职高数学常用公式

合集下载

职校高中数学知识点总结及公式大全

职校高中数学知识点总结及公式大全

职校高中数学知识点总结及公式大全全文共四篇示例,供读者参考第一篇示例:职校高中数学知识点总结及公式大全一、初等代数1. 二项式定理(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a b^(n-1) + C(n,n)b^n2. 多项式的加减乘除运算多项式加减法:合并同类项多项式乘法:展开式,按每一项分配展开多项式除法:长除法或者直接使用因式分解3. 一元二次方程一元二次方程的一般形式为ax^2 + bx + c = 0求根公式:x = (-b ± 根号(b^2 - 4ac)) / 2a判别式:Δ = b^2 - 4ac根的情况:Δ > 0,有两个不相等的实根Δ = 0,有两个相等的实根Δ < 0,无实数根4. 不等式解不等式的方法与解方程式类似,但需要注意不等式号的方向常见的不等式:线性不等式、一元二次不等式不等式的解集写法:用数轴表示或者写成区间形式5. 函数函数的定义:对于每个元素x,存在唯一的元素y 与之对应函数的图像:以y 轴为对称轴的曲线常见函数:一次函数、二次函数、指数函数、对数函数、三角函数二、平面几何1. 几何基本定理射影定理:两平行线被一截线相交,所成的两对对应角相等全等三角形的判定:SSS、SAS、ASA、AAS、HL相似三角形的判定:AA、SSS、SAS比例定理正弦定理:a/sinA = b/sinB = c/sinC余弦定理:c^2 = a^2 + b^2 - 2ab cosC2. 圆圆的相关性质:半径、直径、周长、面积圆的弦、割、切切线与半径的垂直性:切线与半径垂直于接触点圆内角的性质:内切圆、外切圆4. 向量向量的表示:用一个有向线段或者坐标表示向量的模:|a| = √(a1^2 + a2^2)向量的运算:加减法、数量积、向量积5. 空间几何点、直线、平面在空间中的位置关系直线和平面的交点及夹角平行线和垂直线的性质空间几何问题的解决方法第二篇示例:职校高中数学知识点总结在职校的高中数学课程中,学生将会接触到许多重要的数学知识点和公式。

职中数学公式总结大全

职中数学公式总结大全

职中数学公式总结大全数学是一门基础学科,在职中数学中,我们会接触到很多重要的数学公式。

这些公式在求解数学问题和建立数学模型中起着重要的作用。

以下是职中数学公式的一个总结大全:一、代数部分1. 二次方程的根公式:对于一元二次方程ax^2+bx+c=0,它的根可以由以下公式求得:x = (-b ± sqrt(b^2-4ac))/2a,其中sqrt表示开平方根。

2. 指数函数的性质:a^m * a^n = a^(m+n),(a^m)^n = a^(m*n),a^(-m) = 1/(a^m),(ab)^m = a^m * b^m。

3. 对数函数的性质:a^log_a(x) = x,log_a(a^x) = x,log_a(xy) = log_a(x) + log_a(y),log_a(x/y) = log_a(x) - log_a(y)。

4. 等差数列的通项公式:对于一个等差数列,其第n项可以由以下公式求得:a_n = a_1 + (n-1)d,其中a_1为首项,d为公差。

5. 等比数列的通项公式:对于一个等比数列,其第n项可以由以下公式求得:a_n = a_1 * r^(n-1),其中a_1为首项,r为公比。

二、几何部分1. 直角三角形的勾股定理:在直角三角形中,三边满足 a^2 + b^2 = c^2,其中a和b分别为两条直角边的长度,c为斜边的长度。

2. 正弦定理:在任意三角形ABC中,三边长度为a,b,c,对应的角分别为A,B,C,满足以下关系:a/sin(A) = b/sin(B) = c/sin(C)。

3. 余弦定理:在任意三角形ABC中,三边长度为a,b,c,对应的角分别为A,B,C,满足以下关系:c^2 = a^2 + b^2 - 2ab*cos(C)。

4. 面积公式:矩形的面积公式为 S = l * w,三角形的面积公式为 S = 1/2 * b * h,其中l和w分别为矩形的长和宽,b和h分别为三角形的底和高。

中职数学公式大全总结

中职数学公式大全总结

中职数学公式大全总结中职数学公式大全总结1、三角形的面积公式:S=1/2 × a × b ×sin C2、圆柱体体积公式:V = r2 × h × π3、球体的表面积公式:S=4πr^24、圆的面积公式:S=πr^25、椭圆的面积公式:S=π × a × b6、平面向量内积公式:a•b= |a||b|cos<a,b>7、圆段面积公式:S=1/2 × R2 ×2θ8、矩形面积公式:S=a × b9、正多边形面积公式:S=1/2 × a2 ×sin(2π/n )10、梯形面积公式:S= 1/2 × (a+b) × h11、等边三角形面积公式:S=a2/4 × √312、平行四边形面积公式:S=a × b ×sin C13、三维空间两向量夹角公式: cos<a,b>= a•b/|a||b|14、切线斜率公式:k=1/tan α15、三角函数的基本关系公式:sin2α+cos2α=116、边长关系公式:a2=b2+c2-2bc cosA17、余弦定理公式:a2=b2+c2-2bc cosA18、角平分线公式:tanα/2=√(1/2-cosα/1+cosα)19、平面角平分线公式:1/tanα/2=1-cosα/1+cosα20、椭圆长轴短轴公式:a2-b2=e221、内切圆半径公式:r=abc/(4s)22、外切圆半径公式:R=abc/(4S-a)23、法线方程公式:nx+ny+c=024、贝塞尔曲线参数方程公式:(x-x0)^2+(y-y0)^2=(x0x1)^2+(y0y1)^225、中心弦长公式:2R sin (1/2α)26、中心角公式:α=2sin-1(2R/2a)27、等差数列求和公式:Sn= n/2 ×(a1+an)28、等比数列求和公式:Sn=a1(1-qn)/1-q29、等分被积函数求定积分公式:∫f(x)dx=1/n × (f(a1)+f(an))30、双曲线椭圆方程: x2/a2-y2/b2=131、积分计算公式:∫f(x) dx = Rf(x) + C32、利用抛物线方程计算公式:x=Vt+1/2at233、发散函数求和公式:∑a(n) = a+2a2 + 3a3 + …… + n an以上就是中职数学的一些常用公式汇总,熟练掌握这些公式,可以帮助中职生们更好地解决数学难题,提高学习效率,提高考试分数。

