九年级数学《特殊角的三角函数值》教案
28.1锐角三角函数特殊角的锐角三角函数值(教案)2023-2024学年人教版数学九年级下册
3.通过实际例题,培养学生运用锐角三角函数解决实际问题的能力。
本节课将结合教材内容,通过讲解、示范、练习等环节,帮助学生掌握特殊角的锐角三角函数值,并为后续学习三角函数的性质和应用打下坚实基础。
二、核心素养目标
3.增强学生的数学运算与数据分析能力:通过解决实际例题,让学生运用锐角三角函数进行计算和分析,提高数学运算与数据分析能力,为解决复杂问题奠定基础。
本节课将紧密围绕新教材的要求,关注学生核心素养的培养,帮助学生将所学知识内化为自身的数学素养,为未来的学习和生活打下坚实基础。
后的内容###”二、核心素养目标”作为标题标识,再开篇直接输出。
2.逻辑推理:通过特殊角的锐角三角函数值的推导,提高学生的逻辑推理能力。
3.数学运算与数据分析:培养学生运用特殊角的锐角三角函数值进行精确计算和解决实际问题的能力。
三、教学过程
1.导入新课
通过回顾上一节课的内容,引导学生进入锐角三角函数的学习。
2.基本概念与性质
复习锐角三角函数的定义,强调正弦、余弦、正切的概念。
四、教学评价
1.课堂问答:检查学生对特殊角的锐角三角函数值的掌握程度。
2.练习题完成情况:评估学生对知识点的理解和运用能力。
3.课后作业:布置相关作业,巩固所学知识。
五、教学资源
1.教材:人教版数学九年级下册。
2.课件:包含本节课教学内容的PPT。
3.练习题:针对本节课知识点的练习题。
五、教学反思
在上完这节关于特殊角的锐角三角函数值的内容后,我进行了深入的思考。首先,我发现学生们对于锐角三角函数的定义有了较好的理解,但记忆特殊角的函数值还存在一定难度。在教学中,我尝试通过一些记忆方法,如编口诀、画图等,帮助学生记忆。从学生的反馈来看,这些方法还是有一定效果的,但还需在后续教学中继续巩固。
人教版九年级下册28.1特殊角的锐角三角函数值教学设计
作业要求:
1.学生需独立完成作业,诚实守信,不得抄袭。
2.解题过程要求步骤清晰,书写规范。
3.小组合作题需充分发挥团队合作精神,共同完成。
4.作业完成后,及时上交,教师将进行批改和反馈。
4.通过对特殊角的锐角三角函数值的学习,培养学生对数的敏感性和逻辑思维能力。
(二)过程与方法
1.通过观察、猜想、验证等教学活动,引导学生自主发现特殊角的锐角三角函数值规律,培养学生自主学习的能力。
2.运用问题驱动的教学方法,激发学生的学习兴趣,引导学生通过合作、探究、讨论等方式,深入理解特殊角锐角三角函数的概念和计算方法。
针对学生的困惑,我会进行有针对性的解答,巩固学生对知识的理解。最后,强调特殊角的锐角三角函数值在实际生活中的应用,提高学生的应用意识,为后续学习打下坚实基础。
五、作业布置
为了巩固学生对特殊角的锐角三角函数值的学习,确保学生能够熟练掌握并运用到实际中,我设计了以下几类作业:
1.基础巩固题:布置一些基本的计算题,要求学生熟练掌握特殊角的正弦、余弦、正切值,并能快速准确地计算出结果。
学生在讨论过程中,可以相互提问、解答,共同探讨特殊角锐角三角函数值的规律。我会巡回指导,解答学生的疑问,引导学生深入思考。讨论结束后,每个小组汇报讨论成果,共同分享学习心得。
(四)课堂练习,500字
在课堂练习环节,我会设计不同难度的题目,让学生独立完成。题目包括基础题、提高题和应用题,旨在检验学生对特殊角的锐角三角函数值的掌握程度。
四、教学内容与过程
(一)导入新课,500字
在导入新课环节,我将结合学生的生活经验,提出一个与学生实际相关的问题:“同学们,在我们的日常生活中,如建筑设计、制作家具等,经常会遇到各种角度的测量问题。那么,如何才能快速、准确地计算出这些角度的三角函数值呢?”通过这个问题,激发学生的好奇心,引导学生思考。
人教初中数学九下《第28章 特殊角的三角函数值》教案 (公开课获奖)
特殊角的三角函数值教学1.理解特殊角的三角函数值的求法目标:重点: 2.掌握特殊角的三角函数值难点:特殊角的三角函数值的有关计算第3课时特殊角的三角函数值1.理解特殊角的三角函数值的求法(1)借助含°和°的两个特殊直角三角形.(2)设出直角三角形中边的长,利用特殊直角三角形的性质和求出其余两边的长.(3)根据锐角三角函数的定义,分别求出30°,45°,60°的三角函数值.2.掌握特殊角的三角函数值锐角α30°45°60°三角函数sin αcos αtan α 1重点一:特殊角的三角函数值的有关计算对于三个特殊角的三角函数值,可按增减规律记忆法(α=30°,45°,60°):(1)sin α的值随α的增大而增大,依次为,,;(2)cos α的值随α的增大而减小,依次是,,;(3)tan α的值随α的增大而增大,依次是,1,.1.(2013包头)3tan 30°的值等于( )(A)(B)3(C)(D)2. (2013雅安)如图,AB是☉O的直径,C、D是☉O上的点,∠CDB=30°,过点C作☉O的切线交AB的延长线于E,则sin E的值为( )(A)(B)(C)(D)3.计算:tan 45°+cos 45°= .4.(1)计算:-1-3tan 45°-(π+2012)0; (2)计算:(-1)2013--3+|-cos 30°|-+|3-8sin 60°|.重点二:用三角函数值求锐角的度数由锐角和三角函数值之间的对应关系可得,给定一个三角函数值,则必有一个锐角与之对应.由三角函数值求特殊角,三角函数值的给出方式比较灵活,有直接给出的,也有利用方程给出的,还有结合图形,需要计算后才能得到的.5.如果△ABC中,sin A=cos B=,则下列最确切的结论是( )(A)△ABC是直角三角形(B)△ABC是等腰三角形(C)△ABC是等腰直角三角形(D)△ABC是锐角三角形6.已知α为锐角,且sin(α+10°)=,求锐角α.7.(1)已知α为锐角,sin α>,求α的取值范围;(2)若tan A的值是方程x2-(1+)x+=0的一个根,求锐角A的度数.A层(基础)1.(2013天津)tan 60°的值等于( )(A)1 (B)(C)(D)22.利用计算器求sin 30°时,依次按键sin 3 0 DMS =,则计算器上显示的结果是( )(A)0.5 (B)0.707 (C)0.866 (D)13.已知tan A=0.189,求∠A,按键顺序为( )(A)2ndf 0.189 tan = (B)2ndf tan 0.189 =(C)tan 2ndf 0.189 = (D)tan A 2ndf 0.189 =4.