圆周运动中绳模型和杆模型的一般解析

合集下载

竖直面内的圆周运动(解析版)

竖直面内的圆周运动(解析版)

竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。

2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。

物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。

小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。

G =10 m/s 2。

求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。

这是最小速度即是过最高点的临界速度v 0。

以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。

绳杆模型

绳杆模型

圆周运动中绳模型和杆模型的一般解析
一:绳模型:若已不可伸长的绳子长L,其一端栓有一质量m的小球(可看成质点)。

现使绳子拉着小球绕一点O做匀速圆周运动,则(1)小球恰好通过最高点的速度v。

(2)当能通过最高点时,绳子拉F。

解:(1)小球恰能通过最高点的临界条件是绳子没有拉力,
则对小球研究,其只受重力mg作用,
故,由其做圆周运动得: mg=mv2/L
故v=√(gL )
(2)由分析得,当小球到最高点时速度v’﹥v=√(gl)时,
则,F=mv’2 /L-mg
而,当v’<v=√(gL)时,那么小球重力mg大于其所需向心力,因此小球做向心运动。

二:杆模型:若一硬质轻杆长L,其一端有一质量m 的小球(可看成质点)。

现使杆和小球绕一点O做匀速圆周运动,

(1)小球恰好通过最高点的速度v。

(2)当能通过最高点时,杆对小球的作用力F。

解:(1)因为杆具有不可弯曲不可伸长的性质,所以小球在最高点,当速度为0时,恰好能通过。

(2)①由绳模型可知,当小球通过最高点速度v=√(gL)
时,恰好有绳子拉力为0,则同理可知,当杆拉小球到最高点时,若小球速度v=√(gL)时,小球所需向心力恰好等于重力mg,故,此时杆对小球没有作用力。

②当小球通过最高点时速度v>√(gL)时,则小球所需向心力比重力mg,所以此时杆对小球表现为拉力,使小球不至于做离心运动故对小球有,F+mg=mv2 /L ③同理,当小球通过最高点时速度v<√(gL)时,则小球所需向心力小于重力mg,所以此时小球对杆有压力作用,有牛顿第三定律得,杆对小球表现为支持力作用,故对小球有,
mg-F=mv2/L。

高中物理:物体在竖直面内的圆周运动

高中物理:物体在竖直面内的圆周运动

1、轻绳或细杆作用下物体在竖直面内的圆周运动(1)轻杆作用下的运动如图所示,杆长为L,杆的一端固定一质量为m的小球,杆的质量忽略不计,整个系统绕杆的另一端在竖直平面内做圆周运动,小球在最高点A时,若杆与小球m之间无相互作用力,那么小球做圆周运动的向心力仅由重力提供:得=,由此可得小球在最高点时有以下几种情况:当=0时,杆对球的支持力F N = mg,此为过最高点的临界条件。

②当=时,,=0③当0<<时,m g>>0且仍为支持力,越大越小④当>时,>0,且为指向圆心的拉力,越大越大(2)细绳约束或圆轨道约束下的运动:如图所示为没有支撑的小球(细绳约束、外侧轨道约束下)在竖直平面内做圆周运动过最高点时的情况。

①当,即当==时,为小球恰好过最高点的临界速度。

②当<,即>=时(绳、轨道对小球还需产生拉力和压力),小球能过最高点③当>,即<=时,小球不能通过最高点,实际上小球还没有到达最高点就已经脱离了圆周轨道。

竖直面内的圆周运动一般不是匀速圆周运动,而是变速圆周运动,此时由物体受到的合力沿半径方向的分力来提供向心力,一般只研究最高点和最低点,此情况下,经常出现临界状态,应注意:(1)绳模型:临界条件为物体在最高点时拉力为零(2)杆模型:临界条件为物体在最高点时速度为零例1、一根绳子系着一个盛水的杯子,演员抡起绳子,杯子就在竖直面内做圆周运动,到最高点时,杯口朝下,但杯中的水并不流出来,如图所示,为什么呢?解析:对杯中水,当=时,即=时,杯中水恰不流出,若转速增大,<时,>时,杯中水还有远离圆心的趋势,水当然不会流出,此时杯底对水有压力,即N+=,N=-;而如果>,<时,水会流出。

例2、如图所示,轻杆OA长l=0.5m,在A端固定一小球,小球质量m=0.5kg,以O点为轴使小球在竖直平面内做圆周运动,当小球到达最高点时,小球的速度大小为=0.4m/s,求在此位置时杆对小球的作用力。

(g取10 m/s 2)解法一:先判断小球在最高位置时,杆对小球有无作用力,若有作用力,判断作用力方向如何小球所需向心力==0.5×=0.16 N小球受重力=0.5×10=5 N重力大于所需向心力,所以杆对小球有竖直向上的作用力F,为支持力以竖直向下为正方向,对小球有-F=解得:F= 4.84 N解法二:设杆对小球有作用力F,并设它的方向竖直向下,对小球则有-F=F=-=-4.84 N“-”表示F方向与假设的方向相反,支持力方向向上。

高考物理(热点+题型全突破)专题4.6 竖直面内的圆周运动问题(含解析)

高考物理(热点+题型全突破)专题4.6 竖直面内的圆周运动问题(含解析)

专题4.6 竖直面内的圆周运动问题1. 轻绳模型绳或光滑圆轨道的内侧,如图所示,它的特点是:在运动到最高点时均没有物体支撑着小球。

下面讨论小球(质量为m )在竖直平面内做圆周运动(半径为R )通过最高点时的情况:(1) 临界条件小球到达最高点时受到绳子的拉力恰好等于零,这时小球做圆周运动所需要的向心力仅由小球的重力来提供。

根据牛顿第二定律得,mg =m v 2临界R,即v 临界=Rg .这个速度可理解为小球恰好通过最高点或恰好通不过最高点时的速度,也可认为是小球通过最高点时的最小速度,通常叫临界速度。

(2) 小球能通过最高点的条件:当v >Rg 时,小球能通过最高点,这时绳子对球有作用力,为拉力。

当v =Rg 时,小球刚好能通过最高点,此时绳子对球不产生作用力。

(3) 小球不能通过最高点的条件:当v <Rg 时,小球不能通过最高点,实际上小球还没有到达最高点就已经脱离了轨道。

(如图)2. 轻杆模型杆和光滑管道,如图所示,它的特点是:在运动到最高点时有物体支撑着小球。

下面讨论小球(质量为m )在竖直平面内做圆周运动(半径为R )通过最高点时的情况:(1) 临界条件由于硬杆的支撑作用,小球恰能到达最高点的临界速度是:v 临界=0。

