第1章 静力学基础

合集下载

第一章静力学基本知识

第一章静力学基本知识
链杆约束
4. 链杆约束
约束类型与实例
C A
B B
FB
FA A
二力杆约束
C
FA
A A
B
FB
B
? 受力图正确吗
双铰链刚杆约束
C
D
A
B
三、支座及支座反力 工程中将结构或构件支承在基础或另一静
止构件上的装置称为支座。支座也是约束。支 座对它所支承的构件的约束反力也称支座反力 。 建筑工程中常见的三种支座:固定铰支座 (铰链支座)、可动铰支座和固定端支座。
例1-1 重量为FW的圆球,用绳索挂于光滑墙上, 如图所示。试画出圆球的受力图。
FTA
O
O
FNB
W
W
切记:约束反力一定要与约束的类型相对应
例1-2 梁AB上作用有已知力F,梁的自重不计, A端为固定铰支座,B端为可动铰支座,如图所示 。试画出梁AB的受力图。
F
F
FAx

A
B
FAy
O
FB

F

FA
公理5告诉我们:处于平衡状态的变 形体,可用刚体静力学的平衡理论。
反之不一定成立,因对刚体平衡的充分必 要条件,对变形体是必要的但非充分的。
刚体(受压平衡) )
柔性体(受压不能平衡
课后作业 :
1-1 平衡的概念是什么?试举出一、两个物体 处于平衡状态的例子。 1-2 力的概念是什么?举例说明改变力的三要 素中任一要素都会影响力的作用效果。 1-3 二力平衡公理和作用与反作用公理的区别 是什么?
2、动荷载 是指荷载的大小、位置、方向随时间的变化而迅速变化 ,称为动荷载。如动力机械产生的荷载、地震力等
三、力系的分类

《工程力学》第一章 静力学基础及物体受力分析

《工程力学》第一章 静力学基础及物体受力分析
• 若两物体的接触面光滑,即摩擦对所研究 的问题不起主要作用而可忽略不计时,接 触面可视为“光滑”的。这种光滑接触面 约束不能阻止被约束物体沿接触面切线方 向的运动,而只能限制被约束物体沿接触 面公法线方向的运动。因此,光滑接触面 的约束反力只能是沿公法线而指向被约束 物体。这类约束反力称为法向反力,常用 字母N表示。
• 在工程实际中,为求未知约束反力,需依 据已知力应用平衡条件求解。为此,首先 要确定构件(物体)受有多少力的作用以及 各作用力的作用位置和力的方向。这个确 定分析过程称为物体的受力分析。
• 四、作用与反作用原理
• 任何二物体间相互作用的一对力总是等值、 反向、共线的,并同时分别作用在这两个 物体上。这两个力互为作用力和反作用力。 这就是作用与反作用原理。
• 五、刚化原理 • 当变形体在已知力系作用下处于平衡时,
若把变形后的变形体刚化为刚体,则其 平衡状态保持不变。这个结论称为刚化 原理。
合力,其合力作用点在同一点上,合力的方向 和大小由原两个力为邻边构成的平行四边形的 对角线决定(图1-4)。这个性质称为力的平 行四边形原理。其矢量式为
• 即合力矢R等于二分力F1和F2的矢量和。
图1-4
图1-5
• 推论:作用于刚体上三个相互平衡的力, 若其中二力作用线汇交于一点,则此三力 必在同一平面内,且第三力的作用线必定 通过汇交点。这个推论被称为三力平衡汇 交定理。
• 力对物体作用的效应取决于力的三个要素:力的大小、方向和作 用点。
• 力的作用点是指物体承受力的那个部位。两个物体间相互接触时 总占有一定的面积,力总是分布于物体接触面上各点的。当接触 面面积很小时,可近似将微小面积抽象为一个点,这个点称为力 的作用点,该作用力称为集中力;反之,当接触面积不可忽略时, 力在整个接触面上分布作用,此时的作用力称为分布力。分布力 的大小用单位面积上的力的大小来度量,称为载荷集度,用 q(N/cm2)表示。

