q ”,那么它的逆命题 为“若 q ,则 p ”. 否命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,那么 这两个命题称为互否命题.其中一个命题称为原命题,另一个称为原命题的否命题(negative proposition).也就是说,如果原命题为“若 p ,则 q ”,那么它的否命题为“若 ¬p ,则 ¬q ”. 逆否命题 对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么 这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命

高中数学 第一章 常用逻辑用语 1.2 基本逻辑联结词 1.2.2非(否定)素材 新人教B版选修1-1

高中数学 第一章 常用逻辑用语 1.2 基本逻辑联结词 1.2.2非(否定)素材 新人教B版选修1-1

1.2.2“非”(否定)课堂探究探究一“⌝p”形式的命题及其真假判断“非”是由日常用语中的“不是”“全盘否定”“问题的反面”等抽象而A={x∈U|⌝(x∈A)}=来的,可以用“非”定义集合A在全集U中的补集.U{x∈U|x A}.“p”与“⌝p”真假不同,一个为真,另一个必定为假,它们互为否定,且有⌝(⌝p)=p.【典型例题1】写出下列命题p的否定,并判断其真假:(1)p:周期函数都是三角函数;(2)p:偶函数的图象关于y轴对称;(3)p:若x2-x≠0,则x≠0,且x≠1.思路分析:要写出命题的非(否定),需要对其正面叙述的词语进行否定,然后根据真值表进行真假判断.解:(1)⌝p:周期函数不都是三角函数.命题p是假命题,⌝p是真命题.(2)⌝p:偶函数的图象不关于y轴对称,命题p是真命题,⌝p是假命题.(3)⌝p:若x2-x≠0,则x=0或x=1.命题p是真命题,⌝p是假命题.规律小结下表是一些常用词语和它们的否定词语,理解它们对于今后解决问题大有帮助.原词语等于大于(>) 小于(<) 是都是否定词语不等于不大于不小于不是不都是原词语至多有一个至少有一个至多有n个否定词语至少有两个一个也没有至少有n+1个原词语任意的任意两个所有的能否定词语某个某两个某些不能探究二 存在性命题与全称命题的否定解答存在性命题与全称命题的否定问题:(1)改变量词,把存在量词改为恰当的全称量词或把全称量词改为恰当的存在量词;(2)否定性质,把原命题中的“p(x)成立”改为“⌝p(x)成立”.【典型例题2】 写出下列命题的否定,并判断其真假: (1)p :∃x∈R,x 2+1<0;(2)q :每一个对角互补的四边形有外接圆; (3)r :有些菱形的对角线互相垂直; (4)s :所有能被3整除的整数是奇数.思路分析:命题p ,r 是存在性命题,按存在性命题的否定形式进行否定即可.命题q ,s 是全称命题,按全称命题的否定形式进行否定即可. 解:(1) ⌝p :∀x∈R,x 2+1≥0.(真)(2)⌝q :有些对角互补的四边形没有外接圆.(假) (3)⌝r :所有菱形的对角线不互相垂直.(假) (4)⌝s :有些能被3整除的整数不是奇数.(真) 探究三易错辨析 易错点 否定不全面【典型例题3】 若“∃x∈⎣⎢⎡⎦⎥⎤0,π2,sin x +3cos x <m”为假命题,则实数m 的取值范围是__________.错解:由于“∃x∈⎣⎢⎡⎦⎥⎤0,π2,sin x +3cos x <m”为假命题,则其否定“∀x∈⎣⎢⎡⎦⎥⎤0,π2,sin x +3cos x >m”为真命题.令f(x)=sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,x∈⎣⎢⎡⎦⎥⎤0,π2,可知f(x)在⎣⎢⎡⎦⎥⎤0,π6上是增函数,在⎝⎛⎦⎥⎤π6,π2上是减函数,且f(0)=3,f ⎝ ⎛⎭⎪⎫π2=1,所以f(x)min =1.故有m <1,即实数m 的取值范围是(-∞,1).答案:(-∞,1)错因分析:原命题的否定应为“∀x∈⎣⎢⎡⎦⎥⎤0,π2,sin x +3cos x≥m”,漏掉了等号成立的情况,导致m 的范围被缩小.正解:令f(x)=sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,x∈⎣⎢⎡⎦⎥⎤0,π2,可知f(x)在⎣⎢⎡⎦⎥⎤0,π6上为增函数,在⎝ ⎛⎦⎥⎤π6,π2上为减函数.由于f(0)=3,f ⎝ ⎛⎭⎪⎫π6=2,f ⎝ ⎛⎭⎪⎫π2=1,所以1≤f(x)≤2.由于“∃x∈⎣⎢⎡⎦⎥⎤0,π2,sin x +3cos x <m”为假命题,则其否定“∀x∈⎣⎢⎡⎦⎥⎤0,π2,sin x +3cos x≥m”为真命题,所以m≤f(x)min =1. 答案:(-∞,1]。

高中数学第一章常用逻辑用语1.2基本逻辑联结词1.2.2“非”(否定)教案新人教B版选修1_1

高中数学第一章常用逻辑用语1.2基本逻辑联结词1.2.2“非”(否定)教案新人教B版选修1_1

1.2.2“非”(否定)预习导航1.命题p的否定⌝p(1)“非”命题的表示及读法:对命题p加以否定,就得到一个新的命题,记作“⌝p”,读作“非p”或“p的否定”.(2)含有“非”的命题的真假判定:思考1对一个命题p提示:对一个命题p进行否定,否定的是此命题的结论.2.存在性命题的否定提示:存在性命题的否定是全称命题,其真假性与存在性命题相反,只需判断出原存在性命题的真假即可作出判断.3.全称命题的否定思考提示:不唯一,如“所有的菱形都是平行四边形”,它的否定是“并不是所有的菱形都是平行四边形”,也可以是“有些菱形不是平行四边形”.思考4省略全称量词的全称命题如何进行否定?提示:有的全称命题省略了全称量词,否定时要特别注意.例如,q:实数的绝对值是正数.将⌝q写成:“实数的绝对值不是正数”就错了.原因是q是假命题,⌝q也是假命题,这与q,⌝q一个为真一个为假相矛盾.正确的否定应为:“存在一个实数的绝对值不是正数.”为了避免出错,可用真值表加以验证.精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

(新人教B版)高中数学第一章常用逻辑用语1.2.1“且”与“或”课件3选修2-1

(新人教B版)高中数学第一章常用逻辑用语1.2.1“且”与“或”课件3选修2-1
• [解析] 当p真时,得m≤2,当p假时,m>2. • 当q真时,得1<m<3,当q假时,m≤1或m≥3. • 由题知p,q一真一假,若p真q假,则m≤1;若p假q真,则
2<m<3. • 综上,m的取值范围是m≤1或2<m<3.
• 对命题情势的错误理解

已知命题p:不等式|x|+|x-1|>m
的解集为R,命题q:f(x)=-(5-2m)x是减
________有一个至是少假命题.
• 注:在数理逻辑的书中,通常把如何判定 p∧q的真假的几种情况总结为下表:
p 真 真 __假__ 假
q __真__ __假__
真 假
p∧q 真 假 假
_假___
• 归纳总结:判断“且”命题的真假时,第一判断所给两个命 题的真假,再利用“且”命题的真值表进行判定.
• (2)p∧q:矩形的对角线互相平分且相等.
• 由于命题p和q都是真命题,故命题p∧q是真 命题.
• (3)p∧q:x=1是方程x-1=0的根且是方程 x+1=0的根.
• 由于命题p是真命题,命题q是假命题,故命 题p∧q是假命题.
• [方法总结] (1)写“且”命题时,若两个命题 有公共的主语,写成“且”命题时,后一个命 题可省略主语,如例1(1).
• 分类讨论思想

已知c>0,设p:函数y=cx在R上
递减;q:不等式x+|x-2c|>1的解集为R,
如果“p或q”为真,且“p且q”为假,求c
的范围.
• [思路分析] 要求c的范围,可先由条件p、 q分别求出c的范围;然后利用“p或q”为真, 且“p且q”为假,确定c的范围.
[解析] p:函数 y=cx 在 R 上为减函数,所以 0<c<1.