此时,硬杆对物体的支持力恰等于小球的重力mg。

(2) 如上图所示的小球通过最高点时,硬杆对小球的弹力情况为:当v=0时,硬杆对小球有竖直向上的支持力F N,其大小等于小球的重力,即F N=mg.当0<v<Rg时,杆对小球的支持力竖直向上,大小随速度的增加而减小,其取值范围为0<F N<mg.当v=Rg时,F N=0.这时小球的重力恰好提供小球做圆周运动的向心力。

当v>Rg时,硬杆对小球有指向圆心(即方向向下)的拉力,其大小随速度的增大而增大。

3. 两种模型分析比较如下:轻杆模型均是没有支撑的小球均是有支撑的小球4. 分析物体在竖直平面内做圆周运动时的易错易混点(1)绳模型和杆模型过最高点的临界条件不同,其原因是绳不能有支撑力,而杆可有支撑力。

绳、杆、桥类模型的临界问题

绳、杆、桥类模型的临界问题

第11点 绳、杆、桥类模型的临界问题对于物体在竖直平面内做变速圆周运动的问题,中学物理中只研究物体通过最高点和最低点时的情况,并且经常出现临界状态.这类问题常出现在绳、杆、桥类模型的临界问题中.1.类绳模型(1)此类模型的施力特点:只能提供指向圆心的力.(2)常见的装置:①用绳系物体(如图1甲所示);②物体沿轨道内侧做圆周运动(如图乙所示).图1(3)临界特点:此种情况下,如果物体恰能通过最高点,绳子的拉力或轨道对物体的支持力等于零,只有重力提供向心力,即mg =mv 20R,得临界速度v 0=gR .当物体的速度不小于v 0时,才能通过最高点.2.类杆模型(1)此类模型的施力特点:对物体既能提供指向圆心的力,又能提供背离圆心的力.(2)常见的装置:①用杆固定的物体(如图2甲所示);②小球在光滑圆管中(如图乙所示);③小球穿在光滑圆环上(如图丙所示).图2(3)临界特点:此种情况下,由于物体所受的重力可以由杆、管或环对它的向上的支持力来平衡,所以在最高点时的速度可以为零.当物体在最高点的速度v ≥0时,物体就可以完成一个完整的圆周运动.3.拱桥模型(1)此类模型的施力特点:对物体只提供背离圆心的力.(2)常见装置:①拱形桥(如图3甲所示);②凹凸不平的路面的凸处(如图乙所示).图3(3)临界特点:此时,如果物体的速度过大,将会脱离圆轨道而做平抛运动.同样,当轨道对物体的支持力等于零时,是物体做圆周运动的临界情况,即v0=gR为临界速度.所以只有当物体的速度小于gR时,它才能沿轨道外侧做圆周运动.图4对点例题(双选)用细绳拴着质量为m的小球,在竖直平面内做半径为R的圆周运动,如图4所示.则下列说法正确的是( )A.小球通过最高点时,绳子张力可以为0B.小球通过最高点时的最小速度为0C.小球刚好通过最高点时的速度是gRD.小球通过最高点时,绳子对小球的作用力可以与小球所受重力方向相反解题指导设小球通过最高点时的速度为v,由合力提供向心力及牛顿第二定律得mg+T=m v2R.当T=0时,v=gR,故选项A正确;当v<gR时,T<0,而绳子只能产生拉力,不能产生与重力方向相反的支持力,故选项B、D错误;当v>gR时,T>0,小球能沿圆弧通过最高点.可见,v≥gR是小球能沿圆弧通过最高点的条件.答案AC(单选)一辆汽车行驶在如图5所示的半径为R的半圆路面上,当它到达路面顶端A时( )图5A.汽车速度不大于gR即可安全通过B.速度如果小于gR,汽车将做平抛运动C.汽车速度只有小于gR才能安全通过D.以上说法都不对答案C解析当汽车运动到半圆路面的顶端时,汽车将受到重力和路面支持力的作用,即汽车在半圆路面顶端的向心力由重力和支持力的合力提供,所以汽车获得的最大向心力就等于重力,即汽车的最大速度就是gR,此时汽车对路面的压力为零,所以当汽车以这个速度行驶时汽车就会脱离地面,做平抛运动.汽车要安全地通过,速度就必须小于gR,综上所述,只有C项正确.。

2022年高考物理模型专题突破-绳杆模型

2022年高考物理模型专题突破-绳杆模型

真题模型(二)——竖直平面的圆周运动“绳、杆”模型来源图例考向模型核心归纳2014·新课标全国卷Ⅱ第17题受力分析、圆周运动、动能定理1.常考的模型(1)物体运动满足“绳”模型特征,竖直圆轨道光滑(2)物体运动满足“绳”模型特征,竖直圆轨道粗糙(3)物体运动满足“杆”模型特征,竖直圆轨道光滑(4)物体运动满足“杆”模型特征,竖直圆轨道粗糙(5)两个物体沿竖直圆轨道做圆周运动(6)同一物体在不同的竖直圆轨道做圆周运动(7)物体受弹簧弹力、电场力或洛伦兹力共同作用下的圆周运动2.模型解法2015·新课标全国卷Ⅰ第22题圆周运动、超重、失重2016·新课标全国卷Ⅱ第16题受力分析、牛顿第二定律、圆周运动、动能定理2016·课新标全国卷Ⅱ第25题受力分析、机械能守恒定律、圆周运动、牛顿第二定律2016·新课标全国卷Ⅲ第24题受力分析、圆周运动、机械能守恒定律、牛顿第二定律2017·全国卷Ⅱ第17题平抛运动、功能关系及极值的求解方法【预测1】 (多选)如图1所示,半径为R 的内壁光滑的圆轨道竖直固定在桌面上,一个可视为质点的质量为m 的小球静止在轨道底部A 点。

现用小锤沿水平方向快速击打小球,使小球在极短的时间内获得一个水平速度后沿轨道在竖直面内运动。

当小球回到A 点时,再次用小锤沿运动方向击打小球,通过两次击打,小球才能运动到圆轨道的最高点。

已知小球在运动过程中始终未脱离轨道,在第一次击打过程中小锤对小球做功W 1,第二次击打过程中小锤对小球做功W 2。

设先后两次击打过程中小锤对小球做功全部用来增加小球的动能,则W 1W 2的值可能是( )图1A.34B.13C.23D.1解析 第一次击打后球最多到达与球心O 等高位置,根据功能关系,有W 1≤mgR ,两次击打后球可以运动到轨道最高点,根据功能关系,有W 1+W 2-2mgR =12mv 2,在最高点有mg +N =m v 2R ≥mg ,由以上各式可解得W 1≤mgR ,W 2≥32mgR ,因此W 1W 2≤23,B 、C 正确。

