不等式的性质2教案

合集下载

高中一年级上学期数学《等式性质和不等式的性质(第2课时)》教学设计

高中一年级上学期数学《等式性质和不等式的性质(第2课时)》教学设计

教学设计
问题1:类比等式的基本性质,试猜想不等式的基本性质并证明.
【设计意图】:通过复习回忆初中所学等式的基本性质,在这些性质的基础上进行类比、引深、推导出不等式的性质,方便同学们进行知识的迁移,从而更好地理解不等式的相关性质.
(一)新知探究
常用不等式的基本性质:
性质1:a b b a >⇔<;对称性
性质2:,a b b c a c >>⇔>;传递性
证明:()()0000a b a b a b b c a c a c
b c b c >⇒->⎫⇒-+->⇒->⇒>⎬>⇒->⎭
性质3:a b a c b c >⇒+>+;加法法则1
由性质3可得,()()a b c a b b c b a c b +>⇒++->+-⇒>-
不等式中任何一项可以改变符号后移到不等号的另一边.
性质4:如果a b >且0c >,那么ac bc >; 乘法法则1
如果a b >且0c <,那么ac bc <
即:不等式两边同乘一个正数,所得不等式与原不等式同向;不等式两边同
乘一个负数,所得不等式与原不等式反向.
性质5:如果a b >且c d >,那么a c b d +>+. 加法法则2。

9.1.2-不等式的性质(2)

9.1.2-不等式的性质(2)

探索提高:
1、分别比较下列各式中左右两个算式的结果 大小(在横线上填“>,<,=”)
> (1)32 42 _____234;
= (2)22 22 ______222; > (3)(2)2 (5)2 ______2(2)(5);
> (4)(1)2 (2)2 _____来自_212;2323
通过观察归纳,你能写出这种规律的一般式吗?
2、如果
x y
>0,那么xy

0;
3、如果a>-1,那么a-b > -1-b;
4、若a<b,则a-b < 0;
5、若a>b,则 a
3

b 3

6、若2a>3a,则a是 负 数;
7、若
a 2

a 3
,则a是

数;
8、若ax<a,且x>1,则a是 负 数。
例1、解不等式,并将解集在数轴上表示出来. 2x-1<4x+13
在数轴上表示V的取值范围如图:
0
105
例5、三角形中任意两边之差与第三边有怎样的 大小关系?
解:如图,设a、b、c为任意一 a
b
个三角形的三条边的长,则:
c
a+b>c,b+c>a,c+a>b.
由式子a+b>c移项可得: a>c-b,b>c-a. 类似地,由式子b+c>a及c+a>b移项可得:
c>a-b,b>a-c及c>b-a,a>b-c. 从中你得到什么规律?
不等式性质1: 若a>b,则a±c>b±c.
不等式性质2:若a>b,c >0,则ac>bc(或 a b ). cc
不等式性质3:若a>b,c <0,则ac<bc(或 a b ). cc

新人教版数学七年级下册第九章《9.1.2不等式的性质(2)》公开课课件PPT

新人教版数学七年级下册第九章《9.1.2不等式的性质(2)》公开课课件PPT

例3 解不等式 3(1-x)>2(1-2x)
解: 去括号,得 3-3 x >2-4x 移项,得 -3x +4x >-3+2 合并同类项,得 x >-1 ∴原不等式的解集是x >-1
比一比,谁做得又快又好!
解下列不等式,并把它们的解集在数轴上 表示出来。
(1)x+4>3
(2)7x+6 ≥ 6x+3
学科网
不等式的基本性质1: 如果a >b,那么a±c>b±c. 就是说,不等式两边都加上 (或减去)同一个数(或式子), 不等号方向不变。
不等式基本性质2:
a b 如果a >b,c > 0 ,那么 ac>bc(或 c c )
就是说不等式的两边都乘以(或除以)同一个 正数,不等号的方向不变。 不等式基本性质3:
(3)7x-1 ≤ 6x+1 (4)3-5x < 2(2-3x)
例如 解不等式3+3x>2+4x 解:移项,得
-4x+3x>2- 3 合并同类项,得 -x>-1
∴ 原不等式的解集是
x<1
写不等式的解集时,要把表示未知数 的字母写在不等号的左边。
思考
1、求不等式
3(x-3)+6 < 2x+1的正整数 解。
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
问题1:实心小圆点和空心小圆圈分别在什么时候适用
例2
解一元一次不等式 8x-2≤7x+3, 并把它的解在数轴上表示出来。
解:移项,得 8x- 7x ≤3+2 ∴ x ≤5
这个不等式的解集在数轴上表示如下:
-1 0 1 2 3 4 5 6 7
5 x 3m m 5 m为何值时,方程 4 2 4 的解是非正数.

