二项式定理课件_完美版

合集下载

高中数学《二项式定理》课件

高中数学《二项式定理》课件

03
二项式定理的证明
数学归纳法的应用
数学归纳法是一种证明数学命题的重 要方法,尤其在证明二项式定理时, 它能够通过有限步骤来证明无限递推 关系。
然后,通过假设当$n=k$时二项式定 理成立,推导出当$n=k+1$时二项 式定理也成立。
在二项式定理的证明中,数学归纳法 首先证明基础步骤,即当$n=0$或 $n=1$时,二项式定理成立。
二项式定理的推导
二项式定理推导思路
通过组合数的性质,将二项式定理展开式中的每一项表示为组合数的形式,从而推导出二项式定理的 展开式。
二项式定理的推导过程
根据组合数的性质,将二项式定理展开式中的每一项表示为C(n, k)的形式,其中k表示二项式中某一 项的次数。通过计算,可以得到二项式定理的展开式为C(n, 0) + C(n, 1)x + C(n, 2)x^2 + ... + C(n, n)x^n。
C(n, m) = C(n, n-m),即从n个不同元素中取出m个元素和取出n-m个元素的 组合数相等。
组合数的性质2
C(n+1, m) = C(n, m-1) + C(n, m),即从n+1个不同元素中取出m个元素的组 合数等于从n个不同元素中取出m-1个元素的组合数加上从n个不同元素中取出 m个元素的组合数。
详细描述
二项式定理的应用场景非常广泛。在多项式的展开中,二项式定理可以用来求解形如$(x+y)^n$的多项式的展开 结果。在组合数学中,二项式定理可以用来计算组合数和排列数等。在概率论中,二项式定理可以用来计算事件 的概率和期望值等。此外,二项式定理在统计学、物理、工程等领域也有广泛的应用。
02
二项式定理的推导过程

新教材选择性必修二7.4.1二项式定理课件(37张)

新教材选择性必修二7.4.1二项式定理课件(37张)

9.二项式(x+y)5的展开式中,含x2y3的项的系数是________;二项式系数是
__________.(用数字作答)
【解析】根据二项式的展开式通项公式可得Tr+1=C
r 5
x5-ryr,可得含x2y3的项为C
3 5
x2y3,所以其系数为10,二项式系数为C53 =10.
答案:10 10
10.设n∈N*,则C1n +Cn2 6+C3n 62+…+Cnn 6n-1=________.
x-2x n 展开式中第3项的系数比第2项的系数大162.
(1)n的值;
(2)求展开式中含x3的项,并指出该项的二项式系数.
【解析】(1)因为T3=C2n (
x
)n-2-2x
2
=4C2n
n-6 x2

T2=C1n (
x
)n-1-2x
=-2C1n
n-3 x2

依题意得4C2n +2Cn1 =162,所以2Cn2 +Cn1 =81,所以n2=81,n=9.
二项式定理 二项式定理
基础认知·自主学习
【概念认知】
二项式定理
(a+b)n= C 0 n a n + C 1 n a n - 1 b + + C n r a n - r b r + + C n n b n ( n N * ) .这个公式叫作二项式定
理,右边的多项式叫作(a+b)n的二项展开式,它一共有_n_+__1_项,其中
【解析】(1)根据题意得:C1m +Cn1 =7,即 m+n=7①,
f(x)的展开式中的x2的系数为C2m
+C2n
m(m-1) =2
n(n-1) +2
m2+n2-m-n

2

《二项式定理》课件

《二项式定理》课件

详细讲解证明二项式定理的思路。
3
关键步骤
介绍证明过程中的理解
通过具体的例子加深对二项式定理的理解。
3 应用场景
介绍二项式定理在实际问题中的应用场景。
2 二项式系数计算
介绍如何计算二项式系数。
拓展应用
单项式展开
讨论二项式定理在单项式展开 中的应用。
多项式展开
讨论二项式定理在多项式展开 中的应用。
《二项式定理》PPT课件
概述
• 二项式定理是数学中的一个重要定理。 • 本节将介绍二项式定理的概念及其历史背景。
公式表达
正式表达式
二项式定理的数学公式形式。
常见的形式
常见形式的二项式定理示例。
组合意义的解释
解释二项式定理中组合的概念。
数学证明
1
数学归纳法的证明
使用数学归纳法证明二项式定理。
2
阐述思路
字母代数式应用
介绍二项式定理在字母代数式 中的应用。
总结
• 介绍二项式定理的重要作用。 • 分享学习的心得体验。 • 推广与应用二项式定理相关的知识。