中职数学常用公式及常用结论大全

中职数学常用公式及常用结论大全

中职数学常用公式及常用结论大全一、基本运算公式1.加法公式:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²-(a+b)(a-b)=a²-b²2.乘法公式:- (a + b) · (c + d) = ac + ad + bc + bd- (a - b) · (c - d) = ac - ad - bc + bd- (a + b)² = a² + 2ab + b²3.除法公式:-(a+b)/c=a/c+b/c4.平方公式:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²二、代数公式1.因式分解公式:-a²-b²=(a+b)(a-b)- a³ + b³ = (a + b)(a² - ab + b²)- a³ - b³ = (a - b)(a² + ab + b²)2.二次方程公式:- 一元二次方程: ax² + bx + c = 0根的求法:x = (-b ± √(b² - 4ac))/(2a)- 二项式平方公式:(a + b)² = a² + 2ab +b²- 二项式差平方公式:(a - b)² = a² - 2ab + b²三、几何公式1.周长和面积:-正方形:周长P=4a,面积S=a²- 长方形:周长P = 2(a + b),面积S = ab- 三角形:周长P = a + b + c,面积S = 1/2bh-圆形:周长C=2πr,面积S=πr²2.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c² = a² + b² - 2abcosC- 正切公式:tanA = sinA/cosA3.三角恒等式:- sin²A + cos²A = 1- 1 + tan²A = sec²A- 1 + cot²A = csc²A四、概率统计公式1.期望公式:-离散型随机变量:E(X)=Σx·P(x)- 连续型随机变量:E(X) = ∫xf(x)dx2.方差公式:-离散型随机变量:D(X)=Σ(x-E(X))²·P(x)- 连续型随机变量:D(X) = ∫(x - E(X))²f(x)dx 3.二项分布公式:-P(x)=C(n,x)·pˣ·(1-p)^(n-x)4.正太分布公式:-P(x)=1/√(2πσ²)·e^(-(x-μ)²/(2σ²))五、常用结论1.公倍数与公约数:-两数的最小公倍数=两数的乘积/最大公约数-两数的最大公约数=两数的乘积/最小公倍数2.平行线与三角形:-平行线截割等腰直角三角形得到的两个三角形相似-平行线截割等腰三角形得到的两个三角形相似3.三角形中位线和中心线:-三角形的中位线交于一点,分割成6个全等的小三角形-三角形的中心线交于一点。

职高数学常用公式大全

职高数学常用公式大全

职高数学常用公式大全高数学是一门具有挑战性的学科,它不仅要求学生掌握大量的知识点,而且还要求学生熟练掌握一系列的公式,以便解决复杂的数学问题。

下面介绍一些高数学中常用的公式,以便帮助学生更好地复高数学知识。

1. 二次根公式:解二次方程 ax2+bx+c=0,其中a≠0,则x1,x2的值为:x1=(-b+√(b2-4ac))/2ax2=(-b-√(b2-4ac))/2a2. 一元n次方程的解:解一元n次方程P(x)=0,则其根为:x1,x2,x3…xn=x1+x2+x3+…+xn=(-b±√(b2-4ac))/2a3. 一元二次方程的解:解一元二次方程ax2+bx+c=0,其中a≠0,则x的值为:x1= -b/2a,x2= -c/a二、三角公式:1. 余弦定理:已知三角形ABC,a、b、c分别为角A,B,C所对的边,则有:a2=b2+c2-2bc cosA2. 正弦定理:已知三角形ABC,a、b、c分别为角A,B,C所对的边,则有:a/sinA=b/sinB=c/sinC3. 海伦公式:已知三角形ABC,a、b、c分别为角A,B,C所对的边,则有:s=(a+b+c)/2,面积S=√(s(s-a)(s-b)(s-c))三、微积分公式:1. 高斯积分公式:已知函数f(x)在区间[a,b]上可导,则有:∫f(x)dx=(f(a)+f(b))/2∫f'(x)dx2. 错切公式:已知函数f(x)在区间[a,b]上可导,则有:∫f(x)dx=∫f(x+Δx)dx-∫f(x)dx=f'(x)Δx3. 极限公式:已知函数f(x)在区间[a,b]上可导,则有:lim(x→a+)(f(x)-f(a))/x=f'(a)以上就是高数学中常用的一些公式,它们可以帮助学生更好地掌握和理解高数学知识,更好地解决复杂的数学问题。

职高高考数学公式大全

职高高考数学公式大全

第 1 页 共 10 页1部分公式识记:1、解绝对值不等式:a a a -<>⇔>(...)(...)(...)或a a a <<-⇔<(...)(...) 0>a2、三角形3、4、的面积公式:A bc B ac C ab S sin 21sin 21sin 21===3、函数c bx ax y ++=2的最大值(或最小值):当a b x 2-=时,abac y 442-=最大(或最小) 4、组合数公式:m n m n m nC C C 11+-=+、mn nm n C C -= 5、三角函数的定义:r y =αsin ,r x =αcos ,xy =αtan ,其中22y x r +=。

6、正弦定理:CcB b A a sin sin sin ==,余弦定理:⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 7、在三角形ABC 中,c b a C B A ::sin :sin :sin = 8、)sin(cos sin 22ϕωωω++=+x b a x b x a ,最大值为22b a +,最小值为22b a +-,最小正周期:ωπ2=T9、等差数列的性质:d n m a a n m )(-=-,如d a a 325=- 10、和角差角公式:)sin(sin cos cos sin βαβαβα±=± )cos(sin sin cos cos βαβαβα±= 11、倍角公式:αααcos sin 22sin =ααα22sin 211cos 22cos -=-=12、⇔>0sin θθ是第一或第二象限的角,⇔<0sin θθ是第三或第四象限的角;⇔>0cos θθ是第一或第四象限的角,⇔<0cos θθ是第二或第三象限的角; ⇔>0tan θθ是第一或第三象限的角,⇔<0tan θθ是第二或第四象限的角 13、特殊角的三角函数值:2130sin =︒ 2245sin =︒ 2360sin =︒ 2330cos =︒ 2245cos =︒ 2160cos =︒21150sin =︒ 22135sin =︒ 23120sin =︒ 23150cos -=︒ 22135cos -=︒ 21120cos -=︒知识点回顾第一部分:集合与不等式【知识点】1、集合A 有n 个元素,则集合A 的子集有n 2个,真子集有12-n 个,非空真子集有22-n 个;2、充分条件、必要条件、充要条件:(1)p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件如 p :(x+2)(x-3)=0 q :x=3∴q ⇒p ,q 为p 的充分条件,p 为q 的必要条件 (2)q p ⇒且p q ⇒,则p 是q 的充要条件,q 也是p 的充要条件 3、一元二次不等式的解法:若a 和b 分别是方程0))((=--b x a x 的两根,且a b <,则如:()()2303x x x -->⇒>或2x <, 0)3)(2(<--x x ⇒23x << 口诀:大于两边分(大于大的根,小于小的根),小于中间夹。