人教版不等式的性质(2)

人教版不等式的性质(2)
如果_ɑ_>_b_,那么 _ɑ_±__c_>_b_±__c。
5
不等式基本性质2: 不等式两边乘(或除以)同
一个_正__数_,不等号的方向_不__变_。
6
不等式基本性质3: 不等式两边乘(或除以)同
一个_负__数_,不等号的方向改__变__。
7
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
3x 2x 2x 1 2x
x1
(3)根据不等式的性质2,不等式 两边乘 2 ,不等式的方向不变,所以
3 2 2 x 2 50 33 3
x 75
13
(4)根据不等式的性质3,不等式
两边除以-4,不等式的方向改变,所

4x 3
4 4
x 3 4
不等式的解集也可以在数轴上表示,
如上例中的不等式 x 7 的 2解6 集在数轴
8
课堂检测:
1、若ɑ>b,用“<”或“>”填空。 (1)ɑ+1 b+1; (2) ɑ-5 b-5; (3) -3ɑ -3b; (4) 6-ɑ 6-b;
9
圣诞节到了,小明去买贺卡花了x元,买邮 票花了3元,他总共花了10元,请问小明买贺卡 花了多少元?(列方程求解)
解:由题意,得 x+3=10
移项,得 x =10-3 合并同类项,得 x =7
3
归纳总结: 由上面规律填空:
换一些其 他的数, 验证这个
发现。
(1)当不等式两边加上或减去同一个
数(正数或负数)时,不等号的方
向 不变 ;
(2)当不等式两边乘同一个正数时,
不等号的方向 不变 ;而乘同一个 负数时,不等号的方向改___变______ 。

9.1.2不等式的性质数学教案

9.1.2不等式的性质数学教案

9.1.2不等式的性质数学教案
标题:9.1.2 不等式的性质
一、教学目标:
1. 理解并掌握不等式的基本性质。

2. 能够运用不等式的性质解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学重点与难点:
重点:理解和掌握不等式的性质。

难点:如何正确应用不等式的性质解决问题。

三、教学过程:
(一)导入新课
教师可以通过生活中的实例引入不等式的概念,并引导学生思考:不等式是否也像等式一样有其自身的性质?
(二)讲解新课
1. 不等式的性质
(1)不等式的两边同时加上或减去同一个数,不等号的方向不变。

(2)不等式的两边同时乘以或除以同一个正数,不等号的方向不变。

(3)不等式的两边同时乘以或除以同一个负数,不等号的方向改变。

在讲解每个性质时,教师都可以通过具体的例子来帮助学生理解,然后让学生自己尝试推导,增强他们的理解。

(三)课堂练习
设计一些基础题和提高题,让学生在做题中进一步理解和掌握不等式的性质。

(四)小结
教师对本节课的主要内容进行总结,强调不等式的性质及使用方法。

(五)作业布置
布置一些相关的习题,让学生在课后复习和巩固所学知识。

四、教学反思:
通过对学生课堂表现和作业完成情况的观察,反思自己的教学效果,调整教学策略。

以上只是一个简单的教案框架,您需要根据实际情况进行详细的填充和扩展,例如在讲解每一个性质的时候,可以用具体的例子来进行解释,这样可以使学生更好地理解和记忆。

在课堂练习部分,可以根据学生的水平设计不同难度的题目,让他们在做题中逐步提升自己的能力。

不等式的基本性质(2)

不等式的基本性质(2)

2.3不等式的基本性质一、教学目标:(一)知识与技能1.掌握不等式的三条基本性质。

2.使用不等式的基本性质对不等式实行变形。

1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。

2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维水平和语言表达水平。

(三)情感态度与价值观通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。

二、教学重难点教学重点:探索不等式的三条基本性质并能准确使用它们将不等式变形。

教学难点:不等式基本性质3的探索与使用。

三、教学方法:自主探究——合作交流四、教学过程:情景引入:1.举例说明什么是不等式?2.判断下列各式是否成立?并说明理由。

( 1 ) 若x-4=12, 则x=16( )( 2 ) 若3x=12, 则 x=4( )( 3 ) 若x-4>12 则 x>16 ( )( 4 ) 若3x>12则 x>4( )【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。

通过复习既找准了旧知停靠点,又创设了一种情境,给学生提供了类比、想象的空间,为后续学习做好了铺垫。

教师导语:当我们开始研究不等式的时候,自然会联想到它是否与等式有相类似的性质。

这节课我们就通过类比来探究不等式的基本性质。

温故知新问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。

估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。

教师引导:“=”没有方向性,所以能够说所得结果仍是等式,而不等号:“>,<,≥,≤”具有方向性,我们应该重点研究它在方向上的变化。

问题2.你能通过实验、猜想,得出进一步的结论吗?同桌同学通过实例验证得出结论,师生共同总结不等式性质1。

不等式的基本性质(2)

不等式的基本性质(2)

