《二项式定理》ppt课件

合集下载

6.3.1 《二项式定理》课件ppt

6.3.1 《二项式定理》课件ppt
2
2 6
C8 (2x ) ·(3 ) -8 (2x ) ·(3 ) +C8 (2x ) ·(3 ) -8 (2x ) ·(3 ) +8 (2x ) ·(3 ) -C8
项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有
关.
微判断
(1)二项展开式中项的系数与二项式系数是相等的.(
)
答案 ×
解析 二项展开式中项的系数与二项式系数不一定相等,只有当a,b的系数
都为1时两者相等.
(2)(x-1)5的展开式中x4项的系数为-5.(
答案 √
解析 (x-1)5的展开式中x4项的系数为-5.
3
Tk+1=C ·( √ )n-k· -
1
2 3√

=
1

C ·( 3 )n-k·

1
1 - · 3
2
∵第 6 项为常数项,∴k=5,且 n-5×2=0,∴n=10.
10-2
1

(2)由(1)知 Tk+1= - 2 ·C10
· 3 .
10-2

=2,则 k=2.
3
2
1
1
45
2
因为含 x3 的项是展开式中的第 4 项,所以二项式系数为C93 =84.
探究三
利用二项式定理解决整除和余数问题
例3试判断7777-1能否被19整除.
思路分析由于76是19的倍数,因此可将7777转化为(76+1)77,并用二项式定
理展开.
解 7777-1=(76+1)77-1
1
2
76
77
=7677+C77
2

二项式定理ppt课件

二项式定理ppt课件
①展开式中,每一项是怎样得到的? (4次) ②既然这样,每一项的次数都应为几次? 展开后具有哪些形式的项呢? (a4,a3b,a2b2,ab3,b4) ③每一项在展开式中出现多少次,也就是展开式中各项 系数为什么? 探索:(a+b)4= (a+b) (a+b) (a+b) (a+b)在上面4个括号中: 每个都不取b,有 C 4 恰有1个取b,有 恰有2个取b,有 恰有3个取b,有
tr12二项式系数与项的系数不同二项式系数是组合数而项的系数是该项的数字因数3通项公式可用求展开式中任意一项求时必需明确r
二 项 式 定 理
回顾:
(a b) a 2ab b 3 (a b) (a b)(a b)(a b) 2 2 (a b)(a ab ba b ) 2 2 3 2 a a b aba ab ba 3 2 bab b a b 3 2 2 3 a 3a b 3ab b 1 0 0 4 (a b) ? (a b) ?
∴ 9-2r=3,r=3,
3 3 3 ∴ 的系数 (1)3 C9 84 , 3的二项式系数 C9 84.
例题点评
求二项展开式的某一项,或者求满足某种条
件的项,或者求某种性质的项,如含有x 3项
的系数,有理项,常数项等,通常要用到二项
式的通项求解.
注意(1)二项式系数与系数的区别.
4、在定理中,令a=1,b=x,则
(1 x) C C x C x C x C x
n 0 n 1 n 2 2 n r n r n n
n
尝试二项式定理的应用:
1 4 例 1 展 开 (1 ) x 1 4 1 4 1 1 1 1 2 3 1 3 解: (1 ) 1 C4 ( ) C4 ( ) C4 ( ) ( ) x x x x x

6.3 二项式定理(课件)高二数学(人教A版2019选择性必修第三册)

6.3 二项式定理(课件)高二数学(人教A版2019选择性必修第三册)
n (0
n 1
n
C
k n)
k nk k
C
b
k 1
na
(2)各项的统一表达式为____________,这是展开式的第_____项.
a降幂(n→0),b升幂(0→n)
(3)a的幂、b的幂的变化规律:_________________________
二项式定理:即(a+b)n的展开式
n 1
[( x 1) 1]5 1 x 5 1
新知:二项式系数的性质
n 1
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C
2
n 1
n
ab
n 1
C b
n
n
n
(1)令a b 1, 得(a b) n 的二项式系数之和为2n ,
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C b
2
n
n
n
二项式定理:即(a+b)n的展开式
n 1
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C b
2
n
n
n
k
(1)展开式共_____项,各项次数是___,各项系数是____.
1 8
[例3]已知( x 3 ) ,
x
(1)求展开式的第3项;
(2)其展开式的第4项的系数为_____,第4项的二项式系数为___;