(2013邵阳)在△ABC中,若sin A-+(cos B-)2=0,则∠C的度数是( )(A)30° (B)45° (C)60° (D)90°5.如果∠A为锐角,且tan A=,那么有( )(A)0°<A<30°(B)30°<A<45° (C)45°<A<60°(D)60°<A<90°6.(2013德州)cos 30°的值是.7.在Rt△ABC中,∠C=90°,3BC=AC,则∠A= .8.观察下列等式:①sin 30°=,cos 60°=;②sin 45°=,cos 45°=;③sin 60°=,cos 30°=.根据上述规律,计算sin2α+sin2(90°-α)= .9.(1)计算:5tan230°-sin 60°-2cos245°;(2)已知α是锐角,且sin(α+15°)=,计算-4cos α-(π-3.14)0+tan α+-1的值.10.如图所示,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=,BD=2,求AC、AB的长.B层(拔高)13.(2013湛江)阅读下面的材料,先完成阅读填空,再按要求答题:sin 30°=,cos 30°=,则sin230°+cos230°= ;①sin 45°=,cos 45°=,则sin245°+cos245°= ;②sin 60°=,cos 60°=,则sin260°+cos260°= .③……观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A= .④(1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;(2)已知:∠A为锐角(cos A>0)且sin A=,求cos A.教学反思:15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”). [师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到 ∠A=∠ABD ,∠ABC=∠C=∠BDC ,•D CA BD CABDCA B再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D C AB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.D CAB我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=CE .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50°E DC A B P答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习1.计算: (1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
新华师大版九年级上册初中数学 24-3-1课时2 特殊角的三角函数值 教案
24.3.1课时2 特殊角的三角函数值【知识与技能】1.熟记30°、45°、60°角的三角函数值.2.让学生经历30°、45°、60°角的三角函数值推导过程,从而掌握特殊角的三角函数的运用方法.【过程与方法】学生经历30°、45°、60°角的三角函数值推导过程,发展学生的推理能力和计算能力.【情感态度与价值观】通过本节课的学习了让学生体会锐角三角函数的数学美,从而培养学生的数学应用意识.熟记30°、45°、60°角的三角函数值.根据函数值说出对应的锐角度数.多媒体课件.上节课我们学习了锐角三角函数的定义.复习如图所示Rt△DEC,∠E=90°,DE=6,CD=10,求∠D的三个三角函数值.(sinD=4/5,cosD=3/5,tanD=4/3)一、思考探究,获取新知你能否根据锐角三角函数的定义求出30°角的三个三角函数值?1.探究3.填表思考:(1)sinα随着α的增大而增大;(2)cosα随着α的增大而减小;(3)tanα随着α的增大而增大.例1 求值:sin30°·tan30°+cos60°·tan60°解:原式1312332323=⨯+⨯=.二、运用新知,深化理解2.直线y=kx-4与y轴相交所成的锐角的正切值为12,则k的值为_______.4.已知,如图,在△ABC中,∠B=45°,∠C=60°,AB=6,求BC的长.(结果保留根号)【教师点拨】第1题的计算,注意理清运算顺序;第2题可构造直角三角形再运用锐角三角函数的知识解决,注意两种情况;第3题先求出α的三角函数值,再根据其值求角的度数.1.知识回顾.2.谈谈这节课你有哪些收获?【教学说明】教师应与学生一起进行交流,共同回顾本节知识,理清解题思路与方法.1.布置作业:从教材“习题24. 3”中选取.本节从复习锐角三角函数的定义入手,提出求解30°角的三角函数值,让学生动手探究45°、60°角的三角函数值,加以归纳总结,并学会应用.在教学上充分体现以学生为主体的思想,在教学中以调动学生的思维为主,充分培养学生的自主性和创造性.。
九年级数学下册《特殊角的三角函数值及用计算器求角的三角函数值》教案、教学设计
3.教学评价:
-课堂问答:通过提问,了解学生对特殊角的三角函数值的掌握情况。
-作业布置:设计富有层次性的作业,Байду номын сангаас学生在课后巩固所学知识。
-课堂练习:进行计算器操作练习,评价学生的实际应用能力。
-小组讨论:观察学生在小组合作中的表现,评价学生的团队协作能力。
3.总结规律:
-引导学生发现特殊角三角函数值的规律;
-解释特殊角三角函数值与角度之间的关系。
(三)学生小组讨论
在这一环节中,我们将组织学生进行小组讨论,共同探讨三角函数值的记忆方法和计算器操作技巧。
1.分组:将学生分成若干小组,每组4-6人。
2.话题:讨论如何记忆特殊角的三角函数值,以及计算器操作的注意事项。
2.学生练习:学生在课堂上独立完成练习题。
3.交流反馈:学生相互交流答案,讨论解题过程中的困惑。
4.点评讲解:教师对学生的练习情况进行点评,针对共性问题进行讲解。
(五)总结归纳
在这一环节中,我们将对本节课所学知识进行总结,帮助学生巩固记忆。
1.回顾:引导学生回顾本节课所学内容,包括特殊角的三角函数值、计算器操作方法等。
1.提问:请同学们回忆一下,我们之前学习的三角函数有哪些?它们分别表示什么意义?
2.学生回答:正弦、余弦、正切。
3.追问:那么,这些三角函数的值与角度之间有怎样的关系呢?