圆周运动“最高点”最小速度讨论

圆周运动“最高点”最小速度讨论

v= gr 的意义
2. “等效法”处理电场和重力场的复合问题 (1) 将重力与电场力进行合成,如图所示,则 F 合为等效重力场中的“重力”, F合 g′= m 为等效重力场中的“等效重力加速度”, F 合的方向等效为“重力”的方向, 即在等效重力场中的“竖直向下方向”.
(2) 物理最高点与几何最高点.在“等效力场”做圆周运动的小球,经常遇到小 球在竖直平面内做圆周运动的临界速度问题.小球能维持圆周运动的条件是能过最 高点,而这里的最高点不一定是几何最高点,而应是物理最高点.
பைடு நூலகம்
1.等效思维法 等效思维法是将一个复杂的物理问题,等效为一个熟知 的物理模型或问题的方法。对于这类问题,若采用常规方法 求解,过程复杂,运算量大。若采用“等效法”求解,则能 避开复杂的运算,过程比较简捷。 2.方法应用 先求出重力与电场力的合力,将这个合力视为一个“等 F合 效重力”, 将 a= m 视为“等效重力加速度”, 如此便建立 起“等效重力场”。再将物体在重力场中的运动规律迁移到 等效重力场中分析求解即可。
在小球从圆轨道上的 A 点运动到 D 点的过程中,有 1 1 2 2 mgr(1+cos θ)+Frsin θ= mv0 - mv ,解得 v0=2 2gr。 2 2 [答案] (1) 3mg (2)2 2gr
(1)带电小球的运动可以等效为只有重力时竖直平面内的 圆周运动。 (2)小球经过 C 点时速度最大,可以作为等效“最低点”, 则通过圆心和 C 点相对的 D 点可以作为等效“最高点”。 (3)重力和电场力合力的方向, 一定在等效“最高点”和等 效“最低点”连线的延长线的方向上。
[解析]
(1)小球经过 C 点时速度最大,
则电场力与重力的合力沿 DC 方向,如图所 示,所以小球受到的电场力的大小 F=mgtan θ= 3mg。 (2)要使小球经过 B 点时对圆轨道的压力最小,则必须使小 球经过 D 点时的速度最小, 即在 D 点小球对圆轨道的压力恰好 v2 mg 为零,有 =m r , cos θ 解得 v= 2gr。

高中物理 圆周运动典型例题详解

高中物理    圆周运动典型例题详解

B、作匀速圆周运动的物体,在所受合外力突然消失时,
将沿圆周切线方向离开圆心
C、作匀速圆周运动的物体,它自己会产生一个向心力,
维持其作圆周运动
D、作离心运动的物体,是因为受到离心力作用的缘故
【例4】以下属于离心现象应用的是( BC ) A、水平抛出去的物体,做平抛运动 B、链球运动员加速旋转到一定的速度后将链球抛开 C、离心干燥器使衣物干燥 D、锤头松了,将锤柄在石头上磕风下就可以把柄安牢
解题感悟
2.两个圆周运动临界问题
v0
v0
杆连球(管通球)模型的临界问题
小球速度 运动情况 弹力的方向
弹力的大小
v=0 平衡状态 竖直向上的支持力
v gr 圆周运动 竖直向上的支持力
FN=mg
FN

mg
m
v2 r
v gr
圆周运动
v gr 圆周运动 指向圆心的拉力
FN

FN=0 mg
m
解题感悟
解决竖直平面内的变速圆周运动问题的关键是掌握两个圆周 运动模型和两个圆周运动临界问题: 1.两种圆周运动模型:
最低点圆周运动模型
最高点圆周运动模型
v0
v0
第四章 曲线运动和万有引力→3圆周运动
(三)考点应用,精讲精析 典型问题三:曲线运动中的动力学问题(四)------竖直平面内的变速圆周运动
例1 下列关于离心现象的说法正确的是( ) A.当物体所受的离心力大于向心力时产生离心现 象 B.做匀速圆周运动的物体,当它所受的一切力都 突然消失后,物体将做背离圆心的圆周运动 C.做匀速圆周运动的物体,当它所受的一切力都
突然消失后,物体将沿切线做匀速直线运动 D.做匀速圆周运动的物体,当它所受的一切力都 突然消失后,物体将做曲线运动 【解析】向心力是根据效果命名的,做匀速圆周 运动的物体所需要的向心力是它所受的某个力或 几个力的合力提供的,因此,它并不受向心力的 作用.它之所以产生离心现象是由于F合=Fn<mω2r,

三大力场中竖直面内圆周运动模型(解析版)

三大力场中竖直面内圆周运动模型(解析版)

三大力场中竖直面内圆周运动模型特训目标特训内容目标1重力场中的竖直面内圆周运动的绳(或轨道内侧)模型(1T -6T )目标2重力场中的竖直面内圆周运动的杆(或管)模型(7T -12T )目标3电磁场中的竖直面内圆周运动模型(13T -18T )【特训典例】一、重力场中的竖直面内圆周运动的绳(或轨道内侧)模型1如图a ,在竖直平面内固定一光滑的半圆形轨道ABC ,小球以一定的初速度从最低点A 冲上轨道,图b 是小球在半圆形轨道上从A 运动到C 的过程中,其速度平方与其对应高度的关系图像。

已知小球在最高点C 受到轨道的作用力为2.5N ,空气阻力不计,B 点为AC 轨道中点,重力加速度g 取10m/s 2,下列说法正确的是()A.图b 中x =25m 2/s 2B.小球质量为0.2kgC.小球在A 点时重力的功率为5WD.小球在B 点受到轨道作用力为8.5N【答案】ABD【详解】A .小球在光滑轨道上运动,只有重力做功,故机械能守恒,有12mv 2A =12mv 2h +mgh 解得v 2A =v 2h +2gh 即x =9+2×10×0.8 m 2/s 2=25m 2/s 2,A 正确;B .依题意小球在C 点,有F +mg =m v 2C R 又v 2C =9m 2/s 2,2R =0.8m 解得m =0.2kg ,B 正确;C .小球在A 点时重力方向竖直向下,速度水平向右,二者夹角为90°,根据P =mgv cos θ可知重力的瞬时功率为零,C 错误;D .由机械能守恒,可得12mv 2A =12mv 2B +mgR 又因为小球在B 点受到的在水平方向上的合外力提供向心力,可得F B =mv 2BR联立,可得F B =8.5N ,D 正确。

故选ABD 。

2如图甲所示,一长为R 的轻绳,一端系在过O 点的水平转轴上,另一端固定一质量未知的小球,整个装置绕O 点在竖直面内转动,小球通过最高点时,绳对小球的拉力F 与其速度平方v 2的关系图像如图乙所示,图线与纵轴的交点坐标为a ,下列判断正确的是()A.利用该装置可以得出重力加速度,且g =RaB.绳长不变,用质量较大的球做实验,得到的图线斜率更大C.绳长不变,用质量较小的球做实验,得到的图线斜率更大D.绳长不变,用质量较小的球做实验,图线与纵轴的交点坐标不变【答案】CD【详解】A .由图乙知当F =0时,v 2=a ,则有mg =mv 2R =ma R 解得g =a R 故A 错误;BC .在最高点,根据牛顿第二定律得F +mg =m v 2R整理得v 2=R m F +gR 图线的斜率为k =Rm 可知绳长不变,小球的质量越小,斜率越大,故B 错误,C 正确;D .由表达式v 2=RmF +gR 可知,当F =0时,有v 2=gR =a 可知图线与纵轴的交点坐标与小球质量无关,故D 正确。