新教材选择性必修二7.4.1二项式定理课件(37张)

新教材选择性必修二7.4.1二项式定理课件(37张)

9.二项式(x+y)5的展开式中,含x2y3的项的系数是________;二项式系数是
__________.(用数字作答)
【解析】根据二项式的展开式通项公式可得Tr+1=C
r 5
x5-ryr,可得含x2y3的项为C
3 5
x2y3,所以其系数为10,二项式系数为C53 =10.
答案:10 10
10.设n∈N*,则C1n +Cn2 6+C3n 62+…+Cnn 6n-1=________.
x-2x n 展开式中第3项的系数比第2项的系数大162.
(1)n的值;
(2)求展开式中含x3的项,并指出该项的二项式系数.
【解析】(1)因为T3=C2n (
x
)n-2-2x
2
=4C2n
n-6 x2

T2=C1n (
x
)n-1-2x
=-2C1n
n-3 x2

依题意得4C2n +2Cn1 =162,所以2Cn2 +Cn1 =81,所以n2=81,n=9.
二项式定理 二项式定理
基础认知·自主学习
【概念认知】
二项式定理
(a+b)n= C 0 n a n + C 1 n a n - 1 b + + C n r a n - r b r + + C n n b n ( n N * ) .这个公式叫作二项式定
理,右边的多项式叫作(a+b)n的二项展开式,它一共有_n_+__1_项,其中
【解析】(1)根据题意得:C1m +Cn1 =7,即 m+n=7①,
f(x)的展开式中的x2的系数为C2m
+C2n
m(m-1) =2
n(n-1) +2
m2+n2-m-n

2

6.3.1二项式定理PPT课件(人教版)

6.3.1二项式定理PPT课件(人教版)


①式中的每一项都含有82这个因数,故原式能被64整除.
反思 感悟
利用二项式定理可以解决求余数和整除的问题,通常需将底 数化成两数的和与差的情势,且这种转化情势与除数有密切 的关系.
跟踪训练4 (1)已知n∈N*,求证:1+2+22+…+25n-1能被31整除.
证明 1+2+22+23+…+25n-1=11--225n=25n-1=32n-1=(31+1)n-1 =31n+C1n×31n-1+…+Cnn-1×31+1-1=31×(31n-1+C1n×31n-2+… +Cnn-1), 显然括号内的数为正整数,故原式能被31整除.
反思 感悟
求多项式积的特定项的方法——“双通法”
所 谓 的 “ 双 通 法 ” 是 根 据 多 项 式 与 多 项 式 的 乘 法 法 则 得 到 (a + bx)n(s+tx)m 的展开式中一般项为:Tk+1·Tr+1=Cknan-k(bx)k·Crmsm-r(tx)r,再 依据题目中对指数的特殊要求,确定 r 与 k 所满足的条件,进而求 出 r,k 的取值情况.
跟踪训练 2
在2
x-
1
6
x
的展开式中,求:
(1)第3项的二项式系数及系数;
解 第 3 项的二项式系数为 C26=15,
又 T3=C26(2
x)4-
1x2=240x,
所以第3项的系数为240.
(2)含x2的项.

Tk+1=Ck6(2
x)6-k-
1xk=(-1)k26-kCk6x3-k,
令3-k=2,解得k=1,
(2)(1+2x)3(1-x)4的展开式中,含x项的系数为
A.10
B.-10
√C.2
D.-2