高中数学第1章集合与常用逻辑用语1.1集合1.1.3集合的基本运算第1课时交集和并集学案含解析第一册

高中数学第1章集合与常用逻辑用语1.1集合1.1.3集合的基本运算第1课时交集和并集学案含解析第一册

1.1。

3 集合的基本运算第1课时交集和并集学习目标核心素养1.理解两个集合交集与并集的含义,会求两个简单集合的交集和并集.(重点、难点) 2.能使用维恩图、数轴表达集合的关系及运算,体会图示对理解抽象概念的作用.(难点)1.通过理解集合交集、并集的概念,提升数学抽象的素养.2.借助维恩图培养直观想象的素养.某班有学生20人,他们的学号分别是1,2,3,…,20,有a,b两本新书,已知学号是偶数的读过新书a,学号是3的倍数的读过新书b。

问题(1)同时读了a,b两本书的有哪些同学?(2)问至少读过一本书的有哪些同学?1.交集自然语言一般地,给定两个集合A,B,由既属于A又属于B的所有元素(即A和B的公共元素)组成的集合,称为A与B的交集,记作A∩B,读作“A交B”符号语言A∩B={x|x∈A,且x∈B}图形语言错误!错误!(3)A B,则A∩B=A错误!错误![拓展](1)对于“A∩B={x|x∈A,且x∈B}”,包含以下两层意思:①A∩B中的任一元素都是A与B的公共元素;②A与B 的公共元素都属于A∩B。

这就是文字定义中“所有"二字的含义,如A={1,2,3},B={2,3,4},则A∩B={2,3},而不是{2}或{3}.(2)任意两个集合并不是总有公共元素,当集合A与B没有公共元素时,不能说A与B没有交集,而是A∩B=。

(3)当A=B时,A∩B=A和A∩B=B同时成立.2.并集自然语言一般地,给定两个集合A,B,由这两个集合的所有元素组成的集合,称为A与B的并集,记作A∪B,读作“A并B”符号语言A∪B={x|x∈A,或x∈B}图形语言用维恩图表示有以下几种情况(阴影部分即为A与B 的并集):①A B,A∪B=B错误!错误!错误!错误!思考:(1)“x∈A或x∈B"包含哪几种情况?(2)集合A∪B的元素个数是否等于集合A与集合B的元素个数和?[提示](1)“x∈A或x∈B”这一条件包括下列三种情况:x∈A,但x B;x∈B,但x A;x∈A,且x∈B。

2020最新人教版高二数学选修2-1(B版)电子课本课件【全册】

2020最新人教版高二数学选修2-1(B版)电子课本课件【全册】
2020最新人教版高二数学选修2- 1(B版)电子课本课件【全册】
1.2 基本逻辑联结词 1.2.1 “且”与“或”
2020最新人教版高二数学选修2- 1(B版)电子课本课件【全册】
1.2.2 “非”(否定)
2020最新人教版高二数学选修2- 1(B版)电子课本课件【全册】
1.3 充分条件、必要条件与命
题的四种形式
1.3.1
推出与充分条件、必要条件
2020最新人教版高二数学选修2- 1(B版)电子课本课件【全册】
第一章 常用逻辑用语
2020最新人教版高二数学选修2- 1(B版)电子课本课件【全册】
10最新人教版高二数学选修2- 1(B版)电子课本课件【全册】
1.1.2 量词
2020最新人教版高二数学选修2 -1(B版)电子课本课件【全册】
目录
0002页 0083页 0163页 0188页 0217页 0254页 0277页 0293页 0323页 0365页 0394页 0458页 0508页 0548页 0586页 0676页 0705页
第一章 常用逻辑用语 1.1.2 量词 1.2.2 “非”(否定) 本章小结 第二章 圆锥曲线与方程 2.1.2 由曲线求它的方程、由方程研究曲线的性质 2.2.2 椭圆的几何性质 2.3.2 双曲线的几何性质 2.4.2 抛物线的几何性质 本章小结 第三章 空间向量与立体几何 3.1.2 空间向量的基本定理 3.1.4 空间向量的直角坐标运算 3.2.2 平面的法向量与平面的向量表示 3.2.4 二面角及其度量 本章小结 附录 部分中英文词汇对照表