课题:不等式的基天性质(2 课时 )教课目的:1.掌握作差比较大小的方法,并能证明一些不等式。

2.掌握不等式的性质,掌握它们的证明方法及其功能,能简单运用。

3.提升逻辑推理和分类议论的能力;培育条理思想的习惯和仔细谨慎的学习态度。

教课要点:作差比较大小的方法;不等式的性质。

教课难点:不等式的性质的运用教课过程:第1课时:问题情境:现有 A、B、 C、 D 四个长方体容器, A、 B 容器的底面积为 a2,高分别为 a、 b,C、D 容器的底面积为 b2,高分别为 a、b,此中 a≠ b。

甲先从四个容器中取两个容器盛水,乙用剩下的两个容器盛水。

问假如你是甲,能否必定能保证两个容器所盛水比乙的多剖析:依题意可知:A、B、C、 D 四个容器的容积分别为a3、 a2b、ab2、b3,甲有 6 种取法。

问题能够转变为比较容器两两和的大小。

研究比较大小的依照:我们知道,实数与数轴上的点是一一对应的。

在数轴上不一样的两点中,右侧的点表示的实数比左侧的点表示的实数大。

在右图中,点 A 表示实数 a,点 B 表示实数 b,点B A x A 在点 B 右侧,那么 a> b。

而 a-b 表示 a 减去 b 所得的差,因为 a> b,则差是一个正数,即a- b> 0。

命题:“若 a> b,则 a- b> 0”建立;抗命题“若a- b> 0,则 a> b”也正确。

近似地:若 a<b,则 a- b< 0;若 a= b,则 a- b=0。

抗命题也都正确。

结论: (1) “ a> b”?“ a- b> 0”(2)“a= b”?“ a- b= 0”(3)“a< b”?“ a- b< 0” ——以上三条即为比较大小的依照:“作差比较法” 。

正负数运算性质: (1) 正数加正数是正数; (2) 正数乘正数是正数; (3) 正数乘负数是负数; (4)负数乘负数是正数。

研究不等式的性质:性质 1:若 a> b, b> c,则 a>c (不等式的传达性)证明:∵ a> b∴ a-b>0∵b> c ∴ b- c> 0∴(a -b) + (b -c) = a- c> 0 ( 正负数运算性质 )则 a>c反省:证明要求步步有据。

高中数学2.1等式性质与不等式性质第2课时教学设计新人教A版必修第一册

高中数学2.1等式性质与不等式性质第2课时教学设计新人教A版必修第一册

2.1等式性质与不等式性质(第2课时)教学目标学习目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题;2. 进一步掌握作差、作商、综合法等比较法比较实数的大小;3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质.核心素养1. 掌握等式性质与不等式性质以及推论,培养学生数学抽象的核心素养;2. 进一步掌握作差比较法比较实数的大小,提升数学运算的核心素养;3. 能利用不等式的性质证明简单的不等式、求代数式的取值范围,强化逻辑推理的核心素养。

教学重难点重点:掌握不等式性质及其应用.难点:类比等式的基本性质及其蕴含的思想方法,研究不等式的基本性质;等式与不等式的共性与差异.学情分析学生在小学和初中阶段已经接触过不等式,但上升到理论层次,例如比较大小的理论根据--作差法,对不等式性质的推导与证明,利用不等式性质解决简单的证明等问题,还有一定的难度,所以在教学过程中,注意引导学生分析不等式个性质的条件及结论,做到有理有据、严谨细致、条例清楚,提高逻辑推理和数学运算的核心素养。

教学过程教学环节教师活动学生活动设计意图情境导入上一课时我们学习了比较两个数的大小,为我们学习不等式的性质奠定了基础.让我们先回顾等式的有关性质:性质1 如果那么(对称性)性质2 如果那么(传学生回忆所学知识通过引导学生回忆,帮助学生用数学式子表示出来,提高学生用数学抽象的思维方式思考并解决问题的能力递性)性质3 如果那么性质4 如果那么性质5 如果那么新知讲授【知识一:不等式的性质】性质1 如果如果,那么.性质2 如果,那么(传递性)性质3 如果,那么性质4 如果那么;如果那么性质5 如果,那么性质6 如果,那么性质7 如果那么. 符号表示:文字表示:不等式的两边都加上同一个实数,所得不等式与原不等式同向.移项法则:文字表示:不等式的两边同乘一个正数,所得不等式与原不等式同向;不等式的两边同乘一个负数,所得不等式与原不等式反向.注意:同向不等式相加得同向不等式,并无相减。

不等式的性质(二)

不等式的性质(二)