2025届高中数学一轮复习课件《二项式定理》ppt

2025届高中数学一轮复习课件《二项式定理》ppt
3.二项式系数 二项展开式中各项的系数___C_nk__(k∈{0,1,…,n})叫做二项式系数.
高考一轮总复习•数学
第6页
二 二项式系数的性质 1.对称性:与首末两端“等距离”的两个二项式系数__相__等_____.
2.增减性与最大值:当 n 是偶数时,中间的一项_________取得最大值;当 n 是奇数时,
高考一轮总复习•数学
第8页
1.判断下列结论是否正确. (1)Crnan-rbr 是(a+b)n 的展开式中的第 r 项.( ) (2)通项公式 Tr+1=Crnan-rbr 中的 a 和 b 不能互换.( √ ) (3)(a+b)n 的展开式中某项的系数是该项中非字母因数部分,包括符号等,与该项的 二项式系数不同.(√ ) (4)若(3x-1)7=a7x7+a6x6+…+a1x+a0,则 a7+a6+…+a1 的值为 128.( )
或者其他量.
高考一轮总复习•数学
第19页
对点练 1(1)在2x-mx 6 的展开式中,若常数项为-20,则实数 m 的值为(
)
A.12
B.-12
C.-2
D.2
(2)(2024·湖北部分重点中学第二次联考)用 1,2,3,4,5 组成没有重复数字的五位数,其中
个位小于百位且百位小于万位的五位数有 n 个,则(1+x)3+(1+x)4+(1+x)5+…+(1+x)n
(3)(3
3-2)7 的展开式的通项
Tk+1=Ck7·(3
7-k
3)7-k·(-2)k=Ck7·3 3
·(-2)k(k=0,1,2,3,4,5,6,7),
高考一轮总复习•数学
第17页
要使第 k+1 项为有理数,则7-3 k∈Z,则 k 可取 有理项的求法.

第十章 第三节 二项式定理 课件(共47张PPT)

第十章  第三节 二项式定理 课件(共47张PPT)

赋值法求系数和的应用技巧 (1)“赋值法”对形如(ax+b)n,(ax2+bx+c)m(a,b,c∈R)的式子求其展 开式的各项系数之和,常用赋值法,只需令 x=1 即可;对形如(ax+by)n(a, b∈R)的式子求其展开式各项系数之和,只需令 x=y=1 即可. (2)若 f(x)=a0+a1x+a2x2+…+anxn,则 f(x)展开式中各项系数之和为 f(1), 偶次项系数之和为 a0+a2+a4+…=f(1)+2f(-1) ,奇次项系数之和为 a1+a3+a5+…=f(1)-2f(-1) .令 x=0,可得 a0=f(0).

x=1
代入2x-
1 x
6
=1;
故所有项的系数之和为 1;故选 AC.]
求形如(a+b)n(n∈N*)的展开式中与特定项相关的量 (常数项、参数值、特定项等)的步骤
(1)利用二项式定理写出二项展开式的通项公式 Tr+1=Crn an-rbr,常把字 母和系数分离开来(注意符号不要出错);
(2)根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整 数)先列出相应方程(组)或不等式(组),解出 r;
故选 B.]
3.(x+1x -2)6(x>0)的展开式中含 x3 项的系数为________.
解析:
法一:因为(x+1x -2)6=(
x

1 x
)12,所以其展开式的通项公
式为 Tr+1=C1r2 (
x
)12-r(-
1 x
)r=Cr12
(-1)r(
x )12-2r=Cr12 (-1)rx6-r,由 6
1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)Ckn an-kbk 是二项展开式的第 k 项.( ) (2)在二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a+b)n 的展开式中,每一项的二项式系数与 a,b 无关.( ) (4)(a+b)n 某项的系数是该项中非字母因数部分,包括符号等,与该项的 二项式系数不同.( ) 答案: (1)× (2)× (3)√ (4)√

二项式定理PPT课件

二项式定理PPT课件

第21页
返回导航
数学
解析:(x2+x+y)5 为 5 个 x2+x+y 之积,其中有三个取 y,一个取 x2,一个取 x 即可,所以 x3y3 的系数为 C53C21C11=10×2×1=20.
第22页
返回导航
数学
考点二 二项展开式的系数和问题 1.二项式系数和
命题点 2.各项的系数和 3.部分项的系数和
当 r=1 时,T2= 当 r=2 时,T3= 故系数最大的项为 T2 或 T3.
数学
第18页
返回导航
数学
2.在本例(2)中,求展开式中的常数项.
第19页
返回导航
解:由 Tr+1=Cr6x6-r·ir 可知,当 r=6 时. 常数项为 T7=C66·i6=-1.
数学
第20页
返回导航
数学
3.在本例(4)中,求展开式中含x3y3的系数.
第23页
返回导航
数学
[例 2] 在(2x-3y)10 的展开式中,求: (1)二项式系数的和; (2)各项系数的和; (3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与 x 的偶次项系数和.
第24页
返回导航
数学
解:设(2x-3y)10=a0x10+a1x9y+a2x8y2+…+a10y10,(*)
第4页
返回导航
数学
3.判断下列结论的正误(正确的打“√”错误的打“×”) (1)Crnan-rbr 是二项展开式的第 r 项.(×) (2)二项展开式中,系数最大的项为中间一项或中间两项.(×) (3)(a+b)n 的展开式中某一项的二项式系数与 a,b 无关.(√) (4)在(1-x)9 的展开式中系数最大的项是第五、第六两项.(×) (5)若(3x-1)7=a7x7+a6x6+…+a1x+a0,则 a7+a6+…+a1 的值为 128.(×)