二项式定理一等奖完整ppt课件

二项式定理一等奖完整ppt课件

在数学中的地位和作用
二项式定理是组合数学中的基本定理之一,它描述了两个向量的和的n次幂的展 开式。
在组合数学中,二项式定理被广泛应用于排列、组合、概率论等领域。同时,它 也是多项式定理的基础之一。
03
二项式定理的证明方法
ቤተ መጻሕፍቲ ባይዱ 数学归纳法
数学归纳法是一种证明二项式定理的有效方法。首先,我们需要证明当n=1时,二项式定理成立。然 后,假设当n=k时,二项式定理成立,再证明当n=k+1时,二项式定理也成立。通过这个递推关系, 我们可以得出结论:当n为任意正整数时,二项式定理都成立。
二项式系数的应用
举例说明二项式系数在解决实际问题中的应用,如概率计算、统计 学等。
06
总结与展望
二项式定理的重要性和影响
重要的数学工具
二项式定理是数学中重要的工具 之一,在代数学、数论、组合数
学等学科中都有广泛的应用。
解决问题的关键
二项式定理可以解决一些经典的 数学问题,如组合问题、概率问 题等,为人们提供了重要的解题
思路和方法。
对其他学科的影响
二项式定理不仅在数学学科中有 重要的地位,还对其他学科如物 理学、工程学、计算机科学等产
生了深远的影响。
与其他数学分支的联系和相互渗透
01
与代数学的联系
二项式定理与代数学中的多项式理论密切相关,可以看作是多项式的一
种推广和应用。
02
与组合数学的相互渗透
二项式定理与组合数学有着密切的联系,它可以用来解决一些组合问题
数学归纳法的关键步骤是:第一步,证明基础情况(n=1)成立;第二步,假设归纳基础(n=k)成 立,并由此推断归纳步骤(n=k+1)成立。第三步,根据归纳步骤得出结论,证明二项式定理对所有 正整数n都成立。

二项式定理(PPT课件)

二项式定理(PPT课件)
2 组合证明
根据二项式定理的组合证明,我们可以证明组合数等于需要求和的系数。在$n$个元素中 选取$k$个的方案总数是$C_n^k$。而展开$(a+b)^n=\sum_{k=0}^nC_n^ka^{n-k}b^k$中项的 系数分别是选取$k$项$a$和$n-k$项$b$的方案数$C_n^k$。
总结和要点
牛顿二项式公式
$(a+b)^n=C_n^0a^n+C_n^1a^{n-1}b+C_n^2a^{n2}b^2+...+C_n^nb^n $
应用
1
概率统计
二项式分布常用来描述在$n$次独立重复的伯努利试验中出现$k$个成功的概率。
2
金融衍生品定价
期权定价中可能涉及到二项式树模型,具体方法是根据期权的类型和权利金预算 构建二叉树。
3
数学知识扩展
二项式定理为许多初等研究的基础知识,常被作为高中和大学的数学课程的一部 分。
杨辉三角
构造方法
每个数等于它上方两数之和。
性质
每行左右对称,从第$0$行开始, 第$n$行的数为 $C_n^0,C_n^1,...,C_n^n$。
个性化拓展
最大数和最小数为1,三角形中 的数有很多特殊性质,可以用来 引入更高维数的图形。
公式
基本形式
$(a+b)^n=\sum_{k=0}^nC^k_na^{n-k}b^k$
二项式反演公式
$\sum_{k=0}^n(-1)^kC_n^ia^k=(a-1)^n$
常见结论
$(a+b)^2=a^2+2ab+b^2, (a-b)^2=a^2-2ab+b^2, (a+b)(a-b)=a^2-b^2$

二项式定理ppt课件

二项式定理ppt课件

$(a+b)^4$ 的中间项是 什么?
$(a-b)^5$ 的展开式中 ,$a^4$ 的系数是多少

深化习题
01
02
03
04
深化习题1
利用二项式定理展开 $(a+b)^5$,并找出所有项
的系数。
深化习题2
求 $(a+b+c)^3$ 的展开式中 $a^2b$ 的系数。
深化习题3
利用二项式定理证明 $(a+b)^n$ 的展开式中,中
组合数学是研究组合问题的一 门数学分支,与二项式定理密 切相关。
在二项式定理的推导过程中, 组合数学原理提供了组合数的 计算方法和组合公式的应用。
通过组合数的计算,我们可以 得到二项式展开的各项系数, 进一步验证二项式定理的正确 性。
幂级数的展开与收敛
幂级数是数学分析中的重要概念 ,与二项式定理的推导密切相关
微积分中的应用
二项式定理在微积分中有着广泛的应用,如在求极限、求导和积分等运算中。
概率论中的应用
在概率论中,二项式定理可以用于计算组合数学中的一些概率分布,如二项分 布和超几何分布等。
05
习题与思考题
基础习题
基础习题1
基础习题2
基础习题3
基础习题4
$(a+b)^2$ 的展开式是 什么?
$(a-b)^3$ 的展开式是 什么?
概率分布
利用二项式定理,可以推 导二项分布的概率分布函 数和概率密度函数。
概率推断
在贝叶斯推断中,二项式 定理可以用于计算后验概 率和预测概率。Leabharlann 二项式定理在组合数学中的应用
01
组合数的计算
利用二项式定理,可以计算组合数$C(n, k)$,即从n个不同元素中取出