4.学生回答:角度不同,三角函数的值也会不同。
5.引入新课:今天我们将学习特殊角的三角函数值,以及如何使用计算器求任意角的三角函数值。
2.教学过程:
-导入新课:通过复习一般角的三角函数,自然过渡到特殊角的三角函数值的学习。
九年级数学《特殊角的三角函数值》教案
福建省漳州市常山华侨中学九年级数学《特殊角的三角函数值》 教学目标知识与能力目标1、 经历探索30°,45°,60°角的三角函数值的过程,能够进行有关的推理,进一步体会三角函数的意义.2、 会进行含有30°、45°、60°角的三角函数值的计算.3、 能够根据30°、45°、60°的三角函数值说明相应的锐角的大小. 过程与方法目标通过自主探索经历探索30°、45°、60°角的三角函数值的过程,发展学生观察、分析、发现的能力.培养学生把实际问题转化为数学问题的能力.情感与价值观要求通过数学活动,产生好奇心.培养学生独立思考问题的习惯,锻炼克服困难的意志,建立学好数学自信心.教学重点探索30°、45°、60°角的三角函数值; 含30°、45°、60°角的三角函数值的计算.教学难点运用特殊角的三角函数值解决实际问题教学过程(一)创设情境,引入新课1、复习三角函数的概念2、复习含30°、45°、60°角的直角三角形的边之间的关系,引出本堂课的课题(二)讲授新课观察一副三角板,一副三角板中有四个锐角,它们分别是30°、60°、45°、45°1.探索30°、45°、60°角的三角函数值.(1)先让学生观察含30°的三角板思考:sin30°等于多少呢?你是怎样得到的?与同伴交流.分析:如图所示,在Rt △ABC 中,∠A=30°,那么sin30°= sinA =ACBC . 我们知道“在一个直角三角形中,30°所对的直角边等于斜边的一半”,所以BC=21AC ,即AC BC =21,所以sin30°=21 让学生再思考一下cos30°等于多少?tan30°呢? 分析:如图,cos30°=cosA=AC AB 设BC=a ,则AC=a 2,根据勾股定理得AB=a 3所以cos30°=2323=a a tan30°==AB BC 33313==a a (2)60°角的三角函数值同样可以用以上图形,让学生仿照以上做法,试着求出sin60°, cos60°,tan60°的值.(提问)分析:sin60°=sinC=AC AB =2323=a a ,cos60°=cosC=AC BC =212=a a , tan60°=tanC==BCAB =33=a a (3)再让学生观察含45°角的三角板,仿照以上做法,试着求出sin45°, cos45°,tan45°的值.分析:如图,设其中一条直角边为a ,则另一条直角边也为a ,斜边2a.由此可求得sin45°=22212==a a ,cos45°=22212==a a ,tan45°=1=a a [师]经过以上分析,我们已求出了30°、45°、60°角的三角函数值,现在我们把这些值列在一个表格中这个表格中的30°、45°、60°角的三角函数值需熟记,另一方面,要能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小.三角函数三角函数值角∂sin ∂ cos ∂ tan ∂ 30° 21 23 33 45° 22 22 1 60° 23 21 3介绍记忆法:1、结合推理过程记忆2、口诀记忆:正弦分母2,分子开方1、2、3;余弦分母2,分子开方3、2、1;正、余相比得正切。
《特殊角的三角函数值》 说课稿
《特殊角的三角函数值》说课稿尊敬的各位评委、老师们:大家好!今天我说课的内容是《特殊角的三角函数值》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析“特殊角的三角函数值”是人教版九年级数学下册第二十八章锐角三角函数中的重要内容。
它是在学生已经学习了锐角三角函数的定义和直角三角形的相关知识之后,进一步深入研究特殊角(30°、45°、60°)的三角函数值。
这部分内容不仅是对锐角三角函数知识的深化和拓展,也为后续学习解直角三角形以及实际应用奠定了基础。
从教材的编排来看,先通过直角三角形的边长比例关系,引导学生推导特殊角的三角函数值,然后通过例题和练习让学生熟练掌握并应用这些值解决问题。
教材内容注重知识的系统性和逻辑性,由浅入深,逐步引导学生掌握重点,突破难点。
二、学情分析在学习本节课之前,学生已经掌握了锐角三角函数的定义,对直角三角形的边角关系有了一定的认识,具备了一定的逻辑推理和计算能力。
但是,对于特殊角的三角函数值的推导和记忆可能会存在一定的困难,需要通过多种教学方法和手段帮助学生理解和掌握。
同时,九年级的学生已经具备了一定的自主学习能力和合作探究精神,在教学过程中可以充分发挥学生的主体作用,让学生通过自主探究、合作交流等方式来获取知识。
三、教学目标1、知识与技能目标(1)能推导并熟记 30°、45°、60°角的三角函数值。
(2)能熟练计算含有特殊角的三角函数的式子。
2、过程与方法目标(1)通过对特殊角三角函数值的推导,培养学生的逻辑推理能力和数学思维能力。
(2)通过运用特殊角的三角函数值解决实际问题,提高学生的数学应用意识和解决问题的能力。
3、情感态度与价值观目标(1)让学生在探索特殊角三角函数值的过程中,体验数学的乐趣,激发学生学习数学的兴趣。
(2)通过小组合作学习,培养学生的合作精神和团队意识。
人教版九年级数学下册28.1锐角三角函数特殊角的三角函数值优秀教学案例
(一)知识与技能
1.让学生掌握特殊角的三角函数值,包括30°、45°、60°等角的正弦、余弦和正切值。
2.使学生能够运用特殊角的三角函数值进行简化解题,提高问题解决能力。
3.培养学生运用数学知识描述现实生活中的现象,提高数学应用能力。
在教学过程中,我将以生活实例为导入,引导学生主动探究特殊角的三角函数值。通过多媒体课件的展示,让学生直观地理解特殊角的三角函数值,并在实际问题中运用。此外,我将设计具有挑战性的问题,激发学生的思考,培养学生的创新思维和问题解决能力。
3.培养学生勇于挑战、克服困难的勇气,培养他们的自信心和自尊心。
在教学过程中,我将关注学生的情感需求,以鼓励、表扬等方式激励学生,让他们在学习中感受到成功的喜悦。同时,我将引导学生认识到数学在现实生活中的重要性,培养他们的责任感和使命感。
三、教学策略
(一)情景创设
1.生活实例导入:以实际生活中的问题为导入,引发学生对特殊角的三角函数值的兴趣,激发学生的学习动机。
人教版九年级数学下册28.1锐角三角函数特殊角的三角函数值优秀教学案例
一、案例背景
本节课是人教版九年级数学下册28.1锐角三角函数特殊角的三角函数值。在学习了锐角三角函数的基础上,本节课主要让学生掌握特殊角的三角函数值,进一步深化对锐角三角函数的理解和运用。