工程力学(静力学与材料力学)-1-静力学基础

工程力学(静力学与材料力学)-1-静力学基础

力偶及其性质
力偶-最简单、最基本的力系
工程中的
力偶实例
F1
F2
1. 力偶的定义
两个力大小相等、方向相反、作用线互相平行、
但不在同一直线上,这两个力组成的力系称为力
偶(couple)。
(F,F)
力偶臂
dF F
力偶的作用面
平面力偶及其性质
m
B
F
o
dA
F’
力偶没有合力,不能用一个力来代替,也不能用一个力与之平
力偶及其性质
力偶及其性质
力偶-最简单、最基本的力系 力偶的性质 力偶系及其合成
力偶及其性质
力偶-最简单、最基本的力系
力偶及其性质
力偶-最简单、最基本的力系
工程中的力偶实例
钳工用绞杠丝锥攻螺纹时, 两手施于绞杆上的力和,如果 大小相等、方向相反,且作用 线互相平行而不重合时, 便组成一力偶 。
O
d1
d d2
F1
力和力矩
合力之矩定理
FR
n
mOFR=mOFi
i1
F2
例1 已知:如图 F、R、r, a , 求:MA(F)
解:应用合力矩定理
R Fy
F
r
a
a
Fx
M A ( F ) M A ( F x ) M A ( F y )
A
a a
M A ( F ) F x ( R r c) o F y r s sin
解 : 可以直接应用力矩公式计算力F 对O点之矩。但是,在本例的情形 下,不易计算矩心O到力F作用线的 垂直距离h。
如果将力F分解为互相垂直的
两个分力Fl和F2,二者的数值分别

F1=Fcos45

第1章 静力学基础

第1章  静力学基础

第一章静力学基础学习目标:1.理解力、刚体、约束、约束力的概念和静力学公理。

2.掌握物体受力图分析。

静力学是研究物体在力系作用下平衡规律的科学,主要解决两类问题:一是将作用在物体上的力系进行简化,即用一个简单的力系等效地替换一个复杂的力系,这类问题称为“力系的简化(或力系的合成)问题”;二是建立物体在各种力系作用下的平衡条件,这类问题称为“力系的平衡问题”。

静力学是建筑力学的基础,在土木工程实际中有着广泛的应用。

它所研究的两类问题(力系的简化和力系的平衡),对于研究物体的受力和变形都有十分重要的意义。

力在物体平衡时所表现出来的基本性质,也同样表现于物体在一般运动的情形中。

在静力学中关于力的合成、分解与力系简化的研究结果,可以直接应用于动力学。

本章将阐述静力学中的一些基本概念、静力学公理、建筑工程上常见的典型约束力与约束反力,以及物体的受力分析。

第一节基本概念一、力力的概念是人们在生活和生产实践中,通过长期的观察、分析和总结而逐步形成的。

当人们推动小车时,由于手臂肌肉的紧张和收缩而感受到了力的作用。

这种作用不仅存在于人与物体之间,而且广泛地存在于物体与物体之间,例如机车牵引车辆加速前进或者制动时,机车与车辆之间、车辆与车辆之间都有力的作用。

大量事实表明,力是物体(指广义上的物体,其中包括人)之间的相互作用,离开了物体,力就不可能存在。

力虽然看不见摸不着,但它的作用效应完全可以直接观察,或用仪器测量出来。

实际上,人们正是从力的效应来认识力本身的。

1.力的定义力是物体之间相互的机械作用。

由于力的作用,物体的机械运动状态将发生改变,同时还引起物体产生变形。

前者称为力的运动效应(或外效应);后者称为力的变形效应(或内效应)。

在本课程中,主要讨论力对物体的变形效应。

2.力的三要素实践表明,力对物体作用的效应,决定于力的大小、方向(包括方位和指向)和作用点,这三个因素称为力的三要素。

力的大小表示力对物体作用的强弱。

西安交大工程力学01静力学基础

西安交大工程力学01静力学基础
F
F
A
P B
P FNA A
B
FNB
§1-4 物体受力分析和受力图 例1-3 简易吊车的受力分析。
C FAx A FB FAy D B
D A B
FB
G
D A FA B
G
§1-4 物体受力分析和受力图
F
例1-4 三铰拱的受力分析。
C
A F C FC A B FA FC C
B
FB
§1-4 物体受力分析和受力图 例1-5 滑槽机构的受力分析。
今日作业
1-2(d) 1-3(c) 1-4(c) 1-7
§1-3 约束和约束力
b、固定铰链约束
Fx Fy
§1-3 约束和约束力
c、可动铰链约束
§1-3 约束和约束力
(4)球形铰链约束
约束结构: 由一物体的球部嵌入另一物体的球窝构成。 约束特性: 允许物体绕球心 O 转动,不能沿径向移动。 约束反力: 通过球心,方向不能预先确定,通常用三个正交 分力Fx,Fy,Fz 表示。
§1-2 静力学公理 静力学公理是人类在长期生活和生产实践中,总结 归纳出来的客观规律。 公理一、二力平衡公理
作用在一个刚体上的两个力,使刚体保持平衡的 充要条件: 二力等值、反向、共线。
F1 F 2
§1-2 静力学公理 公理二、加减平衡力系公理
在受力物体上加上或减去任 意平衡力系,不改变物体的 平衡(运动)状态。
§1-3 约束和约束力
(5)轴承约束
a、滑动轴承:
FAx
x z
FAy
A
y
b、滚动轴承: 径向轴承(向心滚子轴承) 止推轴承(向心推力轴承)
z
FAz
FAy