2019_2020学年高中数学第1章常用逻辑用语1.2.2“非”(否定)学案新人教B版

2019_2020学年高中数学第1章常用逻辑用语1.2.2“非”(否定)学案新人教B版

1.2.2 “非”(否定)1.逻辑联结词“非”(1)命题的否定:一般地,对一个命题p加以否定,就得到一个新命题,记作綈p,读作“非p”或“p的否定”.(2)命题綈p的真假:若p是真命题,则綈p必是假命题;若p是假命题,则綈p必是真命题.思考1:观察下列两组命题,看它们之间有什么关系?逻辑联结词“非”的含义是什么?(1)p:5是25的算术平方根;q:5不是25的算术平方根.(2)p:y=tan x是偶函数;q:y=tan x不是偶函数.[提示]两组命题中,命题q都是命题p的否定.“非”与日常用语中的“非”含义一致,表示“否定”“不是”“问题的反面”等;也可以从集合的角度理解“非”:若命题p对应集合A,则綈p对应集合A在全集U中的补集∁U A.2.全称命题的否定[提示]不唯一,如“所有的菱形都是平行四边形”,它的否定是“并不是所有的菱形都是平行四边形”,也可以是“有些菱形不是平行四边形”.3.存在性命题的否定思考3:对省略量词的命题怎样否定?[提示]对于含有一个量词的命题,容易知道它是全称命题或存在性命题.一般地,省略了量词的命题是全称命题,可加上“所有的”或“对任意”,它的否定是存在性命题.反之,亦然.1.命题“平行线不相交”中( )A.没有使用任何一种逻辑联结词B.使用了逻辑联结词“非”C.使用了逻辑联结词“或”D.使用了逻辑联结词“且”B[“平行线不相交”表示平行线相交的否定,使用了逻辑联结词“非”,故选B.] 2.已知命题p:2+2=5,命题q:3>2,则下列判断正确的是( )A.“p或q”为假,“非q”为假B.“p或q”为真,“非q”为假C.“p且q”为假,“非p”为假D.“p且q”为真,“p或q”为假B[显然p假q真,故“p或q”为真,“p且q”为假,“非p”为真,“非q”为假,故选B.]3.已知p:∅⊆{0},q:{1}∈{1,2}.由他们构成的新命题“p∧q”“p∨q”“綈p”中,真命题有( )A.1个B.2个C.3个D.4个A[容易判断命题p:∅⊆{0}是真命题,命题q:{1}∈{1,2}是假命题,所以p∧q是假命题,p∨q真命题,綈p是假命题,故选A.]4.命题“若a<b,则2a<2b”的否定为________.[答案]若a<b,则2a≥2b(1)若x ,y 是奇数,则x +y 是偶数; (2)若xy =0,则x =0或y =0;(3)若一个数是质数,则这个数一定是奇数; (4)若两个角是对顶角,则这两个角相等.[解] (1)若x ,y 是奇数,则x +y 不是偶数,假命题. (2)若xy =0,则x ≠0且y ≠0,假命题.(3)若一个数是质数,则这个数不一定是奇数,真命题. (4)若两个角是对顶角,则这两个角不相等,假命题.(1)一些常用的正面叙述词语和它的否定词语的关系要熟悉,总结如下:命题p 为假,当命题綈p 为假时,命题p 为真.提醒:若命题p 是真命题,则綈p 是假命题;若命题p 是假命题,则綈p 是真命题.1.写出下列命题的否定,并判断真假. (1)p :y =sin x 是周期函数; (2)p :3<2;(3)p :空集是集合A 的子集; (4)一元二次方程至多有两个解.[解] (1)綈p :y =sin x 不是周期函数.命题p 是真命题,綈p 是假命题. (2)綈p :3≥2.命题p 是假命题,綈p 是真命题.(3)綈p :空集不是集合A 的子集.命题p 是真命题,綈p 是假命题. (4)綈p :一元二次方程至少有三个解.命题p 是真命题,綈p 是假命题.不等式ax 2-ax +1>0的解集为R ,若“p ∨q ”与“綈q ”同时为真命题,求实数a 的取值范围.[解] 命题p :方程x 2+2ax +1=0有两个大于-1的实数根,等价于 ⎩⎪⎨⎪⎧Δ=4a 2-4≥0,x 1+x 2>-2,(x 1+1)(x 2+1)>0,⇔⎩⎪⎨⎪⎧a 2-1≥0,-2a >-2,2-2a >0,解得a ≤-1.命题q :关于x 的不等式ax2-ax +1>0的解集为R ,等价于a =0或⎩⎪⎨⎪⎧a >0,Δ<0.由于⎩⎪⎨⎪⎧a >0Δ<0⇔⎩⎪⎨⎪⎧a >0,a 2-4a <0,解得0<a <4,所以0≤a <4.因为“p ∨q ”与“綈q ”同时为真命题,即p 真且q 假,所以⎩⎪⎨⎪⎧a ≤-1,a <0或a ≥4,解得a ≤-1.故实数a 的取值范围是(-∞,-1].由真值表可判断p ∨q 、p ∧q 、綈p 命题的真假,反之,由p ∨q ,p ∧q ,綈p 命题的真假也可判断p 、q 的真假情况.一般求满足p 假成立的参数范围,应先求p 真成立的参数范围,再求其补集.2.已知命题p :|m +1|≤2成立.命题q :方程x 2-2mx +1=0有实数根.若綈p 为假命题,p ∧q 为假命题,求实数m 的取值范围.[解] |m +1|≤2⇒-2≤m +1≤2⇒-3≤m ≤1, 即命题p :-3≤m ≤1.方程x 2-2mx +1=0有实数根⇒Δ=(-2m )2-4≥0⇒m ≥1或m ≤-1, 即命题q :m ≥1或m ≤-1.因为綈p 为假命题,p ∧q 为假命题,则p 为真命题,所以q 为假命题,綈q :-1<m <1.由⎩⎪⎨⎪⎧-3≤m ≤1,-1<m <1,⇒-1<m <1.即m 的取值范围是(-1,1).1.全称命题和存在性命题有什么关系?[提示](1)结构关系的认识①全称命题中的全称量词表明给定范围内所有对象都具备某一性质,无一例外.②存在性命题中的存在量词却表明给定范围内的对象有例外.③两者正好构成了相反意义的表述,所以全称命题的否定是存在性命题,存在性命题的否定是全称命题.(2)真假性的认识全称命题的否定与全称命题的真假性相反;存在性命题的否定与存在性命题的真假性相反.2.全称命题与存在性命题的否定的关键是什么?[提示](1)全称命题的否定全称命题的否定是一个存在性命题,给出全称命题的否定时既要否定全称量词,又要否定性质,所以找出全称量词,明确命题所提供的性质是对全称命题否定的关键.(2)存在性命题的否定存在性命题的否定是一个全称命题,给出存在性命题的否定时既要否定存在量词,又要否定性质,所以找出存在量词,明确命题所提供的性质是对存在性命题否定的关键.【例3】写出下列命题的否定,并判断其否定的真假.(1)所有自然数的平方是正数;(2)任何实数x都是方程5x-12=0的根;(3)对任意实数x,x2+1≥0;(4)某些平行四边形是菱形;(5)∃x∈R,5x2+1<0;(6)∃x,y∈Z,使得2x+y=3.[思路探究] (1)全称命题的否定是存在性命题,否定全称命题时可分两步:第一步将全称量词“∀”改为存在量词“∃”,第二步将结论否定.(2)存在性命题的否定是全称命题,否定存在性命题时可分两步:第一步将存在量词“∃”改为全称量词“∀”,第二步将结论否定.[解] (1)命题的否定是“有些自然数的平方不是正数”.因为0是自然数,所以为真命题.(2)命题的否定是“存在实数x不是方程5x-12=0的根”.真命题.(3)命题的否定是“存在实数x,使得x2+1<0”.假命题.(4)命题的否定是“没有一个平行四边形是菱形”,即“每一个平行四边形都不是菱形”.由于菱形是平行四边形,因此命题的否定是假命题.(5)命题的否定是“不存在x∈R,使5x2+1<0”,即“∀x∈R,5x2+1≥0”.5x2+1≥1≥0,因此命题的否定是真命题.(6)命题的否定是“∀x,y∈Z,2x+y≠3”.当x=0,y=3时,2x+y=3,因此命题的否定是假命题.1.(变换条件)本例(4)改为“某些平行四边形是正方形”,写出该命题的否定并判断真假.[解] 命题的否定是“没有一个平行四边形是正方形”,即“每一个平行四边形都不是正方形”,假命题.2.(变换条件)本例(4)改为“某些菱形是平行四边形”,写出该命题的否定并判断真假.[解] 命题的否定是“没有一个菱形是平行四边形”,即“每一个菱形都不是平行四边形”,由于菱形是平行四边形,所以该命题为假命题.(1)否定全称命题时,首先把全称量词改为存在量词,再对性质进行否定.否定存在性命题时,首先把存在量词换为全称量词,再对性质进行否定.(2)全称命题和存在性命题的真假性与其否定的真假性相反.提醒:全称命题的否定是存在性命题,对省略全称量词的全称命题可补上量词后进行否定.1.思考辨析(1)全称命题与存在性命题的否定只需否定其结论,无需改写量词. ( )(2)“∀x∈R,x2-2x+1≥0”的否定是“∃x∈R,x2-2x+1<0”.( )(3)“有些实数的绝对值是正数”的否定是“所有实数的绝对值都不是正数”.[提示](1)×先更换量词(全称量词换为存在量词,存在量词改为全称量词),再将结论否定.(2)√(3)√2.已知U=R,A⊆U,B⊆U,命题p:2∈A∪B,则綈p是( )A.2∉AB.2∈∁U BC.2∈A∩BD.2∈(∁U A)∩(∁U B)D[綈p:2∉A∪B,即2∈(∁U A)∩(∁U B),故选D.]3.在一次跳高比赛前,甲、乙两名运动员各试跳了一次,设命题p表示“甲的试跳成绩超过2米”,命题q表示“乙的试跳成绩超过2米”,则命题(綈p)∨(綈q)表示( ) A.甲、乙恰有一人的试跳成绩没有超过2米B.甲、乙两人的试跳成绩都没有超过2米C.甲、乙至少有一人的试跳成绩超过2米D.甲、乙至少有一人的试跳成绩没有超过2米D[綈p表示“甲的试跳成绩不超过2米”,綈q表示“乙的试跳成绩不超过2米”,故(綈p)∨(綈q)表示“甲、乙至少有一人的试跳成绩没有超过2米”.]4.命题p:若m2+n2=0,则实数m,n全为零,则綈p:________,为________命题.(填“真”或“假”)若m2+n2=0,则m,n不全为零假[綈p:若m2+n2=0,则m,n不全为零,为假命题.]。

高中数学人教B版选修2-1第一章 1.1.2 量词(共22张PPT)

高中数学人教B版选修2-1第一章 1.1.2 量词(共22张PPT)

小试牛刀:判断下列语句是否为命题?
①方程 2x=5只有一个解; ②20000是个大数 ③非典型肺炎是怎样传染的? ④好人一生平安!
命题:能判断真假的语句
• 说明: • 1 、一般的,疑问句、祈使句、感叹句都不是命题; • 2、随着科学技术的发展与时间的推移,总能确定 真假的猜想也是命题 • 3、一个命题可以用一个小写英文字母表示,如 p,q,r
思考探究二:
如何判断全称命题和存在性命题的真假?
典例剖析
例 2:请同学们判断下列命题的真假,并说明理由:
(1) x R, x2 2 0 ;
(2) x N, x4 1;
(3) x Z, x3 1;
(4) x Q, x2 3 ;
小组活动:
根据所学知识,结合生活实际,每名同学 请举出:全称命题与存在性命题的各一例,并 小组内展示交流。
用符号 表示
存在性命题:含有存在量词的命题
符号语言: x M , qx
探究一
量词 短语
符号 命题是
全称命题
x M , p(x)
存在量词
存在,有一个,有些,至 少有一个
存在性命题
x M , q(x)
典例剖析
例 1:判断下列命题是全称命题还是存在性命题,并用数学符号表示。 (1)对所有整数 x,x2-1=0; (2)存在实数 x,5x-1 是整数; (3)所有三角形的内角和是 1800、
用符号 表示
• 全称命题:含有全称量词的命题
符号语言: x M , px
练习:用符号表示下列命题
1、任何一个实数除以1,仍等于这个实数。 2、所有函数都是周期函数 3、每一个向量都有方向
思考探究:
①有一些整数x, ②对 整数x,

