2017年浙江工业大学665数学分析考研真题考研试题硕士研究生入学考试试题
2017数学2考研真题及答案详解
绝密★启用前2017年全国硕士研究生入学统一考试数学(二)(科目代码302)考生注意事项1.答题前,考生必须在试题册指定位置上填写考生姓名和考生编号;在答题卡指定位置上填写报考单位、考生姓名和考生编号,并涂写考生编号信息点。
2.考生须把试题册上的试卷条形码粘贴条取下,粘贴在答题卡“试卷条形码粘贴位置”框中。
不按规定粘贴条形码而影响评卷结果的,责任由考生自负。
3.选择题的答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。
超出答题区域书写的答案无效;在草稿纸、试题册上答题无效。
4.填(书)写部分必须使用黑色字迹签字笔或者钢笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B铅笔填涂。
5.考试结束后,将答题卡和试题册按规定一并交回,不可带出考场。
2017年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则( ) (A)12ab =(B)12ab =-(C)0ab =(D)2ab =(2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则( )()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰(3)设数列{}n x 收敛,则( )()A 当limsin 0n n x →∞=时,lim 0n n x →∞= ()B当lim(0n n x →∞=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞= ()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=(4)微分方程的特解可设为 (A )22(cos 2sin 2)xx Ae e B x C x ++ (B )22(cos 2sin 2)x x Axe e B x C x ++ (C )22(cos 2sin 2)xx Aexe B x C x ++ (D )22(cos 2sin 2)x x Axe e B x C x ++(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则 (A )(0,0)(1,1)f f > (B )(0,0)(1,1)f f < (C )(0,1)(1,0)f f > (D )(0,1)(1,0)f f <(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( ) (A )010t =(B )01520t <<(C )025t =(D )025t >()s(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=( ) (A )12αα+ (B )232αα+ (C )23αα+ (D )122αα+(8)设矩阵200210100021,020,020*********A B C ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则( ) (A ),A C B C 与相似与相似(B ),A C B C 与相似与不相似 (C ),A C B C 与不相似与相似(D ),A C B C 与不相似与不相似二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 曲线21arcsiny x x ⎛⎫=+ ⎪⎝⎭的斜渐近线方程为_______ (10) 设函数()y y x =由参数方程sin t x t e y t⎧=+⎨=⎩确定,则220t d ydx ==______ (11)2ln(1)(1)x dx x +∞+=+⎰_______ (12) 设函数(,)f x y 具有一阶连续偏导数,且(,)(1)yydf x y ye dx x y e dy =++,(0,0)0f =,则(,)______f x y =(13)11tan ______y xdy dx x=⎰⎰(14)设矩阵41212311A a -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的一个特征向量为112⎛⎫⎪ ⎪ ⎪⎝⎭,则_____a =三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限0lim t x dt +→(16)(本题满分10分)设函数(,)f u v 具有2阶连续偏导数,(,cos )xy f e x =,求x dy dx=,22x d y dx =(17)(本题满分10分)求21lim ln 1nn k k k nn →∞=⎛⎫+ ⎪⎝⎭∑(18)(本题满分10分)已知函数()y x 由方程333320x y x y +-+-=确定,求()y x 的极值(19)(本题满分10分)设函数()f x 在区间[0,1]上具有2阶导数,且0()(1)0,lim 0x f x f x+→><,证明: ()I 方程()0f x =在区间(0,1)内至少存在一个实根;()∏方程2''()()(())0f x f x f x +=在区间(0,1)内至少存在两个不同实根。
浙江工业大学665数学分析(学术学位)2021年考研专业课初试大纲
(4)实数集和实数完备性
掌握上下确界概念。熟悉实数完备性的几个基本定理,掌握其证明和应用。
(5)函数的连续性
熟悉函数连续的定义,函数间断点的分类,掌握连续函数的性质。掌握一致连续的概念,能够
证明和函数连续性有关的命题。
2、一元函数微分学
(1)导数
熟悉导数、左右导数、高阶导数概念,明确导数的几何意义,了解导函数的性质,掌握求导法
计算。熟练掌握微积分学基本定理,会求积分变限函数的极限、导数。掌握无穷积分和瑕积分的收
敛判别法、绝对收敛判别法,明确定积分与反常积分性质方面的异同。
会用定积分求平面图法。
浙江工业大学研究生入学考试自命题科目考试大纲
