2.3.2平面与平面垂直的判定定理(高中数学人教版必修二)
人教课标版高中数学必修2《平面和平面垂直的判定和性质》教学设计
2.3.2平面和平面垂直的判定和性质一、教学目标(一)核心素养(1)通过本节教学,提高学生空间想象能力.(2)通过问题解决,提高等价转化思想渗透的意识.(3)进一步提高学生分析问题、解决问题的能力.(二)学习目标(1)两个平面互相垂直的判定.(2)两个平面互相垂直的性质.(三)学习重点两个平面垂直的判定、性质.(四)学习难点(1)两个平面垂直的判定定理、性质定理运用.(2)正确作出符合题意的空间图形.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第67页到第69页,填空:二面角的定义:平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形叫做二面角;以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(2)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(3)判定定理与性质定理文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直⎭⎬⎫l⊥αl⊂β⇒α⊥β性质定理如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎬⎫α⊥βα∩β=al⊥al⊂β⇒l⊥α1.直线a⊥直线b,a⊥平面β,则b与β的位置关系是()A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β【解题过程】由垂直和平行的有关性质可知b⊂β或b∥β,故选D.【答案】D2.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解题过程】若α⊥β,因为α∩β=m,b⊂β,b⊥m,所以根据两个平面垂直的性质定理可得b⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.故选A.【答案】A3.设m、n是两条不同的直线,α、β是两个不同的平面()A.若m⊥n,n∥α,则m⊥α.B.若m∥β,β⊥α,则m⊥α.C.若m⊥β,n⊥β,n⊥α,则m⊥α.D.若m⊥n,n⊥β,β⊥α,则m⊥α.【解题过程】A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊂α,错误;B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;C中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.【答案】C(二)课堂设计1.知识回顾(1)直线和平面垂直的判定定理文字语言图形语言符号语言判定定理如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫l⊥al⊥ba∩b=Oa⊂αb⊂α⇒l⊥α(2)直线和平面垂直的判定的另外一种判定方法文字语言图形语言符号语言判定方法如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.ba//,α⊥a.则α⊥b(3)直线和平面垂直的性质定理性质定理如果两条直线垂直于同一个平面,那么这两条直线平行⎭⎬⎫a⊥αb⊥α⇒a∥b2.问题探究探究一实例引领,认识平面和平面垂直的概念★●活动①简单类比,引出定义两个平面互相垂直是两个平面相交的特殊情形.教室的墙面与地面、一个正方体中每相邻的两个面、课桌的侧面与地面都是互相垂直的.两个平面互相垂直的概念和平面几何里两条直线互相垂直的概念类似,也是用它们所成的角为直角来定义的.请同学思考两个平面互相垂直的定义.两个平面互相垂直的定义可表述为:如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.那么两个互相垂直的平面画其直观图时,应把直立平面的边画成和水平平面的横边垂直,如下图.平面α和β垂直,记作α⊥β.●活动②实例引领,思维激活实例:如图,检查工件的相邻两个平面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,这是为什么?曲尺的一边在一面内转动即为形成一个平面,而另一边与此平面垂直,且又紧靠在另一平面上,即垂线在另一平面内.所以我们得到面面垂直的判定定理.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.)下面我们一起给出分析,证明:已知:AB⊥β,AB∩β=B,AB⊂α.【解题过程】要证α⊥β,需证α 和β 构成的二面角是直二面角,而要证明一个二面角是直二面角,需找到其一个平面角,并证明这个二面角的平面角是直角.证明:设α∩β=CD,则由AB⊂α知,AB、CD共面.∵AB⊥β,CD⊂β,∴AB⊥CD,垂足为点B.在平面β内过点B作直线BE⊥CD.则∠ABE是二面角α-CD-β的平面角.又AB⊥BE,即二面角α-CD-β是直二面角.∴α⊥β.现在同学们明确了面面垂直的判定定理,请思考:建筑工人在砌墙时,常用一段系有铅锤的线来检查所砌墙面是否和水平面垂直,依据是什么?[学生]依据是两个平面垂直的判定定理,一面经过另一面的一条垂线.[老师]从转化的角度来看,两个平面垂直的判定定理可简述为:线面垂直⇒面面垂直请同学们接着思考如下问题:在所给正方体中,下式是否正确:①平面ADD1A1⊥平面ABCD;②D1A⊥AB;③D1A⊥面ABCD.[学生]①∵AB⊥面ADD1A1,AB⊂面ABCD.∴平面ABCD⊥平面ADD1A1.②∵AB⊥面ADD1A1,D1A⊂面ADD1A1∴AB⊥D1A③∵AA1⊥面ABCD,∴AD1与平面ABCD不垂直.平面ADD1A1⊥面ABCD,平面ADD1A1∩平面ABCD=AD,A是平面ADD1A1内一点.过点A可以在平面ADD1A1内作无数条直线,而这些直线满足什么条件就可以使之与平面垂直?判定定理解决两个平面如何垂直,性质定理可以解决上述线面垂直.从转化的角度可表述为:面面垂直,则线面垂直.也给了我们以后证明问题的一种思想方法.下面我们一起来完成证明.证明过程如下:已知:α⊥β、α∩β=a,AB⊂α,AB⊥a于B.【解题过程】:在平面β内作BE⊥a垂足为B,则∠ABE就是二面角α-a-β的平面角.由α⊥β可知,AB⊥BE.又AB⊥a,BE与a是β内两条相交直线,∴AB⊥β.证明的难点在于“作BE⊥a”.为什么要做这一步?主要是由两面垂直的关系,去找其二面角的平面角来决定的.【设计意图】构造二面角的平面角过程可以体现学生的创新精神、转化能力.【答案】见解题过程.探究二层层深化,掌握平面和平面垂直的判定定理和性质定理.●活动①互动交流,初步实践例1 求证:(1)如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直;(2)如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直.【知识点】平面和平面垂直的判定.【数学思想】化归思想.【解题过程】(1)已知:l∥α,l⊥β,求证:α⊥β.证明:在平面α内任取一点P.∵l ∥α,∴P ∉l .P 、l 可确定一平面γ.设α∩γ=l ′则l ∥l ′.⎪⎭⎪⎬⎫⊂'⊥'⇒⎭⎬⎫'⊥αββl l l l l //⇒α⊥β[该题目难在构造既符合题,又能使问题得证的立体图形.] (2)已知:α⊥β,β∥γ.求证:α⊥γ证明:过β 内一点P 作直线l ,使l ⊥α则l ⊂β. l 与γ内任一点Q 确定平面δ,设δ∩γ=l ′,则l ∥l ′. l ′⊥α,因此γ⊥α.【思路点拨】题目较抽象,构造图形,创造条件,使问题转化为可利用已有定理来解决.由此我们又多了两个判断面面垂直的结论. 【答案】见解题过程. ●活动②巩固基础,检查反馈例2 如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上异于A 、B 的任意一点,求证:平面P AC ⊥平面PBC .【知识点】平面和平面垂直的判定 【数学思想】化归思想【解题过程】证明:因为AB 是⊙O 的直径,C 是圆周上的点,所以有BC ⊥AC ①.因为P A ⊥平面ABC ,BC ⊂平面ABC ,则P A ⊥BC ②. 由①②及AC ∩PA =A ,得BC ⊥平面P AC .因为BC⊂平面PBC,有平面P AC⊥平面PBC.【思路点拨】低一级的垂直关系是判定高一级垂直关系的依据,根据条件,由线线垂直⇒线面垂直⇒面面垂直.通过这个例题展示了空间直线与平面的位置关系的内在联系,垂直关系的判定和性质共同构成了一个完整的知识体系.【答案】见解题过程.例3 如图,P是△ABC所在平面外的一点,且P A⊥平面ABC,平面P AC⊥平面PBC,求证:BC⊥AC.【知识点】平面和平面垂直的判断和性质.【数学思想】转化思想.【解题过程】证明:在平面P AC内作AD⊥PC,交PC于D.因为平面P AC⊥平面PBC于PC,AD⊂平面P AC,且AD⊥PC,所以AD⊥平面PBC.又因为BC⊂平面PBC,于是有AD⊥BC①.另外P A⊥平面ABC,BC⊂平面ABC,所以P A ⊥BC.由①②及AC∩PA=A,可知BC⊥平面P AC.因为AC⊂平面P AC,所以BC⊥AC.【思路点拨】在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直⇒线面垂直⇒线线垂直.本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.【答案】见解题过程.例4 P为120°角α-a-β内一点,P到α和β的距离均为10,求点P到棱a的距离.【知识点】二面角的概念,距离.【数学思想】化归思想.【解题过程】如图,过点P 作P A ⊥α于A ,PB ⊥β于B ,设相交直线P A 、PB 确定的平面为γ,a ∩γ=O ,则α∩γ=OA ,β∩γ=OB 连结PO ,则AP =BP =10∵P A ⊥α,PB ⊥β,∴a ⊥γ,而PO ⊂平面γ,∴a ⊥PO , ∴PO 的长即为点P 到直线a 的距离. 又∵a ⊥γ,γ⊂OA ,γ⊂OB∴∠AOB 是二面角α-a -β的平面角,即∠AOB =120°.而四边形AOBP 为一圆内接四边形,且PO 为该四边形的外接圆直径. ∵四边形AOBP 的外接圆半径等于由A 、B 、O 、P 中任意三点确定的三角形的外接圆半径,因此求PO 的长可利用△APB . 