不等式的性质(二)第二课时教学目标1.理解同向不等式,异向不等式概念;2.掌握并会证明定理1,2,3;3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据;4.初步理解证明不等式的逻辑推理方法.教学重点:定理1,2,3的证明的证明思路和推导过程教学难点:理解证明不等式的逻辑推理方法教学方法:引导式教学过程一、复习回顾上一节课,我们一起学习了比较两实数大小的方法,主要根据的是实数运算的符号法则,而这也是推证不等式性质的主要依据,因此,我们来作一下回顾:这一节课,我们将利用比较实数的方法,来推证不等式的性质.二、讲授新课在证明不等式的性质之前,我们先明确一下同向不等式与异向不等式的概念.1.同向不等式:两个不等号方向相同的不等式,例如:是同向不等式.异向不等式:两个不等号方向相反的不等式.例如:是异向不等式.2.不等式的性质:定理1:若,则定理1说明,把不等式的左边和右边交换,所得不等式与原不等式异向.在证明时,既要证明充分性,也要证明必要性.证明:∵,∴由正数的相反数是负数,得说明:定理1的后半部分可引导学生仿照前半部分推证,注意向学生强调实数运算的符号法则的应用.定理2:若,且,则.证明:∵∴根据两个正数的和仍是正数,得∴说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数.定理3:若,则定理3说明,不等式的两边都加上同一个实数,所得不等式与原不等式同向.证明:∵∴说明:(1)定理3的证明相当于比较与的大小,采用的是求差比较法;(2)不等式中任何一项改变符号后,可以把它从一边移到另一边,理由是:根据定理3可得出:若,则即.定理3推论:若.证明:∵,∴①∵∴②由①、②得说明:(1)推论的证明连续两次运用定理3然后由定理2证出;(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(3)两个同向不等式的两边分别相减时,就不能作出一般的结论;(4)定理3的逆命题也成立.(可让学生自证)三、课堂练习1.证明定理1后半部分;2.证明定理3的逆定理.说明:本节主要目的是掌握定理1,2,3的证明思路与推证过程,练习穿插在定理的证明过程中进行.课堂小结通过本节学习,要求大家熟悉定理1,2,3的证明思路,并掌握其推导过程,初步理解证明不等式的逻辑推理方法.课后作业1.求证:若2.证明:若板书设计§6.1.2 不等式的性质1.同向不等式 3.定理2 4.定理3 5.定理3异向不等式证明证明推论2.定理1 证明说明说明证明第三课时教学目标1.熟练掌握定理1,2,3的应用;2.掌握并会证明定理4及其推论1,2;3.掌握反证法证明定理5.教学重点:定理4,5的证明.教学难点:定理4的应用.教学方法:引导式教学过程:一、复习回顾上一节课,我们一起学习了不等式的三个性质,即定理1,2,3,并初步认识了证明不等式的逻辑推理方法,首先,让我们来回顾一下三个定理的基本内容.(学生回答)好,我们这一节课将继续推论定理4、5及其推论,并进一步熟悉不等式性质的应用.二、讲授新课定理4:若若证明:根据同号相乘得正,异号相乘得负,得当说明:(1)证明过程中的关键步骤是根据“同号相乘得正,异号相乘得负”来完成的;(2)定理4证明在一个不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变.推论1:若证明:①又∴②由①、②可得.说明:(1)上述证明是两次运用定理4,再用定理2证出的;(2)所有的字母都表示正数,如果仅有,就推不出的结论.(3)这一推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘.这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向.推论2:若说明:(1)推论2是推论1的特殊情形;(2)应强调学生注意n∈N的条件.定理5:若我们用反证法来证明定理5,因为反面有两种情形,即,所以不能仅仅否定了,就“归谬”了事,而必须进行“穷举”.说明:假定不大于,这有两种情况:或者,或者.由推论2和定理1,当时,有;当时,显然有这些都同已知条件矛盾所以.接下来,我们通过具体的例题来熟悉不等式性质的应用.例2已知证明:由例3已知证明:∵两边同乘以正数说明:通过例3,例4的学习,使学生初步接触不等式的证明,为以后学习不等式的证明打下基础.在应用定理4时,应注意题目条件,即在一个等式两端乘以同一个数时,其正负将影响结论.接下来,我们通过练习来进一步熟悉不等式性质的应用.三、课堂练习课本P7练习1,2,3.课堂小结通过本节学习,大家要掌握不等式性质的应用及反证法证明思路,为以后不等式的证明打下一定的基础.课后作业课本习题6.1 4,5.。