4、多元函数及其微分学 (1)多元函数的极限与连续 掌握重极限与累次极限的定义、联系与区别,能熟练讨论这些极限的存在性和不存在性。 (2)偏导数、微分和方向导数 掌握偏导数、微分和方向导数的概念、求法,特别是复合函数高阶偏导的求法,隐函数偏导的 求法。熟悉可微性条件、几何意义与应用。能熟练讨论多元函数连续、可微、偏导连续之间的关系, 能举出具有其中几种性质而不具有其余性质的多元函数例子。 能利用偏导数求平面曲线的切线与法线,空间曲线的切线与法平面,空间曲面的切平面与法线。 熟练掌握条件极值的求法,有界闭区域上函数的最大最小值求法。 5、多元函数积分学 (1)重积分 熟悉重积分的定义和可积性条件,熟练掌握重积分的计算、交换积分次序方法,会利用重积分 计算面积、体积。 (2)曲线积分和曲面积分 掌握第一类曲线积分、第二类曲线积分、第一类曲面积分、第二类曲面积分的定义、计算方法, 两类曲线积分的关系,两类曲面积分的关系,曲线积分与二重积分的关系(格林公式),曲面积分 与三重积分的关系(高斯公式),曲面积分与曲线积分的关系(斯托克斯公式)。 6、级数理论 (1)数项级数 掌握级数、正项级数、交错级数的概念和收敛判别法,明确级数和数列的关系。 (2)函数列与函数项级数 掌握函数列与函数项级数一致收敛的概念、判别法、性质, 和函数的连续性,级数的逐项可导、 逐项可积性。 (3)幂级数 掌握幂级数收敛半径、收敛区间的求法,熟练掌握函数的泰勒级数展开法,注意利用逐项求导 和逐项积分的展开方法。 (4)傅里叶级数 熟悉傅里叶级数的收敛定理,掌握函数展开成傅里叶级数的条件与方法。
2017年浙工大浙江工业大学考研真题、研究生招生简章、招生目录及考试大纲汇总
浙江工业大学考研真题、考研答案及考研资料,由布丁考研网浙工大在读学长收集整理,真题都是来自官方原版,权威可靠,内部资料都是我们当年考浙工大时用的,考上后针对新的大纲重新进行了整理,参考价值极高。
此外,我们还有很多备考浙工大的经验,学弟学妹们有任何报考的疑问均可以咨询我们。
我们还提供一对一VIP辅导,除了传授报考浙江工业大学的内部信息、备考方法及经验外,把专业课的所有重点、难点、考点全部道出,在最短的时间内快速提升成绩,特别适合二战、在职、本科不是985和211、基础比较差的同学。
2017浙江工业大学硕士研究生招生专业目录(学术型)
浙江工业大学考研真题,由布丁考研网在读学长提供。
因为专注,所以专业。
布丁考研网,在读学长提供考研专业课资料及辅导,真实可靠,保证高参考价值。
2017年考研数学二真题及解析
【答案】-1
1 【解析】设 1 ,由题设知 A ,故 2 4 1 2 1 1 1 1 2 a 1 1 3 2a 3 1 1 2 2 2 2
【答案】 【解析】 (13)
1
0
dy
1 y
tan x dx ______ x
(
【答案】 ln cos1 . 【解析】交换积分次序:
dy
0
1
1 x tan x 1 tan x dx dx dy tan xdx ln cos1 . y 0 0 0 x x 1
4 1 2 1 (14)设矩阵 A 1 2 a 的一个特征向量为 1 ,则 a _____ 2 3 1 1
1
因此 B 正确。
(
2 0 0 2 1 0 1 0 0 (8)设矩阵 A 0 2 1 , B 0 2 0 , C 0 2 0 ,则( ) 0 0 1 0 0 1 0 0 2
(A) ab
)
1 2
(B) ab
1 2
(C) ab 0
(D) ab 2
【答案】A
1 x 1 cos x 1 1 1 2 【解析】 lim lim , f ( x) 在 x 0 处连续 b ab . 选 A. x 0 x 0 ax ax 2a 2a 2
(A) 1 2
【答案】 B 【解析】
0 0 0 P AP 1 1 1 AP P A( 1, 2, 3) ( 1, 2, 3) 2 23 , 2 2 2
2017年全国硕士研究生入学统一考试数学三真题及答案解析 .doc
2017年全国硕士研究生入学统一考试数学三真题及答案解析一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)二原函数)3(y x xy z--=的极值点为( ))(A )0,0(。
)(B )3,0(。
)(C )0,3(。
)(D )1,1(。
【答案】)(D【解】由⎪⎩⎪⎨⎧=--='=--='023,02322x xy x z y xy y z yx 得⎩⎨⎧==0,0y x ⎩⎨⎧==1,1y x ⎩⎨⎧==3,0y x ⎩⎨⎧==0,3y x y z xx 2-='',y x z xy 223--='',x z yy 2-='',当)0,0(),(=y x 时,092<-=-B AC ,则)0,0(不是极值点;当)1,1(),(=y x 时,032>=-B AC 且02<-=A ,则)1,1(为极大点,应选)(D 。
(3)设函数)(x f 可导,且0)()(>'⋅x f x f ,则( ))(A )1()1(->f f 。
)(B )1()1(-<f f 。
)(C |)1(||)1(|->f f 。
)(D |)1(||)1(|-<f f 。
【答案】)(C 【解】若0)(>x f ,则0)(>'x f ,从而0)1()1(>->f f ;若0)(<x f ,则0)(<'x f ,从而0)1()1(<-<f f ,故|)1(||)1(|->f f ,应选)(C 。
2017年考研数学二试题及答案解析
2017年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1))若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则( ) (A)12ab =(B)12ab =-(C)0ab =(D)2ab =【答案】A【解析】00112lim lim ,()2x x xf x ax a++→→==在0x =处连续11.22b ab a ∴=⇒=选A. (2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则( )()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰【答案】B 【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx xdx --=-=-<⎰⎰,选B.(3)设数列{}n x 收敛,则( )()A 当limsin 0n n x →∞=时,lim 0n n x →∞= ()B当lim(0n n x →∞+=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞= ()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【答案】D【解析】特值法:(A )取n x π=,有limsin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D.