静力学基本知识

静力学基本知识

3、光滑圆柱铰链约束(简称铰约束) 光滑圆柱铰链约束的约束性质是限制物体平 面移动(不限制转动),其约束反力是互相垂直 的两个力(本质上是一个力),指向任意假设。
X R Y
工程上将结构或构件连接在支承物上的装置, 称为支座。在工程上常常通过支座将构件支承在 基础或另一静止的构件上。支座对构件就是一种 约束。支座对它所支承的构件的约束反力也叫支
反,作用在同一条直线上。
上述的二力平衡公理对于刚体是充分的也是 必要的,而对于变形体只是必要的,而不是充 分的。如图1.5所示的绳索的两端若受到一对大 小相等、方向相反的拉力作用可以平衡,但若 是压力就不能平衡。
受二力作用而处于平衡的杆件或构件称为 二力杆件(简称为二力杆)或二力构件。
Sc和Sb大小相等,方向相反,作用线沿两个力的作 用点连线作用在杆的两端。。
动方向相反。运用这个准则,可确定约束反力
的方向和作用点的位置。
1.柔体约束 用柔软的皮带、绳索、链条 阻碍物体运动而构成的约束叫柔
体约束。这种约束作用是将物体
拉住,且柔体约束只能受拉力, 不能受压力,所以约束反力一定 通过接触点,沿着柔体中心线背 离被约束物体的方向,且恒为拉
力,如图1.14中的力。
座反力。支座的构造是多种多样的,其具体情况
也是比较复杂的,只有加以简化,归纳成几个类 型,才便于分析计算。建筑结构的支座通常分为 固定铰支座,可动铰18(a)是固定铰支座的示意图。构件与 支座用光滑的圆柱铰链联接,构件不能产生沿任 何方向的移动,但可以绕销钉转动,可见固定铰 支座的约束反力与圆柱铰链约束相同,即约束反
但在很多情况下,都可简化为沿直线和平面均
匀分布的荷载进行分析计算。 分布荷载的合力计算
分布荷载的合力作用在分布区域的中心, 指向不变,其大小等于分布集度的大小q乘以分 布范围。

(完整版)静力学基础知识小结

(完整版)静力学基础知识小结
力矩在下列两种情况下等于零: (1)力的大小等于零; (2)力的作用线通过矩心,即力臂等于零。
力矩的量纲是[力]·[长度],在国际单位制中以 牛顿·米(N·m)为单位。
第一章 质点、刚体的基本概念和受力分析
二、平面问题中力对点的矩的解析表达式 力对点的矩的解析表达式
MO (F ) Fh Frsin( ) Frsin cos Frcos sin r cos F sin r sin F cos
设计计算一般步骤
确定对象
受力分析
用平衡条件 求未知力
第一章 质点、刚体的基本概念和受力分析
第二节 力的基本规律
一、二力的平衡条件
受两力作用的刚体,其平衡的充分必要条件是: 这两个力大小相等,方向相反,并且作用在同一直 线上。简称此两力等值﹑反向﹑共线。
F1 F2
F2
上述条件对于变形体仅是 必要条件。
FR Fz Fx
S
Fy
D
第一章 质点、刚体的基本概念和受力分析
解:取坐标系如图所示,合力FR的大小和方向为: FR Fx2 Fy2 Fz2
3002 6002 (1500)2
1643N
arccosFx 7929
FR
arccos Fy 6835
FR
arccosFFRz 15555
试计算齿轮所受的圆周力Ft﹑轴向力Fa和径向力Fr。
第一章 质点、刚体的基本概念和受力分析
解:取坐标系如图所示,使 x、y、z 三个轴分别沿齿
轮的轴向﹑圆周的切线方向和径向,先把总啮合
力 F 向 z 轴和 Oxy 坐标平面投影,分别为 FZ F sin 2828sin 200 N 967N Fn F cos 2657 N
x