第九讲 不等式性质二(同乘除)_1_

第九讲 不等式性质二(同乘除)_1_

个性化辅导讲义,则有:①,则或。

或。

,且时,有。

课后作业1、判断下列各题是否正确?正确的打“√”,错误的打“×”(1)不等式两边同时乘以一个整数,不等号方向不变.( )(2)如果a >b ,那么3-2a >3-2b.( )(3)如果a 是有理数,那么-8a >-5a.( )(4)如果a <b ,那么a 2<b 2.( )(5)如果a 为有理数,则a >-a.( )(6)如果a >b ,那么ac 2>bc 2.( )(7)如果-x >8,那么x >-8.( )(8)若a <b ,则a +c <b +c.( )2、如果ab <0,那么下列判断正确的是 ( )A .以<0,b <0B .a >0,b >0C .以≥0,b≤0D .a <0,b >0或a >0,b <03、若a <b ,则下列各式中一定成立的是 ( )A .a -1<b -1B .3a >3b C .-a <-b D .ac 2<bc 2 4、如果关于x 的不等式(a+1)x>a+1的解集为x<1,那么a 的取值范围是 ____________________________.5、由x<y,得ax ≥ay 的条件是( ).A .a ≥0 B. a ≤0 C. a>0 D. a<06、如果0<x<1,则下列不等式成立的是( ).A .2x >1x >x B. 1x >2x >x A .x >1x >2x B. 1x >x >2x7、下列各不等式中,错误的是( ).A .若a+b>b+c,则a>c B. 若a>b,则a -c>b -cC. 若ab>bc,则a>cD. 若a>b,则2c+a>2c+b8、设a ,b ,c 都是实数,且满足:用a 去乘不等式的两边,不等号方向不变;用b 去除不等式的两边,不等号方向改变;用c 去乘不等式的两边,不等号要变成等号.则a 、b 、c 的大小关系是 ( )A .a b c >>B .a c b >>C .b c a >>D .c a b >>9、如果b a >,那么下列不.等式中不成立的是( ) A.33a b ->- B.33a b ->- C.33a b > D.a b -<- 10、在下列各不等式中,错误..的是( ) A.若a b b c +>+,则a c > B.若a b >,则a c b c ->-C.若ab bc >,则a c >D.若a b >,则22c a c b +>+11、下列叙述正确的是( )A.a b >,则22ac bc >B.若03x -<,则3x >-C.当7x <时,3(7)x -是负数D.当0x <时,23x x <12、由y x >得到ay ax <,则a 的取值范围是( )A.0>aB.0<aC.0=aD.a 可以为任何实数13、已知将不等式mx >m 的两边都除以m ,得x <1,则m 应满足______________14、当x ,代数式1+x 的值不大于...3.15、若1x <,则22x -+_____0(用“>””<”或“=”填空)。

9-1-2不等式的性质(第二课时)-七年级数学下册同步精品课件(人教版)

9-1-2不等式的性质(第二课时)-七年级数学下册同步精品课件(人教版)
第二场:女老师为一方,五个同学(一男四女)为另一方进行
比赛,女老师赢了;
第三场:男老师加一个男同学为一方,女老师与三个女同学为
另一方进行比赛,男老师一方赢了.
问:女老师加两个男同学与男老师加上三个女同学进行比赛,
结果将会怎么样?为什么?
课堂练习
解:设男老师力量为x,女老师力量为y,男生力量为z,女生
位数的个位与十位上的数字对调,得到的两位数大于原来的两位数,那
么a与b哪个大?
解:根据题意,得
10b+a<10a+b,
所以,9b<9a,
所以,b<a,即a>b.
课堂练习
4.用不等式表示下列语句并写出解集,并在数轴上表示解集.
(1)x的3倍大于或等于1; (2)x与3的和不小于6;
(3)y与1的差不大于0;
D.a<0
提示:考虑什么时候需要变号——两边同时除以负数时变号.
课堂练习
2.5名学生身高两两不同,把他们按从高到低排列,设前三名的平
均身高为a米,后两名的平均身高为b米.又前两名的平均身高为
c米,后三名的平均身高为d米,则( B

课堂练习
3.有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两
A.4
B.5
C.6
D.7
探究新知
单击此处添加大标题
9.如图,某班进行拔河比赛,一共有两个老师,一个男老师,
一个女老师,六个学生,三个男学生,三个女学生.其中每个
男学生的力量相同,每个女学生的力量相同.
如果有三场比赛的结果是:
第一场:一个男老师为一方,五个同学(两男三女)为另一方
进行比赛,男老师输了;
式表示出来.
解:设北京气温为x℃:

湘教版数学八年级上册《4.2 不等式的基本性质》教学设计2

湘教版数学八年级上册《4.2 不等式的基本性质》教学设计2

湘教版数学八年级上册《4.2 不等式的基本性质》教学设计2一. 教材分析《4.2 不等式的基本性质》是湘教版数学八年级上册的教学内容。

本节内容主要让学生了解和掌握不等式的基本性质,包括不等式的两边同时加上或减去同一个数或整式,不等号的方向不变;不等式的两边同时乘以或除以同一个正数,不等号的方向不变;不等式的两边同时乘以或除以同一个负数,不等号的方向改变。

这些性质为解不等式提供了基本的方法和依据。

二. 学情分析学生在学习本节内容之前,已经学习了有理数的概念、加减乘除运算等基础知识,对数学运算有一定的掌握。

但他们对不等式的认识还比较模糊,对本节内容的不等式基本性质的理解还需要引导和培养。

三. 教学目标1.理解不等式的基本性质,并能运用其解不等式。

2.培养学生的逻辑思维能力和解决问题的能力。

3.激发学生学习数学的兴趣,提高学生的数学素养。

四. 教学重难点1.教学重点:不等式的基本性质及运用。

2.教学难点:对不等式基本性质的理解和运用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、讨论和总结不等式的基本性质,并通过例题讲解和练习,使学生熟练掌握和运用。