二项式定理 课件

二项式定理     课件
100 的余数.
0
90
91
1
又 992=(10-1)92=C92
·1092-C92
·1091+…+C92
·102-C92
·10+1,
前 91 项均能被 100 整除,后两项和为-919,因余数为正,可从前
面的数中分离出 1 000,结果为 1 000-919=81,故 9192 被 100 除所得
余数为 81.
用1110=(10+1)10的展开式进行证明,第(2)小题则可利用9192=(1009)92的展开式,或利用(90+1)92的展开式进行求解.
9
1
(1)证明 ∵1110-1=(10+1)10-1=(1010+C10
·109+…+C10
·10+1)-1
1
2
=1010+C10
·109+C10
·108+…+102
答案:-56
1.如何正确区分二项展开式中某一项的系数与二项式系数
剖析两者是不同的概念. C (r=0,1,2,…,n)叫做二项式系数,而某
一项的系数是指此项中除字母外的部分.如(1+2x)7 的二项展开式的
第 4 项的二项式系数为C73 =35,而其第 4 项的系数为C73 ·23=280.
2.如何用组合的知识理解二项式定理
二项式定理
1.二项式定理
二项展开式:(a+b)n=C0 + C1 − 1 + ⋯ + C − +
⋯ + C (n∈N*)叫做二项式定理,其中各项的系数C (k∈
{0,1,2,…,n})叫做二项式系数.

第十章 第三节 二项式定理 课件(共47张PPT)

第十章  第三节 二项式定理 课件(共47张PPT)

赋值法求系数和的应用技巧 (1)“赋值法”对形如(ax+b)n,(ax2+bx+c)m(a,b,c∈R)的式子求其展 开式的各项系数之和,常用赋值法,只需令 x=1 即可;对形如(ax+by)n(a, b∈R)的式子求其展开式各项系数之和,只需令 x=y=1 即可. (2)若 f(x)=a0+a1x+a2x2+…+anxn,则 f(x)展开式中各项系数之和为 f(1), 偶次项系数之和为 a0+a2+a4+…=f(1)+2f(-1) ,奇次项系数之和为 a1+a3+a5+…=f(1)-2f(-1) .令 x=0,可得 a0=f(0).

x=1
代入2x-
1 x
6
=1;
故所有项的系数之和为 1;故选 AC.]
求形如(a+b)n(n∈N*)的展开式中与特定项相关的量 (常数项、参数值、特定项等)的步骤
(1)利用二项式定理写出二项展开式的通项公式 Tr+1=Crn an-rbr,常把字 母和系数分离开来(注意符号不要出错);
(2)根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整 数)先列出相应方程(组)或不等式(组),解出 r;
故选 B.]
3.(x+1x -2)6(x>0)的展开式中含 x3 项的系数为________.
解析:
法一:因为(x+1x -2)6=(
x

1 x
)12,所以其展开式的通项公
式为 Tr+1=C1r2 (
x
)12-r(-
1 x
)r=Cr12
(-1)r(
x )12-2r=Cr12 (-1)rx6-r,由 6
1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)Ckn an-kbk 是二项展开式的第 k 项.( ) (2)在二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a+b)n 的展开式中,每一项的二项式系数与 a,b 无关.( ) (4)(a+b)n 某项的系数是该项中非字母因数部分,包括符号等,与该项的 二项式系数不同.( ) 答案: (1)× (2)× (3)√ (4)√

二项式定理课件-完美版

二项式定理课件-完美版

二项式定理的证明
二项式定理的证明可以采用数学归纳法,将其分成多个步骤,逐步推导出结 论。
二项式定理的应用
二项式定理在概率论、组合数学、排列组合等领域具有广泛的应用。它可以 用于求解二项式系数、展开多项式、计算概率等。
相关例题分析
通过具体的例题分析,我们可以更好地理解和应用二项式定理。我们将解答 一些典型的问题,帮助您掌握其中的关键思想和技巧。
二项式定理课件-完美版
欢迎来到二项式定理课件-完美版!在本次课程中,我们将深入探讨二项式定 理,包括定义、公式、证明、应用、相关例题分析、扩展以及结论和总结。
二项式定理的定义
二项式定理是一种代数公式,用于展开一个二项式的n次幂。
பைடு நூலகம்
二项式定理的公式
二项式定理的公式可以表示为:(a+b)×(a+b)=n!(n-k)!×a×a+b+n!k!×a×b+a
二项式定理的扩展
除了传统的二项式定理,还存在许多拓展的定理和公式,如多项式定理、卢 卡斯定理等。它们进一步延伸了二项式定理的应用范围。
结论和总结
通过学习本次课件,我们详细了解了二项式定理的定义、公式、证明、应用、 相关例题分析和扩展。希望您能够喜欢并从中获益。