高中数学第一章常用逻辑用语1.2.2“非”(否定)课件新人教B版选修21

高中数学第一章常用逻辑用语1.2.2“非”(否定)课件新人教B版选修21
第十七页,共36页。
【解】 (1)其否定为:存在一个素数不是奇数,因为2是素数,而不是奇 数,所以其否定是真命题.
(2)其否定为:存在一个矩形不是平行四边形,假命题. (3)其否定为:∃a,b∈R,a2+b2≤0,真命题. (4)其否定为:存在被5整除的整数,末位数字不是0,因为15能被5整除,其 末位数字为5, 因此其否定是真命题.
第二页,共36页。
[基础·初探] 教材整理 “非” 阅读教材P14~P16内容,完成下列问题. 1.概念 一般地,对命题p加以否定,就得到一个新的命题,记作 ¬p ,读作“非 p”或“p的否定” . 由“非”的含义,可以用“非”来定义集合A在全集U中的补集∁UA={x∈U| 綈(x∈A)}={x∈U|x∉A}.
第二十七页,共36页。
[再练一题] 4.命题“对任意x∈R,|x-2|+|x-4|>3”的否定是____________. 【解析】 命题为全称命题,其否定为存在性命题,“>”的否定为“≤”, 所以应为存在x∈R,|x-2|+|x-4|≤3. 【答案】 存在x∈R,|x-2|+|x-4|≤3
第二十八页,共36页。
一个也 没有
至少有 两个
某些
至少有 n+1个

2.当命题p真假不易判断时,可以转化为去判断命题綈p的真假,当命题綈p为
真时,命题p为假,当命题綈p为假时,命题p为真.
第十一页,共36页。
[再练一题] 1.写出下列命题的否定,并判断真假. (1)p:y=sin x是周期函数; (2)p:3<2; (3)p:空集是集合A的子集; (4)一元二次方程至多有两个解.
第十二页,共36页。
【导学号:15460009】
【解】 (1) ¬p:y=sin x 不是周期函数.命题 p 是真命题,¬p 是假命题; (2) ¬p:3≥2.命题 p 是假命题,¬p 是真命题; (3) ¬p:空集不是集合 A 的子集,命题 p 是真命题,¬p 是假命题. (4) ¬p:一元二次方程至少有三个解,命题 p 是真命题,¬p 是假命题.

新教材高中数学第一章集合与常用逻辑用语1.1.1集合及其表示方法教学设计2新人教B版必修第一册

新教材高中数学第一章集合与常用逻辑用语1.1.1集合及其表示方法教学设计2新人教B版必修第一册

1.1.1集合及其表示方法集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础.课本从学生熟悉的集合(自然数的集合等)出发,结合实例给出元素、集合的含义,体现逻辑思考的方法,如抽象、概括等.【教学目标】在高中数学课程中,集合是刻画一类事物的语言和工具,本节可以帮助学生使用集合的语言简洁、准确地表述数学的研究对象,学会用数学的语言表达和交流,积累数学抽象的经验。

【数学抽象】了解集合、元素的概念,体会集合中元素的三个特征;【数据分析】理解元素与集合的"属于"和"不属于"关系;【数学运算】掌握常用数集及其记法;【逻辑推理】掌握集合的表示方法;【教学重点】1、掌握集合、元素的基本概念2、学会用描述法表示集合3、用区间表示集合【教学难点】1、集合中元素的三个特征2、空集的理解3、记住几种常见的数集符号由于本小节的新概念、新符号较多,建议教学时教师给出问题,让学生读后回答问题,再由教师给出评价.这样做的目的是培养学生主动学习的习惯,提高阅读与理解、合作与交流的能力.在处理集合问题时,根据需要,及时提示学生运用集合语言进行表述.【新课导入】在生活与学习中,为了方便,我们经常要对事物进行分类。

例如,图书馆中的书是按照所属学科等分类摆放的,作文学习可按照文体如记叙文、议论文等进行,整数可以分成正整数、负整数和零这三类?你能说出数学中其他分类实例吗?试着分析为什么要进行分类.【新课讲授】一、集合的概念在数学中,我们经常用“集合”来对所研究的对象进行分类。

把一些能够确定的、不同的对象汇集在一起,就说由这些对象组成一个集合(有时简称为集),组成集合的每个对象都是这个集合的元素。

集合通常用英文大写字母A,B,C,...表示,集合的元素通常用英文小写字母a,b,c,...表示。

如果a是集合A的元素,就记作a∈A,读作“a属于A”;如果a不是集合A的元素,就记作a∉A,读作“a不属于A”.【尝试与发现】你能举出几个用集合表达的、与数学有关的例子吗?指出例子中集合的元素是什么.【典型例题】(1)如果A是由所有小于10的自然数组成的集合,则0∈A,0.5∉A;(2)如果B是由方程x²=1的所有解组成的集合,则-1∈B,0∉B,1∈B(3)如果C是平面上与定点O的距离等于定长r(r>0)的点组成的集合,则对于以O为圆心、r为半径的圆O上的每个点P来说,都有P∈C.【思考与讨论】现在我们来考虑方程x+1=x+2的所有解组成的集合,由于该方程无解,因此这个集合不含有任何元素。

高中数学第一章集合与常用逻辑用语1.2.2全称量词命题与存在量词命题的否定教学设计(1)新人教B版

高中数学第一章集合与常用逻辑用语1.2.2全称量词命题与存在量词命题的否定教学设计(1)新人教B版

1.2.2 全称量词命题与存在量词命题的否定 教学设计本节课是在前面已经学习了全称量词与存在量词的基础上,对命题的否定的再认识,同时学好本节课也使学生对否命题与命题的否定能够区分开。

重点:全称量词命题与存在量词命题的否定以及真假的判断. 难点:正确的对全称量词命题与存在量词命题进行否定.一、复习回顾 1.命题1)可供真假判断的陈述语句称为命题. 2)判断为真的语句称为真命题. 3)判断为假的语句称为假命题.2.全称量词:“任意”“所有”“每一个”在陈述中表示所述事物的全体.3.存在量词:“存在”“有”“至少有一个”在陈述中表示所述事物的个体或部分。

二、新课讲授 1.命题的否定 (1)情境与问题:“否定”是我们日常生活中经常使用的一个词.2009年11月23日《人民日报》的《创新,从敢于否定开始》一文中有这样一段话:“培养一流创新人才,敢于否定的精神非常重要.一旦下决心进行研究,首先就要敢于否定别人的成果,并想一想:“前人的成果有哪些是不对的,有什么方面可以改善,有什么地方可以加强.”结合上述这段话,谈谈你对“否定”一词的认识,并由此猜想“命题的否定”是什么意思.【设计意图】通过生活中的大家熟悉的情境,引出新课----命题的否定,激发学生学习数学的兴趣。

(2)尝试与发现你能说出命题:"3-3"s 的相反数是和:"3-3"t 的相反数不是这两个命题之间的关系吗?它们的真假性如何?【师生活动】老师组织学生分组讨论,派代表表述本组结论。

由此可知:命题s 是对命题t 的否定,命题t 也是对命题s 的否定。

命题s 为真命题,而命题t 为假命题 。

从而得到命题的否定的定义。

命题的否定:一般地,对命题p 加以否定,就得到一个新的命题,记作:“p ⌝”,读作:“非p ”或“p 的否定”。

(3)思考:命题p 与p ⌝真假有什么关系呢?(4)课堂训练 教材P29 练习A 1解:(1)p p ⌝真,假 (2),q q ⌝真假 2.全称量词命题与存在量词命题的否定 (1)课堂探究下面我们来探究如何对全称量词命题与存在量词命题的否定进行否定.根据要求,认真思考回答问题: 1)命题:s2)命题:r3)命题:q(2)尝试与发现记r :“每一个素数都是奇数。