圆周运动专题

圆周运动专题

越大
(C)使物体A的转动半径变小一些,在转动过程中半径会随时
稳定
(D)以上说法都不正确
O A
第22页/共35页
B O′
水平转盘:例6、如图,细绳一端系着质量M=0.6千克的物体,静止在水平面,另一 端通过光滑小孔吊着质量m=0.3千克的物体,M的中点与圆孔距离为0.2米,并知M 和水平面的最大静摩擦力为2牛,现使此平面绕中心轴线转动,问角速度在什么范 围m会处于静止状态?(g取10米/秒2)
钢丝绳下端可挂载重物,以便在车间内移动物体.本题中铸件开始做匀速直线运动, 行车突然停止,铸件的速度在瞬间内不变,钢丝绳的悬点固定,铸件在竖直平面内 做小幅度的圆周运动.
第8页/共35页
• 变式训练2—1 如图所示,一根绳长l
=1m,上端系在滑轮的轴上,下端拴
一质量为m=1kg的物体,滑轮与物
体一起以2m/s的速度匀速向右运动,
第14页/共35页
传送带模型:例1、如图所示,两个轮通过皮带传动
,设皮带与轮之间不打滑,A为半径为R的O1轮缘上一 点,B、C为半径为2R的O2轮缘和轮上的点, O2C=2R/3,当皮带轮转动时,A、B、C三点的角度 之比:
ωA : ωB : ωC = 2 : 1 : 1 ; A、B、C三点的线速度之比vA : vB : vC = 3 : 3 : 1 ; 及三点的向心加速度之比aA : aB: aC = 6 : 3 : 1 .
线速度即小球运动的合速度,小球位置越低,势能转化为动能就越多,速 度也就越大,C正确.
小球在最低位置时速度为水平速度,由于小球做圆周运动
,绳拉力与球重力的合力提供向心力,即 D错误.
v2 T mg m
R
第24页/共35页

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)2020年高考物理一轮复热点题型归纳与变式演练专题09 圆周运动七大常考模型专题导航】目录题型一水平面内圆盘模型的临界问题在水平面内,圆盘绕自身的对称轴做匀速圆周运动时,当圆盘上一点的速度等于圆盘上任意一点的速度时,该点所在的半径为临界半径。

此时,圆盘上该点所受的向心力最大,达到极限值。

热点题型二竖直面内圆周运动的临界极值问题在竖直面内,圆周运动的临界问题与水平面内的类似,但由于竖直面内的向心力方向不再垂直于重力方向,因此需要通过分解向心力和重力的合力来求解临界速度和临界半径。

球-绳模型或单轨道模型球-绳模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的竖直圆周做匀速圆周运动的模型。

单轨道模型则是一个质量为m 的小球沿着一个半径为R的水平圆周滑行的模型。

这两个模型的分析方法类似,都需要通过分解合力来求解运动的参数。

球-杆模型或双轨道模型球-杆模型指的是一个质量为m的小球沿着一个质量忽略不计的细杆滚动的模型。

双轨道模型则是一个质量为m的小球沿着两个半径分别为R1和R2的圆轨道滚动的模型。

这两个模型的分析方法也类似,都需要通过分解合力来求解运动的参数。

热点题型三斜面上圆周运动的临界问题在斜面上,圆周运动的临界问题与水平面内的类似,但由于斜面的存在,需要通过分解合力来求解临界速度和临界半径。

热点题型四圆周运动的动力学问题圆周运动的动力学问题主要涉及到角加速度、角速度和角位移等参数的计算。

在这类问题中,需要利用牛顿第二定律和角动量守恒定律等物理定律来分析运动状态。

圆锥摆模型圆锥摆模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的圆锥面做匀速圆周运动的模型。

在分析这种模型时,需要考虑到向心力和重力的合力方向与竖直方向的夹角,以及圆锥面的倾角等因素。

车辆转弯模型车辆转弯模型主要涉及到车辆在转弯时所受的向心力和摩擦力等因素。

圆周运动“最高点”最小速度讨论

圆周运动“最高点”最小速度讨论

临界特征
v2 FT=0,即 mg=m r ,v=0,即 F 向=0, 此时 FN=mg 得 v= gr 物体能否过最高点的 FN 表 现 为 拉 力 还 临界点 是支持力的临界点
v= gr 的意义
2. “等效法”处理电场和重力场的复合问题 (1) 将重力与电场力进行合成,如图所示,则 F 合为等效重力场中的“重力”, F合 g′= m 为等效重力场中的“等效重力加速度”, F 合的方向等效为“重力”的方向, 即在等效重力场中的“竖直向下方向”.
[典例] 如图所示, 在竖直平面内固定的 圆形绝缘轨道的圆心为 O,半径为 r,内壁光 滑,A、B 两点分别是圆轨道的最低点和最高 点。该区间存在方向水平向右的匀强电场, 一质量为 m、带负电的小球在轨道内侧做完整的圆周运动 (电荷 量不变),经过 C 点时速度最大,O、C 连线与竖直方向的夹角 θ =60° ,重力加速度为 g。求: (1)小球所受的电场力大小; (2)小球在 A 点的速度 v0 为多大时,小球经过 B 点时对圆轨 道的压力最小。
(2) 物理最高点与几何最高点.在“等效力场”做圆周运动的小球,经常遇到小 球在竖直平面内做圆周运动的临界速度问题.小球能维持圆周运动的条件是能过最 高点,而这里的最高点不一定是几何最高点,而应是物理最高点.
1.等效思维法 等效思维法是将一个复杂的物理问题,等效为一个熟知 的物理模型或问题的方法。对于这类问题,若采用常规方法 求解,过程复杂,运算量大。若采用“等效法”求解,则能 避开复杂的运算,过程比较简捷。 2.方法应用 先求出重力与电场力的合力,将这个合力视为一个“等 F合 效重力”, 将 a= m 视为“等效重力加速度”, 如此便建立 起“等效重力场”。再将物体在重力场中的运动规律迁移到 等效重力场中分析求解即可。

竖直面内的圆周运动(解析版)

竖直面内的圆周运动(解析版)

竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。

2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。

物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。

小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。

G =10 m/s 2。

求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。

这是最小速度即是过最高点的临界速度v 0。

以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。

绳杆内外轨及临界等圆周运动模型解析课件

绳杆内外轨及临界等圆周运动模型解析课件
(1)A的速率为1 m/s.
(2)A的速率为4 m/s.
水流星问题:
例1、绳系着装水的桶,在竖直平面内做圆 周 运 动 , 水 的 质 量 m=1kg , 绳 长 =40cm. 求 (1)桶在最高点水不流出的最小速率? (2)水在最高点速率为4m/s时水对桶底的 压力?(g取10m/s2)
第六课时
【典例3】 如图2-3、4-10 所示,两轻绳的一端系一 质量为m=0.1 kg的小球, 两绳的另一端分别固定于 轴的A、B两处,上面的绳 长l=2 m,两绳拉直时与轴 的夹角分别为30°和45°, 问球的角速度在什么范围 内两绳始终有张力?(g= 10 m/s2)
图2-3、4-10
2、有一水平放置的圆盘,上面放有一劲度系数为k的轻质弹簧, 如图所示,弹簧的一端固定于轴O上,另一端挂一质量为m的 物体A,物体与圆盘间的动摩擦因素为u,开始时弹簧未发生 形变,长度为x,(1)圆盘的转速n0多大时,物体开始滑动。 (2)转速达到2n0时,弹簧的伸长量是多少?
o
时,求细绳对物体的拉力。 时,求细绳对物体的拉力。
θ 规律方法总结:关于水平面内的匀速圆周运动问题, 一般是“临界速度”与“临界力”的问题。即细绳是否 紧对应拉力是否为零;物体是否脱落接触面对应的 弹力是否为零;物体是否滑动对应摩擦力是否达到 最大静摩擦力。
二、变速圆周运动的向心力
例:一根长为1m的绳子,当受到20N的拉力时即被拉 断,若在此绳的一端拴一个质量为1kg的物体,使物体 以绳子的另一端为圆心在竖直面内做圆周运动,当物体 运动到最低点时绳子恰好断裂。求物体运动至最低点时 的角速度和线速度各是多大。(g=10m/s2)
已知在最高点处,杆对球的弹力大小为 F
=m2g,则小球在最高点处的速度大小为 图2-3、4-11

竖直平面内的圆周运动

竖直平面内的圆周运动

分析:
F2
A
最高点:
V1(V2)
v mg F1 m R

2 1
v mg F2 m R
2 2
F1 G
;
R
F3
V3 G
v 最低点: F3 mg m R
思考:小球在最高点的最小速度 可以是多少?什么时候外管壁对 小球有压力,什么时候内管壁对 小球有支持力?什么时候内外管 壁都没有压力?
要通过最高点,此时轻杆的拉力需要大 于等于5mg,速度 V 5gR
拓展:物体在管型轨道内的运动
如图,有一内壁光滑竖直放 置的管型轨道半径为R,内 有一质量为m的小球,沿其 竖直方向上的做变速圆周运 动,小球的直径刚好与管的 内径相等
(1)小球在运动到最高点的时候速度与受力 的关系是怎样的? (2)小球运动到最低点的时候速度与受力的 关系又是怎样?
练习5
杆长为 L ,球的质量为 m ,杆连球在竖直平面内绕 轴 O 自由转动,已知在最高点处,杆对球的弹力大小 为F=1/2mg,求这时小球的速度大小。 解:小球所需向心力向下,本题中 F=1/2mg<mg, 所以弹力的方向可能向上,也可能向下。
⑴若F 向上,则
mv 2 mg F , L
⑵若F 向下,则
v vmin gr

当质点的速度小于这一值时,质点将运动不到最
2、最低点: 最低点的向心力方程:
mV FN mg R
2
V
可知此时绳子的拉力不可能为零,其最小值为 mg,速度为零,但不能通过最高点。 要通过最高点,此时绳子的拉力需要大于等 于6mg,速度 V 5gR
拓展:物体沿竖直内轨运动
练习1
绳系着装有水的桶,在竖直平面内做圆周运动, 水的质量为0.5Kg,绳长60Cm,求: (1)最高点水不流出的最小速率; (2)水在最高点速率为3m/s时,水对桶底的压力。