二项式定理ppt课件

二项式定理ppt课件
b=29.
题型分类 深度剖析
题型一 求展开式中的特定项或特定项的系数
【例1】在二项式 ( x 1 )n 的展开式中,前三项的 24 x
系数成等差数列,求展开式中的有理项和二项式系
数最大的项.
思维启迪 利用已知条件前三项的系数成等差数
列求出n,再用通项公式求有理项.
解 ∵二项展开式的前三项的系数分别是1,n ,
探究提高 用二项式定理处理整除问题,通常把 底数写成除数(或与除数密切关联的数)与某数的 和或差的形式,再用二项式定理展开,只考虑后面 (或者是前面)一、二项就可以了. 同时,要注意余数的范围,a=cr+b,其中余数b∈ [0,r),r是除数,利用二项式定理展开变形后, 若剩余部分是负数要注意转换.
(
1)r x
(1)r
Crn
x2n3r ,
常数项是15,则2n=3r,且 C=rn 15,验证n=6时,r=4
合题意.
5.(2009·北京理,6)若(1+ 2)5=a+b 2(a、b为
有理数),则a+b=
(C )
A.45
B.55
C.70
D.80
解析 ∵(1+ 2 )5=1+5 2 +20+20 2 +20+4 2 =41+29 2 =a+b 2, 又a、b为有理数,∴ a=41, ∴a+b=41+29=70.
2)3,则a2的值为
( B)
A.3
B.6
C.9
D.12
解析 ∵x3=[2+(x-2)]3,
∴展开式中含(x-2)2项的系数为
a2=T2+1= C32 ×23-2=3×2=6.

6.3.1二项式定理课件共15张PPT

6.3.1二项式定理课件共15张PPT

和 (a b)3 a 3 3a 2b 3ab 2 b3的概括和推广,
它是以多项式的乘法公式为基础,以组合知识为工具,
用不完全归纳法得到的,其证明可用数学归纳法.
(2)对二项式定理的理解和掌握,要从项数、系数、指
数、通项等方面的特征去熟悉他的展开式.通项公式
Tr 1 C a
r
率9%,按复利计算,10年后收回本金和利息。
试问,哪一种投资更有利?这种投资比另一种投资10年后大约
可多得利息多少元?
分析:本金10万元,年利率11%,按单利计算,10年后的本利和是
10×(1+11%×10)=21(万元);
本金10万元,年利率9%,按复利计算,10年后的本利和是10×(1+
9%)10;
x
60 12 1
64 x 192x 240x 160
2 3
x x
x
3
2
0 n
1 n 1
a

b

C
a

C

n
例题讲评
例2: 求 (2 x
解:
1 6
) 的展开式中
x
的展开式的通项:
根据题意,得
因此, 2 的系数是
x
x 的系数。
艾萨克·牛顿 Isaac
Newton (1643—1727) 英国
科学家.他被誉为人类历史上
最伟大的科学家之一.他不仅
是一位物理学家、天文学家,
还是一位伟大的数学家.
牛顿二项式定理
新课引入
某人投资10万元,有两种获利的可能供选择。一种是年
利率11%,按单利计算,10年后收回本金和利息。另一种是年利