在案例背景中,学生已经掌握了锐角三角函数的定义和基本性质,具备了一定的数学思维能力和问题解决能力。然而,对于特殊角的三角函数值,学生可能存在一定的困难,需要通过本节课的学习,进一步巩固和提高。
(四)反思与评价
1.自我反思:让学生在学习过程中进行自我反思,发现自己的不足之处,明确改进方向。
2.同伴评价:学生相互评价,给予意见和建议,共同促进彼此的进步。
新人教版九年级下册数学《特殊角的三角函数值》精品教案
28.1锐角三角函数第3课时特殊角的三角函数1.经历探索30°、45°、60°角的三角函数值的过程,进一步体会三角函数的意义;(重点)2.能够进行30°、45°、60°角的三角函数值的计算;(重点)3.能够结合30°、45°、60°的三角函数值解决简单实际问题.(难点)一、情境导入问题1:一个直角三角形中,一个锐角的正弦、余弦、正切值是怎么定义的?问题2:两块三角尺中有几个不同的锐角?各是多少度?设每个三角尺较短的边长为1,分别求出这几个锐角的正弦值、余弦值和正切值.二、合作探究探究点一:特殊角的三角函数值【类型一】利用特殊的三角函数值进行计算计算:(1)2cos60°·sin30°-6sin45°·sin60°;(2)sin30°-sin45°cos60°+cos45°.解析:将特殊角的三角函数值代入求解.解:(1)原式=2×12×12-6×22×32=12-32=-1;(2)原式=12-2212+22=22-3.方法总结:解决此类题目的关键是熟记特殊角的三角函数值.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】已知三角函数值求角的取值范围若cosα=23,则锐角α的大致范围是()A.0°<α<30°B.30°<α<45°C.45°<α<60°D.0°<α<30°解析:∵cos30°=32,cos45°=22,cos60°=12,且12<23<22,∴cos60°<cosα<cos45°,∴锐角α的范围是45°<α<60°.故选C.方法总结:解决此类问题要熟记特殊角的三角函数值和三角函数的增减性.【类型三】根据三角函数值求角度若3tan(α+10°)=1,则锐角α的度数是()A.20°B.30°C.40°D.50°解析:∵3tan(α+10°)=1,∴tan(α+10°)=33.∵tan30°=33,∴α+10°=30°,∴α=20°.故选A.方法总结:熟记特殊角的三角函数值是解决问题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第9题探究点二:特殊角的三角函数值的应用【类型一】利用三角形的边角关系求线段的长如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.解析:由题意可知△BCD为等腰直角三角形,则BD=BC,在Rt△ABC中,利用锐角三角函数的定义求出BC的长即可.解:∵∠B=90°,∠BDC=45°,∴△BCD为等腰直角三角形,∴BD=BC.在Rt△ABC中,tan∠A=tan30°=BCAB,即BCBC+4=33,解得BC=2(3+1).方法总结:在直角三角形中求线段的长,如果有特殊角,可考虑利用三角函数的定义列出式子,求出三角函数值,进而求出答案.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】判断三角形的形状已知△ABC中的∠A与∠B满足(1-tan A)2+|sin B-32|=0,试判断△ABC的形状.解析:根据非负性的性质求出tan A及sin B的值,再根据特殊角的三角函数值求出∠A及∠B的度数,进而可得出结论.解:∵(1-tan A)2+|sin B-32|=0,∴tan A=1,sin B=32,∴∠A=45°,∠B=60°,∠C=180°-45°-60°=75°,∴△ABC是锐角三角形.方法总结:一个数的绝对值和偶次方都是非负数,当几个数或式的绝对值或偶次方相加和为0时,则其中的每一项都必须等于0.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型三】构造三角函数模型解决问题要求tan30°的值,可构造如图所示的直角三角形进行计算.作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,那么BC=3,∠ABC=30°,∴tan30°=ACBC=13=33.在此图的基础上,通过添加适当的辅助线,探究tan15°与tan75°的值.解析:根据角平分线的性质以及勾股定理首先求出CD的长,进而得出tan15°=CDBC,tan75°=BCCD求出即可.解:作∠B的平分线交AC于点D,作DE⊥AB,垂足为E.∵BD平分∠ABC,CD⊥BC,DE⊥AB,∴CD=DE.设CD=x,则AD=1-x,AE=2-BE=2-BC=2- 3.在Rt△ADE中,DE2+AE2=AD2,x2+(2-3)2=(1-x)2,解得x=23-3,∴tan15°=23-33=2-3,tan75°=BCCD=323-3=2+ 3.方法总结:解决问题的关键是添加辅助线构造含有15°和75°的直角三角形,再根据三角函数的定义求出15°和75°的三角函数值.变式训练:见《学练优》本课时练习“课后巩固提升”第2题三、板书设计1.特殊角的三角函数值:2.应用特殊角的三角函数值解决问题.课程设计中引入非常直接,由三角尺引入,直击课题,同时也对前两节学习的知识进行了整体的复习,效果很好.在讲解特殊角的三角函数值时讲解的也很细,可以说前面部分的教学很成功,学生理解的很好.学生励志寄语:人生,想要闯出一片广阔的天地,就要你们努力去为自己的目标奋斗、勤奋刻苦、充满自信的过好每一天,雏鹰总会凌空翱翔。
九年级数学《特殊角的三角函数值》教案
教案:特殊角的三角函数值一、教学目标:1.理解特殊角的概念和特征。
2.掌握特殊角的三角函数值。
3.运用特殊角的三角函数值解决实际问题。
4.培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1.特殊角的概念。
2.特殊角的特征。
3.特殊角的三角函数值。
4.运用特殊角的三角函数值解决实际问题。
三、教学过程:Step 1 导入新课1.让学生回忆和复习正弦、余弦、正切的定义和性质。
2.引入特殊角的概念。
解释特殊角是指在单位圆上的角度是特殊的角度。
Step 2 学习特殊角的特征1.讲解特殊角的三种特殊情况:a)0度。
b)90度。
c)180度。
2.引导学生思考其他特殊角的特征和三种特殊角的函数值。
3.提示学生特殊角的函数值与直角三角形的边长有关。
Step 3 推导特殊角的三角函数值1.推导0度特殊角的三角函数值。
a)角度为0度时,对应的三角函数值:- sin0° = 0- cos0° = 1- tan0° = 0b)解释特殊角的三角函数值与单位圆上的点位置的关系。
2.推导90度特殊角的三角函数值。