(4)微分方程的特解可设为全国统一服务热线:400—668—2155 精勤求学 自强不息(A )22(cos 2sin 2)xx Ae e B x C x ++ (B )22(cos 2sin 2)x x Axe e B x C x ++ (C )22(cos 2sin 2)xx Aexe B x C x ++ (D )22(cos 2sin 2)x x Axe e B x C x ++【答案】A【解析】特征方程为:21,248022i λλλ-+=⇒=±222*2*212()(1cos 2)cos 2,(cos 2sin 2),x x x x x f x e x e e x y Ae y xe B x C x =+=+∴==+ 故特解为:***2212(cos 2sin 2),x xy y y Ae xe B x C x =+=++选C.(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则 (A )(0,0)(1,1)f f > (B )(0,0)(1,1)f f < (C )(0,1)(1,0)f f > (D )(0,1)(1,0)f f < 【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数, 所以有(0,1)(1,1)(1,0)f f f <<,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )0510********()s (/)v m s 1020(A )010t =(B )01520t <<(C )025t =(D )025t >【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=( ) (A )12αα+ (B )232αα+ (C )23αα+ (D )122αα+【答案】 B 【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。
2017考研数学二真题及答案解析
2017年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1))若函数1cos ,0(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则()(A)12ab =(B)12ab =-(C)0ab =(D)2ab =【答案】A【解析】001112lim lim ()2x x xf x ax ax a ++→→-== 在0x =处连续11.22b ab a ∴=⇒=选A.(2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则()()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰【答案】B 【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx xdx --=-=-<⎰⎰,选B.(3)设数列{}n x 收敛,则()()A 当lim sin 0n n x →∞=时,lim 0n n x →∞=()B当lim(0n n x →∞+=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞=()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【答案】D【解析】特值法:(A )取n x π=,有lim sin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D.(4)微分方程的特解可设为(A )22(cos 2sin 2)xx Ae e B x C x ++(B )22(cos 2sin 2)xx Axee B x C x ++(C )22(cos 2sin 2)xx Aexe B x C x ++(D )22(cos 2sin 2)xx Axee B x C x ++【答案】A【解析】特征方程为:21,248022iλλλ-+=⇒=±222*2*212()(1cos 2)cos 2,(cos 2sin 2),x x x x xf x e x e e x y Ae y xe B x C x =+=+∴==+ 故特解为:***2212(cos 2sin 2),xx y y y Aexe B x C x =+=++选C.(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则(A )(0,0)(1,1)f f >(B )(0,0)(1,1)f f <(C )(0,1)(1,0)f f >(D )(0,1)(1,0)f f <【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数,所以有(0,1)(1,1)(1,0)f f f <<,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则()(A )010t =(B )01520t <<(C )025t =(D )025t >【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=()(A )12αα+(B )232αα+(C )23αα+(D )122αα+【答案】B【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。
2017考研数学二真题及答案解析