在△APB 中,AP =BP =10,∠APB =60°,∴AB =10. 由正弦定理:332060sin 2=︒==AB R PO . 【思路点拨】(1)该题寻找120°的二面角的平面角,所采取的方法即为垂面法,由此可见,若题目可找到与棱垂直的平面,用“垂面法”确定二面角的平面角也是一种可取的方法.(2)充分借助于四边形P AOB 为一圆内接四边形,∵P A ⊥OA ,PB ⊥OB ,∵PO 即为其外接圆直径,然后借助于四边形的外接圆直径等于其中任一三角形的外接圆直径进行转移,由正弦定理帮助解决了问题.【答案】.3320活动③ 强化提升,灵活应用例5.过点S 引三条不共面的直线SA 、SB 、SC ,如图,∠BSC =90°,∠ASC =∠ASB =60°,若截取SA =SB =SC =a .(1)求证:平面ABC ⊥平面BSC ; (2)求S 到平面ABC 的距离.【知识点】面面垂直的证明,距离. 【数学思想】化归思想【解题过程】(1)证明:∵SA =SB =SC =a , 又∠ASC =∠ASB =60°,∴△ASB 和△ASC 都是等边三角形,∴AB =AC =a , 取BC 的中点H ,连结AH ,∴AH ⊥BC . 在Rt △BSC 中,BS =CS =a , ∴SH ⊥BC ,a BC 2=,∴2)22(222222a a a CH AC AH =-=-=,∴222a SH =. 在△SHA 中,∴222a AH =,222a SH =,22a SA =, ∴222HA SH SA +=,∴AH ⊥SH ,∴AH ⊥平面SBC .∵AH ⊂平面ABC ,∴平面ABC ⊥平面BSC . 或:∵SA =AC =AB ,∴顶点A 在平面BSC 内的射影H 为△BSC 的外心, 又△BSC 为Rt △,∴H 在斜边BC 上,又△BSC 为等腰直角三角形,∴H 为BC 的中点,∴AH ⊥平面BSC . ∵AH ⊂平面ABC ,∴平面ABC ⊥平面BSC .(2)由前所证:SH ⊥AH ,SH ⊥BC ,∴SH ⊥平面ABC ,∴SH 的长即为点S 到平面ABC 的距离,a BC SH 222==,∴点S到平面ABC的距离为a22.【思路点拨】(1)要证明平面ABC⊥平面BSC,根据面面垂直的判定定理,须在平面ABC或平面BSC内找到一条与另一个平面垂直的直线;(2)外心为三角形外接圆的圆心,即三条中垂线的交点.【答案】(1)见解题过程;(2)a22.同类训练如图,在三棱台ABC-DEF中,CF⊥平面DEF,AB⊥B C.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在,请确定G点的位置;若不存在,请说明理由.【知识点】线面平行的判定,面面垂直的证明.【解题过程】(1)证明:在三棱台ABC-DEF中,AC∥DF,AC⊂平面ACE,DF 平面ACE,∴DF∥平面ACE.又∵DF⊂平面DEF,平面ACE∩平面DEF=a,∴DF∥a.(2)线段BE上存在点G,且BG=13BE,使得平面DFG⊥平面CDE.证明如下:取CE的中点O,连接FO并延长交BE于点G,连接GD、GF,∵CF=EF,∴GF⊥CE.在三棱台ABC-DEF中,AB⊥BC⇒DE⊥EF.由CF⊥平面DEF⇒CF⊥DE.又CF ∩EF =F ,∴DE ⊥平面BEF ,∴DE ⊥GF .GF CE GF DE GF CDE CE DE E ⎫⎪⇒⎬⎪⎭⊥⊥⊥平面=.又GF ⊂平面DFG ,∴平面DFG ⊥平面CDE .此时,如平面图所示,∵O 为CE 的中点,EF =CF =2BC ,由平面几何知识易证△HOC ≌△FOE ,∴HB =BC =12EF .由△HGB ∽△FGE 可知12BG GE =,即13BG BE =. 【思路点拨】“探索性问题”的规律方法:一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.【答案】(1)见解题过程;(2)线段BE 上存在点G ,且13BG BE =,使得平面DFG ⊥平面CDE .3. 课堂总结知识梳理(1)证明面面垂直的方法(2)重难点归纳空间中直线与直线垂直、直线与平面垂直、平面与平面垂直三者之间可以相互转化,每一种垂直的判定都是从某种垂直开始转向另一种垂直最终达到目的,其转化关系为在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.(三)课后作业基础型 自主突破一、选择题1.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥mB.AC⊥mC.AB∥βD.AC⊥β【知识点】线面平行的判定,面面垂直的证明.【解题过程】如图所示,AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β,只有D不一定成立,故选D.【思路点拨】由题意,画出满足条件的图形,依据面面垂直的性质以及线面平行的性质等知识解答.【答案】D.2.设a是空间中的一条直线,α是空间中的一个平面,则下列说法正确的是()A.过a一定存在平面β,使得β∥αB.过a一定存在平面β,使得β⊥αC.在平面α内一定不存在直线b,使得a⊥bD.在平面α内一定不存在直线b,使得a∥b【知识点】线面平行的判定,面面垂直的证明.【解题过程】当a与α相交时,不存在过a的平面β,使得β∥α,故A错误;直线a与其在平面α内的投影所确定的平面β满足β⊥α,故选B;平面α内的直线b只要垂直于直线a在平面α内的投影,则就必然垂直于直线a,故C错误;当a与α平行时,在平面α内存在直线b,使得a∥b,故D错误.【思路点拨】A.根据面面平行的定义和性质判断;B.利用面面垂直的性质和定义判断;C.根据线面垂直的性质判断;D.根据线面平行的性质判断.【答案】B.3.设直线l⊥平面α,直线m⊂平面β,()A.若m∥α,则l∥m B.若α∥β,则l⊥mC.若l⊥m,则α∥β D.若α⊥β,则l∥m【知识点】线面平行的判定,面面垂直的证明.【解题过程】A中直线l与m互相垂直,不正确;B中根据两个平面平行的性质知是正确的;C中的α与β也可能相交;D中l与m也可能异面,也可能相交,故选B.【思路点拨】通过线面平行的性质定理和线面垂直的性质定理即可判断A;由一直线垂直于两个平行平面中的一个,也垂直于另一个,结合线面垂直的性质定理即可判断B;举反例,由线面垂直的性质定理即可判断C;举反例,结合线面垂直和面面垂直的性质定理即可判断D.【答案】B.4.设a、b是两条不同的直线,α、β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β【知识点】线面平行的判定,面面垂直的证明.【解题过程】A中,两直线可以平行、相交或异面,故不正确;B中,两直线平行,故不正确;C中,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故正确;D 中,两直线可以平行,相交或异面,故不正确.【思路点拨】通过线面垂直的性质定理判断A;通过面面平行的性质和线面垂直的性质判断B;通过面面平行的性质和线面垂直的定义判断C;由线面平行的性质和面面垂直的性质判断D.【答案】C.5.如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是()A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE【知识点】面面垂直的判定.【解题过程】因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC ,同理有DE ⊥AC ,于是AC ⊥平面BDE .因为AC ⊂平面ABC ,所以平面ABC ⊥平面BDE .又由于AC ⊂平面ACD ,所以平面ACD ⊥平面BDE ,所以选C.【思路点拨】缺少【答案】C.6.在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确结论是:“设三棱锥A -BCD 的三个侧面ABC 、ACD 、ADB 两两相互垂直”,则______.【解题过程】此题是突破以往高考命题模式的又一典范,丰富的想象和联想是增强创新意识的利器,本题如果能联想构造一长方体,用一平面去截长方体易得满足条件的棱锥A -BCD ,进而易证结论:“2222ABC ACD ADB BCD SS S S ++=.” 【答案】2222ABC ACD ADB BCD S S S S ++=.7.如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为正确的条件即可).【知识点】线面平行的判定,面面垂直的证明.【解题过程】∵PC在底面ABCD上的射影为AC,且AC⊥BD,∴BD⊥P C.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD ⊥平面PC D.【答案】DM⊥PC(或BM⊥PC)8.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD =DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.【知识点】线面平行的判定,面面垂直的证明。
人教版高中数学必修2(A版) 2.3.2平面与平面垂直的判定 PPT课件
类似地,下面的这个二面角应该如何表示?
Q l
B P
二面角的表示
(1)二面角-AB- (2)二面角P AB Q (3)二面角 l (4)二面角P l Q
A
三.新知的探索 思考4:我们常说“把门开得大一些”,是指哪个角
大一些?
三.新知的探索
在上述变化过程中,图形在变化,形成的二面角也在变化, 我们应该怎样刻画二面角的大小?
2.3.2平面与平面垂直的判定
一.复习与回顾
1.1如何作出两条异面直线的夹角? 1.2如何作出斜线与平面的夹角? “空间问题平面化” 1.3在研究上述两个问题时,我们采用了相同的方法,即将 空间角的问题转化为平面角进行处理.
P
a
a
O
a
b/
A
B
b
二.新知的引入
三.新知的探索
我们知道直线上的一点将直线分割成两部分, 每一部分分别叫射线. 那么平面上的一条直线将整个平面一分为二, 每一部分应该叫做什么呢?
(2)角的两边分别在两个面内
(3)角的两边都要垂直于二面角的棱
三.新知的探索 观察:
1.教室相邻的两个墙面分别与地面所成的二面角是多少度? 相邻的两个墙面所成的二面角又是多少度?
2.教室相邻的两个墙面分别与地面有什么样的位置关系? 相邻的两个墙面又有什么位置关系呢?