静力学:第1章:静力学基础

静力学:第1章:静力学基础

Theoretical Mechanics
返回首页
§1–3 静力学公理
推论(三力汇交定理) 当刚体在三个力作用下平衡时, 当刚体在三个力作用下平衡时,设其中两力的作用线 相交于某点,则第三力的作用线必定也通过这个点。 相交于某点,则第三力的作用线必定也通过这个点。 F1 证明: A1 A A3 F3
Theoretical Mechanics
返回首页
§1–3 静力学公理
公理三(力平行四边形公理) 作用于物体上任一点的两个力可合成为作用于同一点的 作用于物体上任一点的两个力可合成为作用于同一点的 物体 一个力,即合力。 一个力,即合力。合力的矢由原两力的矢为邻边而作出的力 平行四边形的对角矢来表示。 平行四边形的对角矢来表示。 力三角形法 F2 FR FR F2 A F1 A F1 A F2 F1 FR
Theoretical Mechanics
返回首页
§1–3 静力学公理
推论 (力在刚体上的可传性) 作用于刚体上的力, 作用于刚体上的力,其作用点可以沿作用线在该刚 刚体上的力 体内前后任意移动,而不改变它对该刚体的作用 体内前后任意移动,而不改变它对该刚体的作用。
B F A
B
F1 F2
B
F1
=
F A
Theoretical Mechanics
返回首页
§1–2
1.力的定义

力是物体相互间的机械作用, 力是物体相互间的机械作用,其作用结果使 物体的形状和运动状态发生改变。 物体的形状和运动状态发生改变。 外效应—改变物体运动状态的效应。 外效应 改变物体运动状态的效应。 改变物体运动状态的效应
2. 力的效应 内效应—引起物体变形的效应。 内效应 引起物体变形的效应。 引起物体变形的效应 大小 3. 力的三要素 方向 作用点 确定力的必要因素

工程力学-第1章 静力学基础

工程力学-第1章  静力学基础

约束力的方向与它所限制物体的运动或运动趋势的方向相反,其 大小和方向是随主动力的不同而不确定,是一个未知力。
二、常见约束的类型
约束类型—把一构件与它构件的联接形式,按其限制构件运动 的特性抽象为理想化的力学类型,称为约束类型。
常见约束的约束类型—为柔体、光滑面、铰链和固定端。
值得注意的是,工程实际中的约束与约束类型有些比较相近,有 些差异很大。必须善于观察,正确认识约束类型及其应用意义。
工程力学的任务: 研究构件的受力分析、平衡规律(重 点)和运动规律(简介),以及构件的变形破坏规律。为构件 的设计和制造提供基本的理论依据和实用的计算方法。
第一章 静力学基础和受力图

一、基本概念 1.力的定义
◆ 课节1–1 静力学基础
力是物体间相互的机械作用。
2.力的三要素及表示法
B
G
F A
FN
2)固定铰支座 约束限制了构件销孔端的随意移动,不限制构 件绕圆柱销这一点的转动。
物体间相互的机械作用可以用力的符号表示。一个力的箭头符
号表示一个机械作用,相互机械作用需二个力的箭头符号。
3.力系与平衡
4.合力与分力 若一个力与一个力系等效,则称这个力为该力系 的合力,而该力系中的各力称为这个力的分力。
5. 平衡力系 一力系使物体处于平衡状态,则该力系称为平衡 力系。
二、基本公理 1.二力平衡公理 两个力使刚体平衡的必充条件是:这两个力
C
例1-1图
FA
FC
例1-2 图示结构,分析AB、BC杆的受力。
F
FB
B
BB
A
例1-2图
C A FB' FA
F 解:1.分离出AB、BC杆 2.对AB杆进行受力分析