二项式定理 课件

二项式定理  课件

命题方向3 ⇨二项式系数与项的系数问题
典例 3 (1)求二项式(2 x-1x)6 的展开式中第 6 项的二项式系数和第 6 项 的系数;
(2)求(x-1x)9 的展开式中 x3 的系数.
• [思路分析] 利用二项式定理求展开式中的某一项,可以 通过二项展开式的通项公式进行求解.
[解析] 由已知得二项展开式的通项为 Tr+1=C6r(2 x)6-r·(-1x)r =(-1)rCr626-r·x3-32r ∴T6=-12·x-92. ∴第 6 项的二项式系数为 C56=6, 第 6 项的系数为 C56·(-1)·2=-12. (2)Tr+1=Cr9x9-r·(-1x)r=3,
• [点评] 要注意区分某项的系数与二项式系数.
• 『规律总结』 1.展开二项式可按照二项式定理进行.展 开时注意二项式定理的结构特征,准确理解二项式的特点 是展开二项式的前提条件.
• 2.对较复杂的二项式,有时先化简再展开会更简便.
• 3.对于化简多个式子的和时,可以考虑二项式定理的逆 用.对于这类问题的求解,要熟悉公式的特点、项数、各 项幂指数的规律以及各项的系数.
[解析] (1-2x)6 的展开式的通项 Tr+1=Cr6(-2)rxr,当 r=2 时,T3=C26(-2)2x2 =60x2,所以 x2 的系数为 60.
命题方向1 ⇨求二项展开式中特定的项
典例 1 已知( x-2)n 展开式中第三项的系数比第二项的系数大 162,求: x
(1)n 的值; (2)展开式中含 x3 的项.
∴r=3,即展开式中第四项含 x3,其系数为(-1)3·C39=-84.
『规律总结』 1.二项式系数都是组合数 Cnr(r∈{0,1,2,…,n}),它与二项 展开式中某一项的系数不一定相等,要注意区分“二项式系数”与二项式展开式 中“项的系数”这两个概念.

二项式定理ppt课件

二项式定理ppt课件
二项式定理
汇报人:
2023-11-28
目录
• 二项式定理的背景和定义 • 二项式定理的公式和证明 • 二项式定理的应用 • 二项式定理的扩展和推广 • 二项式定理的意义和影响 • 二项式定理的实例和分析
01
二项式定理的背景和定义
背景介绍
二项式定理在数学中有着悠久的历史,它起源于17世纪,是组合数学中的一种基本理论。
03
二项式定理的应用
组合数学中的应用
排列数公式
二项式定理可以用于计算排列数公式,即从n个不同的元素中取出m个元素的所有排列的个数。
组合数公式
二项式定理可以用于计算组合数公式,即从n个不同的元素中取出m个元素的所有组合的个数。
插入与删除操作
二项式定理可以用于计算在n个元素中进行插入或删除操作的总次数,以及进行特定次数的插入或删除操 作的所有可能方式的个数。
概率论中的应用
概率分布
二项式定理可以用于计算二项分布的概率分布,即某个事 件在n次独立试验中发生的次数的概率分布。
01
组合概率
二项式定理可以用于计算多个事件同时 发生的概率,即组合事件发生的概率。
02
03
事件的独立性
二项式定理可以用于判断两个事件是 否独立,即一个事件的发生是否会影 响另一个事件发生的概率。
组合数性质:在二项式定理中,我们 使用了组合数的性质。组合数 $C(n,k)$ 等于 $C(n-1,k-1) + C(n1,k)$,这是组合数的一个重要性质。 这个性质可以帮助我们在二项式定理 的证明过程中进行简化。
指数性质:在证明二项式定理的过程 中,我们还使用了指数的性质。例如 ,当 $n$ 为偶数时,$(a+b)^n = (a+b)^{n/2} \times (a+b)^{n/2}$ ;当 $n$ 为奇数时,$(a+b)^n = (a+b)^{n/2} \times (a+b)^{n/2-1} \times b$。这些指数性质可以帮助 我们在计算过程中进行简化。