2017年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1))若函数1cos ,0(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则()(A)12ab =(B)12ab =-(C)0ab =(D)2ab =【答案】A【解析】001112lim lim ()2x x xf x ax ax a ++→→-== 在0x =处连续11.22b ab a ∴=⇒=选A.(2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则()()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰【答案】B 【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx xdx --=-=-<⎰⎰,选B.(3)设数列{}n x 收敛,则()()A 当lim sin 0n n x →∞=时,lim 0n n x →∞=()B当lim(0n n x →∞+=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞=()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【答案】D【解析】特值法:(A )取n x π=,有lim sin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D.(4)微分方程的特解可设为(A )22(cos 2sin 2)xx Ae e B x C x ++(B )22(cos 2sin 2)xx Axee B x C x ++(C )22(cos 2sin 2)xx Aexe B x C x ++(D )22(cos 2sin 2)xx Axee B x C x ++【答案】A【解析】特征方程为:21,248022iλλλ-+=⇒=±222*2*212()(1cos 2)cos 2,(cos 2sin 2),x x x x xf x e x e e x y Ae y xe B x C x =+=+∴==+ 故特解为:***2212(cos 2sin 2),xx y y y Aexe B x C x =+=++选C.(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则(A )(0,0)(1,1)f f >(B )(0,0)(1,1)f f <(C )(0,1)(1,0)f f >(D )(0,1)(1,0)f f <【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数,所以有(0,1)(1,1)(1,0)f f f <<,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则()(A )010t =(B )01520t <<(C )025t =(D )025t >【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=()(A )12αα+(B )232αα+(C )23αα+(D )122αα+【答案】B【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。
2017年全国硕士研究生考试数学一试题及答案
2017年全国硕士研究生考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,请将所选项前的字母填在答题纸指定位置上。
1 cos、、x(1)若函数f(x) —ax —,X 0在x 0连续,则()。
b,x 0-1A.ab —2u 1B.ab2C.ab 0D.ab 2(2)设函数f (x)可导,且f(x)f'(x) 0 ,则(A.f(1) f( 1)B.f(1) f( 1)C.I f(1)l I f( 1)D.I f(1)I I f( 1)(3)函数f (x, y, z) x2y z2在点(1,2,0)处沿向量n (1,2,0)的方向导数为( )。
A.12B.6C.4D.2(4)甲乙两人赛跑,计时开始时,甲在乙前方10 (单位:m)处,图中,实线表示甲的速度曲线v M(t)(单位:m/s),虚线表示乙的速度曲线v v2(t),三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为t0(单位:s),则()。
要条件是()。
A. P(B | A) P(B| A) B. P(B| A) P(B| A)A. t o 10B. 15 t o 20C. t o 25D. t o 25(5)设为n 维单位列向量, E 为n 维单位矩阵,则(A. E T 不可逆B. E T 不可逆C. E 2 T不可逆 D. E 2T不可逆2 0 02 1 0 (6)已知矩阵A 02 1 ,B 0 2 0 ,C 0 0 10 0 11 0 00 2 0,则( )0 0 2A. A 与C 相似,B 与C 相似B. A 与C 相似,B 与C 不相似C. A 与C 不相似,B 与C 相似D. A 与C 不相似,B 与C 不相似(7)设A , B 为随机事件,若0 P(A) 1,0 P(B)1,且 P(A| B) P(A|B)的充分必C. P(B|A) P(B|A)D. P(B| A) P(B| A)(8)设 X 1,X 2,L X n (n1 n2)来自总体N( ,1)的简单随机样本,记 X — X i ,则下列n i 1结论中不正确的是( )。
2017年全国硕士研究生招生考试考研数学一真题及详解【圣才出品】
)。
b,
x0
A.ab=1/2
B.ab=-1/2
C.ab=0
D.ab=2
【答案】A
【考点】连续的定义;等价无穷小
【解析】由连续的定义知
lim f (x) lim f (x) f (0) b
x0
x0
即
lim 1 cos x b
x0
ax
又当 x→0 时,
1 cos x : 1 ( x)2 2
代入得 1/(2a)=b,即 ab=1/2。
→
3.函数 f(x,y,z)=x2y+z2 在点(1,2
A.12 B.6 C.4 D.2 【答案】D 【考点】方向导数 【解析】计算方向余弦得:cosα=1/3,cosβ=cosγ=2/3。偏导数 fx′=2xy,fy′=x2, fz′=2z。得∂f/∂u=fx′cosα +fy′cosβ+fz′cosγ =4·(1/3)+1·(2/3)+0·(2/3)=2。
P(AB) P(AB) P( A) P( AB)
P(B) P(B)
1 P(B)
化简得 P(AB)>P(A)P(B)。
A 项中,P(B|A)=P(AB)/P(A),
P(B | A) P(B) P(AB) 1 P( A)
化简得 P(AB)>P(A)P(B),所以选 A。
X 1n X 8.设 X1,X2,…,X(n n≥2)为来自总体 N(μ,1)的简单随机样本,记
圣才电子书 十万种考研考证电子书、题库视频学习平台
2017 年全国硕士研究生招生考试考研数学一真题及详解
一、选择题(1~8 小题,每小题 4 分,共 32 分。下列每题给出的四个选项中,只有
一个选项符合题目要求。)
1 cos