六. 教学准备1.准备相关教案、PPT、教学素材等教学资源。

2.准备黑板、粉笔等教学工具。

3.准备练习题和测试题,用于巩固和检验学生的学习效果。

七. 教学过程1.导入(5分钟)利用生活实例或问题,引发学生对不等式的思考,进而引入本节内容——不等式的基本性质。

2.呈现(10分钟)a.呈现不等式的基本性质,引导学生观察和思考。

b.通过PPT或板书,详细讲解不等式的基本性质,并给出示例。

3.操练(10分钟)a.让学生分组讨论,尝试运用不等式的基本性质解不等式。

b.选取部分学生进行解答展示,并对解答进行点评和指导。

4.巩固(10分钟)a.让学生独立完成练习题,巩固不等式的基本性质。

b.对学生进行解答指导,纠正错误,提高解题能力。

北师大版八年级数学下册第二章《不等式的基本性质 2》公开课课件

北师大版八年级数学下册第二章《不等式的基本性质 2》公开课课件

聪明的你做 对了吗?
解:(1)因为a>b,根据不等式性质3, 两边同时乘以3得 3a>3b.
(2)因为a>b,根据不等式性质3, 两边同时乘以-1得 -a<-b.
(3)由(2)得 -a<-b,根据不等式性质2 两边同时加上2得 -a+2<-b+2
1.已知a>b,用不等号填空:
(1)2 a __>_2b; 理由是__不__等__式__性__质_3_____
• (1)a-3 b-3;(2)a÷3 b÷3 • (3)0.1a 0.1b; (4) -4a -4b • (5) 2a+3 2b+3; • (6) (m2+1) a (m2+1)b (m为常数)
答案:(1)>、(2)>(3)、> (4)、< (5)、> (6)、>
练习:
2、判断对错: (1)如果a>b,那么ac>bc。 (2)如果a>b,那么ac2>bc2。 (3)如果ac2>bc2,那么a>b。
两边都减去4m,得0>4n-4m, ②
即0>4(n-m),

两边同时除以(n-m),得0>4. ④
是正还是负?
合作与交流
已知a<0,试比较2a与a的大 小.
①运用不等式的基本性质比较大小; ②利用数轴比较大小; ③作差法比较大小.
先×(-3),再+2
先再
1.已知x>y,比较2-3x与2-3y的大小.前 定
先×(-3),再+2
后不 比等
×(a-3)
较号
2.已知m<<n,且(a-3)m>>(a-3)n,求a的范
围.
×(a-3)

七年级数学下册9.1.2不等式的性质教学设计

七年级数学下册9.1.2不等式的性质教学设计
(1)小华的年龄比小明大3岁,小明的年龄比小刚大2岁。请问:小华的年龄是否比小刚大5岁?请用数学语言表示并证明。
(2)某商店举行打折活动,满100元减20元。如果小王购买了一件原价200元的衣服,实际支付了160元。请问:小王购买的衣服是否享受了打折优惠?请用数学语言表示并证明。
4.探究题:引导学生思考以下问题,培养学生的探究精神:
(1)如果不等式两边同时乘以(或除以)同一个正数,不等式是否仍然成立?请给出证明。
(2)如果不等式两边同时乘以(或除以)同一个负数,不等式会发生什么变化?请给出证明。
5.复习题:为了帮助学生巩固所学知识,布置以下复习题:
(1)回顾已学的方程和不等式的区别与联系,总结在解题过程中的注意事项。
(2)整理本节课所学的不等式性质,以及在实际问题中的应用。
(二)过程与方法
1.通过观察、猜想、验证、总结等教学活动,培养学生自主探究和合作学习的能力。
2.引导学生运用数形结合的思想,通过图像直观地理解不等式的性质,提高解决问题的直观思维能力。
3.设计丰富的例题和练习,让学生在解决问题的过程中,掌握不等式的性质,提高解题技巧。
4.教学中注重启发式教学,引导学生从实际问题中发现不等式,培养发现问题和解决问题的能力。
2.不等式的证明:教师以具体的例子,引导学生运用数形结合的方法,证明不等式的性质。
(三)学生小组讨论
1.分组讨论:学生分成小组,针对教师提出的问题,进行讨论和交流。
2.讨论内容:
(1)不等式的性质在实际问题中的应用;
(2)如何运用不等式的性质解决实际问题;
(3)分享自己在解决问题时的思考和困惑。
3.教师巡回指导:教师参与学生讨论,解答学生的疑问,引导他们深入理解不等式的性质。