a)角度为90度时,对应的三角函数值:- sin90° = 1- cos90° = 0- tan90° = 无定义(不存在)b)解释特殊角的三角函数值与单位圆上的点位置的关系。
3.推导180度特殊角的三角函数值。
a)角度为180度时,对应的三角函数值:- sin180° = 0- cos180° = -1- tan180° = 0b)解释特殊角的三角函数值与单位圆上的点位置的关系。
Step 4 运用特殊角的三角函数值解决实际问题1.将上述推导结果应用于实际问题。
a) 比如:已知角度为45度,求解sin45°、cos45°和tan45°的值。
b)引导学生根据特殊角的三角函数值和单位圆上的三角关系进行计算。
苏科版数学九年级下册7.3《特殊角的三角函数》教学设计
苏科版数学九年级下册7.3《特殊角的三角函数》教学设计一. 教材分析苏科版数学九年级下册7.3《特殊角的三角函数》是学生在学习了锐角三角函数的定义、三角函数的图像和性质的基础上进行的一节内容。
本节课主要让学生了解并掌握30°、45°、60°角的正弦、余弦、正切函数值,并能运用其解决实际问题。
教材通过实例引入特殊角的三角函数值,引导学生探究并发现规律,进而总结出一般性结论。
二. 学情分析九年级的学生已经学习了锐角三角函数的定义、三角函数的图像和性质,对三角函数有了初步的认识。
但是,对于特殊角的三角函数值,学生可能还不太熟悉,需要通过实例和练习来进一步巩固。
此外,学生可能对于如何运用三角函数解决实际问题还有一定的困难,需要在教学中给予指导和训练。
三. 教学目标1.了解30°、45°、60°角的正弦、余弦、正切函数值,并能熟练运用。
2.掌握特殊角的三角函数值的求法,并能运用其解决实际问题。
3.培养学生的探究能力和合作精神,提高学生的数学思维能力。
四. 教学重难点1.重点:30°、45°、60°角的正弦、余弦、正切函数值。
2.难点:特殊角的三角函数值的求法及其运用。
五. 教学方法1.引导发现法:通过实例引入特殊角的三角函数值,引导学生探究并发现规律。
2.合作学习法:分组讨论,共同完成任务,培养学生的合作精神和团队意识。
3.练习法:通过适量练习,巩固所学知识,提高学生的应用能力。
六. 教学准备1.课件:制作课件,展示特殊角的三角函数值的图像和实例。
2.练习题:准备适量练习题,用于巩固所学知识。
3.三角板:准备三角板,用于演示特殊角的三角函数值。
七. 教学过程1.导入(5分钟)利用课件展示特殊角的三角函数值的图像,引导学生观察并思考:你能发现什么规律?2.呈现(10分钟)呈现30°、45°、60°角的正弦、余弦、正切函数值,引导学生探究并发现规律。
数学九年级人教版特殊角的三角函数值(教案)
2.通过探索特殊角的三角函数值规律,提高学生数学建模和直观想象的能力;
3.学会运用特殊角的三角函数值解决实际问题,发展学生数学运算和数据分析的综合运用能力;
4.培养学生合作交流、自主探究的学习习惯,提高学生的团队合作意识和问题解决能力。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际测量和计算,演示特殊角三角函数值的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“特殊角的三角函数值在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
6.最后,我认识到教学过程中的评价和反馈对于学生的学习至关重要。在今后的教学中,我将更加关注学生的个体差异,给予每个学生充分的鼓励和指导,帮助他们克服学习中的困难,提高学习效果。
a.利用图像、口诀等方法加深学生记忆,如“三六九,正弦一;四六八,余弦一;五五五,正切一”;
b.通过实际例题,引导学生运用特殊角的三角函数值进行计算,从而加深记忆;
c.组织学生进行小组讨论,交流记忆方法,培养学生的合作意识和自主学习能力。
在解决实际问题时,学生可能难以建立数学模型,教师应通过以下方法引导学生:
2.在新课导入环节,通过提问方式引导学生思考生活中的实际应用,激发了学生的兴趣。但在实际操作过程中,我发现部分学生对于将理论知识与实际应用相结合仍感到困惑。为了更好地帮助学生理解,我计划在后续的教学中增加更多实际案例的分析,让学生在实际问题中感受特殊角的三角函数值的作用。
3.学生在小组讨论环节表现出较高的积极性,能够主动提出自己的观点并与小组成员进行交流。但在讨论过程中,我发现部分学生对于问题的分析仍不够深入,容易停留在表面。针对这一问题,我将在今后的教学中加强对学生的引导,提出更具启发性的问题,帮助学生深入思考。
24.3.1.2 特殊角的三角函数值 华师大版数学九年级上册教案
第2课时特殊角的三角函数值※教学目标※【知识与技能】1.熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数.2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【过程与方法】培养学生观察、比较、分析、概括的思维能力.【情感态度】经历观察、操作、归纳等学习数学过程,感受数学思考过程的合理性,感受数学说理的必要性,说理过程的严谨性,养成科学的、严谨的学习态度.【教学重点】特殊角的三角函数值.【教学难点】与特殊角的三角函数值有关的计算.※教学过程※一、复习引入在Rt△ABC中,∠C=90°,AC=1,AB=2,求∠A、∠B的三个三角函数值.回顾锐角三角函数的定义;直角三角形的性质.二、探索新知在Rt△ABC中,∠A=30°,∠C=90°,如图,试求两个锐角的三个三角函数值.解:在直角三角形中,30°角所对的直角边是斜边的一半.所以,若设30°角所对的直角边为1,即BC=1,则AB=2,由勾股定理得:AC=.由三角函数定义,得sin30°=.cos30°=.tan30°=.同理可得sin60°=,cos60°=,tan60°=.2.在Rt△ABC中,∠C=90°,∠A=∠B=45°,如图,试求45°角的三角函数值.若设AC=BC=1.则AB=.易得sin45°=,cos45°=,tan45°=1.【例1】求值:sin30°·tan30°+cos60°·tan60°.解:原式=.【例2】在Rt△ABC中,若sin A=,则cos的值是多少?解:由sin A=知A=60°.∴cos=cos30°=.三、巩固练习1.在△ABC中,若cos A=,tan B=,则此三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.用特殊角的三角函数填空:= = ;= = ;1= ;= .3.化简= .4.点M(-sin60°,cos60°)关于x轴对称的点的坐标是 .5.求下列各式的值:(1)sin260°+cos260°;(2)2cos60°+2sin30°+4tan45°;(3).6.如图,在Rt△ABC中,∠C=90°,AB=,BC=.求∠A的大小.答案:1.A 2.sin60° cos30° sin45° cos45°tan45° tan60° 3. 4.5.(1)1 (2)6 (3)6.∠A=45°四、应用拓展1.你能求出tan15°的值吗?如图,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至D,使BD=AB,则∠D=15°.设AC=k,则AB=2k,BC=k,所以CD=BC+BD=BC+AB=(2+)k,所以tan15°===2-.1.仿上面的解题方法,易求tan22.5°=-1.※课后作业※1.教材第111页习题24.3的第3题.2.若∠A、∠B是△ABC的两个内角且满足关系式=0,求∠C的度数.3.若α为锐角,且tan2α-(1+)tanα+1=0.求α的度数.。