6.3.1二项式定理课件共15张PPT

6.3.1二项式定理课件共15张PPT

和 (a b)3 a 3 3a 2b 3ab 2 b3的概括和推广,
它是以多项式的乘法公式为基础,以组合知识为工具,
用不完全归纳法得到的,其证明可用数学归纳法.
(2)对二项式定理的理解和掌握,要从项数、系数、指
数、通项等方面的特征去熟悉他的展开式.通项公式
Tr 1 C a
r
率9%,按复利计算,10年后收回本金和利息。
试问,哪一种投资更有利?这种投资比另一种投资10年后大约
可多得利息多少元?
分析:本金10万元,年利率11%,按单利计算,10年后的本利和是
10×(1+11%×10)=21(万元);
本金10万元,年利率9%,按复利计算,10年后的本利和是10×(1+
9%)10;
x
60 12 1
64 x 192x 240x 160
2 3
x x
x
3
2
0 n
1 n 1
a

b

C
a

C

n
例题讲评
例2: 求 (2 x
解:
1 6
) 的展开式中
x
的展开式的通项:
根据题意,得
因此, 2 的系数是
x
x 的系数。
艾萨克·牛顿 Isaac
Newton (1643—1727) 英国
科学家.他被誉为人类历史上
最伟大的科学家之一.他不仅
是一位物理学家、天文学家,
还是一位伟大的数学家.
牛顿二项式定理
新课引入
某人投资10万元,有两种获利的可能供选择。一种是年
利率11%,按单利计算,10年后收回本金和利息。另一种是年利

第十章§10.3 二项式定理课件

第十章§10.3 二项式定理课件

则二项式的展开式通项为 Tk+1=Ck5( x)5-k·3 k=akCk5 x 6 ,
x
令15-6 5k=0,得 k=3,
则其常数项为 C35a3,
根据题意,有 C35a3=80,可得 a=2.
6.在 2x2-1xn的展开式中,所有二项式系数的和是32,则展开式中各项系 数的和为__1__.
解析 因为所有二项式系数的和是32,所以2n=32,解得n=5. 在2x2-1x5 中,令 x=1 可得展开式中各项系数的和为(2-1)5=1.
2.(a+b)n的展开式的二项式系数和系数相同吗? 提示 不一定.(a+b)n 的展开式的通项是 Cknan-kbk,其二项式系数是 Ckn (k∈{0,1,2,3,…,n}),不一定是系数.
基础自测
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)Cknan-kbk 是(a+b)n 的展开式的第 k 项.( × ) (2)(a+b)n的展开式中某一项的二项式系数与a,b无关.( √ ) (3)二项展开式中,系数最大的项为中间一项或中间两项.( × )
1
n
x
的展开式中,只有第5项的二
项式系数最大,则展开式中系数最小的项的系数为
A.-126
B.-70
√C.-56
D.-28
解析 ∵只有第5项的二项式系数最大,
∴n=8,x-
1
Байду номын сангаас n
x
的展开式的通项为
8 3k
Tk+1=(-1)kCk8 x 2 (k=0,1,2,…,8),
∴展开式中奇数项的二项式系数与相应奇数项的系数相等,偶数项的 二项式系数与相应偶数项的系数互为相反数,而展开式中第5项的二项 式系数最大,

二项式定理-PPT课件

二项式定理-PPT课件
1.3 二项式定理 1.3.1 二项式定理
1
问题提出
1.(a+b)2和(a+b)3展开后分别等 于什么?
(a+b)2=a2+2ab+b2,
(a+b)3=a3+3a2b+3ab2+b3.
2
问题提出
2.对于a+b,(a+b)2,(a+b)3, (a+b)4,(a+b)5等代数式,数学上统 称为二项式,其一般形式为(a+b)n
7
问题探究
根据归纳推理,你能猜测出
(a+b)n(n∈N*)的展开式是什么
吗?
(a b)n
Cn0an Cn1an 1b Cn2an 2b2
C
n n
1abn
1
C nnb n
如何证明这个猜想?
8
大家学习辛苦了,还是要坚持
继续保持安静
9
形成结论
(a b)n Cn0an Cn1an 1b
Cnkan kbk
C nnb n
叫做二项式定理,等式右边叫做二项展
开式,其中各项的系数
C
k n
(k=0,1,2,
…,n)叫做二项式系数.
10
问题探究
共有n+1项;字母a的最高次
数为n且按降幂排列;字母b的最高
次数为n且按升幂排列;各项中a与
b的指数幂之和都是n;各项的二项
式系数依次为 b无关.
C
n0,C
n1,C
n2,
13
问题探究
在(a+b)n的二项展开式中,
Tk 1 Cnkan kbk 叫做二项展开式的通
项,那么(a-b)n的二项展开式的通项
是什么?
Tk 1 ( 1)kCnkan kbk
14
问题探究
(2x+3y)20的二项展开式的通项是什 么?