三.新知的探索 3.4定义:
线线垂直
线面垂直
面面垂直
3.转化与化归思想:空间问题平面化处理 习题2.3 必做题A组 第1题、第2题 选做题B组 第1题
P
PA BC PA AC A
BC AC
高中数学2.3.2平面与平面垂直的判定教案新人教A版必修2
2.3.2 平面与平面垂直的判定一、教材分析在空间平面与平面之间的位置关系中,垂直是一种超级重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面垂直的概念是通过二面角给出的,二面角是高考中的重点和难点.使学生掌握两个平面彼此垂直的判定,提高学生空间想象能力,提高等价转化思想渗透的意识,进一步提高学生分析问题、解决问题的能力;使学生学会多角度分析、思考问题,培育学生的创新精神.二、教学目标1.知识与技术(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面彼此垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在教学问题解决上的作用.2.进程与方式(1)通过实例让学生直观感知“二面角”概念的形成过程;(2)类比已学知识,归纳“二面角”的气宇方式及两个平面垂直的判定定理.3.情态、态度与价值观通过揭露概念的形成、发展和应有和进程,使学生理会教学存在于观实生活周围,从中激发学生踊跃思维,培育学生的观察、分析、解决问题能力.三、教学重点与难点教学重点:平面与平面垂直判定.教学难点:平面与平面垂直判定和求二面角.四、课时安排1课时五、教学设计(一)温习两平面的位置关系:(1)若是两个平面没有公共点,则两平面平行⇔若α∩β=∅,则α∥β.(2)若是两个平面有一条公共直线,则两平面相交⇔若α∩β=AB,则α与β相交.两平面平行与相交的图形表示如图1.图1(二)导入新课思路1.(情境导入)为了解决实际问题,人们需要研究两个平面所成的角.修筑水坝时,为了使水坝牢固耐用必需使水坝面与水平面成适当的角度;发射人造地球卫星时,使卫星轨道平面与地球赤道平面成必然的角度.为此,咱们引入二面角的概念,研究两个平面所成的角.思路2.(直接导入)前边举过门和墙所在平面的关系,随着门的开启,其所在平面与墙所在平面的相交程度在变,如何描述这种转变呢?今天咱们一路来探讨两个平面所成角问题.(三)推动新课、新知探讨、提出问题①二面角的有关概念、画法及表示方式.②二面角的平面角的概念.③两个平面垂直的概念.④用三种语言描述平面与平面垂直的判定定理,并给出证明.⑤应用面面垂直的判定定理难点在哪里?讨论结果:①二面角的有关概念.二面角的概念:从一条直线动身的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫二面角的面.二面角常常利用直立式和平卧式两种画法:如图2(教师和学生一路动手).直立式:平卧式:(1) (2)图2二面角的表示方式:如图3中,棱为AB,面为α、β的二面角,记作二面角α-AB-β.有时为了方便也可在α、β内(棱之外的半平脸部份)别离取点P、Q,将这个二面角记作二面角P-AB-Q.图3若是棱为l,则这个二面角记作αlβ或PlQ.②二面角的平面角的概念.如图4,在二面角αlβ的棱上任取点O,以O为垂足,在半平面α和β内别离作垂直于棱的射线OA和OB,则射线OA和OB组成∠AOB.图4再取棱上另一点O′,在α和β内别离作l 的垂线O ′A′和O′B′,则它们组成角∠A′O′B′.因为OA∥O′A′,OB∥O′B′,所以∠AOB 及∠A′O′B′的两边别离平行且方向相同, 即∠AOB=∠A′O′B′.从上述结论说明了:依照上述方式作出的角的大小,与角的极点在棱上的位置无关. 由此结果引出二面角的平面角概念:以二面角的棱上任意一点为端点,在两个面内别离作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角. 图中的∠AOB,∠A′O′B′都是二面角αlβ的平面角.③直二面角的概念.二面角的大小可以用它的平面角来气宇,二面角的平面角是多少度,就说二面角是多少度.平面角是直角的二面角叫做直二面角.教室的墙面与地面,一个正方体中每相邻的两个面、课桌的侧面与地面都是彼此垂直的.两个平面彼此垂直的概念和平面几何里两条直线彼此垂直的概念相类似,也是用它们所成的角为直角来概念,二面角既可以为锐角,也可以为钝角,特殊情形又可以为直角. 两个平面彼此垂直的概念可表述为:若是两个相交平面所成的二面角为直二面角,那么这两个平面彼此垂直. 直二面角的画法:如图5.图5④两个平面垂直的判定定理.若是一个平面通过另一个平面的一条垂线,那么这两个平面彼此垂直. 两个平面垂直的判定定理符号表述为:⎭⎬⎫⊂⊥αβAB AB ⇒α⊥β.两个平面垂直的判定定理图形表述为:如图6.图6证明如下:已知AB⊥β,AB∩β=B,AB ⊂α. 求证:α⊥β.分析:要证α⊥β,需证α和β组成的二面角是直二面角,而要证明一个二面角是直二面角,需找到其中一个平面角,并证明这个二面角的平面角是直角.证明:设α∩β=CD,则由AB ⊂α,知AB 、CD 共面. ∵AB⊥β,CD ⊂β,∴AB⊥CD,垂足为点B. 在平面β内过点B 作直线BE⊥CD, 则∠ABE 是二面角αCDβ的平面角.又AB⊥BE,即二面角αCDβ是直二面角, ∴α⊥β.⑤应用面面垂直的判定定理难点在于:在一个平面内找到另一个平面的垂线,即要证面面垂直转化为证线线垂直.(四)应用示例思路1例1 如图7,⊙O 在平面α内,AB 是⊙O 的直径,PA⊥α,C 为圆周上不同于A 、B 的任意一点.图7求证:平面PAC⊥平面PBC.证明:设⊙O 所在平面为α,由已知条件,PA⊥α,BC ⊂α,∴PA⊥BC. ∵C 为圆周上不同于A 、B 的任意一点,AB 是⊙O 的直径, ∴BC⊥AC.又∵PA 与AC 是△PAC 所在平面内的两条相交直线, ∴BC⊥平面PAC.∵BC ⊂平面PBC,∴平面PAC⊥平面PBC. 变式训练如图8,把等腰Rt△ABC 沿斜边AB 旋转至△ABD 的位置,使CD=AC ,图8(1)求证:平面ABD⊥平面ABC ; (2)求二面角CBDA 的余弦值. (1)证明:由题设,知AD=CD=BD,作DO⊥平面ABC ,O 为垂足,则OA=OB=OC. ∴O 是△ABC 的外心,即AB 的中点. ∴O∈AB ,即O ∈平面ABD. ∴OD ⊂平面ABD.∴平面ABD⊥平面ABC.(2)解:取BD 的中点E ,连接CE 、OE 、OC, ∵△BCD 为正三角形,∴CE⊥BD.又△BOD 为等腰直角三角形,∴OE⊥BD. ∴∠OEC 为二面角CBDA 的平面角. 同(1)可证OC⊥平面ABD.∴OC⊥OE.∴△COE 为直角三角形. 设BC=a ,则CE=a 23,OE=a 21,∴cos∠OEC=33=CE OE .点评:欲证面面垂直关键在于在一个平面内找到另一个平面的垂线.例2 如图9所示,河堤斜面与水平面所成二面角为60°,堤面上有一条直道CD ,它与堤角的水平线AB 的夹角为30°,沿这条直道从堤脚向上行走到10 m 时人升高了多少?(精准到0.1 m )图9解:取CD 上一点E ,设C E=10 m ,过点E 作直线AB 所在的水平面的垂线EG ,垂足为G ,则线段EG 的长就是所求的高度.在河堤斜面内,作EF⊥AB,垂足为F ,并连接FG,则FG⊥AB,即∠EFG 就是河堤斜面与水平面ABG 所成二面角的平面角, ∠EFG=60°,由此,得EG=EFsin60°=CEsin30°sin60°=10×2352321=⨯≈(m ). 答:沿直道行走到10 m 时人升高约4.3 m.变式训练已知二面角αABβ等于45°,CD ⊂α,D ∈AB ,∠CDB=45°.求CD 与平面β所成的角.解:如图10,作CO⊥β交β于点O ,连接DO ,则∠CDO 为DC 与β所成的角.图10过点O 作OE⊥AB 于E ,连接CE ,则CE⊥AB. ∴∠CEO 为二面角αABβ的平面角, 即∠CEO=45°. 设CD=a,则CE=a 22,∵CO⊥OE,OC=OE , ∴CO=a 21.∵CO⊥DO,∴sin∠CDO=21=CD CO . ∴∠CDO=30°,即DC 与β成30°角.点评:二面角是本节的另一个重点,作二面角的平面角最常常利用的方式是:在一个半平面α内找一点C ,作另一个半平面β的垂线,垂足为O,然后通过垂足O 作棱AB 的垂线,垂足为E,连接AE,则∠CEO 为二面角α-AB-β的平面角.这一进程要求学生熟记.思路2例1 如图11,ABCD 是菱形,PA⊥平面ABCD ,PA=AD=2,∠BAD=60°.图11(1)求证:平面PBD⊥平面PAC ; (2)求点A 到平面PBD 的距离; (3)求二面角APBD 的余弦值.(1)证明:设AC 与BD 交于点O ,连接PO, ∵底面ABCD 是菱形,∴BD⊥AC.∵PA⊥底面ABCD,BD ⊂平面ABCD,∴的PA⊥BD. 又PA∩AC=A,∴BD⊥平面PAC.又∵BD ⊂平面PBD,∴平面PBD⊥平面PAC.(2)解:作AE⊥PO 于点E,∵平面PBD⊥平面PAC,∴AE⊥平面PBD. ∴AE 为点A 到平面PBD 的距离.在△PAO 中,PA=2,AO=2·cos30°=3,∠PAO=90°, ∵PO=722=+AO PA ,∴AE=7212732==•PO AO PA .∴点A 到平面PBD 的距离为7212. 3)解:作AF⊥PB 于点F,连接EF, ∵AE⊥平面PBD,∴AE⊥PB. ∴PB⊥平面AEF,PB⊥EF.∴∠AFE 为二面角APBD 的平面角. 在Rt△AEF 中,AE=7212,AF=2, ∴sin∠AFE=742=AF AE ,cos∠AFE=77)742(12=-. ∴二面角APBD 的余弦值为77. 变式训练如图12,PA⊥矩形ABCD 所在平面,M 、N 别离是AB 、PC 的中点.(1)求证:MN∥平面PAD ; (2)求证:MN⊥CD;(3)若二面角PDCA=45°,求证:MN⊥平面PDC.图12 图13证明:如图13所示,(1)取PD 的中点Q ,连接AQ 、NQ,则QN21DC,AM 21DC, ∴QN AM.∴四边形AMNQ 是平行四边形.∴MN∥AQ.又∵MN ⊄平面PAD,AQ ⊂平面PAD,∴MN∥平面PAD. (2)∵PA⊥平面ABCD ,∴PA⊥CD. 又∵CD⊥AD,PA∩AD=A,∴CD⊥平面PAD. 又∵AQ ⊂平面PAD,∴CD⊥AQ. 又∵AQ∥MN,∴MN⊥CD.(3)由(2)知,CD⊥平面PAD, ∴CD⊥AD,CD⊥PD.∴∠PDA 是二面角PDCA 的平面角.∴∠PDA=45°. 又∵PA⊥平面ABCD,∴PA⊥AD.∴AQ⊥PD. 又∵MN∥AQ,∴MN⊥CD.又∵MN⊥PD,∴MN⊥平面PDC.例2 如图14,已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,且∠DAB=60°,AD=AA 1,F 为棱BB 1的中点,M 为线段AC 1的中点.图14(1)求证:直线MF∥平面ABCD ; (2)求证:平面AFC 1⊥平面ACC 1A 1;(3)求平面AFC 1与平面ABCD 所成二面角的大小. (1)证明:延长C 1F 交CB 的延长线于点N ,连接AN. ∵F 是BB 1的中点,∴F 为C 1N 的中点,B 为CN 的中点. 又M 是线段AC 1的中点,故MF∥AN. 又∵MF ⊄平面ABCD,AN ⊂平面ABCD, ∴MF∥平面ABCD.(2)证明:连接BD ,由直四棱柱ABCD —A 1B 1C 1D 1,可知AA 1⊥平面ABCD, 又∵BD ⊂平面ABCD ,∴A 1A⊥BD. ∵四边形ABCD 为菱形,∴AC⊥BD. 