中职数学常用公式及常用结论大全

中职数学常用公式及常用结论大全

中职数学常用公式及常用结论大全一、代数运算常用公式:1. 平方差公式:(a + b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²2.完全平方公式:a²-b²=(a+b)(a-b)3. 二次方程求根公式:对于二次方程ax² + bx + c = 0 (a ≠ 0),其解为 x = [-b ± √(b² - 4ac)] / (2a)4. 一元二次方程因式分解公式:ax² + bx + c = a(x - α)(x - β),其中α和β是方程的两个根。

二、几何公式和结论:1.圆的周长公式:C=2πr,其中C为圆的周长,r为半径。

2.圆的面积公式:A=πr²,其中A为圆的面积,r为半径。

3.直角三角形勾股定理:a²+b²=c²,其中c为斜边,a和b为两条边。

4.等腰三角形底边中线和高的关系:底边中线的长度等于等腰三角形的高。

5.平行四边形面积公式:A=底边×高,其中A为面积,底边为底边的长度,高为平行于底边的线段的长度。

三、函数与方程常用公式:1.直线的斜率公式:斜率m=(y₂-y₁)/(x₂-x₁),其中P₁(x₁,y₁)和P₂(x₂,y₂)为直线上的两个点。

2. 一次函数的一般式方程:y = kx + b,其中k为斜率,b为y轴截距。

3. 二次函数顶点坐标公式:对于二次函数y = ax² + bx + c,其顶点坐标为(-b/2a, -(b² - 4ac)/4a)。

4. 一元一次方程求解公式:对于一元一次方程ax + b = 0,其解为x = -b/a。

四、概率与统计常用公式:1.随机事件的概率公式:P(A)=n(A)/n(S),其中P(A)为事件A发生的概率,n(A)为事件A发生的次数,n(S)为样本空间中的总次数。

职中数学公式总结大全

职中数学公式总结大全

职中数学公式总结大全1.代数公式:- 二次方程求根公式: 对于二次方程a某^2 + b某 + c = 0,解的公式为某 = (-b ± √(b^2 - 4ac))/(2a)。