物理建模系列(七) 竖直平面内圆周运动的两种模型

物理建模系列(七) 竖直平面内圆周运动的两种模型

物理建模系列(七)竖直平面内圆周运动的两种模型1.模型构建在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接,沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接,小球在弯管内运动等),称为“轻杆模型”.2.模型条件(1)物体在竖直平面内做变速圆周运动.(2)“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑.3.常用模型面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg【解析】 解法一:以小环为研究对象,设大环半径为R ,根据机械能守恒定律,得mg ·2R =12m v 2,在大环最低点有F N -mg =m v 2R ,得F N =5mg ,此时再以大环为研究对象,受力分析如图,由牛顿第三定律知,小环对大环的压力为F ′N =F N ,方向竖直向下,故F =Mg +5mg ,由牛顿第三定律知C 正确.解法二:设小环滑到大环最低点时速度为v ,加速度为a ,根据机械能守恒定律12m v 2=mg ·2R ,且a =v 2R,所以a =4g ,以整体为研究对象,受力情况如图所示.F -Mg -mg =ma +M ·0 所以F =Mg +5mg ,C 正确. 【答案】 C[高考真题]1.(2016·上海卷,16)风速仪结构如图(a)所示.光源发出的光经光纤传输,被探测器接收,当风轮旋转时,通过齿轮带动凸轮圆盘旋转,当圆盘上的凸轮经过透镜系统时光被挡住.已知风轮叶片转动半径为r ,每转动n 圈带动凸轮圆盘转动一圈.若某段时间Δt 内探测器接收到的光强随时间变化关系如图(b)所示,则该时间段内风轮叶片( )A .转速逐渐减小,平均速率为4πnr ΔtB .转速逐渐减小,平均速率为8πnrΔtC .转速逐渐增大,平均速率为4πnrΔtD .转速逐渐增大,平均速率为8πnrΔt【解析】 据题意,从b 图可以看出,在Δt 时间内,探测器接收到光的时间在增长,圆盘凸轮的挡光时间也在增长,可以确定圆盘凸轮的转动速度在减小;在Δt 时间内可以从图看出有4次挡光,即圆盘转动4周,则风轮叶片转动了4n 周,风轮叶片转过的弧长为l =4n ×2πr ,叶片转动速率为:v =8n πrΔt,故选项B 正确.【答案】 B2.(2016·浙江卷,20)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=3.14),则赛车( )A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为5.63 m/s 2D .通过小圆弧弯道的时间为5.58 s【解析】 赛车用时最短,就要求赛车通过大、小圆弧时,速度都应达到允许的最大速度,通过小圆弧时,由2.25mg =m v 21r 得v 1=30 m/s ;通过大圆弧时,由2.25mg =m v 22R得v 2=45 m/s ,B 项正确.赛车从小圆弧到大圆弧通过直道时需加速,故A 项正确.由几何关系可知连接大、小圆弧的直道长x =50 3 m ,由匀加速直线运动的速度位移公式:v 22-v 21=2ax得a ≈6.50 m/s 2,C 项错误;由几何关系可得小圆弧所对圆心角为120°,所以通过小圆弧弯道的时间t =13×2πrv 1≈2.79 s ,故D 项错误.【答案】 AB3.(2015·课标卷Ⅰ,22)某物理小组的同学设计了一个粗测玩具小车通过凹形桥最低点时的速度的实验.所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R =0.20 m).完成下列填空:(1)将凹形桥模拟器静置于托盘秤上,如图(a)所示,托盘秤的示数为1.00 kg.(2)将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数如图(b)所示,该示数为 ________ kg.(3)将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为m ;多次从同一位置释放小车,记录各次的m 值如下表所示.(4)N ;小车通过最低点时的速度大小为 ________ m/s.(重力加速度大小取9.80 m/s 2,计算结果保留2位有效数字)【解析】 (2)由题图(b)可知托盘秤量程为10 kg ,指针所指的示数为1.40 kg.(4)由多次测出的m 值,利用平均值可求m =1.81 kg.而模拟器的重力为G =m 0g =9.8 N ,所以小车经过凹形桥最低点时对桥的压力为F N =mg -m 0g ≈7.9 N ;根据径向合力提供向心力,即7.9 N -(1.40-1.00)×9.8 N =0.4v 2R,解得v ≈1.4 m/s.【答案】 (2)1.40 (4)7.9 1.4[名校模拟]4.(2018·山东烟台高三上学期期中)如图所示,水平圆盘可以绕竖直转轴OO ′转动,在距转轴不同位置处通过相同长度的细绳悬挂两个质量相同的物体A 、B .不考虑空气阻力的影响,当圆盘绕OO ′轴匀速转动达到稳定状态时,下列说法正确的是( )A .A 比B 的线速度小B .A 与B 的向心加速度大小相等C .细绳对B 的拉力大于细绳对A 的拉力D .悬挂A 与B 的细绳与竖直方向夹角相等【解析】 物体A 、B 绕同一轴转动,角速度相同,由v =ωr 知,v A <v B ,由a =ω2r 知,a A <a B ,由T sin θ=ma ,T cos θ=mg 及a A <a B 得T A <T B ,θA <θB ,故A 、C 正确.【答案】 AC5.(2018·广东惠州市高三上学期第二次调研)如图甲所示是中学物理实验室常用的感应起电机,它是由两个大小相等直径约为30 cm 的感应玻璃盘起电的.其中一个玻璃盘通过从动轮与手摇主动轮链接如图乙所示,现玻璃盘以100 r/min 的转速旋转,已知主动轮的半径约为8 cm ,从动轮的半径约为2 cm ,P 和Q 是玻璃盘边缘上的两点,若转动时皮带不打滑,下列说法正确的是( )A .玻璃盘的转动方向与摇把转动方向相反B .P 、Q 的线速度相同C .P 点的线速度大小约为1.6 m/sD .摇把的转速约为400 r/min【解析】 若主动轮做顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,所以玻璃盘的转动方向与摇把转动方向相反,故A 正确;线速度也有一定的方向,由于线速度的方向沿曲线的切线方向,由图可知,P 、Q 两点的线速度的方向一定不同,故B 错误;玻璃盘的直径是30 cm ,转速是100 r/min ,所以线速度:v =ωr =2n πr =2×10060×π×0.32m/s =0.5π m/s ≈1.6 m/s ,故C 正确;从动轮边缘的线速度:v c =ωr c =2×10060×π×0.02m/s =115π m/s ,由于主动轮的边缘各点的线速度与从动轮边缘各点的线速度的大小相等,即v z =v c ,所以主动轮的转速:n z =ωz 2π=v z r z 2π=115π2π×0.08=12.4r/s =25 r/min.故D 错误.【答案】 AC6.(2018·华中师大第一附中高三上学期期中)如图所示,ABC 为在竖直平面内的金属半圆环,AC 连线水平,AB 为固定的直金属棒,在金属棒上和圆环的BC 部分分别套着两个相同的小环M 、N ,现让半圆环绕对称轴以角速度ω做匀速转动,半圆环的半径为R ,小圆环的质量均为m ,棒和半圆环均光滑,已知重力加速度为g ,小环可视为质点,则M 、N 两环做圆周运动的线速度之比为( )A.gR 2ω4-g 2B .g 2-R 2ω4gC.g g 2-R 2ω4D .R 2ω4-g 2g【解析】 AB 杆倾角45°,对于M 环:mg =mrω2=m v 2Mr2v M =g ω.对于N 环:mg tan θ=mR sin θ·ω2=mωv N v N =R sin θ·ω=Rω1-g 2R 2ω4 所以v M ∶v N =g ∶R 2ω4-g 2,A 对,B 、C 、D 错. 【答案】 A课时作业(十二) [基础小题练]1.如图所示,一偏心轮绕垂直纸面的轴O 匀速转动,a 和b 是轮上质量相等的两个质点,则偏心轮转动过程中a 、b 两质点( )A .角速度大小相同B .线速度大小相同C .向心加速度大小相同D .向心力大小相同【解析】同轴转动角速度相等,A 正确;由于两者半径不同,根据公式v =ωr 可得两点的线速度不同,B 错误;根据公式a =ω2r ,角速度相同,半径不同,所以向心加速度不同,C 错误;根据公式F =ma ,质量相同,但是加速度不同,所以向心力大小不同,D 错误.【答案】 A2.(2018·甘肃河西五市联考)利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A ,B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根细线承受的张力为( )A .23mgB .3mgC .2.5mgD .732mg【解析】 小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,根据动能定理得mg ·3L =12m v 22-12m v 21,由牛顿第二定律得3T -mg =m v 2232L ,联立得T =23mg ,故A 正确,B 、C 、D 错误.【答案】 A3.如图为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n 1,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮边缘线速度大小为r 22r 1n 1D .