又∵AC∩A 1A=A,AC 、A 1A ⊂平面ACC 1A 1,∴BD⊥平面ACC 1A 1.在四边形DANB 中,DA∥BN 且DA=BN , ∴四边形DANB 为平行四边形. 故NA∥BD,∴NA⊥平面ACC 1A 1. 又∵NA ⊂平面AFC 1,∴平面AFC 1⊥平面ACC 1A 1.(3)解:由(2),知BD⊥平面ACC 1A 1,又AC 1⊂平面ACC 1A 1,∴BD⊥AC 1. ∵BD∥NA,∴AC 1⊥NA.又由BD⊥AC,可知NA⊥AC,∴∠C 1AC 就是平面AFC 1与平面ABCD 所成二面角的平面角或补角. 在Rt△C 1AC 中,tan∠C 1AC=311=CA C C ,故∠C 1AC =30°. ∴平面AFC 1与平面ABCD 所成二面角的大小为30°或150°.变式训练 如图15所示,在四棱锥S —ABCD 中,底面ABCD 是矩形,侧面SDC⊥底面ABCD ,且AB=2,SC=SD=2.图15(1)求证:平面SAD⊥平面SBC ;(2)设BC=x ,BD 与平面SBC 所成的角为α,求sinα的取值范围. (1)证明:在△SDC 中,∵SC=SD=2,CD=AB=2,∴∠DSC=90°,即DS⊥SC.∵底面ABCD 是矩形,∴BC⊥CD.又∵平面SDC⊥平面ABCD,∴BC⊥面SDC. ∴DS⊥BC.∴DS⊥平面SBC.∵DS ⊂平面SAD,∴平面SAD⊥平面SBC.(2)解:由(1),知DS⊥平面SBC,∴SB 是DB 在平面SBC 上的射影. ∴∠DBS 就是BD 与平面SBC 所成的角,即∠DBS=α. 那么sinα=DBDS. ∵BC=x,CD=2⇒DB=24x +,∴sinα=242x+.由0<x <+∞,得0<sinα<22.(五)知能训练讲义本节练习.(六)拓展提升如图16,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,∠BAD=60°,N 是PB 中点,过A 、D 、N 三点的平面交PC 于M ,E 为AD 的中点.图16(1)求证:EN∥平面PCD ;(2)求证:平面PBC⊥平面ADMN ;(3)求平面PAB 与平面ABCD 所成二面角的正切值. (1)证明:∵AD∥BC,B C ⊂面PBC,AD ⊄面PBC, ∴AD∥面PBC.又面ADN∩面PBC=MN, ∴AD∥MN.∴MN∥BC. ∴点M 为PC 的中点.∴MN21BC. 又E 为AD 的中点,∴四边形DENM 为平行四边形. ∴EN∥DM.∴EN∥面PDC.(2)证明:连接PE 、BE,∵四边形ABCD 为边长为2的菱形,且∠BAD=60°, ∴BE⊥AD.又∵PE⊥AD,∴AD⊥面PBE.∴AD⊥PB. 又∵PA=AB 且N 为PB 的中点, ∴AN⊥PB.∴PB⊥面ADMN. ∴平面PBC⊥平面ADMN.(3)解:作EF⊥AB,连接PF ,∵PE⊥平面ABCD,∴AB⊥PF. ∴∠PFE 就是平面PAB 与平面ABCD 所成二面角的平面角. 又在Rt△AEB 中,BE=3,AE=1,AB=2,∴EF=23. 又∵PE=3,∴tan∠PFE=233=EFPE=2,即平面PAB 与平面ABCD 所成的二面角的正切值为2.(七)课堂小结知识总结:利用面面垂直的判定定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方式总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.(八)作业讲义习题2.3 A组一、二、3.。
最新人教版高中数学必修二第二章点、直线、平面之间的位置关系第三节第4课时平面与平面垂直的性质
2.3.4 平面与平面垂直的性质平面与平面垂直的性质定理文字语言两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直符号语言α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β图形语言性质定理若去掉“一个平面内(a⊂α)”,定理是否成立?提示:不一定成立,如图a⊥α,这时也有a⊥l,但a与β不垂直.1.辨析记忆(对的打“√”,错的打“×”)(1)两个平面垂直,其中一个平面内的任一条直线与另一个平面一定垂直.( ×) 提示:不一定.只有在一个平面内垂直于两平面交线的直线才能垂直于另一个平面.(2)若α⊥β,则α内的直线必垂直于β内的无数条直线. ( √)提示:若设α∩β=l,a⊂α,b⊂β,b⊥l,则a⊥b,故β内与b平行的无数条直线均垂直于α内的任意直线.(3)如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ.( √)提示:设α∩γ=m,β∩γ=n,在平面γ内取一点P不在m,n上,过P作直线a,b,使a ⊥m,b⊥n.因为γ⊥α,a⊥m,则a⊥α.所以a⊥l,同理有b⊥l.又a∩b=P,l⊄γ,所以l⊥γ.故正确.(4)若两个平面互相垂直,一条直线与一个平面垂直,那么这条直线在另一个平面内.( ×) 提示:若α⊥β,l⊥α,在β内作a与α,β的交线垂直,则a⊥α,所以a∥l. 所以l∥β或l⊂β,即直线l与平面β平行或在平面β内.2.在四棱柱ABCDA1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC,AD=CD,则BD与CC1( )A.平行B.相交C.异面且垂直D.异面且不垂直【解析】选C.如图所示,在四边形ABCD中,因为AB=BC,AD=CD.所以BD⊥AC. 因为平面AA1C1C⊥平面ABCD,平面AA1C1C∩平面ABCD=AC,BD⊂平面ABCD,所以BD⊥平面AA1C1C.又CC1⊂平面AA1C1C,所以BD⊥CC1.3.如图所示,三棱锥PABC中,平面PAB⊥底面ABC,且PA=PB=PC,则△ABC是________三角形.【解析】设P在平面ABC上的射影为O,因为平面PAB⊥底面ABC,平面PAB∩平面ABC=AB,所以O∈AB.因为PA=PB=PC,所以OA=OB=OC,所以O是△ABC的外心,且是AB的中点,所以△ABC是直角三角形.答案:直角类型一用面面垂直的性质定理解证明问题(逻辑推理、直观想象) 【典例】如图,在三棱锥PABC中,PA⊥平面ABC,平面PAB⊥平面PBC.求证:BC⊥AB.【思路导引】面面垂直→线面垂直→线线垂直【证明】如图,在平面PAB内,作AD⊥PB于点D.因为平面PAB⊥平面PBC,且平面PAB∩平面PBC=PB,AD⊂平面PAB,所以AD⊥平面PBC.又BC⊂平面PBC,所以AD⊥BC.又因为PA⊥平面ABC,BC⊂平面ABC,所以PA⊥BC,又因为PA∩AD=A,所以BC⊥平面PAB.又AB⊂平面PAB,所以BC⊥AB.1.应用面面垂直的性质定理的一个意识和三个注意点(1)一个意识若所给题目中有面面垂直的条件,一般要利用面面垂直的性质定理将其转化为线面垂直.(2)三个注意点:①两个平面垂直,是前提条件;②直线必须在其中一个平面内;③直线必须垂直于它们的交线.2.证明线面垂直的常用方法(1)线面垂直的判定定理;(2)面面垂直的性质定理;(3)若a∥b,a⊥α,则b⊥α(a,b为直线,α为平面);(4)若a⊥α,α∥β,则a⊥β(a为直线,α,β为平面).如图,在三棱台ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2.求证:BF⊥平面ACFD.【证明】延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE⊥平面ABC,平面BCFE∩平面ABC=BC,且AC⊥BC,AC⊂平面ABC,所以AC⊥平面BCK,因此BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.又CK∩AC=C,CK,AC⊂平面ACFD,所以BF⊥平面ACFD.【补偿训练】如图,在三棱锥PABC中,E,F分别为AC,BC的中点.(1)求证:EF∥平面PAB.(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°.求证:平面PEF⊥平面PBC.【证明】(1)因为E,F分别为AC,BC的中点,所以EF∥AB.又EF⊄平面PAB,AB⊂平面PAB,所以EF∥平面PAB.(2)因为PA=PC,E为AC的中点,所以PE⊥AC.又因为平面PAC⊥平面ABC,所以PE⊥平面ABC,所以PE⊥BC.又因为F为BC的中点,所以EF∥AB.因为∠ABC=90°,所以BC⊥EF.因为EF∩PE=E,所以BC⊥平面PEF.又因为BC⊂平面PBC,所以平面PBC⊥平面PEF.类型二用面面垂直的性质定理解计算问题(逻辑推理,直观想象)角度1 求空间角【典例】如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求EC与平面ABE所成角的正切值.【思路导引】(1)由正方形ACDE所在的平面与平面ABC垂直可得BC⊥平面ACDE,可得AM⊥平面EBC;(2)根据面面垂直的性质定理作出线面角,在三角形中求出其正切值.【解析】(1)因为平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,BC⊥AC,所以BC⊥平面ACDE.又AM⊂平面ACDE,所以BC⊥AM.因为四边形ACDE是正方形,所以AM⊥CE.又BC∩CE=C,所以AM⊥平面EBC.(2)取AB的中点F,连接CF,EF.因为EA⊥AC,平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,所以EA⊥平面ABC,因为CF⊂平面ABC,所以EA⊥CF.又AC=BC,所以CF⊥AB.因为EA∩AB=A,所以CF⊥平面AEB,所以∠CEF即为EC与平面ABE所成的角.在Rt△CFE中,CF= 2 ,FE= 6 ,tan ∠CEF=26=33.角度2 求体积【典例】如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC.(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥QABP的体积.【思路导引】(1)转化为证明AB⊥平面ACD.(2)过Q作AC的垂线,得三棱锥QABP底面ABP上的高.【解析】(1)由已知可得,∠BAC=90°,则BA⊥AC.又BA⊥AD,AD∩AC=A,所以AB⊥平面ACD.又AB⊂平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=3 2 .又BP=DQ=23DA,所以BP=2 2 .作QE⊥AC,垂足为E,则QE=13DC=1.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,因此,三棱锥Q ABP的体积为VQABP =13×QE×S△ABP=13×1×12×3×2 2 sin 45°=1. 计算问题的解决方法(1)求角、求距离等计算问题一般在三角形中求解.所给条件中的面面垂直首先转化为线面垂直,然后转化为线线垂直.往往把计算问题归结为一个直角三角形中的计算问题.(2)求几何体的体积时要注意应用转换顶点法,求线段的长度或点到平面的距离时往往也应用几何体中的转换顶点(等体积)法.1.如图,α⊥β,AB⊂α,AC⊂β,∠BAD=∠CAD=45°,则∠BAC=( )A.90° B.60° C.45° D.30°【解析】选B.在AB上任意找一点F,过点F作AD的垂线EF,垂足为E,再过点E作EG⊥AD,EG交AC于点G.如图所示.