人教版九年级下册28.1特殊角的锐角三角函数值优秀教学案例
4.利用多媒体手段,如动画、视频等,形象地展示特殊角的三角函数值的变化规律,增强学生的直观感受。
(二)问题导向
1.设计一系列具有启发性的问题,引导学生思考特殊角三角函数值的意义和作用。
2.引导学生通过实验、观察、讨论等方式,自主探究特殊角三角函数值的规律。
3.提出挑战性的问题,激发学生深入思考,提高学生解决问题的能力。
在实际教学中,我发现许多学生在学习这一部分内容时存在一定的困难,主要是由于对三角函数概念的理解不够深刻,以及对特殊角三角函数值的记忆不牢固。因此,在教学过程中,我需要针对学生的实际情况进行有针对性的教学设计,通过合理的教学方法和手段,帮助学生理解和掌握特殊角的三角函数值,提高他们的学习效果。
二、教学目标
4.采用小组合作学习的方式,培养学生团队合作的精神,提高学生的沟通表达能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习三角函数的内在动机。
2.使学生认识到特殊角三角函数值在实际生活中的应用,提高学生对数学价值的认识。
3.培养学生勇于挑战自我,克服困难的意志,增强学生的自信心。
4.引导学生树立正确的价值观,明白努力学习三角函数的重要性,为今后的学习和生活打下坚实的基础。
4.鼓励学生提出自己的疑问,培养学生敢于质疑、善于思考的良好习惯。
(三)小组合作
1.组织学生进行小组讨论,鼓励学生分享自己的观点和思考,培养学生的团队合作精神。
2.设计小组合作任务,让学生在实践中运用特殊角的三角函数值,提高学生的动手操作能力。
3.采用小组竞赛的方式,激发学生的竞争意识,提高学生的学习积极性。
九年级数学下册《特殊角的三角函数》教案、教学设计
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生的学习积极性,使其主动投入到特殊角三角函数的学习中。
2.培养学生勇于探索、善于合作的精神,使其在解决问题的过程中,体验数学学习的乐趣,增强自信心。
3.通过解决实际问题,使学生认识到数学知识在现实生活中的价值,提高学生的数学应用意识,培养其运用数学知识为社会服务的责任感。
(2)终结性评价:通过课后作业、单元测试等方式,检测学生对特殊角三角函数知识的掌握程度。
(3)个性化评价:针对学生的个体差异,给予有针对性的评价和指导,鼓励学生发挥自己的优势,提高自信心。
4.教学策略:
(1)关注学生的认知发展,由浅入深地引导学生掌握特殊角的三角函数知识。
(2)注重培养学生的数学思维能力,提高学生对特殊角三角函数性质的灵活运用。
2.知识梳理:教师帮助学生梳理特殊角三角函数的性质、计算方法以及解题技巧。
3.情感态度:教师强调数学知识在实际生活中的重要性,激发学生学习数学的兴趣和热情。
4.课后作业:布置与本节课相关的课后作业,巩固学生对特殊角三角函数知识的掌握。
五、作业布置
为了巩固学生对特殊角三角函数知识的掌握,培养其数学思维能力,特布置以下作业:
(二)过程与方法
1.通过自主探究、合作交流的方式,引导学生发现特殊角三角函数的计算规律,提高学生的观察、分析、归纳能力。
2.通过实际问题引入特殊角的三角函数,让学生体会数学知识在实际生活中的应用,培养学生的数学应用意识。
3.利用数形结合、分类讨论等数学方法,引导学生探索特殊角三角函数的性质,提高学生的逻辑思维能力和解决问题的策略。
1.基础知识巩固:
(人教版)九年级下册28-1-3特殊角三角函数值教案
难点突破方法:通过制作记忆卡片、设计三角函数值记忆游戏、绘制直角三角形示意图等方式,帮助学生记忆特殊角的三角函数值。同时,通过实际例题的讲解和练习,让学生学会如何将实际问题转化为特殊角的三角函数问题,以及如何运用特殊角三角函数值之间的关系简化计算过程。
注意:由于字数限制,上述内容并未达到2000字,但已尽量详细地列出了教学难点与重点,并在每个方面进行了举例解释。在实际教案撰写中,可以根据需要进一步拓展和细化每个点的内容。
-掌握特殊角三角函数值的记忆方法:如30°的正弦值为1/2,余弦值为√3/2;45°的正弦值和余弦值都为√2/2,正切值为1;60°的正弦值为√3/2,余弦值为1/2,正切值为√3。
-应用特殊角三角函数值解决实际问题:如计算特殊角度的正弦、余弦、正切的值,以及在直角三角形中根据一个角的度数求解其余两个角的度数或边长比例。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了特殊角三角函数值的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对特殊角三角函数值的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
最后,我意识到教学难点不仅仅在于知识的传授,更在于如何帮助学生克服心理障碍,比如对数学的恐惧和焦虑。我需要继续寻找更多有趣和富有创意的教学方法,让数学课堂变得更加生动和吸引人。
(人教版)九年级下册28-1-3特殊角三角函数值教案
一、教学内容
(人教版)九年级下册28-1-3特殊角三角函数值教案:
1.理解并掌握特殊角三角函数的定义;
2.记忆并能够熟练运用特殊角(30°、45°、60°)的正弦、余弦、正切值;
九年级数学上册《特殊角的三角函数值》教案、教学设计
3.课后反思:布置反思性作业,引导学生思考如何将所学知识运用到其他学科领域。
-作业:“请同学们思考一下,特殊角的三角函数值在其他学科领域有哪些应用?下节课我们来分享。”
五、作业布置
为了巩固学生对特殊角三角函数值的学习,提高他们的实际应用能力,特布置以下作业:
-展示图片:“请大家看这张图片,这是一座等腰直角三角形形状的建筑。如果我们知道了其中一个角的度数,如何求出其他角的度数以及边长呢?这就需要用到我们今天要学习的特殊角的三角函数值。”
3.提出问题:引导学生思考特殊角三角函数值的特点及记忆方法。
-提问:“特殊角的三角函数值有什么特点?如何记忆这些值呢?”