二项式定理-PPT课件

二项式定理-PPT课件
1.3 二项式定理 1.3.1 二项式定理
1
问题提出
1.(a+b)2和(a+b)3展开后分别等 于什么?
(a+b)2=a2+2ab+b2,
(a+b)3=a3+3a2b+3ab2+b3.
2
问题提出
2.对于a+b,(a+b)2,(a+b)3, (a+b)4,(a+b)5等代数式,数学上统 称为二项式,其一般形式为(a+b)n
7
问题探究
根据归纳推理,你能猜测出
(a+b)n(n∈N*)的展开式是什么
吗?
(a b)n
Cn0an Cn1an 1b Cn2an 2b2
C
n n
1abn
1
C nnb n
如何证明这个猜想?
8
大家学习辛苦了,还是要坚持
继续保持安静
9
形成结论
(a b)n Cn0an Cn1an 1b
Cnkan kbk
C nnb n
叫做二项式定理,等式右边叫做二项展
开式,其中各项的系数
C
k n
(k=0,1,2,
…,n)叫做二项式系数.
10
问题探究
共有n+1项;字母a的最高次
数为n且按降幂排列;字母b的最高
次数为n且按升幂排列;各项中a与
b的指数幂之和都是n;各项的二项
式系数依次为 b无关.
C
n0,C
n1,C
n2,
13
问题探究
在(a+b)n的二项展开式中,
Tk 1 Cnkan kbk 叫做二项展开式的通
项,那么(a-b)n的二项展开式的通项
是什么?
Tk 1 ( 1)kCnkan kbk
14
问题探究
(2x+3y)20的二项展开式的通项是什 么?

《二项式定理》(共17张)-完整版PPT课件全文

《二项式定理》(共17张)-完整版PPT课件全文

展开式的第3项是240x
例1.(2)求(2 x 1 )6的展开式 x
对于例1(2)中,请思考: ①展开式中的第3项的系数为多少? ②展开式中的第3项的二项式系数为多少? ③你能直接求展开式的第3项吗?
④你能直接求展开式中 x 2的系数吗?
解:④ Tk1 C6k (2
x)6k ( 1 )k x
(1)k 26k C6k x3k
N*)
①项数: 展开式共有n+1项.
②次数: 各项的次数均为n
字母a的次数按降幂排列,由n递减到0 , 字母b的次数按升幂排列,由0递增到n .
③二项式系数: Cnk (k 0,1,2,, n)
④二项展开式的通项: Tk1 Cnk ankbk
典例剖析
例1.(1)求(1 1 )4的展开式; x
(2)求(2 x 1 )6的展开式. x
N
*
)
(1)二项式系数: Cnk (k 0,1,2,, n)
(2)二项展开式的通项:Tk1 Cnk ankbk
思想方法:
(1) 从特殊到一般的数学思维方式.
(2) 类比、等价转换的思想.
巩固型作业: 课本36页习题1.3A组第2,4题
思维拓展型作业
二项式系数Cn0 , Cn1,, Cnk ,, Cnn有何性质?
1) x
C62 (2
x )4 (
1 x
)2
C63
(2
x )3 (
1 x
)3
C64
(2
x )2 (
1 )4 x
C65 (2
x )(
1 x
)5
C66
(
1 )6 x
64x3
192x2
240x

高中数学《二项式定理》ppt课件

高中数学《二项式定理》ppt课件
0
1
2
n
2、指数规律 各项的次数均为n;字母 a 的次数由n降 到0,字母 b 的次数由0升到n. 3、项数规律 二项展开式共有n+1项
应用解析:
例1 展开 例2
1 4 (1 ) x
展开 (2 x
1 x
)6
小结
1、牢记定理的内容及相关概念; 2、掌握数学中研究问题的思想和方 法——从特殊到一般。
作业
1.P109习题2.⑴⑵ 2.思考题( 用二项式定理解答): 如果今天是星期六,那么再过890天是 星期几?
4
4 系数为: 4 有4个取b,
C
(a b) 的展开式怎么写呢?
n
可以对b分类: 不取b,得Cn aⁿ
0
取1个b,得Cn a b 取2个b,得Cn a b²
…………
2 n-2
1
n-1
取 r个 b,得Cn a b …………
取n-1个b,得Cn ab 取n个b,得Cn bⁿ
n n-1-1
r n n r r
说明 :
(1)、猜证法是数学中常用方法,本定理是由不完全 归纳法得出,需加以证明。其证明因目前知识所限, 留待以后完成,目前,只要求同学熟记并会应用。 (2)、二项式定理是个恒等式,定理中字母a、b可表 示数或式,其中 n N (3) 1、系数规律
Cn、Cn、Cn、…、Cn
没有大胆的猜想,就不能 有伟大的发现和发明。 ------牛顿
(a+b)² =a² +2ab+b² 0 1 2 = C2 a² + C2 ab+C2 b² (a+b)³ =a³ +3a² b+3ab² +b³ 1 0 3 2 =C3a³ + C3 a² b+C3 ab² +C3 b³