因为∠BAD=∠CAD=45°,EF⊥AE,EG⊥AD,所以EF=AE=EG,所以根据三角形的勾股定理可知,AF2=AE2+FE2,FG2=FE2+EG2,AG2=AE2+EG2,所以AF=AG=FG,所以△AFG是等边三角形,则∠BAC=60°.2.如图,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.O为AB的中点.(1)证明:AB⊥平面A1OC.(2)若AB=CB=2,平面ABC⊥平面A1ABB1,求三棱柱ABCA1B1C1的体积.【解析】 (1)连接A1B.,因为CA=CB,OA=OB,所以OC⊥AB,因为AB=AA1,∠BAA1=60°,所以三角形AA1B为等边三角形,所以AA1=A1B,又OA=OB,所以OA1⊥AB,又OC∩OA1=O,所以AB⊥平面A1OC.(2)由题可知,△ABC与△AA1B是边长为2的等边三角形,得OA1= 3 ,因为平面ABC⊥平面A 1ABB1,平面ABC∩平面A1ABB1=AB,由(1)OA1⊥AB,OA1⊂平面A1ABB1,所以OA1⊥面ABC,所以OA1是三棱柱ABCA1B1C1的高,所以VABCA1B1C1=S△ABC×OA1=3.类型三折叠问题(逻辑推理、直观想象)【典例】如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD 于点H,将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′;(2)若AB=5,AC=6,AE=54,OD′=2 2 ,求五棱锥D′ABCFE的体积.【思路导引】(1)HD、HD′与EF的位置关系是不变的;(2)证明OD′是五棱锥D′ABCFE的高是关键.【解析】(1)由已知得AC⊥BD,AD=CD,又由AE=CF得AEAD=CFCD,故AC∥EF,由此得EF⊥HD,故EF⊥HD′,所以AC⊥HD′.(2)由EF∥AC得OHDO=AEAD=14.由AB=5,AC=6得DO=BO=AB2-AO2=4,所以OH=1,D′H=DH=3,于是OD′2+OH2=(2 2 )2+12=9=D′H2,故OD′⊥OH. 由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H,所以AC⊥平面BHD′,于是AC⊥OD′,又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.又由EFAC=DHDO得EF=92.五边形ABCFE的面积S=12×6×8-12×92×3=694.所以五棱锥D′ABCFE的体积V=13×69 4×2 2 =2322.解决折叠问题的策略(1)抓住折叠前后的变量与不变量,一般情况下,在折线同侧的量,折叠前后不变,“跨过”折线的量,折叠前后可能会发生变化,这是解决这类问题的关键.(2)在解题时仔细审视从平面图形到立体图形的几何特征的变化情况,注意相应的点、直线、平面间的位置关系,线段的长度,角度的变化情况.如图1所示,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2所示.(1)求证:A1F⊥BE;(2)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【解析】(1)由已知,得AC⊥BC,且DE∥BC.所以DE⊥AC,则DE⊥DC,DE⊥DA1,又因为DC∩DA1=D,所以DE⊥平面A1DC.由于A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE,又BE⊂平面BCDE,所以A1F⊥BE.(2)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图所示,分别取A1C,A1B的中点P,Q,连接PQ,QE,PD,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEQP. 由(1)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰△DA1C底边A1C的中点,所以A1C⊥DP,又DE∩DP=D,所以A1C⊥平面DEQP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.【补偿训练】如图,在矩形ABCD中,AB=3 3 ,BC=3,沿对角线BD把△BCD折起,使C移到C′,且C′在平面ABD内的射影O恰好落在AB上.(1)求证:AC′⊥BC′.(2)求AB与平面BC′D所成的角的正弦值.(3)求二面角C′BDA的正切值.【解析】(1)由题意,知C′O⊥平面ABD,因为C′O⊂平面ABC′,所以平面ABC′⊥平面ABD.又因为AD⊥AB,平面ABC′∩平面ABD=AB,所以AD⊥平面ABC′. 所以AD⊥BC′.因为BC′⊥C′D,AD∩C′D=D,所以BC′⊥平面AC′D.所以BC′⊥AC′.(2)因为BC′⊥平面AC′D,BC′⊂平面BC′D,所以平面AC′D⊥平面BC′D.作AH⊥C′D于H,则AH⊥平面BC′D,连接BH,则BH为AB在平面BC′D上的射影,所以∠ABH为AB与平面BC′D所成的角.又在Rt△AC′D中,C′D=3 3 ,AD=3,所以AC′=3 2 .所以AH= 6 .所以sin ∠ABH=AHAB=23,即AB与平面BC′D所成角的正弦值为23 .(3)过O作OG⊥BD于G,连接C′G,则C′G⊥BD,则∠C′GO为二面角C′BDA的平面角.在Rt△AC′B中,C′O=AC′·BC′AB= 6 ,在Rt△BC′D中,C′G=BC′·C′DBD=332.所以OG=C′G2-C′O2=32 .所以tan∠C′GO=C′OOG=2 2 ,即二面角C′BDA的正切值为2 2 .。
人教版高中数学必修二《平面与平面垂直的性质》教学课件
位置关系?
α
α
P ba
β
a b
P
β
5/27/2020
直线a在平面 内
如图,已知平面α,β,α⊥β,直线a满足a
垂直β,a α,试判断直线a与平面α的位置关系。
解:在a内作垂直与α与β交线的直线b,
因为 α⊥β,所以 b⊥β 因为 a⊥β,所以 a∥b
α
b
a
又因为 a α,所以 a∥α
β
即直线a与平面α平行
平面与平面垂直 的性质
复习 1.二面角与二面角的平面角
从一条直线出发的两个半平面所组成的图形叫做二面角。 以二面角的棱上任意一点为端点,在两个面内分别作垂 直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
2.平面与平面垂直的定义
如果两个平面所成的二面角是直角(即成直二面角),就 说这两个平面互相垂直.
一、两个平面垂直的性质定理
1.如果两个平面垂直, 那么在一个平面内垂直于它们交线的直线 垂直于另一个平面.
二、“转化思想”
面面关系
线面关系
线线关系
面面平行
线面平行
线线平行
面面垂直
线面垂直
线线垂直
5/27/2020
5/27/2020
探究
已知平面 , ,直线a,且 I =AB, ,
a∥ , a⊥AB,试判断直线a与平面 的位置关系。
a
α a
bB
β A
5/27/2020
已知:α∩β=a,α⊥γ,β⊥γ,求证:a⊥γ.
分析: “从已知想性质,从求证想判定” 这是证明几何问题的基本思维方法. 从已知出发:面面垂直 线面垂直 线线垂直 从求证出发:欲证直线a与平面γ垂直, 大致有以下思路: (1)证明直线a垂直于γ内两条相交直线,从而进一步 想如何在γ内找到这两条相交直线;
高中数学 2.3.2平面与平面垂直的判定课件 新人教A版必修2
Q T
a
18
证明:法一:取 CD 的中点 E,连接 NE,ME,MC、PM. PA⊥平面 ABCD⇒PA⊥AD,
∠PDA=45°⇒PA=AD=BC, 又 M 是 AB 的中点,
Rt△PAM≌Rt△NC是BMPC⇒的M中P=点MC⇒MN⊥PC.
PA⊥CD AD⊥CD ⇒CD⊥平面 PAD⇒ PA∩AD=A
C
在平面α内过B点作直线BE⊥CD,则 ∠ABE就是二面角α-CD-β的平面角,
α
B E
D
∵AB⊥ α ,BE α ,
∴AB⊥BE. ∴二面角α-CD-β是直二面角,∴α⊥β.
a
13
平面与平面垂直的判定
证一证
例2.如图,AB是圆O的直径,PA垂直于圆O所在的平
面于A,C是圆O上不同于A、B的任意一点.
D1 A1
C1 D1 B1 A1
C1 B1
D A
D
C
B
A
a
O
C B
9
平面与平面垂直的判定
找一找
例1. 在正方体 ABCD-A1B1C1D1 中,找出下列二面角的平面角:
(1) 二面角 A1-DC-1 B
你能求其余弦值吗?
D1
C1
C1
A1
E B1 A1
D A
CD B
a
B 10
平面与平面垂直的判定
找一找
例1. 在正方体 ABCD-A1B1C1D1 中,找出下列二面角的平面角: (2) 二面角 A1-AB-D 和 D1-BD-C的大小?
D1 A1
C1 D1 B1 A1
o1
C1
B1
D A
C
D
B aA
2014年人教版新课标数学必修二:第2章-2.3.2(ppt课件)
课 时 作 业
课 堂 互 动 探 究
教 师 备 课 资 源
新课标· 数学
教 学 教 法 分 析 教 学 方 案 设 计 课 前 自 主 导 学
必修2
思 想 方 法 技 巧 当 堂 双 基 达 标
●教学建议 本节课在前面已经学习了直线与平面垂直的基础上,介 绍了面面垂直的定义及判定定理,是前面知识的巩固升华, 又是后面研究线面、面面垂直性质的基础.所以,本节课的 内容及思想方法, 在整个立体几何里, 有非常重要的作用. 基 于学生立体几何的基础比较薄弱,教学时,建议采用发现探 讨式的教学方法,用由浅入深的问题引导学生自己去发现问 题、产生概念、形成定理.
课 时 作 业
课 堂 互 动 探 究
菜 单
教 师 备 析 教 学 方 案 设 计 课 前 自 主 导 学
课 时 作 业
课 堂 互 动 探 究
菜 单
教 师 备 课 资 源
新课标· 数学
教 学 教 法 分 析 教 学 方 案 设 计 课 前 自 主 导 学
必修2
思 想 方 法 技 巧 当 堂 双 基 达 标
课 时 作 业
课 堂 互 动 探 究
菜 单
教 师 备 课 资 源
新课标· 数学
教 学 教 法 分 析 教 学 方 案 设 计 课 前 自 主 导 学
新课标· 数学
教 学 教 法 分 析 教 学 方 案 设 计 课 前 自 主 导 学
必修2
思 想 方 法 技 巧 当 堂 双 基 达 标
2.3.2 平面与平面垂直的判定
教师用书独具演示
●三维目标 1.知识与技能 (1)使学生正确理解和掌握“二面角”、“二面角的平面 角”及“直二面角”、“两个平面互相垂直”的概念. (2)使学生掌握两个平面垂直的判定定理及其简单应用. (3)使学生体会“类比归纳”思想在数学问题解决上的作 用.
高中数学人教A版必修第二册《空间直线、平面的垂直---直线与平面、平面与平面垂直的性质》名师课件
核心素养
逻辑推理
逻辑推理
学习目标
课程目标
1.理解直线和平面、平面和平面垂直的性质定理并能运用其解决相关问题.
2.通过对性质定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.
数学学科素养
1.逻辑推理:探究归纳直线和平面、平面和平面垂直的性质定理,线线垂直、线面垂直、
变式训练
3.如图所示,在四棱锥PABCD中,底面ABCD是边长为a的菱形,且∠DAB=60°,G为AD边
的中点,侧面PAD为正三角形,其所在的平面垂直于底面ABCD.
(1)求证:BG⊥平面PAD;(2)求证:AD⊥PB.