4.引导学生总结学习方法,形成知识体系,提高自主学习能力。
(三)情感态度与价值观
1.培养学生对数学美的感受,激发他们对数学学科的兴趣。
2.培养学生勇于探索、积极思考的精神,使他们具备解决问题的信心和能力。
3.培养学生团结协作、互帮互助的品质,增强他们的集体荣誉感。
4.引导学生认识到数学在生活中的重要作用,提高他们的数学素养。
3.鼓励学生自主完成作业,培养独立思考的能力,遇到问题时,可向同学或老师请教。
4.家长要关注学生的学习进度,适时给予指导和鼓励,共同促进学生成长。
5.教师要及时批改作业,给予反馈,关注学生的学习情况,为下一节课的教学做好准备。
二、学情分析
九年级的学生已经具备了一定的数学基础,对三角函数的概念有初步的了解。在此基础上,他们对特殊角的三角函数值的学习将更具挑战性和实际意义。学生在此阶段,抽象逻辑思维逐渐发展,具备了一定的观察、分析、归纳能力。但个体差异仍然存在,部分学生对数学学习缺乏兴趣,对特殊角三角函数值的记忆和应用能力较弱。因此,在教学过程中,应关注以下方面:
2024北师大版数学九年级下册1.2《特殊的三角函数值》教学设计
2024北师大版数学九年级下册1.2《特殊的三角函数值》教学设计一. 教材分析《特殊的三角函数值》是北师大版数学九年级下册第1.2节的内容,本节课主要让学生了解并掌握特殊角的三角函数值,包括30°、45°、60°角的正弦、余弦、正切值。
这些特殊角的三角函数值在实际生活和工作中有着广泛的应用,对于学生来说,掌握这些值能够提高他们解决实际问题的能力。
二. 学情分析九年级的学生已经学习了三角函数的基本概念,对于正弦、余弦、正切函数有一定的了解。
但是,对于特殊角的三角函数值,学生可能还没有完全掌握。
因此,在教学过程中,需要引导学生通过观察、思考、实践等方式,自主探索并掌握特殊角的三角函数值。
三. 教学目标1.知识与技能:让学生掌握30°、45°、60°角的正弦、余弦、正切值,并能运用这些值解决实际问题。
2.过程与方法:通过观察、思考、实践等方式,培养学生自主学习的能力和合作精神。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们积极思考、勇于探索的精神。
四. 教学重难点1.教学重点:掌握30°、45°、60°角的正弦、余弦、正切值。
2.教学难点:特殊角三角函数值的推导和应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生关注特殊角的三角函数值在实际生活中的应用。
2.启发式教学法:引导学生观察、思考、讨论,激发学生的学习兴趣和自主学习能力。
3.实践教学法:让学生通过动手操作,加深对特殊角三角函数值的理解。
六. 教学准备1.教学PPT:制作包含特殊角三角函数值的PPT,以便于课堂演示和讲解。
2.学习素材:准备与特殊角三角函数值相关的练习题,以便于课堂练习和巩固。
3.教学工具:准备三角板、直尺等工具,以便于学生实践操作。
七. 教学过程1.导入(5分钟)利用生活实例,如建筑工人测量高度、运动员投掷等,引导学生关注特殊角的三角函数值在实际生活中的应用。
特殊角的三角函数值教学设计
特殊角的三角函数值教学设计(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《特殊角的三角函数值》教学设计1 教学背景教材内容分析《特殊角的三角函数值》选自新人教版九年级数学下册第二十八章《锐角三角函数》。
这一课时是在学生学习了正弦函数,余弦函数和正切函数的概念后,转入对30°,45°,60°这几个特殊角的三角函数值的研究,是根据锐角三角函数的概念求几个特殊角的三角函数值,运用特殊角的三角函数值进行加、减、乘、除运算;并能根据函数值说出对应的锐角度数。
学好本节内容能使学生灵活运用锐角三角函数解决实际生活中的问题。
学生特征分析九年级的学生已经学习了正弦的概念、勾股定理的知识,且能自觉学习、能较好地完成30°、45°、60°角的三角函数值的得出。
本节课从创设问题情境出发,让学生从简单问题入手,通过复习、自主探究、得出特殊角的三角函数值,并得到应用。
2 教学目标基于以上分析,我确定本节的教学目标:1)知识技能:⑴会推导30°、45°、60°角的三角函数值;⑵熟记30°、45°、60°角的各个三角函数值;⑶会计算含有这三个特殊锐角的三角函数值的式子;⑷会由一个特殊锐角的三角函数值说出这个角的度数。
2)数学思考:加深学生对锐角三角函数的认识,了解特殊与一般的关系,并对学生进行逆向思维的训练。
3)解决问题:会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数。
4)情感态度:引导学生积极参加数学活动,增强学习数学的好奇心。
这样的教学目标,打破了传统教学方式,关注了学生的学习过程和情感体验。
根据教学目标,我又确定了本节课的教学重点和难点:重点:会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数。
初中数学练习8《特殊角的三角函数值》简案
练习8:《特殊角的三角函数值》简案一、教学目标1.掌握锐角三角形函数值及其计算方法,并能熟练运用。
2.通过自主探究、合作交流的过程,培养抽象意识,提升推理运算能力。
3.体会学习数学的乐趣。
二、教学重难点重点:掌握锐角三角形函数值及其计算方法,并能熟练运用。
难点:熟练运用锐角三角函数进行计算。
三、教学方法活动法,讨论法,练习法四、教学过程(一)复习导入带领学生复习回顾锐角三角函数的定义,以及锐角三角函数它们的正弦、余弦和正切的求法,学生回答。
提问:三角板中都有哪些锐角?这些特殊锐角三角函数值是多少呢?引入新课。
(二)新课讲授1.初步探究(活动法)拿出事先发给学生的三角尺,学生测量出三角尺的角度,确定三个特殊角:30°、45°、60°。
2.表格总结(讨论法)教师组织学生小组讨论,推导出30°、45°和60°角的三角函数值。
小组汇报,详细讲解其中一个角:预设1:学生设最短的边为1。
预设2:学生设最短边为a。
总结角度规律:从左到右加15°;45度角的三角函数;30°、60°三角函数值之间的关系。
3.应用计算(练习法)出示例题,让学生计算,多媒体出示答案,同桌之间互相纠正。
总结发现:再同一特殊角中,正弦的平方加余弦的平方等于1。
(三)巩固练习教师出示自主练习题,学生板演,老师补充评价。
(四)课堂小结知识:特殊角的三角函数值及规律。
情感:兴趣、自信心(五)布置作业作业1:完成剩余课后练习题。
作业2:学有余力的同学预习下节课的知识。
五、板书设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省漳州市常山华侨中学九年级数学《特殊角的三角函数值》 教学目标
知识与能力目标
1、 经历探索30°,45°,60°角的三角函数值的过程,能够进行有关的推理,
进一步体会三角函数的意义.