第三节 二项式定理 课件(共36张PPT)

第三节 二项式定理 课件(共36张PPT)

其展开式的第k+1项为Tk+1=Ck4(x2+x)4-kyk,
因为要求x3y2的系数,所以k=2, 所以T3=C24(x2+x)4-2y2=6(x2+x)2y2. 因为(x2+x)2的展开式中x3的系数为2, 所以x3y2的系数是6×2=12.
法二 (x2+x+y)4表示4个因式x2+x+y的乘积,在 这4个因式中,有2个因式选y,其余的2个因式中有一个 选x,剩下的一个选x2,即可得到含x3y2的项,故x3y2的系 数是C24·C12·C11=12.
对于几个多项式和的展开中的特定项(系数)问题, 只需依据二项展开式的通项,从每一项中分别得到特定 的项,再求和即可.
角度 几个多项式积的展开式中特定项(系数)问题 [例4] (1)(2x-3) 1+1x 6 的展开式中剔除常数项后的 各项系数和为( ) A.-73 B.-61 C.-55 D.-63 (2)已知(x-1)(ax+1)6的展开式中含x2项的系数为0, 则正实数a=________. 解析:(1)(2x-3)1+1x6的展开式中所有项的系数和为 (2-3)(1+1)6=-64,(2x-3)1+1x6=
为( )
A.-1
B.1
C.32
解析:由题意可得CC6162aa54bb=2=-13158,,
D.64
解得ab==1-,3,或ab==-3. 1,则(ax+b)6=(x-3)6, 令x=1得展开式中所有项的系数和为(-2)6=64,故选D. 答案:D
2.(2020·包头模拟)已知(2x-1)5=a5x5+a4x4+a3x3+
[例2] (1)若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+ a5x5,则|a0|-|a1|+|a2|-|a3|+|a4|-|a5|=( )