- 因式分解公式: 根据巴斯卡定理和二项式定理,可以将多项式进行因式分解,如(a+b)^2 = a^2 + 2ab + b^2。

- 平方差公式: (a+b)(a-b) = a^2 - b^2,(a+b)^2 - (a-b)^2 =4ab。

- 三角函数公式:例如sin(a+b) = sin(a)cos(b) + cos(a)sin(b),cos^2(a) + sin^2(a) = 1等。

2.几何公式:-直角三角形的勾股定理:对于直角三角形,边长分别为a、b,斜边长为c,满足a^2+b^2=c^2。

-圆的面积和周长公式:圆的面积为πr^2,周长为2πr,其中r为半径。

- 三角形面积公式: 三角形的面积可以通过海伦公式或两边夹角的正弦公式计算,如S = 1/2ab某sin(c),其中a、b为两边长,c为两边夹角。

-直线方程:直线方程可以用点斜式、截距式或一般式表示。

3.概率公式:-计算概率公式:概率P=事件发生的次数/总次数。

-互斥事件概率公式:对于互斥事件A、B,概率P(A∪B)=P(A)+P(B)。

-条件概率公式:对于事件A和事件B,P(A,B)=P(A∩B)/P(B)。

-乘法定理:对于两个独立事件A和B,P(A∩B)=P(A)某P(B)。

4.统计公式:-平均数公式:平均数=总和/数量。

-方差公式:方差是指每个数据与均值之差的平方的平均数。

-标准差公式:标准差是方差的平方根。

-正态分布公式:正态分布可以由概率密度函数表示,公式为f(某)=(1/√(2πσ^2))某e某p(-(某-μ)^2/(2σ^2)),其中μ为均值,σ为标准差。

以上只是一些常见的职中数学公式的总结,仅包含了一小部分,实际应用中还有很多其他公式。

在数学学习和工作中,熟练掌握这些公式对于解题和计算非常有帮助。

中职数学知识点总结及公式大全

中职数学知识点总结及公式大全

中职数学知识点总结及公式大全一、集合。

1. 集合的概念。

- 集合是由确定的元素组成的总体。

例如,一个班级的所有学生可以组成一个集合。

- 元素与集合的关系:属于(∈)和不属于(∉)。

如果a是集合A中的元素,就说a∈ A;如果a不是集合A中的元素,就说a∉ A。

2. 集合的表示方法。

- 列举法:把集合中的元素一一列举出来,写在大括号内。

例如A = {1,2,3}。

- 描述法:用确定的条件表示某些对象是否属于这个集合。

例如B={xx >0,x∈ R},表示所有大于0的实数组成的集合。

3. 集合间的基本关系。

- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(或B⊇ A)。

- 真子集:如果A⊆ B,且B中至少有一个元素不属于A,那么A是B的真子集,记作A⊂neqq B。

- 相等:如果A⊆ B且B⊆ A,那么A = B。

4. 集合的运算。

- 交集:A∩ B={xx∈ A且x∈ B}。

例如A = {1,2,3},B={2,3,4},则A∩ B = {2,3}。

- 并集:A∪ B={xx∈ A或x∈ B}。

对于上面的A和B,A∪ B={1,2,3,4}。

- 补集:设U是全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。

二、不等式。

1. 不等式的基本性质。

- 对称性:如果a > b,那么b < a;如果b < a,那么a > b。

- 传递性:如果a > b,b > c,那么a > c。

- 加法单调性:如果a > b,那么a + c>b + c。

- 乘法单调性:如果a > b,c>0,那么ac > bc;如果a > b,c < 0,那么ac < bc。

2. 一元一次不等式。

- 一般形式为ax + b>0(a≠0)或ax + b < 0(a≠0)。

- 求解步骤:移项、合并同类项、系数化为1。

职校高中数学知识点总结及公式大全

职校高中数学知识点总结及公式大全

职校高中数学知识点总结及公式大全数学是职业院校高中阶段的基础课程,对于培养学生的逻辑思维、解决问题能力具有重要意义。

本文对职校高中数学的主要知识点进行总结,并提供公式大全,以帮助同学们更好地掌握这门学科。

一、职校高中数学知识点总结1.实数与函数- 实数的概念、性质及分类- 函数的概念、性质、图像及分类- 一次函数、二次函数、指数函数、对数函数等基本初等函数2.方程与不等式- 一元一次方程、一元二次方程、不等式的解法- 系数与根的关系、根的判别式- 不等式的性质、解法及应用3.几何- 平面几何:点、线、面的基本性质,三角形、四边形、圆的性质及计算- 解析几何:坐标系、点、直线、圆的方程,距离、斜率、中点、交点等概念- 空间几何:立体图形的性质、计算及相互关系4.统计与概率- 数据的收集、整理、表示、分析- 概率的基本概念、计算方法及应用- 统计量、频率分布、概率分布等二、职校高中数学公式大全1.实数公式- 平方根、立方根、n次方根- 绝对值、相反数、倒数- 分数、百分数、比例、比例尺2.函数公式- 一次函数:y=kx+b- 二次函数:y=ax^2+bx+c- 指数函数:y=a^x- 对数函数:y=log_a(x)3.方程与不等式公式- 一元一次方程:ax+b=0- 一元二次方程:ax^2+bx+c=0- 不等式:ax+b>c、ax+b<c、ax+b≥c、ax+b≤c 4.几何公式- 平面几何:- 三角形面积:S=1/2ab sin C- 四边形面积:S=1/2(d1+d2)h- 圆的面积:S=πr^2- 解析几何:- 点到直线的距离:d=|ax1+by1+c|/√(a^2+b^2)- 两直线交点:x=(b1*c2-b2*c1)/(a1*b2-a2*b1),y=(a1*c2-a2*c1)/(a1*b2-a2*b1)- 空间几何:- 立方体体积:V=a^3- 球体积:V=4/3πr^35.统计与概率公式- 平均数:mean=Σx_i/n- 方差:variance=Σ(x_i-mean)^2/n- 标准差:standard deviation=√variance- 概率:P(A)=n(A)/n(S)通过以上知识点总结及公式大全,相信同学们能够更好地掌握职校高中数学知识,为未来的学习打下坚实基础。

中职数学公式大全

中职数学公式大全

中职数学公式大全1.基本运算法则:-加法法则:a+b=b+a-减法法则:a-b≠b-a-乘法法则:a×b=b×a-除法法则:a÷b≠b÷a-结合律:(a+b)+c=a+(b+c)-分配律:a×(b+c)=a×b+a×c2.整数运算:-整数的加法:a+b=c-整数的减法:a-b=c-整数的乘法:a×b=c-整数的除法:a÷b=c3.分数运算:-分数的加法:a/b+c/d=e/f-分数的减法:a/b-c/d=e/f-分数的乘法:a/b×c/d=e/f-分数的除法:a/b÷c/d=e/f4.代数运算:- 一元一次方程:ax + b = 0- 一元二次方程:ax^2 + bx + c = 0-二次根式:√a,其中a为非负数-平方根:√a=b,其中b为满足b^2=a的数-根式的运算:a√b+c√d=e√f-指数运算:a^b,其中a为底数,b为指数- 对数运算:loga(b),其中a为底数,b为真数5.平面几何:-长方形的面积:A=l×w,其中l为长,w为宽-正方形的面积:A=s^2,其中s为边长-圆的面积:A=πr^2,其中π为圆周率,r为半径- 三角形的面积:A = 1/2bh,其中b为底,h为高-梯形的面积:A=1/2(a+b)h,其中a、b为上底和下底的长度,h为高6.空间几何:- 立方体的体积:V = lwh,其中l、w、h为长、宽、高-圆柱体的体积:V=πr^2h,其中π为圆周率,r为底圆半径,h为高-锥体的体积:V=1/3πr^2h,其中π为圆周率,r为底圆半径-球的体积:V=4/3πr^3,其中π为圆周率,r为半径7.概率统计:-简单事件的概率:P(A)=m/n,其中A为事件,m为A发生的情况数,n为总的可能情况数-加法原理:P(A∪B)=P(A)+P(B)-P(A∩B),其中A、B为两个不相交的事件-乘法原理:P(A∩B)=P(A)×P(B,A),其中A、B为两个事件,P(B,A)表示在A发生的条件下B发生的概率以上是中职数学常见的运算和公式,其中涵盖了基本的数学运算、代数运算、几何运算和概率统计等内容。

职高数学公式整理

职高数学公式整理

公式一、集合实数集R 空集 ∅ 有理数集Q 自然数集N 正整数集*N 整数集 Z交集:{}B ∈A ∈=B ⋂A χχχ且 并集:{}B ∈A ∈=B ⋃A χχχ或补集:{}A ∉∈=A χχχ且U C U充分条件:条件p ⇒结论q必要条件:条件p ⇐结论q 充要条件:条件p ⇔结论q三、函数 )(x f =γ函数奇偶性奇函数:设函数的定义域为数集D ,如果对于任意的,都有D x ∈-且)()(x f x f -=-,那么函数)(x f 叫做奇函数。

偶函数:设函数的定义域为数集D ,如果对于任意的,都有D x ∈-且)()(x f x f =-,那么函数)(x f 叫做偶函数。

不具有奇偶性的函数叫做非奇非偶函数。

四、指数函数与对数函数分式指数幂:n mnm a a= nmnm aa1=-实数指数幂:qp qpa a a +=⋅ ()pq qpa a = ()p p pb a ab ⋅=幂函数:)(R x ∈=αγα指数函数:)10(≠>=a a a x且γ 性质:1)函数的定义域为R ,域值为()∞+,0; 2)当0=x 时,函数值1=y ;3)当()()内是减函数。