2、 会进行含有30°、45°、60°角的三角函数值的计算.
3、 能够根据30°、45°、60°的三角函数值说明相应的锐角的大小. 过程与方法目标
通过自主探索经历探索30°、45°、60°角的三角函数值的过程,发展学生观察、分析、发现的能力.培养学生把实际问题转化为数学问题的能力.
情感与价值观要求
通过数学活动,产生好奇心.培养学生独立思考问题的习惯,锻炼克服困难的意志,建立学好数学自信心.
教学重点
探索30°、45°、60°角的三角函数值; 含30°、45°、60°角的三角函数值的计算.
教学难点
运用特殊角的三角函数值解决实际问题
教学过程
(一)创设情境,引入新课
1、复习三角函数的概念
2、复习含30°、45°、60°角的直角三角形的边之间的关系,引出本堂课的课题
(二)讲授新课
观察一副三角板,一副三角板中有四个锐角,它们分别是30°、60°、45°、45°
1.探索30°、45°、60°角的三角函数值.
(1)先让学生观察含30°的三角板
思考:sin30°等于多少呢?你是怎样得到的?与同伴交流.
分析:如图所示,在Rt △ABC 中,∠A=30°,那么
sin30°= sinA =AC
BC . 我们知道“在一个直角三角形中,30°所对的直角边等于斜边的一半”,
所以BC=21AC ,即AC BC =2
1,所以sin30°=21 让学生再思考一下cos30°等于多少?tan30°呢? 分析:如图,cos30°=cosA=
AC AB 设BC=a ,则AC=a 2,根据勾股定理得AB=a 3
所以cos30°=2323=a a tan30°==AB BC 333
13==a a (2)60°角的三角函数值同样可以用以上图形,让学生仿照以上做法,试着求出sin60°, cos60°,tan60°的值.
(提问)
分析:sin60°=sinC=AC AB =2323=a a ,cos60°=cosC=AC BC =2
12=a a , tan60°=tanC==BC
AB =33=a a (3)再让学生观察含45°角的三角板,仿照以上做法,试着求出sin45°, cos45°,tan45°的值.
分析:如图,设其中一条直角边为a ,则另一条直角边也为a ,
斜边2a.由此可求得
sin45°=22212==a a ,cos45°=222
12==a a ,tan45°=1=a a [师]经过以上分析,我们已求出了30°、45°、60°角的三角函数值,现在我们把这些值列在一个表格中
这个表格中的30°、45°、60°角的三角函数值需熟记,另一方面,要能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小.
三角函数
三角函数值
角∂
sin ∂ cos ∂ tan ∂ 30° 2
1 23 33 45° 2
2 22 1 60° 2
3 21 3
介绍记忆法:1、结合推理过程记忆
2、口诀记忆:正弦分母2,分子开方1、2、3;
余弦分母2,分子开方3、2、1;
正、余相比得正切。
2、常见题型
(1)计算已知角的三角函数值
(教材P11)[例1]计算:
①sin30°+cos45°;
②sin 260°+cos 260°-tan45°.
分析:本题旨在帮助学生巩固特殊角的三角函数值,今后若无特别说明,用特殊角三
角函数值进行计算时,一般不取近似值,另外sin 260°表示 (sin60°)2,cos 260°表示
(cos60°)2.
解:①sin30°+cos45°=2212221+=+, ②sin 260°+cos 260°-tan45° =(23)2+(21)2-1=43+41-1=0. (练习:教材P12随堂练习1 请三位学生板演)
1、计算:(1)sin60°-tan45°;(2)cos60°+tan60°; (3) 2
2sin45°+sin60°-2cos45°. 解:(1)原式=23-1=223-; (2)原式=2
1+=23213+= (3)原式=
22×22+23×22;=22231-+ (2)已知三角函数值求角度
(创新P112 2)若cosA=2
3,则∠A=_______ (30°) (练习:创新P112 4)在△ABC 中,∠A 、∠B 是锐角,且cosA=
21,cosB=23,则△ABC 的形状是__________ (直角三角形)
(3)实际应用题
(教材P11)[例2]一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)
分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力.
解:根据题意(如图)
可知,∠BOD=60°,OB=OA =OD=2.5 m ,
∠AOD =21×60°=30°, ∴OC=OD ·cos30°=2.5×2
3≈2.165(m) ∴AC =2.5-2.165≈0.34(m). 所以,最高位置与最低位置的高度约为0.34m
(练习:教材P12随堂练习2)
2.某商场有一自动扶梯,其倾斜角为30°.高为7 m ,扶梯的长度是多少?
解:扶梯的长度为2
1
730sin 7=︒=14(m), 所以扶梯的长度为14m.
(三)小结
(1)30°、45°、60°角的三角函数值.
(2)能进行含30°、45°、60°角的三角函数值的计算.
(3)能根据30°、45°、60°角的三角函数值,说出相应锐角的大小.
(四)作业布置
教材P13习题1.3第1、2、4题
(五)板书设计
§1.2 30°,45°,60°角的三角函数值
1、30°,45°,60°角的三角函数值 例题1
推理过程
例题2
2、常见题型 sin ∂ cos ∂ tan ∂ 30° 21 23 3
3 45° 22 22 1 60° 23 21 3。