2.1(2)不等式的基本性质Ⅱppt课件

2.1(2)不等式的基本性质Ⅱppt课件

(C)a c b c
(D)
a c2 1

b c2 1
5
练习 1、下列结论能成立的是:(_1_)_(_3_)_(_4_)_ (1) a b a b
a (2)
c

b
d


ac

bd
a (3)
cபைடு நூலகம்

b
d


a3

d
3

b3

c3
ab (4)
cd

0 0
证明: 1 1 b a a b ab
b a 0, ab 0
1 1 0 ab
0 1 1
ab
如果a b 0,那么1 ____ 1 ( 0) ab
(同号倒数性质)
4
练习
1、如果x y, m n, 那么下列不等式中正确的是( B )
( A)x m y n (B)x m y n
糖水中加 糖变甜
b ab a 0
又b 0, c 0,b c 0
(b a)c 0 b(b c)
ac a bc b
问: b c __<___ b ?
ac
a
7
例2
a, b R ,比较a5 b5与a3b2 a2b3的大小
解:(a5 b5 ) (a3b2 a2b3 ) a3 (a2 b2 ) b3 (b2 a2 )
iff a b时等号成立
8
练习
ex1、比较两数 (a 1)2与a2 a 1的大小. ex2、比较两数 x2 3与3x的大小.
说明:

八年级上册数学-不等式基本性质(二)

八年级上册数学-不等式基本性质(二)

x+2
3x
> y+2 >3y
x-2
-3x
y-2 >
-3y

x-y > 0
x+y
2y
>
例2.将下列不等式化成x>a或x<a的形式.
4 (1)2x>4;(2) - x > -1 5
解:(1)两边都除以2,得x>2;
(2)两边都除以
4 4 4 5 得 x ( ) 1 ( ) 即x < 5 5 5 4
不等式的基本性质(二)
不等式的基本性质(二)
一、教学目标
(1)使学生理解不等式的基本性质2、3. (2)能灵活运用不等式的基本性质将不等式进行变形。
二、教学重点难点
重点:不等式的基本性质2、3及其应用。 难点:不等式基本性质3的应用。
复习回顾
1.写出等式基本性质的数学表达式 2.写出不等式基本性质1的数学表达 式,这条性质怎样描述?
B. a>-a>b>-b
D. -a>b>-b>a
总结:
1.不等式的基本性质有3条,而等式的基本 性质只有两条. 2.注意不等式的基本性质3在应用的过程中 要改变不等号方向.
等式的性质
1、如果 a b , 那么 a c b c
不等式的性质
1、如果 a b 那么: a c b c 2、如果 a b , c0 a b 那么 ac bc ,