1.3.1二项式定理PPT优秀课件

1.3.1二项式定理PPT优秀课件

二项式定理: 一般地,对于n N*有
(ab )nC n 0 a n C n 1 a n 1 b C n ka n kb k C n n b n
可用数学归纳法证明
基础训练:展开(p+q)7 解: (pq)7C7 0p7C1 7p6qC7 2p5q2C3 7p4q3 C7 4p3q4C5 7q2q5C7 6pq6C7 7q7
a 3 3 a 2 b 3 a2 bb 3
(a b)4 ? (ab)100? (a b)n ?
(n N )
(a+b)2 = ( a + b ) ( a + b )=C02 a2+C12 ab +C22 b2
选b
=a2+2ab+b2
(a+b)3=( a+b )( a+b )( a+b )
变式训练:若 求 ( 1 2 x ) 5 的 展 开 式 呢 ?
解: ( 1 2 x ) 5 C 5 0 ( 2 x ) 0 C 1 5 ( - 2 x ) 1 C 2 5 ( 2 x ) 2
C 3 5 ( 23 x C 5 ) 4 ( 24 x C ) 5 5 ( 25 x
=C0n an+ C1nan-1b+ C2nan-2b2+ C3nan-3b3+…+Cknan-kbk+…+ Cnn bn
二项式定理: 一般地,对于n N*有
(ab )nC n 0 a n C n 1 a n 1 b C n ka n kb k C n n b n
这个公式表示的定理叫做二项式定理,公式
组合数公式:C n mA A n m m mn(nm 1 ()m (n 1 )2 ()m (2 n )m 11 )
引入:
(a b)2 a22abb2

《二项式定理》(共17张)-完整版PPT课件全文

《二项式定理》(共17张)-完整版PPT课件全文

展开式的第3项是240x
例1.(2)求(2 x 1 )6的展开式 x
对于例1(2)中,请思考: ①展开式中的第3项的系数为多少? ②展开式中的第3项的二项式系数为多少? ③你能直接求展开式的第3项吗?
④你能直接求展开式中 x 2的系数吗?
解:④ Tk1 C6k (2
x)6k ( 1 )k x
(1)k 26k C6k x3k
N*)
①项数: 展开式共有n+1项.
②次数: 各项的次数均为n
字母a的次数按降幂排列,由n递减到0 , 字母b的次数按升幂排列,由0递增到n .
③二项式系数: Cnk (k 0,1,2,, n)
④二项展开式的通项: Tk1 Cnk ankbk
典例剖析
例1.(1)求(1 1 )4的展开式; x
(2)求(2 x 1 )6的展开式. x
N
*
)
(1)二项式系数: Cnk (k 0,1,2,, n)
(2)二项展开式的通项:Tk1 Cnk ankbk
思想方法:
(1) 从特殊到一般的数学思维方式.
(2) 类比、等价转换的思想.
巩固型作业: 课本36页习题1.3A组第2,4题
思维拓展型作业
二项式系数Cn0 , Cn1,, Cnk ,, Cnn有何性质?
1) x
C62 (2
x )4 (
1 x
)2
C63
(2
x )3 (
1 x
)3
C64
(2
x )2 (
1 )4 x
C65 (2
x )(
1 x
)5
C66
(
1 )6 x
64x3
192x2
240x

二项式定理课件_完美版

二项式定理课件_完美版
5
x 1
5
3.若(
)n的展开式中各项系数之和为64,
则 展开式的常数项为( A ) A.-540 B.-162 C.162
D.540
4.(2010·上海春)在 项是________.
的二项展开式中,常数
答案:60
二、题型与方法
考点一 通项公式的应用
通项公式中含有a,b,n,r,Tr+15个元素,只要知 道了其中的4个元素,就可以求出第5个元素,在求展开式 中的指定项问题时,一般是利用通项公式,把问题转化为 解方程(或方程组).这里必须注意隐含条件n,r均为非负 整数且r≤n.
(2)求二项展开式中的有理项,一般是根据通项公式 所得到的项,其所有的未知数的指数恰好都是整数的 项.解这种类型的问题必须合并通项公式中同一字母的指 数,根据具体要求,令其属于整数,再根据数的整除性来 求解.若求二项展开式中的整式项,则其通项公式中同一 字母的指数应是非负整数,求解方式与求有理项的方式一 致.
3).你能分析说明各项前的系数吗? a4 a3b a2b2 ab3 b4 每个都不取b的情况有1种,即C40 ,则a4前的 系数为C40
恰有1个取b的情况有C41种,则a3b前的系数为C41 恰有2个取b的情况有C42 种,则a2b2前的系数为C42 恰有3个取b的情况有C43 种,则ab3前的系数为C43 恰有4个取b的情况有C44种,则b4前的系数为C44
2.计算并求值
(1) 1 2C 4C
1 n 2 n
5 4
2 C
n
(2) ( x 1) 5( x 1) 10( x 1) 10( x 1)
3
n n
2
5( x 1)
0 n n

第三节 二项式定理 课件(共36张PPT)

第三节 二项式定理 课件(共36张PPT)