静力学基础

静力学基础

第三节
物体的受力分析
一、约束的概念
1 自由体与非自由体 在空间各方向位移均不受限制的物体称为自由体。 2 约束与约束反力 对非自由体的某些位移起限制作用的周围物体或条件 称为约束。 约束对非自由体施加的力称为约束反力。 3 约束反力的特点 约束反力的方向总是与约束所能阻碍的物体的运动或 运动趋势的方向相反。
1、物体的受力分析:分析物体(包括物体系)受哪些力, 每个力的作用位置和方向,并画出物体的受力图。 2、力系的等效替换(或简化):用一个简单力系等效代替 一个复杂力系。 3、建立各种力系的平衡条件:建立各种力系的平衡条件, 并应用这些条件解决静力学实际问题 。 刚体:绝对不变形的物体,或物体内任意两点间的距离 不改变的物体。 平衡:物体相对惯性参考系静止或作匀速直线运动。
例1
圆柱齿轮如图,受到啮合力Fn的作用,设 Fn=1400N, 齿轮的压力角α=200,节圆半径,r=60mm,试计算力 Fn对轴心O的力矩。
解: 1)直接法:由力矩定义求解
M o ( Fn ) Fn h Fn r cos
2)合力矩定理
将力Fn分解为切向力Ft和法(径) 向力Fr,即
约束特点: 由上面构件1或2 之一与地面或机架固定而成。
约束力:与圆柱铰链相同
以上三种约束(经向轴承、光滑圆柱铰链、固定 铰链支座)其约束特性相同,均为轴与孔的配合 问题,都可称作光滑圆柱铰链。
5 固定端约束
• 通常将固定端约束反力画成两个正交分力和一 个约束反力偶。
三、力学模型的受力分析
在受力图上应画出所有力,主动力和约束力(被动力)
约 束 力
大小——待定 方向——与该约束所能阻碍的位移方向相反 作用点——接触处
二、常见工程约束的力学模型 1 、由柔软的绳索、胶带或链条等构成的约束

静力学基础

静力学基础

F
A
C
B
第1章
方法一
FAy
A
C
FAx
物体的受力分析和受力图
例题2
解: 1.取梁AB为研究对象,解除约束。
2.画主动力,即外力F
F
B 3.画约束力,即 FB 、FAx 、FAy
FB
FA
A
F
B
C
方法二
FB
第1章
物体的受力分析和受力图
例题3
如图所示的三铰拱桥,
F
由左右两拱桥铰接而成。 设各拱桥的自重不计, 在拱上作用有载荷F,试 分别画出左拱和右拱的 受力图。
1.1.4 集中力和分布力 ❖ 集中力 作用范围与体积相比很小可近似 地看作一个点时的作用力称为集中力。
❖ 分布力(分布载荷) 作用在一定长度、一定面积或一定体积
上的力称为分布力或分布载荷。
第1章
力的基本概念及其性质
❖ 均布力(均布载荷)
力均匀地分布在某一段长度、某一 个面或某一个体积上时,称为均布力或均布 载荷,用q表示。
机械设计基础
李海萍
1
第1章
第1章 静力学基础
静力学研究的问题: ❖ 力系的简化 ❖ 力系的等效替换 ❖ 力系的平衡条件
2
第1章
第1章 静力学基础
静力学的任务: 研究物体在力系作用下的平衡条
件,并由平衡条件解决工程实际问题。
3
第1章
第1章 静力学基础
本章要点:
❖ 静力学的基本概念 ❖ 静力学公理 ❖ 常见的典型约束、约束力 ❖ 物体的受力分析
第1章
1.2 约束和约束力
❖ 约束
限制被约束体运动的周围物体。
❖ 被约束体

静力学基础

静力学基础

第1章静力学基础静力学是研究物体在力系作用下的平衡规律的科学。

物体处于平衡状态是自然界中普遍存在的现象,也是机械运动的特殊情况。

对于平衡状态的研究自然离不开对物体的受力分析。

静力学部分主要解决三类问题:一是对物体进行受力分析,分析某个物体共受几个力,以及每个力的作用位置和方向,并绘制物体受力图;二是对作用在物体上的力系进行简化,在保持对物体作用原来力系作用效果不变的情况下,用最简单的力系作用形式代替原来较为复杂力系的作用;三是研究各种力系的平衡规律,分析作用在物体上的各种力系平衡时所需满足的条件。