新教材高中数学第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法学案新人教B版必修第一册

新教材高中数学第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法学案新人教B版必修第一册

新教材高中数学第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法学案新人教B版必修第一册新教材高中数学第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法学案新人教B 版必修第一册(教师独具内容)课程标准:1.通过实例,了解集合的含义,理解元素与集合的属于关系.2.针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.3.在具体情境中,了解空集的含义.4.能正确使用区间表示一些数集.教学重点:1.集合概念的正确理解.2.元素的三性(确定性、互异性、无序性).3.元素与集合关系的判定.4.集合常用的两种表示方法(列举法、描述法).5.区间的概念.教学难点:1.对元素的确定性的理解.2.描述法表示集合.【情境导学】(教师独具内容)一位渔民非常喜欢数学,但他怎么也想不明白集合的意义.于是他请教一位数学家:“先生,您能告诉我,集合是什么吗?”由于集合是不定义的概念,数学家很难向那位渔民讲清楚.直到有一天,数学家来到渔民的船上,看到渔民撒下渔网,然后轻轻一拉,许多鱼虾在网中跳动.数学家非常激动,高兴地对渔民说:“这就是集合!”你能理解这位数学家的话吗?【知识导学】知识点一集合与元素的定义(1)集合:把一些能够确定的、不同的对象汇集在一起,就说由这些对象组成一个集合(有时简称为集).(2)元素:组成集合的每个对象都是这个集合的元素.(3)表示:通常用英文大写字母A ,B ,C ,…表示集合,用英文小写字母a ,b ,c ,…表示集合中的元素.知识点二元素与集合的关系(1)“属于”:如果a 是集合A 的元素,就记作□01a ∈A ,读作“a 属于A ”.(2)“不属于”:如果a 不是集合A 的元素,就记作□02a ?A ,读作“a 不属于A ”.知识点三空集一般地,我们把不含任何元素的集合称为□01空集(empty set),记作□02?. 知识点四集合中元素的三个特性 (1)确定性; (2)互异性;(3)无序性.知识点五集合的分类(1)有限集;(2)无限集.知识点六几个常用数集的固定字母表示知识点七集合的表示方法03描述法、□04“区间”(以及后面将集合常见的表示方法有:□01自然语言、□02列举法、□要学习的维恩图法和数轴表示法等直观表示方法).(1)列举法:把集合中的元素□05一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集合的方法称为列举法.(2)描述法:如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有这个性质,则性质p(x)称为集合A的一个□06特征性质.此时,集合A可以用它的特征性质p(x)表示为{x|p(x)}.这种表示集合的方法,称为特征性质描述法,简称为描述法.知识点八区间01(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负实数集R可以用区间表示为□无穷大”,“+∞”读作“正无穷大”.我们可以把满足x≥a,x>a,x≤b,x<b的实数x< bdsfid="137" p=""></b的实数x<> 02[a,+∞),(a,+∞),(-∞,b],(-∞,b).的集合分别表示为□可以看出,区间实质上是一类特殊数集(即由数轴某一段上所有点对应的实数组成的集合)的符号表示;例如,大于1且小于10的所有自然数组成的集合就不能用区间(1,10)表示.【新知拓展】1.元素和集合关系的判断(1)直接法:如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否出现即可.此时应先明确集合是由哪些元素构成的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.此时应先明确已知集合的元素具有什么特征,即该集合中元素要满足哪些条件.2.集合的三个特性(1)描述性:“集合”是一个原始的不加定义的概念,它同平面几何中的“点”“线”“面”等概念一样都只是描述性的说明.(2)整体性:集合是一个整体,暗含“所有”“全部”“全体”的含义,因此一些对象一旦组成了集合,这个集合就是这些对象的总体.(3)广泛性:组成集合的对象可以是数、点、图形、多项式、方程,也可以是人或物,甚至一个集合也可以是某集合的一个元素.3.使用列举法表示集合时需注意的几点(1)元素之间用“,”隔开;(2)元素不重复,满足元素的互异性;(3)元素无顺序,满足元素的无序性;(4)对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律表述清楚后才能用省略号.1.判一判(正确的打“√”,错误的打“×”)(1)某校高一年级16岁以下的学生能构成集合.( )(2)已知A是一个确定的集合,a是任一元素,要么a∈A,要么a?A,二者必居其一且只居其一.( )(3)对于数集A={1,2,x2},若x∈A,则x=0.( )(4)对于区间[2a,a+1],必有a<0.( )(5)集合{y|y=x2,x∈R}与{s|s=t2,t∈R}的元素完全相同.( )答案(1)√(2)√(3)×(4)×(5)√2.做一做(1)下列所给的对象能组成集合的是( )A.“金砖国家”成员国B.接近1的数C.著名的科学家D.漂亮的鲜花(2)用适当的符号(∈,?)填空.0________?,0________{0},0________N,-2________N *,13________Z ,2________Q ,π________R .(3)不等式2x -1≥3的解集可以用区间表示为________.答案 (1)A (2)? ∈ ∈ ? ? ? ∈ (3)[2,+∞)题型一集合概念的理解例1 下列所给的对象能构成集合的是________.①所有的正三角形;②高一数学必修第一册课本上的所有难题;③比较接近1的正数全体;④某校高一年级的全体女生;⑤平面直角坐标系内到原点的距离等于1的点的集合;⑥参加2019年世乒赛的年轻运动员;⑦a ,b ,a ,c .[解析] ①能构成集合.其中的元素需满足三条边相等.②不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成集合.③不能构成集合.因“比较接近1”的标准不明确,所以元素不确定,故不能构成集合.④能构成集合.其中的元素是“高一年级的全体女生”.⑤能构成集合.其中的元素是“到坐标原点的距离等于1的点”.⑥不能构成集合.因为“年轻”的标准是模糊的,不确定的,故不能构成集合.⑦不能构成集合.因为两个a 是重复的,不符合集合元素的互异性. [答案] ①④⑤ 金版点睛判断一组对象能否构成集合的方法(1)关键:看是否给出一个明确的标准,使得对于任何一个对象能按此标准确定它是不是给定集合的元素.(2)切入点:解答此类问题的切入点是集合元素的特性,即确定性、互异性和无序性.[跟踪训练1] 判断下列说法是否正确?并说明理由.(1)大于3的所有自然数组成一个集合; (2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)出席2019年全国两会的所有参会代表组成一个集合.解(1)中的对象是确定的,互异的,所以可构成一个集合,故正确.(2)中的“高科技”标准是不确定的,所以不能构成集合,故错误. (3)中由于0.5=12,不符合集合中元素的互异性,故错误.(4)中的对象是确定的,所以可以构成一个集合,故正确. 题型二元素与集合关系的判断与应用例2 (1)下列所给关系正确的个数是( ) ①π∈R ;②3?Q ;③0∈N *;④|-4|?N *. A .1B .2C .3D .4(2)集合A 中的元素x 满足66-x ∈N ,x ∈N ,则集合A 中的元素为________.[解析] (1)∵π是实数,3是无理数,∴①②正确;∵N *表示正整数集,而0不是正整数,故③不正确;又|-4|=4是正整数,故④不正确,∴正确的共有2个.(2)∵66-x∈N ,x ∈N ,∴66-x ≥0,x ≥0,即?6-x >0,x ≥0,∴0≤x <6,∴x =0,1,2,3,4,5. 当x 分别为0,3,4,5时,66-x相应的值分别为1,2,3,6,也是自然数,故填0,3,4,5. [答案] (1)B (2)0,3,4,5 金版点睛1.常用数集之间的关系2.确定集合中元素的三个注意点1判断集合中元素的个数时,注意集合中的元素必须满足互异性. 2集合中的元素各不相同,也就是说集合中的元素一定要满足互异性. 3 若集合中的元素含有参数,要抓住集合中元素的互异性,采用分类讨论的方法进行研究.[跟踪训练2] (1)用符号“∈”或“?”填空.①0________N *;②1________N ;③1.5________Z ;④22________Q ;⑤4+5________R ;⑥若x 2+1=0,则x ________R . (2)设x ∈R ,集合A 中含有三个元素3,x ,x 2-2x . ①求实数x 应满足的条件;②若-2∈A ,求实数x 的值.答案(1)①? ②∈ ③? ④? ⑤∈ ⑥? (2)见解析解析(1)①∵0不是正整数,∴0?N *. ②∵1是自然数,∴1∈N .③∵1.5是小数,不是整数,∴1.5?Z . ④∵22是无理数,∴22?Q .⑤∵4+5是无理数,无理数是实数,∴4+5∈R . ⑥∵满足x 2+1=0的实数不存在,∴x 为非实数,∴x ?R .(2)①根据集合元素的互异性,可知x ≠3,x ≠x 2-2x ,x 2-2x ≠3,即x ≠0,且x ≠3且x ≠-1.②∵x 2-2x =(x -1)2-1≥-1,且-2∈A ,∴x =-2. 题型三集合中元素的特性例3 已知集合A 有三个元素:a -3,2a -1,a 2+1,集合B 也有三个元素:0,1,x . (1)若-3∈A ,求a 的值;(2)若x 2∈B ,求实数x 的值.