从动轮的转速为r 2r 1n 1【解析】 主动轮沿顺时针方向转动时,传送带沿M →N 方向运动,故从动轮沿逆时针方向转动,故A 错误,B 正确;由ω=2πn 、v =ωr 可知,2πn 1r 1=2πn 2r 2,解得n 2=r 1r 2n 1,从动轮边缘线速度大小v =2πn 2r 2=2πn 1r 1,故C 、D 错误.【答案】 B4.(2018·山东青岛市即墨一中高三上学期期中)如图所示,甲、乙圆盘的半径之比为1∶2,两水平圆盘紧靠在一起,乙靠摩擦随甲不打滑转动.两圆盘上分别放置质量为m 1和m 2的小物体,m 1=2m 2,两小物体与圆盘间的动摩擦因数相同.m 1距甲盘圆心为r ,m 2距乙盘圆心为2r ,此时它们正随圆盘做匀速圆周运动.下列判断正确的是( )A .m 1和m 2的线速度之比为1∶4B .m 1和m 2的向心加速度之比为2∶1C .随转速慢慢增加,m 1先开始滑动D .随转速慢慢增加,m 2先开始滑动【解析】 甲、乙两轮子边缘上的各点线速度大小相等,有:ω1R =ω22R ,则得ω1∶ω2=2∶1,所以物块相对圆盘开始滑动前,m 1与m 2的角速度之比为2∶1.根据公式:v =ωr ,所以:v 1v 2=ω1r ω2·2r =11,故A 错误.根据a =ω2r 得:m 1与m 2的向心加速度之比为 a 1∶a 2=(ω21r )∶(ω222r )=2∶1,故B 正确.根据μmg =mrω2=ma 知,m 1先达到临界角速度,可知当转速增加时,m 1先开始滑动,故C 正确,D 错误.【答案】 BC5.如图所示,水平放置的圆筒可以绕中心轴线匀速转动,在圆筒上的直径两端有两个孔A 、B ,当圆筒的A 孔转到最低位置时,一个小球以速度v 0射入圆筒,圆筒的半径为R ,要使小球能够不碰到筒壁首次离开圆筒,则圆筒转动的角速度可能为(已知重力加速度大小为g )( )A.n πgv 0,n =1,2,3,… B.(2n -1)πg 2v 0,n =1,2,3,…C.2n πg v 0-v 20-4Rg ,n =1,2,3,…D.2n πg v 0+v 20-4Rg,n =1,2,3,… 【解析】 若小球上升最大高度小于圆筒直径,小球从A 孔离开,则竖直上抛时间为t =2v 0g =2n πω,n =1,2,3,…,ω=n πgv 0,A 正确;若小球上升最大高度小于圆筒直径,从B 孔离开,则有t =2v 0g =(2n -1)πω,n =1,2,3,…,ω=(2n -1)πg 2v 0,B 正确;若小球上升最大高度大于直径,从B 孔离开,小球经过圆筒时间为t ,则有2R =v 0t -gt 22,圆筒转动时间为t =2n πω,n =1,2,3,…,解得ω=2n πgv 0-v 20-4Rg ,C 正确;若小球上升最大高度大于直径,从A 孔离开,则圆筒转动时间为t =(2n -1)πω,n =1,2,3,…,解得ω=(2n -1)πgv 0-v 20-4Rg,D 错误. 【答案】 ABC6.(2018·开封高三模拟)在离心浇铸装置中,电动机带动两个支承轮同向转动,管状模型放在这两个轮上靠摩擦转动,如图所示,铁水注入之后,由于离心作用,铁水紧紧靠在模型的内壁上,从而可得到密实的铸件,浇铸时转速不能过低,否则,铁水会脱离模型内壁,产生次品.已知管状模型内壁半径为R ,则管状模型转动的最低角速度ω为( )A.gR B . g 2R C.2g RD .2g R【解析】 最易脱离模型内壁的位置在最高点,转动的最低角速度ω对应铁水在最高点受内壁的作用力为零,即mg =mω2R ,得:ω=gR,A 正确. 【答案】 A[创新导向练]7.生活实际——圆周运动中的自行车问题雨天在野外骑车时,在自行车的后轮轮胎上常会粘附一些泥巴,行驶时感觉很“沉重”.如果将自行车后轮撑起,并离开地面而悬空,然后用手匀速摇脚踏板,使后轮飞速转动,泥巴就被甩下来.如图所示,图中a 、b 、c 、d 为后轮轮胎边缘上的四个特殊位置,则( )A .泥巴在图中a 、c 位置的向心加速度大于b 、d 位置的向心加速度B .泥巴在图中的b 、d 位置时最容易被甩下来C .泥巴在图中的c 位置时最容易被甩下来D .泥巴在图中的a 位置时最容易被甩下来【解析】 当后轮匀速转动时,由a =Rω2知a 、b 、c 、d 四个位置的向心加速度大小相等,A 错误.在角速度ω相同的情况下,泥巴在a 点有F a +mg =mω2R ,在b 、d 两点有F bd=mω2R ,在c 点有F c -mg =mω2R ,所以泥巴与轮胎在c 位置的相互作用力最大,容易被甩下,故B 、D 错误,C 正确.【答案】 C8.生活实际——通过“过山车”考查圆周运动最高点的临界问题如图所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R ,下列说法正确的是( )A .甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B .乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C .丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR【解析】 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg +F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误.【答案】 BC9.高新科技——圆周运动中的运动学问题应用实例某计算机读卡系统内有两个围绕各自固定轴匀速转动的铝盘A 、B ,A 盘固定一个信号发射装置P ,能持续沿半径向外发射红外线,P 到圆心的距离为28 cm.B 盘上固定一个带窗口的红外线信号接收装置Q ,Q 到圆心的距离为16 cm.P 、Q 转动的线速度均为4π m/s.当P 、Q 正对时,P 发出的红外线恰好进入Q 的接收窗口,如图所示,则Q 每隔一定时间就能接收到红外线信号,这个时间的最小值为( )A.0.42 s B.0.56 s C.0.70 s D.0.84 s【解析】P的周期T P=2πr Pv=2π×0.284πs=0.14 s,同理Q的周期T Q=2πr Qv=2π×0.164πs=0.08 s,而经过的时间应是它们周期的整数倍,因此B项正确.【答案】 B10.科技生活——汽车后备箱升降学问汽车后备箱盖一般都配有可伸缩的液压杆,如图甲所示,其示意图如图乙所示,可伸缩液压杆上端固定于后盖上A点,下端固定于箱内O′点,B也为后盖上一点,后盖可绕过O 点的固定铰链转动,在合上后备箱盖的过程中()A.A点相对O′点做圆周运动B.A点与B点相对于O点转动的线速度大小相等C.A点与B点相对于O点转动的角速度大小相等D.A点与B点相对于O点转动的向心加速度大小相等【解析】在合上后备箱盖的过程中,O′A的长度是变化的,因此A点相对O′点不是做圆周运动,A错误;在合上后备箱盖的过程中,A点与B点都是绕O点做圆周运动,相同的时间绕O点转过的角度相同,即A点与B点相对O点的角速度相等,但是OB大于OA,根据v=rω,所以B点相对于O点转动的线速度大,故B错误,C正确;根据向心加速度a=rω2可知,B点相对O点的向心加速度大于A点相对O点的向心加速度,故D错误.【答案】 C[综合提升练]11.物体做圆周运动时所需的向心力F需由物体运动情况决定,合力提供的向心力F供由物体受力情况决定,若某时刻F需=F供,则物体能做圆周运动;若F需>F供,物体将做离心运动;若F需<F供,物体将做近心运动.现有一根长L=1 m的刚性轻绳,其一端固定于O 点,另一端系着质量m=0.5 kg的小球(可视为质点),将小球提至O点正上方的A点处,此时绳刚好伸直且无张力,如图所示.不计空气阻力,g取10 m/s2,则:(1)为保证小球能在竖直面内做完整的圆周运动,在A 点至少应施加给小球多大的水平速度?(2)在小球以速度v 1=4 m/s 水平抛出的瞬间,绳中的张力为多少?(3)在小球以速度v 2=1 m/s 水平抛出的瞬间,绳中若有张力,求其大小;若无张力,试求绳子再次伸直时所经历的时间.【解析】(1)小球做圆周运动的临界条件为重力刚好提供最高点时小球做圆周运动的向心力,即mg =m v 20L,解得v 0=gL =10 m/s. (2)因为v 1>v 0,故绳中有张力.根据牛顿第二定律有F 1+mg =m v 21L,代入数据得绳中张力F 1=3 N.(3)因为v 2<v 0,故绳中无张力,小球将做平抛运动,其运动轨迹如图中实线所示,有L 2=(y -L )2+x 2,x =v 2t ,y =12gt 2,代入数据联立解得t =0.6 s. 【答案】 (1)10 m/s (2)3 N (3)无张力,0.6 s12.(2018·山东潍坊高三上学期期中)如图所示,圆形餐桌中心有一半径为R 的圆盘,可绕穿过中心的竖直轴转动,圆盘与餐桌在同一水平面内且两者之间的间隙可忽略不计.当圆盘的角速度为 g 2R时,放置在圆盘边缘的小物体恰好滑上餐桌.已知小物体与餐桌间的动摩擦因数为0.25,最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)小物体与圆盘的动摩擦因数;(2)小物体恰好不从餐桌滑落时餐桌的最小半径.【解析】(1)设小物体与圆盘间的动摩擦因数为μ1,小物体恰好滑到餐桌上时圆盘的角速度为ω0μ1mg=mω20R代入数据解得:μ1=0.5.(2)小物体从圆盘甩出时的速度v1=ω0R设小物体与餐桌间的动摩擦因数为μ2,小物体在餐桌上滑动距离x1恰不滑出桌面,0-v21=2ax1a=-μ2g餐桌的最小半径R min=R2+x21联立解得:R min=2R【答案】(1)0.5(2)2R。