其展开式的第k+1项为Tk+1=Ck4(x2+x)4-kyk,
因为要求x3y2的系数,所以k=2, 所以T3=C24(x2+x)4-2y2=6(x2+x)2y2. 因为(x2+x)2的展开式中x3的系数为2, 所以x3y2的系数是6×2=12.
法二 (x2+x+y)4表示4个因式x2+x+y的乘积,在 这4个因式中,有2个因式选y,其余的2个因式中有一个 选x,剩下的一个选x2,即可得到含x3y2的项,故x3y2的系 数是C24·C12·C11=12.
对于几个多项式和的展开中的特定项(系数)问题, 只需依据二项展开式的通项,从每一项中分别得到特定 的项,再求和即可.
角度 几个多项式积的展开式中特定项(系数)问题 [例4] (1)(2x-3) 1+1x 6 的展开式中剔除常数项后的 各项系数和为( ) A.-73 B.-61 C.-55 D.-63 (2)已知(x-1)(ax+1)6的展开式中含x2项的系数为0, 则正实数a=________. 解析:(1)(2x-3)1+1x6的展开式中所有项的系数和为 (2-3)(1+1)6=-64,(2x-3)1+1x6=
为( )
A.-1
B.1
C.32
解析:由题意可得CC6162aa54bb=2=-13158,,
D.64
解得ab==1-,3,或ab==-3. 1,则(ax+b)6=(x-3)6, 令x=1得展开式中所有项的系数和为(-2)6=64,故选D. 答案:D
2.(2020·包头模拟)已知(2x-1)5=a5x5+a4x4+a3x3+
[例2] (1)若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+ a5x5,则|a0|-|a1|+|a2|-|a3|+|a4|-|a5|=( )

二项式定理课件ppt

二项式定理课件ppt

二项式定理的应用举例
04
求解某些特定形式的幂级数展开式
01
幂级数展开式的求解
二项式定理可以用于求解某些特定形式的幂级数展开式 ,例如$(a+b)^n$的展开式。
02
泰勒级数展开
利用二项式定理,我们可以求解一些函数的泰勒级数展 开,从而得到函数在某个点的近似值。
03
幂级数的求和
对于一些特定的幂级数,我们可以利用二项式定理找到 其求和的方法。
其中,C(n,k)表示从n个不同元素中取出k个元素的组合数。
二项式系数的性质
二项式系数是组合数的推广 ,它具有与组合数相同的性 质,例如
1. 对称性:对于任何自然数n ,C(n,k) = C(n,n-k)。
2. 递推性:C(n+1,k) = C(n,k-1) + C(n,k)。
3. 组合恒等式:C(n,k) + C(n,k-1) = C(n+1,k)。
二项式定理的历史背景
二项式定理最初由牛顿在17世纪发 现,用于解决一些特殊的数学问题。
之后,许多数学家都对二项式定理进 行了研究和推广,使其成为现代数学 中的基本工具之一。
二项式定理的意义与应用
01
二项式定理是组合数学的基础,可以帮助我们理解和分 析一些组合问题的内在规律。
02
在统计学中,二项式定理可以用于计算样本数量较少时 的置信区间和置信度。
深化理解的进阶题目
总结词
深入理解概念
详细描述
在基本掌握二项式定理的基础上,通过解决 一些相对复杂的进阶题目,帮助学生深入理 解二项式定理的概念和变形方式,进一步提 高解题能力。
有趣的开放性问题
总结词
激发学习兴趣
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)表示第r+1项;
(2)通项公式中的a与b的位置不能换.
余下n(-r3个)因要式得取到a。Cnr a nrbr即在(a+b)n中,有r个因式取b,
3.二项式系数与某项系数的区别:
二项式二中项a式,b系系数数及是常C数nr ,展某出项部的分系。数包括二项式系数和
4.二项式系数的性质
(1)对称性:到首末距离相等的两项的二项式系数
数最大,则它比相邻两项的系数都不小,列出不等式组并 求解此不等式组求得.
考点二 二项式定课理展堂开互式的动应讲用练
利用二项展开式可以解决如整除、近似计算、不 等式证明、含有组合数的恒等式证明,以及二项式系 数性质的证明等问题.
例3 已知(1-2x)7=a0+a1x+a2x2+…+a7x7. 求:(1)a1+a2+…+a7; (2)a1+a3+a5+a7; (3)a0+a2+a4+a6; (4)|a0|+|a1|+|a2|+…+|a7|.
C
2 n
C
n n
2n
奇数项二项式系数和等于偶数项二项式系数和等于 2n-1,即
C
0 n
Cn2
C
4 n
C
1 n
Cn3 Cn5
2n1
1.则若a0(+x-a2+1)4a=4的a0值+为a1(x+B
a2x2+ )
a3x3+
a4x4,
A.9
B.8 C.7
D.6
2.计算ห้องสมุดไป่ตู้求值
(1) 1 2Cn1 4Cn2 L 2nCnn
一、知识梳理
1.二项式定理
一般地,对于任意正整数n
a b n Cn0an Cn1an1b1 Cnranrbr Cnnbn, n N
这个公式所表示的定理叫做二项式定理,
右边的多项式叫做(a+b)n的二项展开式,
其中
C
r n
(r
0,1,2,
, n)
叫做二项式系数
特点:
(1)共n+1有项;
例2 已知(3 x x2 )2n 的展开式的二项式系数和比(3x 1)n
的展开式的二项式系数和大992,求(2 式中:
x
1 x
)
2n
的展开
(1)二项式系数最大的项; (2)系数的绝对值最大的项.
变式:已知(
)n(n∈N*)的展开式中第五项的系数与第
三项的系数的比是10∶1,
(1)证明:展开式中没有常数项;
(2) (x 1)5 5(x 1)4 10(x 1)3 10(x 1)2
5(x 1)
(1)原式 Cn01n Cn11n1g2 Cn21n2 g22 L Cnn 2n
(1 2)n 3n
(2)原式 C50 (x 1)5C51(x 1)4C52 (x 1)3 C53(x 1)2C54(x 1)C55 C55
例1 已知在 项。
(3 x 1 )n的展开式中,第6项为常数 23 x
(1)求n; (2)求含x2的项的系数; (3)求展开式中所有的有理项.
变式 求 x 3 x 9展开式中的有理项
【规律小结】 (1)对求指定项、常数项问题,常用 待定系数法,即设第r+1项是指定项(常数项),利用通 项公式写出该项,对同一字母的指数进行合并,根据所给 出的条件(特定项),列出关于r的方程(求解时要注意二项 式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r); 第二步是根据所求的指数,再求所求解的项;
相等,即
C
r n
C nr n
(2)增减性即最大值
f
(r
)
C
r n
在[0,
n 2
]上是增函数
; 在[
n 2
,
n]上是减函数。
当n为偶数时,f (r)max
f
(
n 2
)
n
C2 n
当n为奇数时,f (r) (3)二项式系数和为
max
f ( n21)
n 1
f
(
n21)
C2 n
n 1
Cn2
C
0 n
C
1 n
变式: 若(2x+ )4=a0+a1x+a2x2+a3x3+a4x4,
则(a0+a2+a4)2-(a1+a3)2的值是( A )
A.1
B.-1 C.0
D.2
【规律小结】
对二项式展开式中系数、系数和问题,常用赋值法, 一般地,要使展开式中项的关系变为系数的关系,令x=0 得常数项,令x=1可得所有项系数和,令x=-1可得奇数 次项系数之和与偶数次项系数之和的差,而当二项展开式 中含负值项时,令x=-1则可得各项系数绝对值之和.
[(x 1) 1]5 1
x5 1
3.若(
)n的展开式中各项系数之和为64,
则 展开式的常数项为( A ) A.-540 B.-162 C.162
D.540
4.(2010·上海春)在 项是________.
答案:60
的二项展开式中,常数
二、题型与方法
考点一 通项公式的应用
通项公式中含有a,b,n,r,Tr+15个元素,只要知 道了其中的4个元素,就可以求出第5个元素,在求展开式 中的指定项问题时,一般是利用通项公式,把问题转化为 解方程(或方程组).这里必须注意隐含条件n,r均为非负 整数且r≤n.
考点三 二项式定理的灵活应用
例4