[解] (1)由-3∈A 且a 2+1≥1,可知a -3=-3或2a -1=-3,当a -3=-3时,a =0;当2a -1=-3时,a =-1. 经检验,0与-1都符合要求.得a =0或-1.(2)当x =0,1,-1时,都有x 2∈B ,但考虑到集合元素的互异性,x ≠0,x ≠1,故x =-1. 金版点睛利用集合元素互异性求参数问题(1)根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对集合中元素进行检验.(也是本讲易错问题)(2)利用集合中元素的特性解题时,要注意分类讨论思想的应用.[跟踪训练3] 已知集合A 包含三个元素:a -2,2a 2+5a,12,且-3∈A ,求a 的值.解因为A 包含三个元素a -2,2a 2 +5a,12,且-3∈A ,所以a -2=-3或2a 2+5a =-3,解得a =-1或a =-32.当a =-1时,A 中三个元素为:-3,-3,12,不符合集合中元素的互异性,舍去.当a =-32时,A 中三个元素为:-72,-3,12,满足题意.故a =-32.题型四集合的分类例4 下列各组对象能否构成集合?若能,请指出它们是有限集、无限集,还是空集. (1)非负奇数;(2)小于18的既是正奇数又是质数的数;(3)在平面直角坐标系中所有第三象限的点;(4)在实数范围内方程(x 2-1)(x 2+2x +1)=0的解集;(5)在实数范围内方程组?x 2-x +1=0,x +y =1的解构成的集合.[解] (1)能构成集合,是无限集.(2)小于18的质数是2,3,5,7,11,13,17.只有2是偶数,其余的都是正奇数,所以能构成集合,是有限集.(3)第三象限的点的横坐标和纵坐标都小于0,能构成集合,是无限集.(4)能构成集合,注意集合中元素的互异性,集合中的元素是-1,1,是有限集. (5)由x 2-x +1=0的判别式Δ=-3<0,方程无实根,由此可知方程组x 2-x +1=0,x +y =1无解,能构成集合,是空集.金版点睛集合的分类方法判断集合是有限集,还是无限集,关键在于弄清集合中元素的构成,从而确定集合中元素的个数.[跟踪训练4] 指出下列各组对象是否能组成集合,若能组成集合,则指出集合是有限集、无限集,还是空集.(1)平方等于1的数;(2)所有的矩形;(3)平面直角坐标系中第二象限的点;(4)被3除余数是1的正数;(5)平方后等于-3的实数;(6)15的正约数.解 (1)中对象能组成集合,它是一个有限集;(2)中对象能组成集合,它是一个无限集;(3)中对象能组成集合,它是一个无限集;(4)中对象能组成集合,它是一个无限集;(5)中对象能组成集合,它是一个空集;(6)中对象能组成集合,它是一个有限集.题型五用列举法表示集合例5 用列举法表示下列集合:(1)方程x 2-4x +2=0的所有实数根组成的集合;(2)不大于10的质数集;(3)一次函数y =x 与y =2x -1图像的交点组成的集合.[解] (1)方程x 2-4x +2=0的实数根为2,故其实数根组成的集合为{2}.(2)不大于10的质数有2,3,5,7,故不大于10的质数集为{2,3,5,7}.(3)由?y =x ,y =2x -1,解得?x =1,y =1.故一次函数y =x 与y =2x -1图像的交点组成的集合为{(1,1)}.金版点睛用列举法表示集合应注意的三点(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素. (2)集合中的元素一定要写全,但不能重复.(3)若集合中的元素是点,则应将有序实数对用小括号括起来表示一个元素.[跟踪训练5] 用列举法表示下列集合:(1)不等式组?2x -6>0,1+2x ≥3x -5的整数解组成的集合;(2)式子|a |a +|b |b(a ≠0,b ≠0)的所有值组成的集合.解 (1)由?2x -6>0,1+2x ≥3x -5得3<="">又x 为整数,故x 的取值为4,5,6,组成的集合为{4,5,6}.(2)∵a ≠0,b ≠0,∴a 与b 可能同号也可能异号,则:①当a >0,b >0时,|a |a +|b |②当a <0,b <0时,|a |a+|b |b=-2;③当a >0,b <0或a <0,b >0时,|a |a +|b |b=0.故所有值组成的集合为{-2,0,2}. 题型六用描述法表示集合例6 用描述法表示下列集合:(1)坐标平面内,不在第一、三象限的点的集合; (2)所有被3除余1的整数的集合; (3)使y =1x 2+x -6有意义的实数x 的集合.[解] (1)因为不在第一、三象限的点分布在第二、四象限或坐标轴上,所以坐标平面内,不在第一、三象限的点的集合为{(x ,y )|xy ≤0,x ∈R ,y ∈R }.(2)因为被3除余1的整数可表示为3n +1,n ∈Z ,所以所有被3除余1的整数的集合为{x |x =3n +1,n ∈Z }.(3)要使y =1x 2+x -6有意义,则x 2+x -6≠0.由x 2+x -6=0,得x 1=2,x 2=-3. 所以使y =1x 2有意义的实数x 的集合为{x |x ≠2且x ≠-3,x ∈R }.金版点睛用描述法表示集合的注意点(1)用描述法表示集合,首先应弄清集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序数对来表示.(2)用描述法表示集合时,若描述部分出现元素记号以外的字母,要对新字母说明其含义或取值范围.(3)多层描述时,应当准确使用“且”和“或”,所有描述的内容都要写在集合内.[跟踪训练6] 试用描述法表示下列集合:(1)方程x 2-x -2=0的解集;(2)大于-1且小于7的所有整数组成的集合.解 (1)方程x 2-x -2=0的解可以用x 表示,它满足的条件是x 2-x -2=0,因此,方程的解集用描述法表示为{x ∈R |x 2-x -2=0}.(2)大于-1且小于7的整数可以用x 表示,它满足的条件是x ∈Z ,且-1<7,<="" bdsfid="371" p=""> 因此,该集合用描述法表示为{x ∈Z |-1<="" 题型七="">例7 集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A .[解] ①当k =0时,原方程为16-8x =0,∴x =2,此时A ={2},符合题意.②当k ≠0时,由集合A 中只有一个元素,∴方程kx 2-8x +16=0有两个相等实根.即Δ=64-64k =0,即k =1,从而x 1=x 2=4,∴集合A ={4}.综上所述,实数k 的值为0或1.当k =0时,A ={2};当k =1时,A ={4}.[条件探究] 把本例条件“只有一个元素”改为“有两个元素”,求实数k 取值范围的集合.解由题意可知方程kx 2-8x +16=0有两个不等的实根.∴?k ≠0,Δ=64-64k >0,解得k <1且k ≠0.∴k 的取值范围的集合为{k |k <1且k ≠0}.金版点睛分类讨论思想在集合中的应用(1)①本题在求解过程中,常因忽略讨论k 是否为0而漏解.②由kx 2-8x +16=0是否为一元二次方程而分k =0和k ≠0两种情况,注意做到不重不漏.(2)解答与集合描述法有关的问题时,明确集合中的代表元素及其共同特征是解题的切入点.[跟踪训练7] (1)设集合B =?x ∈N62+x∈N .①试判断元素1,2与集合B 的关系;②用列举法表示集合B .(2)已知集合A ={x |x 2-ax +b =0},若A ={2,3},求a ,b 的值.解(1)①当x =1时,62+1=2∈N .当x =2时,62+2=32?N .所以1∈B,2?B .②∵62+x ∈N ,x ∈N ,∴2+x 只能取2,3,6,∴x 只能取0,1,4.∴B ={0,1,4}.(2)由A ={2,3}知,方程x 2-ax +b =0的两根为2,3,由根与系数的关系,得2+3=a ,2×3=b ,因此a =5,b =6.题型八集合中的新定义问题例8 已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( ) A .3B .6C .8D .9[解析] 根据已知条件,列表如下:由上表可知,B 中的元素有9个,故选D. [答案] D 金版点睛本例借助表格语言,运用列举法求解.表格语言是常用的数学语言,表达问题清晰,明了;列举法是分析问题的重要的数学方法,通过“列举”直接解决问题或发现问题的规律,此方法通常配合图表含树形图使用.[跟踪训练8]定义A*B={z|z=xy,x∈A,y∈B},设A={1,2},B ={0,2},则集合A*B中的所有元素之和为( )A.0 B.2C.3 D.6答案 D解析根据已知条件,列表如下:根据集合中元素的互异性,由上表可知A*B={0,2,4},故集合A*B 中所有元素之和为0+2+4=6,故选D.1.下列所给的对象不能组成集合的是( )A.我国古代的四大发明B.二元一次方程x+y=1的解C.我班年龄较小的同学D.平面内到定点距离等于定长的点答案 C解析C项中“年龄较小的同学”的标准不明确,不符合确定性.故选C.2.已知集合A含有三个元素2,4,6,且当a∈A时,有6-a∈A,则a为( )A.2 B.2或4C.4 D.0答案 B解析集合A中含有三个元素2,4,6,且当a∈A时,有6-a∈A.当a=2∈A时,6-a =4∈A,∴a=2符合题意;当a=4∈A时,6-a =2∈A,∴a=4符合题意;当a=6∈A时,6-a=0?A,综上所述,a=2或4.故选B.3.由实数-a,a,|a|,a2所组成的集合最多含有的元素个数是( ) A.1 B.2C.3 D.4答案 B解析对a进行分类讨论:①当a=0时,四个数都为0,只含有一个元素;②当a≠0时,含有两个元素a,-a,所以集合中最多含有2个元素.故选B.4.用适当符号(∈,?)填空.(1)(1,3)________{(x,y)|y=2x+1};(2)2________{m|m=2(n-1),n∈Z}.答案(1)∈(2)∈解析(1)当x=1时,y=2×1+1=3,故(1,3)∈{(x,y)|y=2x+1}.(2)当n=2∈Z时,m=2×(2-1)=2,故2∈{m|m=2(n-1),n∈Z}.5.设a∈R,关于x的方程(x-1)(x-a)=0的解集为A,试分别用描述法和列举法表示集合A.解A={x|(x-1)(x-a)=0},当a=1时,A={1};当a≠1时,A ={1,a}.。