工程实际中,静力学问题有着广泛的应用,是设计结构、构件和机械零件时静力分析计算的基础,同时也是力学分析的基础。

1-1 静力学的基本概念1. 力与力系的概念人们通过长期的生产劳动和科学实践,建立了力的概念。

力是物体间相互的机械作用,这种作用使物体的机械运动状态发生变化,或者使物体发生变形。

例如,人对小车施加一推力,推动小车由静止状态开始运动;房屋结构的横梁在载荷的作用下发生微小的弯曲变形等。

物体受力后产生的效应表现在两个方面:使物体的运动状态发生变化的作用效应,称为力的外效应;而使物体发生变形的效应,则称为力的内效应。

理论力学主要研究物体力使物体的外效应,材料力学则研究力使物体的内效应。

实践证明,力对物体的作用效果,取决于力的大小、方向和作用点,通常被称为力的三要素。

在力的三个要素中,只要改变其中一个,也就改变了力的效应。

为了完整表示力的效应,力必须用矢量表示,而且为定位矢量(有时若只与作用线相关时,可以表示为滑动矢量)。

画图时要把其三个要素完整表示出来,例如沿水平地面推一小车(图1-1),作用在小车B点处有一个推力F,画图时要在作用点处做一有向线段,其方向与力的作用方向一致,有向线段的长度按照比例表示力的大小,线段的起点或终点表示力的作用点,力所沿的直线称为力的作用线。

本书中用黑体字母表示矢量,字母不加黑表示力的大小(矢量的模)。

工程力学:第1章 静力学基础

工程力学:第1章 静力学基础
公理1 二力平衡公理
作用于刚体上的两个力,使刚体平衡的必要与充分条件是:
这两个力大小相等 | F1 | = | F2 | 方向相反 F1 = –F2
作用线共线, 作用于同一个物体上。
6
说明:①对刚体来说,上面的条件是充要的 ②对变形体来说,上面的条件只是必要条件(或多体中)
③二力体:只在两个力作用下平衡的刚体叫二力体。 二力杆
14
(2)二次投影法
已知力与z轴正向交角为 , 则在xOy面上投影大小:
Fxy F sin 在z轴上投影: Fz F cos
若 Fxy 与x轴正向交角为 ,则
Fx F sin cos Fy F sin sin
注意: 力在坐标轴上的投影是代数量,
应特别注意它的正负号。
15
z
能否用投影表达力矢量?
∴ 三力 F1 , F2 , F3 必汇交,且共面。 公理4 作用力和反作用力定律
等值、反向、共线、异体、且同时存在。 [例] 吊灯
10
公理5 刚化原理
变形体在某一力系作用下处于平衡,如将此变形体变成 刚体(刚化为刚体),则平衡状态保持不变。
公理5告诉我们:处于平衡 状态的变形体,可用刚体静 力学的平衡理论。
11力的投影ຫໍສະໝຸດ 一、力在轴上的投影F
F
x
B A
在x轴上的投影
x
B
A
投影 Fx F cos
Fx F cos
若x轴单位向量为 i 则: Fx F i →标量
12
问题:力的分解与力的投影有何不同?
Fn
Fn
n
F
F
n
F
τ
分解
τ
F
投影
二、力在平面上的投影