高考物理第19讲 竖直面内圆周运动之绳”模型和“杆”模型及其临界问题(解析版)

高考物理第19讲 竖直面内圆周运动之绳”模型和“杆”模型及其临界问题(解析版)

第19讲竖直面内圆周运动之绳”模型和“杆”模型及其临界问题1.(2022·江苏)在轨空间站中物体处于完全失重状态,对空间站的影响可忽略.空间站上操控货物的机械臂可简化为两根相连的等长轻质臂杆,每根臂杆长为L.如图1所示,机械臂一端固定在空间站上的O点,另一端抓住质量为m的货物.在机械臂的操控下,货物先绕O点做半径为2L、角速度为ω的匀速圆周运动,运动到A点停下.然后在机械臂操控下,货物从A点由静止开始做匀加速直线运动,经时间t到达B点,A、B间的距离为L。

(1)求货物做匀速圆周运动时受到的向心力大小F n。

(2)求货物运动到B点时机械臂对其做功的瞬时功率P。

(3)在机械臂作用下,货物、空间站和地球的位置如图2所示,它们在同一直线上.货物与空间站同步做匀速圆周运动.已知空间站轨道半径为r,货物与空间站中心的距离为d,忽略空间站对货物的引力,求货物所受的机械臂作用力与所受的地球引力之比F1:F2。

【解答】解:(1)货物做匀速圆周运动,向心力F n=m⋅2Lω2=2mLω2(2)设货物到达B点的速度为v,根据匀变速规律L=v2t,得v=2L t货物的加速度a=vt=2Ltt=2Lt2根据牛顿第二定律,机械臂对货物的作用力F=ma=2mL t2机械臂对货物做功的瞬时功率P=Fv=2mLt2×2L t=4mL2t3(3)设地球质量为M,空间站的质量为m0,地球对空间站的万有引力为F,根据万有引力定律F=GMm 0r 2① 地球对货物的万有引力F 2=G Mm (r−d)2②联立①②得m 0m=Fr 2F 2(r−d)2③设空间站做匀速圆周运动的角速度为ω0,根据牛顿第二定律对空间站F =m 0rω02④ 对货物F 2−F 1=m(r −d)ω02⑤联立③④⑤解得F 1F 2=r 3−(r−d)3r 3答:(1)货物做匀速圆周运动时受到的向心力大小为2m ω2L ; (2)货物运动到B 点时机械臂对其做功的瞬时功率为4mL 2t 3;(3)货物所受的机械臂作用力与所受的地球引力之比为r 3−(r−d)3r 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
圆周运动中绳模型和杆模型的一般解析
,其一端栓有一质量一:绳模型:若已不可伸长的绳子长L做匀速圆Om的小球(可看成质点)。

现使绳子拉着小球绕一点。

周运动,则(1)小球恰好通过最高点的速度v 。

(2)当能通过最高点时,绳子拉F
)小球恰能通过最高点的临界条件是绳子没有拉力,解:(1 则对小球研究,其只受重力mg作用,
故,由其做圆周运动得:
2v
m?mg L故gLv?
(2)时,由分析得,当小球到最高点时速度gLv?v'?2'mv 则,??mgF L大于其所需向mg当时,而,那么小球重力gL?'?vv心力,因此小球做向心运动。

m,其一端有一质量二:杆模型:若一硬质轻杆长L
做匀速圆周运动,现使杆和小球绕一点的小球(可看成质点)。

O 。

)小球恰好通过最高点的速度v (1则。

F (2)当能通过最高点时,杆对小球的作用力
)因为杆具有不可弯曲不可伸长的性质,所以小球在1解:(0最高点,当速度为时,恰好能通过。

当小球通过最高点速度①由
绳模型可知,时,)(2gLv?.
.
,则同理可知,当杆拉小球到最高点时,恰好有绳子拉力为0 ,若小球速度时,小球所需向心力恰好等于重力mg gL?v故,此时杆对小球没有作用力。

②当小球通过最高点时速度时,gLv?大,所以此时杆对小球表mg 则小球所需向心力比重力现为拉力,使小球不至于做离心运动故对小球有,
③同理,当小球通过最高点时速度2mv?mg?F L
时,gLv?则小球所需向心力小于重力mg,所以此时小球对杆有压力作用,有牛顿第三定律得,杆对小球表现为支持力作用,
故对小球有,
2mv?Fmg?L.。

相关文档
最新文档