证明
(1)因为在菱形ABCD中,G为AD的中点, ∠DAB=60° ,所以BG⊥AD.
复习引入
直线与平面垂直的定义:
如果直线与平面内的任意一条直线都垂直,我们说直
线与平面互相垂直,记作 ⊥ .
直线与平面垂直的判定定理:
一条直线与一个平面内的两条相交直线都垂直,则该直线与此平
面垂直.
复习引入
平面与平面垂直的定义
一般地,两个平面相交,如果它们所成的二面角是直二面角,就说
这两个平面互相垂直.
求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA.
证明
(1)如图,取EC的中点F,连接DF.
因为EC⊥平面ABC,BC⊂平面ABC,所以EC⊥BC.
易知DF//BC,所以DF⊥EC.
在Rt△EFD和Rt△DBA中
因为EF= EC,EC=2BD,所以EF=BD.
又FD=BC=AB所以Rt△EFD≌Rt△DBA ,故DE=DA.
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BG⊥平面PAD.
(完整版)新人教版高中数学必修2知识点总结
高中数学必修 2 知识点总结 (2)画三视图的原则:长对齐、高对齐、宽相等( 1)棱柱:定义 :有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体。
分类 :以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱 ABCDE A 'B 'C 'D 'E ' 或用对角线的端点字母,如五棱柱 AD 几何特征 :两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于 底面的截面是与底面全等的多边形。
(2)棱锥定义 :有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类 :以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示 :用各顶点字母,如五棱锥 P A 'B 'C 'D 'E '几何特征 :侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高 的比的平方。
( 3)棱台:定义 :用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类 :以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示 :用各顶点字母,如五棱台 P A 'B 'C 'D 'E '几何特征 :①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 ( 4)圆柱:定义 :以矩形的一边所在的直线为轴旋转 ,其余三边旋转所成的曲面所围成的几何体 几何特征 :①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
( 5)圆锥:定义 :以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征 :①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
( 6)圆台:定义: 用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征: ①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
人教高中数学必修二2.3直线、平面垂直的判定与性质 -三垂线定理 课件
结论:a⊥OA
P
线斜垂直
线射垂直
逆定理
O α
定理
线射垂直
线斜垂直
逆定理
a
A
例1:如图,在正方体中,O是AC与BD的交点,直线D1O与AC
垂直吗?说明你的理由。
D1
C1
D1O在平面ABCD内的射影是DO
AC与BD垂直
A1
B1
D1O与AC垂直(三垂线定理 )
你知道吗? D1B⊥AC
D
C
线射垂直
线斜垂直 A
射影OA和a直线之间的垂直关系
α
O
2、直线a可以移动,但只能在平面内移
动。因此,直线a和斜线PA可以相交也
可以异面。
P
3、三垂线定理的实质是平面的一条斜 线和平面内的一条直线垂直的判定定理。
O α
a
A
a
A
新知探究 • 逆定理
思考:
如果将定理中的条件a⊥OA改成a⊥PA,你会得到
怎样的结果?命题一定成立吗?
P
定理
即:线射垂直
线斜垂直
O α
a
A
定理中包括三种垂直关系:
①线面垂直 ②线射垂直 ③ 线斜垂直
P PO
P
a OA
P
a PA
O Aa
O Aa
O Aa
α
α
α
直线和 平面垂直
平面内的直线 和平面一条斜 线的射影垂直
平面内的直线 和平面的一条 斜线垂直
对定理的几点说明
P
1、三垂线定理描述的是斜线PA、
如图:请说出下列图形中的垂线、斜线和射影。
P
直线PO是垂线 直线PA是斜线
高中数学人教必修二平面与平面垂直的判定定理
练习
思考
如何检测所砌的墙面和地面是否垂直?
2.平面与平面垂直的判定
(1) 定义法:两个平面相交,如果它们所成的二面角是 直二面角,就说这两个平面互相垂直.记作
a
a
(2) 面面垂直的判定定理:
若一个平面经过另一个平面的一条垂线,则这两个平面互相垂 直. 注2:① a , a ②该定理作用:“线面垂直面面垂直” ③应用该定理,关键是找出两个平面中的其中任一个的垂线.
练 在正方体ABCD—A1B1C1D1中, (1)求证:平面A1C⊥平面B1D (2)E、F分别是AB、BC的中点, 求证:平面A1C1FE⊥平面B1D (3)G是BB1的中点, 求证:平面A1C1G⊥平面B1D
总结: 直线A1C1 ⊥平面B1D,则过直线 A1C1 的平面都垂直于平面B1D D1 A1 A D F E B G G G G C
A' A
二面角的平面角必须满足: ①角的顶点在棱上
l
B'
O' B
O
②角的两边分别在两个面内 ③角的边都要垂直于二面角的棱
1.二面角的概念
(4) 二面角的平面角
A A
l
O B
注1: ①当二面角的两个面合成一个平面时,规定二面角的大小为180°; ②平面角是直角的二面角叫做直二面角,此时称两半平面所在的两 个平面互相垂直.
A B C
ABC为直角三角形,ABC=90,则O为斜边AC的中点. 由PO 面PAC,PO 面ABC,可得面PAC 面ABC.
变式1 在三棱锥P-ABC中,PA PB PC,ABC=90,求证 : 面PAC 面ABC.
P
2.3.2 平面与平面垂直的判定
第二章点、直线、平面之间的位置关系2.3直线、平面垂直的判定及其性质2.3.2 平面与平面垂直的判定一、教学目标1、知识与技能(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在数学问题解决上的作用。
2、过程与方法(1)通过实例让学生直观感知“二面角”概念的形成过程;(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理。
3、情态与价值通过揭示概念的形成、发展和应用过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力。
二、教学重点、难点。
重点:平面与平面垂直的判定;难点:如何度量二面角的大小。
三、学法与教学用具。
1、学法:实物观察,类比归纳,语言表达。
2、教学用具:二面角模型(两块硬纸板)四、教学设计(一)创设情景,揭示课题问题1:平面几何中“角”是怎样定义的?问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?以上问题让学生自由发言,教师再作小结,并顺势抛出问题:在生产实践中,有许多问题要涉及到两个平面相交所成的角的情形,你能举出这个问题的一些例子吗?如修水坝、发射人造卫星等,而这样的角有何特点,该如何表示呢?下面我们共同来观察,研探。
(二)研探新知1、二面角的有关概念老师展示一张纸面,并对折让学生观察其状,然后引导学生用数学思维思考,并对以上问题类比,归纳出二面角的概念及记法表示(如下表所示)2、二面角的度量二面角定理地反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二面角大一些,那我们应如何度量二两角的大小呢?师生活动:师生共同做一个小实验(预先准备好的二面角的模型)在其棱上位取一点为顶点,在两个半平面内各作一射线(如图2.3-3),通过实验操作,研探二面角大小的度量方法——二面角的平面角。
面面垂直的判定定理
(2)两个平面垂直的判定定理的内容:
图形表示:
符号表示:
(3)面面垂直要转化为_______________
3.运用新知
例1、如图, 是圆 的直径, 垂直于圆 所在的平面, 是圆周上不同于 的任意一点,求证:平面 平面
例2、如图,已知 平面 , ,你能发现哪些平面互相垂直吗?为什么?
2.能运用平面与平面垂直的判定定理证明一些空间位置关系的简单命题。
重点难点
归纳出平面与平面垂直的判定定理,并加以证明
自学质疑学案
学习记录
学案内容
一、走进探知园
为了解决实际问题,需要研究两个平面所成的角,如修筑水坝时,为了坚固耐用,必须使水坝面与水平面成适当的角度;发射人造地球卫星时,也要根据需要,使卫星轨道平面与地球赤道平面成一定的角度。你知道这是根据什么数学知识吗?
(高中数学人教版必修二第二章)自主学习任务单班级小组姓名编号
课题
§2.3.2平面与平面垂直的判定
编制人
审核人
课程标准
通过直观感知、操作确认、思辨论证,认识和理解空间中线面垂直的有关性质与判定。
能运用已获得的结论证明一些空间位置关系的简单命题。
学习目标
1.通过直观感知、操作确认,归纳出平面与平面垂直的判定定理,并加以证明;
二.探究新知
阅读课本67~69页,回答下列问题。
探究1.二面角的定义,如何来刻画二面角的大小?
(1)定义
(2)图形表示与符号表示
(3)如何来刻画它的大小与地面垂直,经过木柱AB的门面不论转到什么位置,都有门面垂直于地面,为此,得到面面垂直的判定.