高中数学 第一章 常用逻辑用语 1.2 基本逻辑联结词 1.2.2 “非”(否定)课件 新人教B版

高中数学 第一章 常用逻辑用语 1.2 基本逻辑联结词 1.2.2 “非”(否定)课件 新人教B版

1.命题“2 不是质数”的构成形式是( ) A.p∧q B.p∨q C.﹁p D.以上答案都不对 答案:C
2.若 p 是真命题,q 是假命题,则( ) A.p∧q 是真命题 B.p∨q 是假命题 C.﹁p 是真命题 D.﹁q 是真命题 答案:D
3.命题“∃x∈R,f(x)<0”的否定是( ) A.∃x∉R,f(x)≥0 B.∀x∉R,f(x)≥0 C.∀x∈R,f(x)≥0 D.∀x∈R,f(x)<0 答案:C 4.命题“对任意实数 x,都有 x2-2x+2>0”的否定为 __________________. 答案:存在实数 x,使得 x2-2x+2≤0
复习课件
高中数学 第一章 常用逻辑用语 1.2 基本逻辑联结词 1.2.2 “非”(否定)课 件 新人教B版选修1-1
第一章 常用逻辑用语
1.2.2 “非”(否定)
第一章 常用逻辑用语
1.了解逻辑联结词“非”的含义. 2.理解“非” 与集合中的“补集”的关系. 3.掌握对含一个量词的命题 进行否定.
解决此类问题要依据命题的否定形式进行否定.注意常用 词语的否定词语不能写错.
写出下列命题的否定: (1)对任意的 x∈R,x3+x2+1≤0; (2)p:2 和 4 都是偶数; (3)q:有些自然数的平方是正数. 解:(1)否定为:∃x∈R,x3+x2+1>0; (2)﹁p:2 和 4 不都是偶数; (3)﹁q:任意自然数的平方都不是正数.
1.“非”的含义 逻辑联结词“非”(也称为“_否__定__”)的意义是由日常语言 中 的 “ 不 是 ”“ 全 盘 否 定 ”“ 问 题 的 反 面 ” 等 抽 象 而 来 的.
2.命题 p 的否定(非 p)
一般地,对命题 p 加以否定,就得到一个新的命题,记作 ﹁__p___,读作“_非__p_”或“_p_的__否__定__”.