时,函数在内是增函数,当时,函数在+∞∞-<<+∞∞->,10,1a a对数:b N N a a b=⇔=log性质:1)01log =a 2)1log =a a 3)0>N ,即零和负数没有对数 常用对数:N N lg log 10简记为自然对数:以无理数e (e=2.71928……)为底的对数,N N e ln log 简记为 积、商、幂的对数:)0,0(lg lg )lg(>>+=N M N M MN N M NMlg lg lg-= M n M n lg lg = 对数函数:x y a log = 性质:1)函数的定义域为()∞+,0,域值为R ; 2)当1=x 时,函数值0=y ;3)当()()内是减函数。

职高数学公式

职高数学公式

职高数学公式数学公式是数学中重要的工具和语言,它们帮助我们理解和解决各种数学问题。

在职业高中的数学课程中,我们学习了许多数学公式,这些公式在我们的学习和工作中起着重要的作用。

在本文中,我们将介绍几个常用的职高数学公式,并解释它们的含义和应用。

第一个数学公式是勾股定理。

这个公式是由古希腊数学家毕达哥拉斯提出的,它表达的是直角三角形斜边的长度与两条直角边长度的关系。

它的数学表达式是a² + b² = c²,其中a和b是直角边的长度,c是斜边的长度。

勾股定理在测量距离、计算斜边长度等问题中经常被使用,它帮助我们了解直角三角形的性质,解决实际应用问题。

第二个数学公式是二次函数的顶点公式。

二次函数是一个具有平滑曲线的函数,它的一般形式是f(x) = ax² + bx + c,其中a、b和c是常数。

二次函数的顶点公式是一个重要的工具,可以帮助我们找到二次函数的顶点坐标。

顶点公式的数学表达式是x = -b/2a,其中x是顶点的横坐标。

通过顶点公式,我们可以更好地理解二次函数的图像,分析函数的最值和对称性等问题。

第三个数学公式是概率的计算公式。

概率是研究随机事件发生可能性的数学分支。

在职业高中的统计学课程中,我们学习了概率的基础知识和计算方法。

概率的计算公式包括加法法则、乘法法则和条件概率公式等。

加法法则用于计算多个事件的概率之和,乘法法则用于计算多个事件同时发生的概率,条件概率公式用于计算在某一条件下事件发生的概率。

概率的计算公式帮助我们分析和解决与概率相关的问题,比如赌博、投资和风险评估等。

第四个数学公式是函数的导数公式。

函数的导数是函数变化率的度量,它在微积分中起着重要的作用。

函数的导数公式包括常数函数的导数公式、幂函数的导数公式、指数函数的导数公式和对数函数的导数公式等。

函数的导数可以用于求解函数的极值、判断函数的增减性和绘制函数的图像等问题。

函数的导数公式是解决微积分问题的基础工具,它帮助我们了解函数的变化规律和性质。

职高高考数学公式(最全)

职高高考数学公式(最全)

职高高考数学公式预备知识:(必会)1. 相反数、绝对值、分数的运算2. 因式分解(1) ∆十字相乘法 如:)2)(13(2532-+=--x x x x(2) 两根法 如:)251)(251(12--+-=--x x x x 3. ∆配方法 如:825)41(23222-+=-+x x x 4. 分数(分式)的运算5. 一元一次方程、一元二次方程、二元一次方程组的解法 (1) 代入法 (2) 消元法6。

完全平方和(差)公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+- 7。

平方差公式:))((22b a b a b a -+=-8。

立方和(差)公式:))((2233b ab a b a b a +-+=+))((2233b ab a b a b a ++-=-9. ∆注:所有的公式中凡含有“=”的,注意把公式反过来运用.第一章 集合1. 构成集合的元素必须满足三要素:确定性、互异性、无序性.2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。

注:∆描述法 },|取值范围元素性质元素{⋯∈⋯=x x x ;另重点类型如:}{]3,1(,13|y 2-∈+-=x x x y 3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、*N (正整数集)、+Z (正整数集) 4. 元素与集合、集合与集合之间的关系: (1) 元素与集合是“∈”与“∉"的关系。

(2) 集合与集合是“⊆” “”“="“⊆/”的关系.注:(1)空集是任何集合的子集,任何非空集合的真子集。

(做题时多考虑φ是否满足题意) (2)一个集合含有n 个元素,则它的子集有n2个,真子集有12-n个,非空真子集有22-n个。

5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1)}|{B x A x x B A ∈∈=且 :A 与B 的公共元素(相同元素)组成的集合(2)}|{B x A x x B A ∈∈=或 :A 与B 的所有元素组成的集合(相同元素只写一次). (3)A C U :U 中元素去掉A 中元素剩下的元素组成的集合. 注:B C A C B A C U U U =)( B C A C B A C U U U =)( 6. 会用文氏图表示相应的集合,会将相应的集合画在文氏图上。