(1)两个平面垂直的定义:
四.自我反思
高中数学同步讲义必修二——第二章 2.3.2 平面与平面垂直的判定
2.3.2平面与平面垂直的判定学习目标 1.理解二面角及其平面角的概念,能确认图形中的已知角是否为二面角的平面角.2.掌握二面角的平面角的一般作法,会求简单的二面角的平面角.3.掌握两个平面互相垂直的概念,能用定义和定理判定面面垂直.知识点一二面角的概念(1)定义:从一条直线出发的两个半平面所组成的图形.(2)相关概念:①这条直线叫做二面角的棱,②两个半平面叫做二面角的面.(3)画法:(4)记法:二面角α-l-β或α-AB-β或P-l-Q或P-AB-Q.(5)二面角的平面角:若有①O∈l;②OA⊂α,OB⊂β;③OA⊥l,OB⊥l,则二面角α-l-β的平面角是∠AOB.知识点二平面与平面垂直思考若直线l垂直于平面α,是否经过直线l的任意一个平面都垂直于平面α?答案是.梳理两面垂直的定义及判定(1)平面与平面垂直①定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.②画法:③记作:α⊥β. (2)判定定理文字语言一个平面过另一个平面的垂线,则这两个平面垂直图形语言符号语言l ⊥α,l ⊂β⇒α⊥β1.若l ⊥α,则过l 有无数个平面与α垂直.( √ ) 2.两垂直平面的二面角的平面角大小为90°.( √ )类型一 证明面面垂直例1 如图,在四棱锥P ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由. (2)证明:平面P AB ⊥平面PBD .(1)解 取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD ,所以BC∥AM,且BC=AM.所以四边形AMCB是平行四边形,从而CM∥AB.又AB⊂平面P AB,CM⊄平面P AB,所以CM∥平面P AB.(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)(2)证明由已知,P A⊥AB,P A⊥CD.因为AD∥BC,BC=12AD,所以直线AB与CD相交,所以P A⊥平面ABCD.从而P A⊥BD.又BC∥MD,且BC=MD,所以四边形BCDM是平行四边形,所以BM=CD=12AD,所以BD⊥AB.又AB∩AP=A,AB,AP⊂平面P AB,所以BD⊥平面P AB.又BD⊂平面PBD,所以平面P AB⊥平面PBD.引申探究1.若将本例条件改为“P A垂直于矩形ABCD所在的平面”,试证明:平面PCD⊥平面P AD.证明因为P A⊥平面ABCD,所以P A⊥CD,因为四边形ABCD为矩形,所以CD⊥AD,又AD∩P A=A,AD,P A⊂平面P AD,所以CD ⊥平面P AD ,又CD ⊂平面PCD , 所以平面PCD ⊥平面P AD .2.若将本例条件改为“P A ⊥平面ABCD ,底面ABCD 是菱形,PB =BC ,M 是PC 中点”,试证明:平面MBD ⊥平面PCD .证明 连接AC ,则BD ⊥AC .由P A ⊥底面ABCD ,可知BD ⊥P A ,又AC ∩P A =A ,AC ,P A ⊂平面P AC , 所以BD ⊥平面P AC ,所以BD ⊥PC , 因为PB =BC ,M 是PC 中点,所以BM ⊥PC ,又BD ∩BM =B ,BM ,BD ⊂平面BMD , 所以PC ⊥平面MBD . 而PC ⊂平面PCD , 所以平面MBD ⊥平面PCD .反思与感悟 证明面面垂直常用的方法(1)定义法:即说明两个半平面所成的二面角是直二面角.(2)判定定理法:在其中一个平面内寻找一条直线与另一个平面垂直,即把问题转化为线面垂直. (3)性质法:两个平行平面中的一个垂直于第三个平面,则另一个也垂直于此平面.跟踪训练1 如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,∠ACB =90°,AC =12AA 1,D 是棱AA 1的中点.证明:平面BDC1⊥平面BDC.证明由题设知BC⊥CC1,BC⊥AC,CC1∩AC=C,所以BC⊥平面ACC1A1.又DC1⊂平面ACC1A1,所以DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,所以∠CDC1=90°,即DC1⊥DC.又DC∩BC=C,所以DC1⊥平面BDC.又DC1⊂平面BDC1,故平面BDC1⊥平面BDC.类型二求二面角的大小例2(1)有下列结论:①两个相交平面组成的图形叫作二面角;②异面直线a,b分别和一个二面角的两个面垂直,则a,b所成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成的角;④二面角的大小与其平面角的顶点在棱上的位置没有关系.其中正确的是()A.①③B.②④C.③④D.①②答案 B解析由二面角的定义:从一条直线出发的两个半平面所组成的图形叫作二面角,所以①错误,易知②正确;③中所作的射线不一定垂直于二面角的棱,故③错误;由定义知④正确.故选B.(2)如图,已知Rt△ABC,斜边BC⊂α,点A∉α,AO⊥α,O为垂足,∠ABO=30°,∠ACO =45°,求二面角A-BC-O的大小.解如图,在平面α内,过O 作OD ⊥BC ,垂足为点D ,连接AD , 设CO =a .∵AO ⊥α,BC ⊂α,∴AO ⊥BC . 又AO ∩DO =O ,∴BC ⊥平面AOD . 而AD ⊂平面AOD ,∴BC ⊥AD ,∴∠ADO 即为二面角A -BC -O 的平面角, 由AO ⊥α,OB ⊂α,OC ⊂α,得AO ⊥OB ,AO ⊥OC , 又∠ABO =30°,∠ACO =45°, ∴AO =a ,则AC =2a ,AB =2a , 在Rt △ABC 中,∠BAC =90°, ∴BC =AC 2+AB 2=6a ,∴AD =AB ·AC BC =2a ·2a 6a=233a .在Rt △AOD 中,sin ∠ADO =AO AD =a 233a =32,∴∠ADO =60°,即二面角A -BC -O 的大小为60°.反思与感悟 (1)定义法:在二面角的棱上找一点,在两个半平面内过该点分别作垂直于棱的射线.(2)垂面法:过棱上一点作与棱垂直的平面,该平面与二面角的两个半平面形成交线,这两条射线(交线)所成的角,即为二面角的平面角.(3)垂线法:利用线面垂直的性质来寻找二面角的平面角,这是最常用也是最有效的一种方法. 跟踪训练2 如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上的一点,且P A =AC ,求二面角P -BC -A 的大小.解由已知P A⊥平面ABC,BC⊂平面ABC,∴P A⊥BC.∵AB是⊙O的直径,且点C在圆周上,∴AC⊥BC.又∵P A∩AC=A,P A,AC⊂平面P AC,∴BC⊥平面P AC.又PC⊂平面P AC,∴PC⊥BC.又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角.由P A=AC知△P AC是等腰直角三角形,∴∠PCA=45°,即二面角P-BC-A的大小是45°.1.直线l⊥平面α,l⊂平面β,则α与β的位置关系是()A.平行B.可能重合C.相交且垂直D.相交不垂直答案 C解析由面面垂直的判定定理,得α与β垂直,故选C.2.下列命题中正确的是()A.平面α和β分别过两条互相垂直的直线,则α⊥βB.若平面α内的一条直线垂直于平面β内的两条平行直线,则α⊥βC.若平面α内的一条直线垂直于平面β内的两条相交直线,则α⊥βD.若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β答案 C解析当平面α和β分别过两条互相垂直且异面的直线时,平面α和β有可能平行,故A错;由直线与平面垂直的判定定理知,B、D错,C正确.3.如图所示,在△ABC中,AD⊥BC,△ABD的面积是△ACD的面积的2倍,沿AD将△ABC 翻折,使翻折后BC⊥平面ACD,此时二面角B-AD-C的大小为()A.30°B.45°C.60°D.90°答案 C解析由已知BD=2CD,翻折后,在Rt△BCD中,∠BDC=60°,而AD⊥BD,CD⊥AD,故∠BDC是二面角B-AD-C的平面角,其大小为60°.4.如图,已知P A⊥矩形ABCD所在的平面,则图中互相垂直的平面有()A.2对B.3对C.4对D.5对答案 D解析∵P A⊥平面ABCD,∴平面P AD⊥平面ABCD,平面P AB⊥平面ABCD,又CD⊥平面P AD,AB⊥平面P AD,BC⊥平面P AB,∴平面PCD⊥平面P AD,平面P AB⊥平面P AD,平面PBC⊥平面P AB,∴共有5对互相垂直的平面.5.如图所示,在四棱锥S-ABCD中,底面四边形ABCD是平行四边形,SC⊥平面ABCD,E为SA的中点.求证:平面EBD⊥平面ABCD.证明连接AC与BD交于O点,连接OE.∵O为AC的中点,E为SA的中点,∴EO∥SC.∵SC⊥平面ABCD,∴EO⊥平面ABCD.又∵EO⊂平面EBD,∴平面EBD⊥平面ABCD.1.求二面角大小的步骤简称为“一作二证三求”.2.平面与平面垂直的判定定理的应用思路(1)本质:通过直线与平面垂直来证明平面与平面垂直,即线面垂直⇒面面垂直.(2)证题思路:处理面面垂直问题转化为处理线面垂直问题,进一步转化为处理线线垂直问题来解决.一、选择题1.下列不能确定两个平面垂直的是()A.两个平面相交,所成二面角是直二面角B.一个平面垂直于另一个平面内的一条直线C.一个平面经过另一个平面的一条垂线D.平面α内的直线a垂直于平面β内的直线b答案 D解析如图所示,在正方体ABCD-A1B1C1D1中,平面A1B1CD内的直线A1B1垂直于平面ABCD内的一条直线BC,但平面A1B1CD与平面ABCD显然不垂直.2.已知直线m,n与平面α,β,给出下列三个结论:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则m⊥n;③若m⊥α,m∥β,则α⊥β.其中正确结论的个数是()A.0 B.1 C.2 D.3答案 C解析①若m∥α,n∥α,则m与n可能平行、相交或异面,故①错误;易知②③正确.所以正确结论的个数是2.3.如图所示,在四面体D-ABC中,若AB=BC,AD=CD,E是AC的中点,则下列命题中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE答案 C解析因为AB=BC,且E是AC的中点,所以BE⊥AC.同理,DE⊥AC.又BE∩DE=E,所以AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.因为AC⊂平面ACD,所以平面ACD⊥平面BDE.4.过两点与一个已知平面垂直的平面()A.有且只有一个B.有无数个C.有且只有一个或无数个D.可能不存在答案 C解析若过两点的直线与已知平面垂直时,此时过这两点有无数个平面与已知平面垂直,若过两点的直线与已知平面不垂直时,则有且只有一个过这两点的平面与已知平面垂直.5.在四面体A-BCD中,AB=BC=CD=AD,∠BAD=∠BCD=90°,A-BD-C为直二面角,E是CD的中点,则∠AED等于()A.90°B.45°C.60°D.30°答案 A解析如图,设AB=BC=CD=AD=a,取BD中点F,连接AF,CF.由题意可得AF=CF=22a,∠AFC=90°.在Rt△AFC中,可得AC=a,∴△ACD为正三角形.∵E是CD的中点,∴AE⊥CD,∴∠AED=90°,故选A.6.在正方体ABCD-A1B1C1D1中,截面A1BD与底面ABCD所成二面角A1-BD-A的正切值为()A.32 B.22C. 2D. 3答案 C解析如图所示,连接AC交BD于点O,连接A1O,O为BD中点,∵A1D=A1B,∴在△A1BD中,A1O⊥BD.又∵在正方形ABCD中,AC⊥BD.∴∠A1OA为二面角A1-BD-A的平面角.设AA1=1,则AO=22.∴tan∠A1OA=122= 2.7.如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折.