× ×
中考名题
3 1.若0<x<1,则x, x 2, ,的大小关系是 ( x
)
2
C
A.x < x < x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式的性质
教学目的:
1. 熟练掌握性质1,2,3、5的应用;
2. 掌握并会证明性质4、6、7、8、
3. 掌握反证法证明性质8
教学重点:性质4、6、8的证明
教学难点:几个性质的应用
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.同向不等式:两个不等号方向相同的不等式,例如:a>b ,c>d ,是同向不等式 异向不等式:两个不等号方向相反的不等式例如:a>b ,c<d ,是异向不等式
2.不等式的性质:
性质1:如果a>b ,那么b<a ,如果b<a ,那么a>b .(对称性)
即:a>b ⇒b<a ;b<a ⇒a>b
性质2:如果a>b ,且b>c ,那么a>c .(传递性)
即a>b ,b>c ⇒a>c
性质3:如果a>b ,那么a+c>b+c .
即a>b ⇒a+c>b+c
性质5如果a>b ,且c>d ,那么a+c>b+d .(相加法则)
即a>b , c>d ⇒a+c>b+d .
二、讲解新课:
性质4:如果a>b ,且c>0,那么ac>bc ;
如果a>b ,且c<0,那么ac<bc .
证明:∵ac-bc =(a-b)c
∵a>b ∴a-b>0
当c>0时,(a-b)c>0即ac>bc .
当c<0时,(a-b)c <0即ac<bc .
类比定理3推论,设想同向不等式相乘,不等号方向是否改变?即如果a>b ,c>d 是否一定能得出ac>bd ?(举例说明)
能否加强条件得出ac>bd 呢?(引导学生探索,得出推论) .
性质6 如果a>b >0,且c>d>0,那么ac>bd .(相乘法则)
证明:,0a b c >>Q ac bc ∴> ①
又,0,c d b >>Q ∴bc bd > ②
由①、②可得ac bd >
说明:(1)上述证明是两次运用定理4,再用定理2证出的;
(2)所有的字母都表示正数,如果仅有,a b c d >>,就推不出ac bd >的结论
(3)这一推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘这就是
说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向
性质7 若0,(1)n n a b a b n N n >>>∈>则且
说明:(1)推论2是推论1的特殊情形;
(2)应强调学生注意n ∈N 1n >且的条件
如果a>b >0,那么a n >b n (n ∈N ,且n>1)
性质8
若0,1)a b n N n >>>∈>且
点拨:遇到困难时,可从问题的反面入手,即所谓的“正难则反” .我们用反证法来证明定理5
,因为反面有两种情形,即
<
和=
,所以不能仅仅否定了<,就“归谬”了事,而必须进行“穷举” 证明:假定n a 不大于n b
<
n a =由推论2
和定理1
<a b <;当n n b a =时,显然有b a =
这些都同已知条件0a b >>矛盾
>点评:反证法证题思路是:反设结论→找出矛盾→肯定结论.
三、讲解范例:
例1 已知0>>b a 且d c <<0,求证:d
b c a > (相除法则) 证:∵0>>c d ∴⇒⎪⎭
⎪⎬⎫>>>>0011b a d c d b c a > 例2 已知a>b>0,c<0,求证:
b
c a c > 证明:∵0,a b >>两边同乘以正数得,1ab 11,b a
> 即 b a 11< ,又 c<0 ∴ b c a c > 例3 已知a ,b ,x ,y 是正数,且b
a 11>,x>y .求证:
b y y a x x +>+ 证:∵
b
a 11>>0 ∴b>a>0, 又x>y>0 ∴xb>ay ∴xy+xb>xy+ay 即 x(y+b)>y(x+a) ∵a ,
b ,x ,y 是正数,∴y+b>0,x+a>0
∴b
y y a x x +>+ 例4 已知函数2()f x ax c =-, -4≤(1)f ≤-1, -1≤f (2)≤5, 求(3)f 的取值范围
分析: 利用(1)f 与(2)f 设法表示a 、c, 然后再代入(3)f 的表达式中,从而用(1)f 与(2)f 来表示(3)f , 最后运用已知条件确定(3)f 的取值范围
解: ∵ ⎩⎨⎧=+=-)2(4)1(f c a f c a 解得 ⎪⎪⎩
⎪⎪⎨⎧-=-=)1(34)2(31)]1()2([31f f c f f a ∴ )1(3
5)2(389)3(f f c a f -=
-= ∵ -4≤f (1)≤1, 故 )3
5)(4()1()35()35)(1(--≤-≤--f (1) 又 -1≤f (2)≤5, 故 340)2(3838≤≤-f (2) 把(1)和(2)的各边分别相加,得:
-1≤)1(3
5)2(38f f -≤20 所以,-1≤f (3)≤20
点评:应当注意,下面的解法是错误的:
依题意,得:⎩
⎨⎧≤+≤--≤-≤-(2) 541(1) 14c a c a 由(1)(2)利用不等式的性质进行加减消元,得
0≤a ≤3, 1≤c ≤7 (3)
所以,由c a f -=9)3(可得,-7≤f (3)≤27
以上解法其错因在于,由(1)(2)得到不等式(3)是利用了不等式性质中的加法法则,而此性质是单向的,不具有可逆性,从而使得a 、c 的范围扩大,这样f (3)的范围也就随之扩大了
四、课堂练习:
1.已知0>>b a ,0<<d c ,0<e ,求证:d
b e
c a e ->- 证:⇒⎪⎭
⎪⎬⎫<-<-⇒>->-⇒⎭⎬⎫<<>>011000e d b c a d b c a d c b a d b e c a e ->-
2.如果0,0<<>>d c b a 求证:d b c a ->-ππααsin sin log log 证:∵1sin 0<<α π>1 ∴0log sin <πα
又∵0,0>->->>d c b a ∴d b c a ->- ∴d
b c a -<-11 ∴d b c a ->-ππααsin sin log log 3.判断下列各式是否正确?为什么?
(1)如果a >b ,那么a-c>b-c (2)如果a > b,那么a/c>b/c (3)如果ac<bc,那么a<b (4)如果ac 2> bc 2,那么a>b 真



4.π/4<x<y<π/2,求y-x ,y + x 的取值范围.
5.若-14< x < y< -6 ,求yx , y/x 的取值范围.0<y-x<π/4;π/2<y=x<π.
36<xy<196;3/7<y/x<7/3.
五、小结 :本节学习了如下八个不等式性质
1.()
a b b a >⇔<性质对称性2.()
a b b c a c >>⇒>性质且传递性3. a b a c b c >⇒+>+性质(同加性)5 a b c d a c b d >>⇒+>+性质且(同向不等式的可加性)4. ()
0 0.
a b c ac bc a b c ac bc >>⇒>><⇒<性质同乘性且;

6 . 00a b c d ac bd >>>>⇒>性质(非负同向不等式的可乘性)且7. 0n n a b a b >>⇒>∈*性质(非负不等式乘方性质)
(其中n N

8. 01a b >>⇒>∈>*性质(非负不等式开方性质)
n N 且n )
六、课后作业:
课本P 84 习题3.1
B 组 1、2、3。

相关文档
最新文档