高中数学第1章集合与常用逻辑用语1.1.1集合及其表示方法第2课时集合的表示方法新人教B版必修第一册

高中数学第1章集合与常用逻辑用语1.1.1集合及其表示方法第2课时集合的表示方法新人教B版必修第一册

集合中的元素具有无序性、互异性,所以用列举法表示集合时 不必考虑元素的顺序,且元素不能重复,元素与元素之间要用 “,”隔开;用描述法表示集合时,要注意代表元素是什么,从而 理解集合的含义,区分两集合是不是相等的集合.
2.用描述法表示下列集合: (1)方程x2+y2-4x+6y+13=0的解集; (2)二次函数y=x2-10图像上的所有点组成的集合.
在集合的表示方法中,经常利用核心素养中的逻辑推理,通过 对元素个数与特性的验证分析,探索参数的取值范围.
3.若集合A={x|ax2+ax+1=0,x∈R}不含有任何元素,则实
数a的取值范围是________.
[0,4) [当a=0时,原方程可化为1=0,显然方程无解,当a≠0
时,一元二次方程ax2+ax+1=0无实数解,则需Δ=a2-4a<0,即
[解] (1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2= 0,解得x=2,y=-3.
所以方程的解集为{(x,y)|x=2,y=-3}. (2)“二次函数y=x2-10图像上的所有点”用描述法表示为 {(x,y)|y=x2-10}.
集合的表示法的应用 角度一 方程、不等式问题 【例 3】 若集合 A={x|ax2+ax-1=0}只有一个元素,则 a= () A. -4 B. 0 C. 4 D. 0 或-4 A [依题意,得关于 x 的方程 ax2+ax-1=0 只有一个实根,所 以aΔ≠=00,, 即aa≠ 2+04,a=0, 解得 a=-4,选 A.]
合作探究 提素养
用列举法表示集合
【例 1】 (1)若集合 A={(1,2),(3,4)},则集合 A 中元素的个数
是( )
A.1
B.2
C.3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2 量词学习目标 1.理解全称量词与存在量词的含义.2.理解并掌握全称命题和存在性命题的概念.3.能判定全称命题和存在性命题的真假并掌握其判断方法.知识点一全称量词、全称命题思考观察下面的两个语句,思考下列问题:P:m≤5;Q:对所有的m∈R,m≤5.(1) 上面的两个语句是命题吗?二者之间有什么关系?(2)常见的全称量词有哪些?(至少写出五个).梳理(1)概念短语“____________”“____________”在逻辑中通常叫做________量词,并用符号“______”表示.含有全称量词的命题,叫做____________.(2)表示将含有变量x的语句用p(x),q(x),r(x),…表示,变量x的取值范围用M表示.那么,全称命题“对M中任意一个x,有p(x)成立”可用符号简记为____________,读作“对任意x属于M,有p(x)成立”.(3)全称命题的真假判定要判定全称命题是真命题,需要对集合M中每个元素x,证明p(x)成立,但要判定全称命题是假命题,只需举出一个x0∈M,使得p(x0)不成立即可.知识点二存在量词、存在性命题思考观察下面的两个语句,思考下列问题:P:m>5;Q:存在一个m0∈Z,m0>5.(1)上面的两个语句是命题吗?二者之间有什么关系?(2)常见的存在量词有哪些?(至少写出五个)梳理(1)概念短语“____________”“______________”在逻辑中通常叫做________量词,并用符号“______”表示.含有存在量词的命题,叫做______________.(2)表示存在性命题“存在M中的元素x0,使p(x0)成立”可用符号简记为______________,读作“存在M中的元素x0,使p(x0)成立”.(3)存在性命题的真假判定要判定一个存在性命题是真命题,只需在集合M中找到一个元素x0,使p(x0)成立即可,否则这一存在性命题就是假命题.类型一全称命题与存在性命题的判断命题角度1 全称命题与存在性命题的不同表述例1 设p(x):2x是偶数,试用不同的表述方式写出下列命题:(1)全称命题:∀x∈N,p(x);(2)存在性命题:∃x0∈N,p(x0).反思与感悟全称命题或存在性命题的表述形式虽然很多,但是具体到一个问题时最为恰当的却只有一个,解题时注意理解.跟踪训练1 “有些整数是自然数”这一命题为________命题.(填“全称”或“存在性”)命题角度2 全称命题与存在性命题的识别例2 判断下列命题是全称命题,还是存在性命题:(1)凸多边形的外角和等于360°;(2)有的向量方向不定;(3)对任意角α,都有sin2α+cos2α=1.反思与感悟判断一个命题是全称命题还是存在性命题的关键是看量词.由于某些全称命题的量词可能省略,所以要根据命题表达的意义判断,同时要会用相应的量词符号正确表达命题.跟踪训练2 判断下列命题是全称命题还是存在性命题,并用符号“∀”或“∃”表示下列命题.(1)自然数的平方大于或等于零;(2)圆x2+y2=1上存在一个点到直线y=x+1的距离等于圆的半径;(3)有的函数既是奇函数又是增函数;(4)对于数列⎩⎨⎧⎭⎬⎫n n +1,总存在正整数n 0,使得0n a 与1之差的绝对值小于0.01.类型二 全称命题与存在性命题的真假判断例3 判断下列命题的真假.(1)在平面直角坐标系中,任意有序实数对(x ,y )都对应一点P ;(2)存在一个函数,既是偶函数又是奇函数;(3)每一条线段的长度都能用正有理数来表示;(4)存在一个实数x 0,使得等式x 20+x 0+8=0成立;(5)∀x ∈R ,x 2-3x +2=0;(6)∃x 0∈R ,x 20-3x 0+2=0.反思与感悟 要判断全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中每个元素x ,证明p (x )都成立;如果在集合M 中找到一个元素x 0,使得p (x 0)不成立,那么这个全称命题就是假命题.要判断存在性命题“∃x 0∈M ,p (x 0)”是真命题,只需在集合M 中找到一个元素x 0,使p (x 0)成立即可;如果在集合M 中,使p (x )成立的元素x 不存在,那么这个存在性命题就是假命题.跟踪训练3 判断下列命题的真假:(1)有一些奇函数的图象过原点;(2)∃x 0∈R ,2x 20+x 0+1<0;(3)∀x ∈R ,sin x +cos x ≤ 2.类型三 利用全称命题和存在性命题求参数的值或取值范围例4 已知下列命题p (x )为真命题,求x 的取值范围.(1)命题p (x ):x +1>x ;(2)命题p (x ):x 2-5x +6>0;(3)命题p (x ):sin x >cos x .反思与感悟 已知含量词的命题真假求参数的取值范围,实质上是对命题意义的考查.解决此类问题,一定要辨清参数,恰当选取主元,合理确定解题思路.解决此类问题的关键是根据含量词命题的真假转化为相关数学知识,利用函数、方程、不等式等知识求解参数的取值范围,解题过程中要注意变量取值范围的限制.跟踪训练4 若方程x2+ax+1=0,x2+2ax+2=0,x2-ax+4=0中至少有一个方程有实根,求a的取值范围.1.下列命题中,不是全称命题的是( )A.任何一个实数乘以0都等于0B.自然数都是正整数C.每一个向量都有大小D.一定存在没有最大值的二次函数2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=log a(x-1)的图象过点(2,0),则( )A.p假q真B.p真q假C.p假q假D.p真q真3.已知函数f(x)=|2x-1|,若命题“存在x1,x2∈[a,b]且x1<x2,使得f(x1)>f(x2)”为真命题,则下列结论一定成立的是( )A.a≥0 B.a<0 C.b≤0 D.b>14.存在性命题“∃x0∈R,|x0|+2≤0”是__________命题.(填“真”或“假”)5.若命题“∃x0∈R,x20+mx0+2m-3<0”为假命题,则实数m的取值范围是________.1.判断全称命题的关键:一是先判断是不是命题;二是看是否含有全称量词.2判定全称命题的真假的方法.定义法:对给定的集合的每一个元素x,p(x)都为真;代入法:在给定的集合内找出一个x0,使p(x0)为假,则全称命题为假.3.判定存在性命题真假的方法:代入法,在给定的集合中找到一个元素x0,使命题p(x0)为真,否则命题为假.提醒:完成作业第一章 1.1.2答案精析问题导学知识点一思考(1)语句P无法判断真假,不是命题;语句Q在语句P的基础上增加了“所有的”,可以判断真假,是命题.语句P是命题Q中的一部分.(2)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”“凡是”等.梳理(1)所有的任意一个全称∀全称命题(2)∀x∈M,p(x)知识点二思考(1)语句P无法判断真假,不是命题;语句Q在语句P的基础上增加了“存在一个”,可以判断真假,是命题.语句P是命题Q中的一部分.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“对某个”“有的”等.梳理(1)存在一个至少有一个存在∃存在性命题(2)∃x0∈M,p(x0)题型探究例1 解(1)全称命题:①对所有的自然数x,2x是偶数;②对一切的自然数x,2x是偶数;③对每一个自然数x,2x是偶数;④任选一个自然数x,2x是偶数;⑤凡自然数x,都有2x是偶数.(2)存在性命题:①存在一个自然数x0,使得2x0是偶数;②至少有一个自然数x0,使得2x0是偶数;③对有些自然数x0,使得2x0是偶数;④对某个自然数x0,使得2x0是偶数;⑤有一个自然数x0,使得2x0是偶数.跟踪训练1 存在性例2 解(1)可以改写为“所有的凸多边形的外角和等于360°”,故为全称命题.(2)含有存在量词“有的”,故是存在性命题.(3)含有全称量词“任意”,故是全称命题.跟踪训练2 解 (1)是全称命题,表示为∀x ∈N ,x 2≥0.(2)是存在性命题,表示为∃(x 0,y 0)∈{(x ,y )|x 2+y 2=1},满足|x 0-y 0+1|2=1. (3)是存在性命题,∃f (x )∈{函数},f (x )既是奇函数又是增函数.(4)是存在性命题,∃n 0∈N +,0000|1|0.01.1n n n a a n <+-,其中= 例3 解 (1)真命题.(2)真命题,如函数f (x )=0,既是偶函数又是奇函数.(3)假命题,如边长为1的正方形,其对角线的长度为2,2就不能用正有理数表示.(4)假命题,方程x 2+x +8=0的判别式Δ=-31<0,故方程无实数解.(5)假命题,只有x =2或x =1时,等式x 2-3x +2=0才成立.(6)真命题,x 0=2或x 0=1,都能使等式x 20-3x 0+2=0成立.跟踪训练3 解 (1)该命题中含有“有一些”,是存在性命题.如y =x 是奇函数,其图象过原点,故该命题是真命题.(2)该命题是存在性命题.∵2x 20+x 0+1=2(x 0+14)2+78≥78>0,∴不存在x 0∈R ,使2x 20+x 0+1<0. 故该命题是假命题.(3)该命题是全称命题.∵sin x +cos x =2sin(x +π4)≤2恒成立,∴对任意实数x ,sin x +cos x ≤2都成立,故该命题是真命题.例4 解 (1)∵x +1>x ,∴1>0(此式恒成立),∴x ∈R .(2)∵x 2-5x +6>0,∴(x -2)(x -3)>0,∴x >3或x <2.(3)∵sin x >cos x ,∴2k π+π4<x <2k π+5π4(k ∈Z ). 跟踪训练4 解 由方程x 2+ax +1=0无实根,可知a 2-4<0,即a 2<4,即-2<a <2,由方程x 2+2ax +2=0无实根,可知a 2-2<0,即a 2<2,即-2<a <2,由方程x 2-ax +4=0无实根,可知a 2-16<0,即a 2<16,即-4<a <4,∴当a 2<2,即-2<a <2时,三个方程均无实根.∴当a ≤-2或a ≥2时,三个方程中至少有一个方程有实根.故a 的取值范围为(-∞,-2]∪[2,+∞).当堂训练1.D 2.A 3.B 4.假 5.[2,6]。

相关文档
最新文档