第1章 静力学基础知识

第1章 静力学基础知识
2.力的效应
外效应 :物体运动状态发生变化 理论力学
内效应 :物体发生变形
例 如:力可以使汽车运动(外效应); 也可以 使球、梁发生变形(内效应)。
材料力学
3.力的三要素 大小、方向、作用点
力是矢量.
4.力的单位 牛顿 N KN
5.力在平面上的投影 力矢在某平面上的投影,等于力的模乘以力与 投影轴正向夹角的余弦。
理论力学 – 静力学
几个基本概念
刚体:在力的作用下,其内部任意两点间的距离始终保 持不变的物体.
平衡:物体相对惯性参考系(如地面)静止或作匀速 直线运动.
静力学:研究物体在力作用下的平衡规律。
第一章 静力学基础知识
§1-1 静力学基本概念
一、力
1.定义 力是物体间的相互机械作用,这种作用使物
体的形态或者运动状态发生变化。
推理1 力的可传性
作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一 点,并不改变该力对刚体的作用。
作用在刚体上的力是滑动矢量,力的三要素为大小、方向和作用 线.
推理2 三力平衡汇交定理
作用于刚体上三个相互平衡的力,若其中两个力的作 用线汇交于一点,则此三力必在同一平面内,且第三个力 的作用线通过汇交点。
2、空间力对点的矩 ——力矩矢 三要素:
(1)大小:力 F与力臂的乘积 (2)方向:转动方向 (3)作用面:力矩作用面.
r r rr MO(F) r F
r rr r r r r r
r xi yj zk
r r rr
r
F
r
Fxri
Fy j
r
Fzk
r
r
MO(F) (r F) (xi yj zk )(Fxi Fy j Fzk )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F = Fx i + Fy j + Fz k
Theoretical Mechanics
返回首页
1.1 力与力的投影
1.1.2 力的投影
已知力F在直角坐标轴上的三个投影, 其大小和方向分别为
F Fx2 Fy2 Fz2
cos Fx , cos Fy , cos Fz
F
mO(F) 2ΔOAB mz (F ) 2 Δ Oab
OABcos Oab
式中为两三角形平
面之间的夹角,即 mO(F)与z轴之夹角。
Theoretical Mechanics
返回首页
1.2 力矩与力偶
1.2.4 伐里农定理(合力矩定理)
作用于同一点的两个力的合力对一点(或轴) 之矩等于这两个分力对同一点(或轴)之矩 的矢量和(或代数和)。这一结论称为伐里 农定理或合力矩定理。
力F 对z轴之矩可由三角 形Oab面积的两倍表示
mz (F ) Fxyh 2Oab
当力与轴平行(Fxy = 0) 或相交时(h = 0),力对轴
之矩等于零。
Theoretical Mechanics
返回首页
1.2 力矩与力偶
力F 对O点之矩: 矢径 r 与力F 的矢积 其大小为 MO(F) = r×F
力F2在各坐标轴上的投影:
F2x F2 cos 60 100 N
F2 y F2 cos30 100 3N
F2z 0
F3x F3 cos30sin 45 75 6N
力F3在各坐标轴上的投影: F3y F3 cos30cos45 75 6N
Theoretical Mechanics
返回首页
引言
两类基本问题
力系的简化: 物体在力系作用下的平衡条件。 力系的平衡条件:物体平衡时,作用于物体 上的一群力(称为力系)必须满足的条件。 平衡力系:平衡时的力系。
Theoretical Mechanics
ቤተ መጻሕፍቲ ባይዱ
返回首页
引言
静力学公理
静力学的理论体系是在此基础上建立起来的
F
F
Theoretical Mechanics
返回首页
1.1 力与力的投影
1.1.3 力的投影和力的分解
将力F 沿直角坐标轴方向分解
F = Fx + Fy + Fz 力F 沿直角坐标轴分量与在相应轴上投影有
Fx = Fx i,,Fy = Fy j,Fz = Fz k
值得注意:以上各式是在直角坐标系中推导的, 在非直角坐标系中并不成立。力在轴上的投影是一 个重要的概念,应用投影的概念,可将力的合成由 几何运算转换为代数运算。
1.2.2 力对点之矩
MO(F) r F Frsin α Fh 2ΔOAB
在直角坐标系Oxyz中,矢径r = xi + yj + zk,力F = Fxi +Fyj +Fzk。力对点之矩的矢积表达式可写为行列式形式
i jk
MO (F) x y z Fx Fy Fz
M O (F ) ( yFz zFy )i (zFx xFz ) j (xFy yFx )k
1.3 约束与约束力 柔软、不可伸长的约束物体
1.3.1 柔性体约束
特点 :只能承受拉力,不能承受压力 约束力是沿其中心线的拉力
FP
FP
Theoretical Mechanics
返回首页
1.3 约束与约束力
1.3.2 光滑面约束
光滑面约束: 与物体相接触的是另一物体的光滑表面
特点:作用在接触处;沿接触处的公法线指向物体
返回首页
1.1 力与力的投影
1.1.2 力的投影
力在轴上的投影:力与该投影轴单位矢量的标量积
Fe F e
直角坐标系Oxyz的单位矢量为i、j、k,力F在各轴上投影