高职高考数学知识点公式

高职高考数学知识点公式

高职高考数学知识点公式一、函数与方程1. 一元一次方程公式一元一次方程是指一个未知数的一次方程,可以表示为ax+b=0的形式,其中a和b为已知数,x为未知数。

该方程的解可以使用以下公式求出:x=-b/a。

2. 一元二次方程公式一元二次方程是指一个未知数的二次方程,可以表示为ax^2+bx+c=0的形式,其中a、b和c为已知数,x为未知数。

可以使用求根公式来解这种方程:x=(-b±√(b^2-4ac))/(2a)。

其中,±表示两个解,√表示对一个数开平方。

3. 线性函数斜率公式线性函数表示为y=kx+b的形式,其中k为斜率,b为截距。

斜率表示函数曲线的倾斜程度,可以使用以下公式计算:k=(y2-y1)/(x2-x1)。

其中,(x1, y1)和(x2, y2)为直线上的两个点的坐标。

4. 二次函数顶点公式二次函数表示为y=ax^2+bx+c的形式,其中a、b和c为已知数。

顶点是二次函数曲线的最高点或最低点,在求解最值问题时经常用到。

可以使用以下公式计算二次函数的顶点坐标:xv=-b/(2a),yv=f(xv)。

5. 指数函数与对数函数公式指数函数表示为y=a^x的形式,其中a为底数,x为指数。

对数函数是指数函数的反函数,表示为y=loga(x)的形式。

两者之间有以下的等价关系:a^x=y 等价于 x=loga(y)。

二、平面几何1. 直角三角形勾股定理直角三角形是指其中一个角为90度的三角形。

勾股定理是直角三角形中最基本的定理之一,可以用于计算三角形的边长。

它的公式表达为a^2+b^2=c^2,其中a、b和c分别表示直角三角形的两条直角边和斜边。

2. 三角形面积公式三角形是平面几何中最常见的形状之一,可以使用以下公式计算三角形的面积:S=1/2×底×高。

其中,底表示三角形的底边长度,高表示从底边到对应顶点的垂直距离。

3. 圆的面积和周长公式圆是平面几何中的一个重要概念,可以使用以下公式计算圆的面积和周长。

职高数学公式

职高数学公式

职高数学公式一次函数的一般式:\[y=ax+b\]一次函数的斜率公式:\[a=\frac{{y_2-y_1}}{{x_2-x_1}}\]一次函数的截距公式:\[b=y_1-ax_1\]一次函数的解析式:\[y=ax+b\]二次函数的一般式:\[y=ax^2+bx+c\]二次函数顶点坐标:\[(h, k)\]二次函数的顶点坐标公式:\[h=-\frac{b}{2a}\] 和 \[k=f(h)=-\frac{D}{4a}\]二次函数的判别式:\[D=b^2-4ac\]二次函数的解析式:\[y=ax^2+bx+c\]指数函数:\[y=a^x\]对数函数:\[y=\log_a(x)\]三角函数:\[y=\sin(x), y=\cos(x), y=\tan(x)\]正弦定理:\[\frac{a}{\sin(A)}=\frac{b}{\sin(B)}=\frac{c}{\sin(C)}\]余弦定理:\[a^2=b^2+c^2-2bc\cos(A)\]正切定理:\[\frac{a-b}{a+b}=\frac{\tan(\frac{A-B}{2})}{\tan(\frac{A+B}{2})}\]勾股定理:\[c^2=a^2+b^2\]射影定理:\[\frac{AD}{AB}=\frac{CD}{CB}\]平行线性质:对于平行线BC和DE:\[\frac{AB}{CD}=\frac{AC}{CE}=\frac{BC}{DE}\]相似三角形性质:对于相似三角形ABC和DEF:\[\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}=\frac{K_{ABC}}{K_ {DEF}}\]正方形的周长公式:\[P=4a\]正方形的面积公式:\[A=a^2\]长方形的周长公式:\[P=2(a+b)\]长方形的面积公式:\[A=ab\]圆的周长公式:\[C=2\pi r\]圆的面积公式:\[A=\pi r^2\]圆柱体的表面积公式:\[S=2\pi rh+2\pi r^2\]圆柱体的体积公式:\[V=\pi r^2h\]球体的表面积公式:\[S=4\pi r^2\]球体的体积公式:\[V=\frac{4}{3}\pi r^3\]直角三角形中,两直角边的平方和等于斜边的平方:\[a^2+b^2=c^2\] 等边三角形中,所有边长相等:\[a=b=c\]等腰三角形中,两边相等的角度也相等:\[\angle A=\angle B\]正多边形中,所有边长和角度相等:\[n\angle A=360°\]。

职高数学概念公式

职高数学概念公式

职高数学概念公式1.几何概念和公式-长方形:周长P=2(l+w),面积A=l×w-正方形:周长P=4s,面积A=s^2-圆:周长C=2πr,面积A=πr^2-三角形:面积A=0.5×b×h,其中b是底边的长度,h是对应的高-直角三角形:勾股定理a^2+b^2=c^2,其中c是斜边的长度-平行四边形:面积A=b×h,其中b是底边的长度,h是对应的高-梯形:面积A=0.5×(a+b)×h,其中a和b是上下底边的长度,h是对应的高2.代数概念和公式-相反数:两个数的和为0,则它们互为相反数-绝对值:一个数与0的距离-平方:一个数的平方等于该数乘以自身,即a^2=a×a-立方:一个数的立方等于该数乘以自身两次,即a^3=a×a×a-公式:一种用字母和符号表示的数学关系式- 一次方程:形如 ax + b = 0 的方程,其中 a 和 b 是已知数,x 是未知数- 二次方程:形如 ax^2 + bx + c = 0 的方程,其中 a、b 和 c 是已知数,x 是未知数-因式分解:将一个多项式表示为若干个因子的乘积的过程-根式:形如√a的表达式,表示使得x^2=a的解x-比例:两个数之间的相对大小关系-百分数:以百分号%表示的分数,表示每一百份中的几分之几-方程组:包含多个方程的集合3.概率与统计概念和公式-事件:一次试验的结果-样本空间:所有可能结果的集合-概率:一些事件发生的可能性,用P(A)表示-互斥事件:两个事件不能同时发生-独立事件:两个事件发生与否互不影响-随机变量:对应样本空间到实数集上的映射-期望:随机变量的平均值,记为E(X)- 方差:随机变量离期望的平均距离的平方,记为 Var(X)-正态分布:一种连续型概率分布,均值为μ,标准差为σ-中心极限定理:大量独立同分布变量之和的分布收敛于正态分布这些只是职高数学中的一小部分概念和公式,但它们是在日常生活和工作中经常会用到的基本数学知识。

职高数学公式总结大全

职高数学公式总结大全

职高数学公式总结大全一、集合。

1. 集合的基本运算。

- 交集:A∩ B = {xx∈ A且x∈ B}- 并集:A∪ B={xx∈ A或x∈ B}- 补集:设U为全集,∁_U A={xx∈ U且x∉ A}2. 集合元素个数关系(容斥原理)- n(A∪ B)=n(A)+n(B)-n(A∩ B)二、函数。

1. 一次函数y = kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)(两点(x_1,y_1),(x_2,y_2)在直线上)- 当b = 0时,y=kx为正比例函数。