1 x
1 x2
10的展开式的常数项。
变式:(1)求(x2+x+1)13展开式中x5的系数; (2)求(2x-1)6(3+x)5展开式中x3的系数.
考点四 整除或余数问题
例5 求9192除以100的余数
变式题 7777-7 被 19 除所得的余数是________.
(2)求二项展开式中的有理项,一般是根据通项公式所 得到的项,其所有的未知数的指数恰好都是整数的项.解 这种类型的问题必须合并通项公式中同一字母的指数,根 据具体要求,令其属于整数,再根据数的整除性来求 解.若求二项展开式中的整式项,则其通项公式中同一字 母的指数应是非负整数,求解方式与求有理项的方式一 致.
(2)二项式系数是从n个不同元素中取出0,1,2,
3,…,n个元素的组合数,即
Cn0
,
C
1 n
,
,
C
n n
.
(3)a按降幂排列,b按升幂排列,每一项中a与b的
指数和为n。
2.通项公式
式中的 表示。即
Cnr a nrbr 叫做二项展开式的通项,用
Tr 1
Tr1 Cnranrbr 第 r 1 项
注意:
(2)求展开式中含 的项;
(3)求展开式中所有的有理项;
(4)求展开式中系数最大的项和二项式系数最大的项.
【规律小结】 课堂互动讲练
1.根据二项式系数的性质,n为奇数时中间两项的二 项式系数最大,n为偶数时中间一项的二项式系数最大.
2.求展开式中系数最大项与求二项式系数最大项不 同,求展开式中系数最大项的步骤是:先假定第r+1项系
相关文档
最新文档