二项式定理课件ppt

二项式定理课件ppt

二项式定理的应用举例
04
求解某些特定形式的幂级数展开式
01
幂级数展开式的求解
二项式定理可以用于求解某些特定形式的幂级数展开式 ,例如$(a+b)^n$的展开式。
02
泰勒级数展开
利用二项式定理,我们可以求解一些函数的泰勒级数展 开,从而得到函数在某个点的近似值。
03
幂级数的求和
对于一些特定的幂级数,我们可以利用二项式定理找到 其求和的方法。
其中,C(n,k)表示从n个不同元素中取出k个元素的组合数。
二项式系数的性质
二项式系数是组合数的推广 ,它具有与组合数相同的性 质,例如
1. 对称性:对于任何自然数n ,C(n,k) = C(n,n-k)。
2. 递推性:C(n+1,k) = C(n,k-1) + C(n,k)。
3. 组合恒等式:C(n,k) + C(n,k-1) = C(n+1,k)。
二项式定理的历史背景
二项式定理最初由牛顿在17世纪发 现,用于解决一些特殊的数学问题。
之后,许多数学家都对二项式定理进 行了研究和推广,使其成为现代数学 中的基本工具之一。
二项式定理的意义与应用
01
二项式定理是组合数学的基础,可以帮助我们理解和分 析一些组合问题的内在规律。
02
在统计学中,二项式定理可以用于计算样本数量较少时 的置信区间和置信度。
深化理解的进阶题目
总结词
深入理解概念
详细描述
在基本掌握二项式定理的基础上,通过解决 一些相对复杂的进阶题目,帮助学生深入理 解二项式定理的概念和变形方式,进一步提 高解题能力。
有趣的开放性问题
总结词
激发学习兴趣
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
பைடு நூலகம்
A.15
������ ������������
B.20������
-
������ ������
C.15
������
2
D.20
������ ������������
【解析】T3=������������ ������ ( ������) ( ) =15,故选 C.
4
������
2
10 (x- ������y) 的展开式中第 5 项的系数是( A ). A.840 B.-840 C.210 D.-210
二项展开式的通项和二项式系数 n 在二项式定理中,右边的多项式叫作(a+b) 的二 项展开式,展开式的第 r+1 项为 n-r r Tr+1=������������ a b (r=0,1,2…n),其中的系数 ������ 二项式系数 ������������ . ������ (r=0,1,2…n)叫作
������
������
n
于 37,求展开式中的第 5 项的系数.
������ ������ 【解析】由������������ ������ +������������ +������������ =37 得 1+n+ n(n-1)=37, ������ ������
得 n=8.
������������ 4 ������������ 4 ������ ������ 又∵T5=������������ ������(2x) = x ,∴该项的系数为 . ������ ������ ������
������ ������ b) +������������ (4a) (b) + ������ (4a) (b) + ������ ������ ������ ������ (4a) (1 3 2 2 3 1
������ ������
������ ������
b) +������������ ������ (- b) =(4a) - ×(4a) b+ ×(4a) b 4 5 5 4 3 2
������ ������
������
������ ������
×(4a) b + ×4ab - b =1024a -640a b+160a b 2 3
2
3
������
4
������ ������
5
5
4
3
2
20a b + ab - b .
������ ������������
【解析】在通项公式 Tr+1=������������ 中令 r=4, ������������ (- ������y) x 10 6 4 即得(x- ������y) 的展开式中 x y 项的系数为������������ ������������ (4 ������) =840,故选 A.
r 10-r
3 3 2 2
.. 导. 学 固思
问题4
使用二项式定理需要注意的问题
二项式定理展开式中的a和b的位置不能颠倒,且包括a,b 前面的 符号 ,而且a的次数逐渐 降低,b的次数逐渐升高 , 每一项的次数都为 n .
.. 导. 学 固思
1
������ 6 ( ������+ ) 的展开式的第 3 项是( C ). ������
问题2
.. 导. 学 固思
问题3
使用二项展开式的通项要注意的问题 ①通项Tr+1是第 r+1 项,不是第r项; ②通项Tr+1的作用:处理与 指定项 、 指定项 常数项 、 有理项 等有关的问题. 、
③二项展开式中二项式系数与展开项的系数是不同的概念.
������ ������ ������ 如:(a+2b) =������������ a + ������ a ·(2b)+ ������ a·(2b) + ������ ������ ������ ������ ������ (2 3 3 2 2 3 b) =a +6a b+12ab +8b ,第三项的二项式系数 ������ ������ 为 ������ =3 ,第三项的系数为 12 .
.. 导. 学 固思
问题1
(1)二项式定理: ������ n ������ n-1 ������ n-2 2 ������-������ n-1 ������ n n ������ a + ������ a b+ ������ a b +…+ ������ ab + ������ ������ ������ ������ ������ (a+b) = . ������ b (n∈N+) n ������ ������ ������ ������-������ ������ 2 (2)������������ +������������ +������������ +…+������������ +������������ = (n∈N+).
.. 导. 学 固思
二项式定理的展开式 求(4a- b) 的展开式.
������
������ 【解析】(4a- b) =������������ (4a) + ������ ������ ������ (4a) (5 5 4
������
5
������ ������
������ ������ ������ ������ ������ ������
.. 导. 学 固思
10 ( ������+ ) 的展开式中第四项为 120 ������ .
3
������ ������
【解析】T4=������������ ������������ ( ������) ( ) =120 ������.
7 3
������ ������
4
已知( +2x) 的展开式中前三项的二项式系数的和等
第9课时
二项式定理
.. 导. 学 固思
1.理解并掌握二项式定理,能利用计数原理证明二项式 定理.
2.会用二项式定理解决与二项展开式有关的简单问题.
3.培养学生的自主探究意识,合作精神,体验二项式定理 的发现和创造历程,体会数学语言的简洁和严谨.
.. 导. 学 固思
先看下面的问题: n 二项式定理研究的是(a+b) 的展开式, 2 2 2 3 4 如:(a+b) =a +2ab+b ,(a+b) =?,(a+b) =?, 100 n (a+b) =?,那么(a+b) 的展开式是什么?这就是 本节课我们将要学习的内容.
相关文档
最新文档