2. 二次函数y=ax^2+bx + c(a≠0)- 顶点坐标(-(b)/(2a),(4ac - b^2)/(4a))- 对称轴方程x = -(b)/(2a)- 判别式Δ=b^2 - 4ac,当Δ>0时,方程ax^2+bx + c = 0有两个不同实根;当Δ = 0时,有两个相同实根;当Δ<0时,无实根。

3. 函数的单调性。

- 设x_1,x_2∈ D(函数y = f(x)的定义域),且x_1。

- 如果f(x_1),则y = f(x)在区间D上是增函数;如果f(x_1)>f(x_2),则y = f(x)在区间D上是减函数。

4. 函数的奇偶性。

- 对于函数y = f(x),如果对于定义域内任意x,都有f(-x)=f(x),则y = f(x)是偶函数,其图象关于y轴对称;如果f(-x)= - f(x),则y = f(x)是奇函数,其图象关于原点对称。

三、三角函数。

1. 弧度制与角度制的换算。

- 180^∘=π弧度,所以1^∘=(π)/(180)弧度,1弧度=frac{180^∘}{π}。

2. 三角函数定义(在单位圆中)- 设角α终边上一点P(x,y),r=√(x^2 + y^2),则sinα=(y)/(r),cosα=(x)/(r),tanα=(y)/(x)(x≠0)。

3. 同角三角函数的基本关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中常用数学公式一、集合与解不等式集合(能够确定的对象的全体)1、含n 个元素的集合的所有子集有n 2个,真子集有n 2-1个,非空真子集有n 2-2个。

2、正整数集N + ,自然数集N ,整数集Z ,有理数集Q ,实数集R 。

3、元素与集合关系的符号是,属于∈或不属于∉4、集合与集合关系的符号是:⊆(含于)≠⊂(真含于) 空集∅解不等式﹡1、一元二次不等式:),,0(21两根是对应一元二次方程的x x a >﹡2、分式不等式: ⑴0>++dcx b ax ⇔0))((>++d cx b ax⑵0≥++d cx b ax ⇔⎩⎨⎧≠+≥++00))((d cx d cx b ax ⑶0<++dcx bax ⇔0))((<++d cx b ax⑷0≤++dcx bax ⇔⎩⎨⎧≠+≤++00))((d cx d cx b ax ﹡3、绝对值不等式:( c > 0 )⑴cb ax <+||⇔c b ax c <+<- ⑵c b ax >+||⇔c b ax c b ax >+-<+或 ⑶c b ax ≤+||⇔c b ax c ≤+≤- ⑷c b ax ≥+||⇔c b ax c b ax ≥+-≤+或二、函数部分1、 几种常见函数的定义域 ⑴整式形式:⎩⎨⎧++=+=c bx ax x f b ax x f 2)()(一元二次函数:一元一次函数:定义域为R 。

﹡⑵分式形式:)()()(x g x f x F =要求分母0)(≠x g 不为零 ﹡⑶二次根式形式:)()(x f x F =要求被开方数0)(≥x f⑷指数函数:)10(≠>=a a a y x 且,定义域为R﹡⑸对数函数:)10(log ≠>=a a x y a 且,定义域为(0,+∞) 对数形式的函数:)(log x f y a =,要求0)(>x f ⑹三角函数:⎪⎪⎩⎪⎪⎨⎧∈+≠===},2||{tan cos sin Z k k x x x y R x y R x y ππ的定义域为正切函数:的定义域为余弦函数:的定义域为正弦函数: ⑺几种形式综合在一起的,求定义域即在求满足条件的各式解集的交集。

2、常见函数求值域⑴一次函数b ax x f +=)(:值域为R ﹡⑵一元二次函数)0()(2≠++=a c bx ax x f :⎪⎪⎩⎪⎪⎨⎧-≤<-≥>}44|{0}44|{022a b ac y y a a b ac y y a 时,值域为当时,值域为当 ﹡⑶形如函数)0()(≠+++=d cx dcx b ax x f 的值域:}|{c a y y ≠,(其中a 为分子中x 的系数,b 为分母中x 的系数);⑷指数函数:)10(≠>=a a a y x 且值域为(0,+∞) ⑸对数函数:)10(log ≠>=a a x y a 且,值域为R ⑹三角函数:⎪⎩⎪⎨⎧=-=*-=*R x y x y x y 的值域为正切函数:,的值域为余弦函数:,的值域为正弦函数:tan ]11[cos ]11[sin ﹡函数)sin(φω+=x A y 的值域为[-A,A] 3、函数的性质 ﹡ ⑴奇偶性①⎩⎨⎧=--=-轴对称图像关于偶函数图像关于原点对称奇函数:y x f x f x f x f ),()(:),()(②判断或证明奇偶函数的步骤:第一步:求函数的定义域,判断是否关于原点对称第二步:如果定义域不关于原点对称,则为非奇非偶函数;如果对称,则求)(x f -第三步:若)()(x f x f -=-,则函数为奇函数 若)()(x f x f =-,则函数为偶函数 ﹡⑵单调性①判断或证明函数为单调增、减函数的步骤:第一步:在给定区间(如果没给定,一定要先求函数的定义域)内任取1x 、2x 且1x <2x 。

第二步:做差)()(21x f x f -变形整理;第三步:⎩⎨⎧<->-,为增函数,为减函数0)()(0)()(2121x f x f x f x f ②几种常见函数形式的单调区间: 一次函数b ax x f +=)(:⎩⎨⎧∞+∞<∞+∞>)上单调递减,时,在(当)上单调递增,时,在(当-0a -0a二次函数)0()(2≠++=a c bx ax x f :⎪⎩⎪⎨⎧+∞∞<+∞∞>上单调递减。

在上单调递增时,在(当上单调递增;在(上单调递减,时,在(当),2a b -(,)2a b -,-0a ),2a b -,)2a b --0a 指数函数)10(≠>=a a a y x 且⎩⎨⎧∞+∞<<+∞-∞>)上单调递减,,在(上单调递增,在-10),(1a a对数函数)10(log ≠>=a a x y a 且⎩⎨⎧∞+<<+∞>)上单调递减,,在(上单调递增,在010),0(1a a⑶周期性(主要针对三角函数)﹡①⎪⎩⎪⎨⎧===πππ的最小正周期为正切函数:的最小正周期为余弦函数:的最小正周期为正弦函数:x y x y x y tan 2cos 2sin﹡②函数)sin(φω+=x A y 的最小正周期ωπ2=T﹡三、指数部分与对数部分常用公式1、指数部分:⑴有理指数幂的运算法则:①s r s ra a a+=⋅②sr s r a a ⋅=)( ③r r r b a b a ⋅=⋅)(⑵分数指数幂与根式形式的互化: ① nmnm a a= ② nmnm aa1=-)1*,(>∈n N n m 且、⑶一些其它结论:①10=a ② a a n n =)( ③ ⎩⎨⎧=为偶数,当为奇数当n a n a a nn ||,2、对数部分:⑴1log =a a ;⑵01log =a ;⑶对数恒等式:N aNa =log 。