1. 直接投影法
Fx F i F cos Fy F j F cos
Fz F k F cos
趋势的方向相反 作用点:在约束与被约束物体的接触点
Theoretical Mechanics
返回首页
1.3 约束与约束力
约束的分类
柔性体约束
{ 光滑面约束
单面约束 双面约束
{ 中间柱铰链
光滑圆柱形铰链约束 固定柱铰链支座
滚动柱铰链支座
链杆约束
Theoretical Mechanics
返回首页
MO(FR) = MO(F1) + MO(F2)
Mz(FR) = Mz(F1) + Mz(F2)
Theoretical Mechanics
返回首页
1.2 力矩与力偶
1.2.5 力偶
大小相等、方向相反、作用线平行但不重合的两个力 称为力偶。
二力作用线所决定的平面称为力偶的作用平面,两作 用线的垂直距离d 称为力偶臂。
Theoretical Mechanics
返回首页
引言
静力学公理
公理三(加减平衡力系公理) 在作用于 刚体上的任何一个力系上,加上或减去任一 平衡力系,并不改变原力系对刚体的作用效 应。
Theoretical Mechanics
返回首页
引言
静力学公理
公理四(作用与反作用定律) 两物体间相 互作用的力,总是大小相等、方向相反、沿同 一直线,分别作用在相互作用的两个物体上。
Theoretical Mechanics
返回首页
第1章 静力学基础
1.1 力与力的投影
Theoretical Mechanics
返回首页
1.1 力与力的投影
力是物体之间的相互机械作用 力是定位矢量,用有向线段表示
1.1.1 力的概念
有向线段长度代表力的大小 线段的方位和指向代表力的方向 线段的起点表示力的作用点 用黑体大写字母F表示力矢量 用白体字母F表示力的大小。 在国际单位制中,力的单位为牛顿(N)
第一篇 静力学
Theoretical Mechanics
第1章 静力学基础
制作与设计 贾启芬 刘习军 郝淑英
返回总目录
第一篇 静力学
引言
研究物体在力作用下平衡规律的科学 刚体:即在任何情况下变形可以忽略不计的物体。 平衡:物体相对于某一惯性参考系(地面可近似地 看成是惯性参考系)保持静止或作匀速直线运动的状 态。
Theoretical Mechanics
返回首页
1.1 力与力的投影
例题
例1-1 图中a = b = 3 m,c = 2 m。力F1 = 100N,F2 = 200N, F3 = 300N,方向如图。求各力在三个坐标轴上的投影。
解:力F1在各坐标轴上的投影: F1x 0, F1y 0, F1z F1 100 N
Theoretical Mechanics
F3z F3 sin 30 150N
返回首页
第1章 静力学基础 1.2 力矩与力偶
Theoretical Mechanics
返回首页
1.2 力矩与力偶
1.2.1 力对轴之矩
力对轴之矩:力对轴之矩是代数量,它的大小等于力在垂 直于轴的平面上的投影与此投影至轴的距离的乘积,它的正 负号则由右手螺旋规则来确定。
力偶的等效和性质
在图中空间任取一点O,则A、B两点 的矢径,用rA、rB表示, rBA = rA – rB。
力偶对O点之矩
MO(F,F ') = MO (F) + MO (F ') = rA×F + rB×F ' = (rA – rB)×F = rBA×F
Theoretical Mechanics
所以 MO (F, F')=M
Theoretical Mechanics
返回首页
引言
静力学公理
公理五(刚化公理) 变形体受已知力作用而 成平衡状态,若将该物体变成刚体(刚化),则 平衡状态不受影响。
Theoretical Mechanics
返回首页
第1章 静力学基础
目录
1.1 力与力的投影 1.2 力矩与力偶 1.3 约束与约束力 1.4 物体的受力分析和受力图
MO(F) = Mz(F) = ±Fh = ±2△OAB
在平面问题中,力对点之矩为代数量,一般规定 逆时针为正,顺时针为负。
Theoretical Mechanics
返回首页
1.2 力矩与力偶
1.2.3 力对点之矩与力对过该点的轴之矩的关系
力对点之矩在过该点任意轴上的投影等于力对该 轴之矩,这一关系称为力矩关系定理。
公理一(力的平行四边形法则) 作用于物 体某一点的两个力的合力,亦作用于同一点上, 其大小及方向可由这两个力所构成的平行四边 形的对角线来表示。
Theoretical Mechanics
返回首页
引言
静力学公理
公理二 (二力平衡公理) 作用于刚体上的 两个力平衡的必要和充分条件是:这两力大小 相等,方向相反,并作用于同一直线上。
Theoretical Mechanics
返回首页
1.1 力与力的投影
1.1.1 力的概念
力的分类
{ 集中力
按力的相互作用的范围分为 分布力
水池池底所受的 水压力为均布力; 侧壁所受的水压 力是按三角形规 律分布的分布力.
分布力的集度 q lim F L0 L
Theoretical Mechanics
设过任一点O之直角坐标轴为x、y、z,
M M
x (F ) y (F )

yFz zFx

zFy xFz

M z (F ) xFy yFx
相关文档
最新文档