⑷N M N M a a a log log )(log +=⋅ ⑸N M NMa a a log log )(log -=; ⑹ M p M a pa log log =⑺换底公式:aba b b c c a lg lg log log log == ﹡四、三角部分公式1、弧度与角度⑴换算公式:1800=π,10=180πrad 1rad=π180≈57018'=57.300⑵弧长、圆心角与半径之间关系式:Rl=||α(在这里 α为弧度,l 为弧长,R 为半径)2、角α终边经过点P ),(y x ,22y x r +=,则 r y =αsin ,r x =αcos ,xy =αtan3、三角函数在各象限的正负情况:4、同角函数基本关系式:5、简化公式:①⎪⎩⎪⎨⎧-=-=--=-ααααααtan )tan(cos )cos(sin )sin( ②⎪⎩⎪⎨⎧-=-=--=-ααπααπααπtan )2tan(cos )2cos(sin )2sin( ③⎪⎩⎪⎨⎧-=--=-=-ααπααπααπtan )tan(cos )cos(sin )sin( ④ ⎪⎩⎪⎨⎧=+-=+-=+ααπααπααπtan )tan(cos )cos(sin )sin(⑤⎪⎩⎪⎨⎧=+=+=+ααπααπααπtan )2tan(cos )2cos(sin )2sin(k k k (k Z ∈)⑥⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-ααπααπααπcot )2tan(sin )2cos(cos )2sin(6、两角和与差的正弦、余弦、正切: ⑴两角和与差的正弦:βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin cos cos sin )sin(-=-⑵两角和与差的余弦:βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-7、二倍角公式:⑴二倍角的正弦:αααcos sin 22sin =⑵二倍角的余弦:ααα22sin cos 2cos -== α2sin 21-= 1cos 22-α8、解斜三角形:⑴余弦定理:A bc c b a cos 2222-+=;bcac b A 2cos 222-+=B ac c a b cos 2222-+=;acb c a B 2cos 222-+=C ab b a c cos 2222-+=;acc b a C 2cos 222-+=⑵正弦定理:CcB b A a sin sin sin ==五、几何部分1、 向量⑴几何形式的运算:①⎩⎨⎧=+=+C A D A B A CA CB B A ρρρρρρ平行四边形法则:三角形法则:加法: ②B C C A B A ρρρ=-减法:三角形法则③⎪⎩⎪⎨⎧⋅=<=⋅==⋅=>=||||||,000,0||||||,0a a a a a a a a a a a ρρρρρρρρρρρρλλλλλλλλλλλ反向,与当当同向,与当数乘向量: ④向量的数量积:θcos ||||⋅⋅=⋅b a b a ρρρρ(其中θ为两个向量的夹角)﹡ ⑵代数方式的运算:设),(21a a a =ρ,)(2,1b b b =ρ,①加法:),(2211b a b a b a ++=+ρρ②减法:),(2211b a b a b a --=-ρρ③数乘向量:),(21a a a λλλ=ρ④向量的数量积:2211b a b a b a +=⋅ρρ(结果为实数)⑶两个向量平行与垂直的判定:设),(21a a a =ρ,)(2,1b b b =ρ,①平行的判定:a ρ∥b ρ⇔a b ρρλ=⇔1221b a b a =②垂直的判定:a ρ⊥b ρ⇔0=⋅b a ρρ⇔02211=+b a b a⑷其它公式:设),(21a a a =ρ,)(2,1b b b =ρ①向量的长度:2221||a a a +=ρ﹡②设),(),,(2211y x B y x A ,则),(1212y y x x B A --=ρ;|212212)()(|y y x x B A -+-=ρ﹡③设),(),,(2211y x B y x A ,则线段AB 的中点M 的坐标为M )2,2(2121y y x x ++ ﹡④两个向量的夹角为θ,则222122212211||||cos b b a a b a b a b a ba +++=⋅=ρρρρθ⑤平移公式:图形F 上点P (x,y )对应平移后的图形'F 上的点),('''y x P 平移向量),('k h P P =ρ,则⎩⎨⎧+=+=ky y h x x ''2、 直线部分⑴斜率公式:①)为直线的倾斜角,090(tan ≠=αααk②)(211212x x x x y y k ≠--=⑵直线方程的形式:① 点斜式:)(00x x k y y -=- (k 为斜率,),(00y x 为直线过的点);② 斜截式:b kx y +=(k 为斜率,b 为直线在y 轴上的截距); ③ 一般式:)0(0≠=++A C By Ax (斜率BCb B A k -=-=,) ⑶两条直线平行或垂直的条件:① 两条直线斜率为21,k k ,且不重合则1l ∥2l ⇔21k k = ② 两条直线的斜率为21,k k ,则1l ⊥2l ⇔121-=⋅k k ⑷两条直线的夹角公式(设夹角为θ): ①21k k =时,1l ∥2l ,夹角θ=00; ②121-=⋅k k 时,1l ⊥2l ,则夹角θ=900; ③|1|tan 2121k k k k +-=θ(121-≠⋅k k )⑷点),(00y x 到直线0=++C By Ax 的距离公式: ||2200B A CBy Ax d +++=⑸两平行线0:11=++C By Ax l 与0:22=++C By Ax l 间距离 ||2221BA C C d ++= 3、圆部分⑴圆的方程:① 标准方程:222)()(r b y a x =-+-(其中圆心为),(b a ,半径为r ) ② 一般方程:022=++++F Ey Dx y x (其中圆心为)2,2(ED --,半径为2422FE D r -+=)⑵直线与圆的位置关系相交,相切,相离。

相关文档
最新文档