给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.在翻折的过程中,可能成立的结论是()A.①③B.②③C.②④D.③④答案 B解析对于①,因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,故①不可能成立;对于②,如图,设点D在平面BCF上的射影为点P,当BP⊥CF时,有BD⊥FC,而AD∶BC∶AB=2∶3∶4可使条件满足,故②可能成立;对于③,当点P落在BF上时,DP ⊂平面BDF,从而平面BDF⊥平面BCF,故③可能成立;对于④,因为点D的射影不可能在FC上,故④不可能成立,故选B.8.在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面ABCD.平面P AE⊥平面ABC答案 C解析如图所示,∵BC∥DF,BC⊄平面PDF,DF⊂平面PDF,∴BC∥平面PDF,∴A正确.由BC⊥PE,BC⊥AE,PE∩AE=E,得BC⊥平面P AE,∴DF⊥平面P AE,∴B正确.∴平面ABC⊥平面P AE(BC⊥平面P AE),∴D正确.二、填空题9.α,β是两个不同的平面,m,n是平面α及β之外的两条不同直线,给出四个论断:①m⊥n;②α⊥β;③n⊥β;④m⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题______.答案①③④⇒②解析m⊥n,将m和n平移到一起,则确定一平面,∵n⊥β,m⊥α,∴该平面与平面α和平面β的交线也互相垂直,从而平面α和平面β的二面角的平面角为90°,∴α⊥β.故答案为①③④⇒②.10.如果规定:x=y,y=z,则x=z,叫作x,y,z关于相等关系具有传递性,那么空间三个平面α,β,γ关于相交、垂直、平行这三种关系中具有传递性的是________.答案平行解析由平面与平面的位置关系及两个平面平行、垂直的定义、判定定理,知平面平行具有传递性,相交、垂直都不具有传递性.11.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)答案DM⊥PC(或BM⊥PC等)解析由题意得BD⊥AC,∵P A⊥平面ABCD,∴P A⊥BD.又P A∩AC=A,∴BD⊥平面P AC,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.三、解答题12.在直三棱柱ABC-A1B1C1中,AB⊥BC,D为棱CC1上任一点.(1)求证:直线A1B1∥平面ABD;(2)求证:平面ABD⊥平面BCC1B1.证明(1)由直三棱柱ABC-A1B1C1,得A1B1∥AB.因为A1B1⊄平面ABD,AB⊂平面ABD,所以直线A1B1∥平面ABD.(2)因为三棱柱ABC-A1B1C1为直三棱柱,所以AB⊥BB1.又因为AB⊥BC,BB1⊂平面BCC1B1,BC⊂平面BCC1B1,且BB1∩BC=B,所以AB⊥平面BCC1B1.又因为AB⊂平面ABD,所以平面ABD⊥平面BCC1B1.13.如图,四棱锥P-ABCD的底面ABCD为正方形,P A⊥底面ABCD,AC,BD交于点E,F是PB的中点.求证:(1)EF∥平面PCD;(2)平面PBD⊥平面P AC.证明(1)∵四边形ABCD是正方形,∴E是BD的中点.又F是PB的中点,∴EF∥PD.又∵EF⊄平面PCD,PD⊂平面PCD,∴EF∥平面PCD.(2)∵四边形ABCD是正方形,∴BD⊥AC.∵P A⊥平面ABC,BD⊂平面ABC,∴P A⊥BD.又P A∩AC=A,P A,AC⊂平面P AC,∴BD⊥平面P AC.又BD⊂平面PBD,∴平面PBD⊥平面P AC.四、探究与拓展14.如图所示,在正三棱柱ABC-A1B1C1中,E为BB1的中点,求证:截面A1CE⊥侧面ACC1A1.证明如图所示,取A1C的中点F,AC的中点G,连接FG,EF,BG,则FG∥AA1,且GF=12AA1.因为BE=EB1,A1B1=CB,∠A1B1E=∠CBE=90°,所以△A1B1E≌△CBE,所以A1E=CE.因为F为A1C的中点,所以EF⊥A1C.又FG∥AA1∥BE,GF=12AA1=BE,且BE⊥BG,所以四边形BEFG是矩形,所以EF⊥FG.因为A1C∩FG=F,所以EF⊥侧面ACC1A1.又因为EF⊂平面A1CE,所以截面A1CE⊥侧面ACC1A1.15.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)求AE为何值时,二面角D1-EC-D的大小为45°?(1)证明连接D1A,D1B.∵在长方形A1ADD1中,AD=AA1=1,∴四边形A1ADD1为正方形,∴A1D⊥AD1.又由题意知AB⊥A1D,且AB∩AD1=A,∴A1D⊥平面ABD1.∵D1E⊂平面ABD1,∴A1D⊥D1E.(2)解过D作DF⊥EC于点F,连接D1F. ∵D1D⊥平面DB,EC⊂平面DB,∴D1D⊥EC.又DF∩D1D=D,∴EC⊥平面D1DF.∵D1F⊂平面D1DF,∴EC⊥D1F,∴∠DFD1为二面角D1-EC-D的平面角,∴∠DFD1=45°,又∠D1DF=90°,D1D=1,∴DF=1.在Rt△DFC中,∵DC=2,∴∠DCF=30°,∴∠ECB=60°.在Rt△EBC中,∵BC=1,∴EB=3,AE=2- 3.。
平面与平面垂直的判定》
2.3.2平面与平面垂直的判定》是人教A版必修二第二章2.3.2节第一课时。
通过教学活动,(1)使学生了解、感受二面角的概念,感受到生活中处处有数学、数学用途广泛,增强学数学的兴趣.(2)在二面角的概念教学中,让学生体会以下几点:a.二面角的大小是用平面角来度量的.b.二面角的平面角的大小由二面角的两个面的位置唯一确定.c.平面角的顶点在棱上,两边分别在二面角的两个平面内,且两边都与二面角的棱垂直,由这个角所确定的平面和二面角的棱垂直.(3)了解平面与平面垂直的定义,通过探究,掌握平面与平面垂直的判定定理.(4)通过例题教学, 培养学生降低空间维数的化归与转化的数学思想.《2.3.2平面与平面垂直的判定》出现在高中立体几何第二章2.3.2节,这之前学生已学习了空间两直线位置关系,空间直线和平面位置关系,平面与平面的位置关系,空间直线和平面、平面与平面平行的判定定理,特别是已学习了直线和平面垂直判定定理,这是学习本节内容的基础,也是对上述知识内容的延续和拓展。
垂直关系是高中数学立体几何的核心内容之一,是立体几何继系统学习平行关系后的又一重要内容,为进一步学习立体几何提供了方法依据和理论支撑,特别是用空间向量研究立体几何相关问题的基础。
因此,本节的学习有着极其重要的地位。
【教学目标】根据学生实际,学生的认知困难主要有两个方面:1、探究二面角的概念与度量,归纳两个平面垂直的判定定理,这一从直观到抽象的转变,对高一的学生是比较困难的。
2、面面垂直的证明是学生在立体几何学习中重要的位置关系论证之一,而学生在立体几何方面的推理论证能力是比较薄弱的。
在研究教材,了解学情的基础上,遵循课程标准,确定本节课的教学目标,教学重点和教学难点。
知识与技能① 体会二面角的概念与度量;② 归纳两个平面垂直的判定定理;③ 应用判定定理证明一些空间位置关系的简单命题.过程与方法① 通过二面角的概念的探索过程,渗透类比迁移的思想;② 通过归纳两个平面垂直的判定定理内容,提高学生抽象概括能力;③ 通过运用定理的过程,提高学生类比化归能力,培养学生降低空间维数的化归与转化的数学思想.情感态度与价值观直观感知,操作确认数学定理,通过揭示概念的形成、发展和应用过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力.教学重点:两个平面垂直的判定定理及应用;教学难点:二面角角的概念及度量方法,两个平面垂直的判定定理的归纳概括.【学法与教学用具】学法:实物观察,直观感知,操作确认,类比归纳,语言表达.教学用具:二面角模型长方体模型折叠纸多媒体软硬件设备等.通过自制模具的演示,创设问题情境,让学生自己从中自主探索,经历直观感知,操作确认,思维论证的过程;使用多媒体来辅助教学,为学生提供直观感性的材料,有助于学生对问题的理解和认识。
人教版高中数学必修2第二章知识点汇总
人教版高中数学必修二第二章知识点汇总第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A∈LB∈L => L α A∈α B∈αLA· α DCBAα公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A∈α、B∈α、C∈α。
公理2作用:确定一个平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P∈α∩β =>α∩β=L,且P∈L 公理3作用:判定两个平面是否相交的依据 2.1.2空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线a∥bC·B ·A· α P·αLβ共面直线 =>a ∥cc∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上;② 两条异面直线所成的角∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
人教版数学必修22.3.2平面与平面垂直的判定
§2.3.2 平面与平面垂直的判定
问题重现
1、直线与平面垂直的定义及判定定理。 2、空间中两平面的位置关系有几种?
思考1:直线上的一点将直线分割成两部分,每一部分叫什 么? 平面上的一条直线将平面分割成两部分,每一部分 叫什么名称?
射线 射线
半平面 半平面
β
B
O
lA
α
β
B′ B
o′
α
lO
A′
A
Hale Waihona Puke 思考4:在上图中如何调整OA、OB的位 置,使∠AOB被二面角α-l-β唯一确 定?这个角的大小是否与顶点O在棱 上的位置有关?
β
B
l O
A
α
定义
以二面角的棱上任意一点为端点,以该点为垂 足,在两个半平面内分别作垂直于棱的两条射线, 这两条射线所成的角叫做二面角的平面角
A O⊥ l ,B O⊥ l
二面角的平面角的三个特征:
A
l O
B
1.点在棱上 2.边在面内 3.边棱垂直
二面角的大小可以用它的平面角来 度量,二面角的平面角是多少度, 就说二面角是多少度.
0 180
练习:三棱锥A-BCD,AB垂直于底面BCD,底面BCD
为等边三角形,求二面角D-AB-C的大小.
例3:AB是圆O的直径,PA垂直于圆O所在平面,
C是圆周上不同于A, B的任意一点, 求证:平面PCA 平面PBC。
p
C
A
O
B
证明: 设已知⊙O所在平面为α PA 面, BC 面
PA BC 又 AB为圆的直径
AC BC
PA BC PPAAA面CACPABCCA AC 面PAC
人教高中数学必修二直线、平面垂直的判定与性质 三垂线定理 课件
怎样的结果?命题一定成立吗?
结论:a⊥OA
P
线斜垂直
线射垂直
逆定理
O α
定理
线射垂直
线斜垂直
逆定理
a
A
人教高中数学必修二直线、平面垂直 的判定 与性质 三垂线定理 课件
人教高中数学必修二直线、平面垂直 的判定 与性质 三垂线定理 课件
例1:如图,在正方体中,O是AC与BD的交点,直线D1O与AC
垂直吗?说明你的理由。
射影OA和a直线之间的垂直关系
α
O
2、直线a可以移动,但只能在平面内移
动。因此,直线a和斜线PA可以相交也
可以异面。
P
3、三垂线定理的实质是平面的一条斜 线和平面内的一条直线垂直的判定定理。
O α
a
A
a
A
人教高中数学必修二直线、平面垂直 的判定 与性质 三垂线定理 课件
新知探究 • 逆定理
思考:
如果将定理中的条件a⊥OA改成a⊥PA,你会得到
器和皮尺作测量工具,能否求出电塔顶与道路的距离?
解:在道边取一点C,使BC与道边所成水平角等于90°, 再在道边取一点D,使水平角CDB等于45°, 测得C、D的距离等于20m A
B
人教高中数学必修二直线、平面垂直 的判定 与性质 三垂线定理 课件
90°
C
45°
D
人教高中数学必修二直线、平面垂直 的判定 与性质 三垂线定理 课件
5. 这是一篇托物言志的铭文,本文言 简义丰 、讲究 修辞。 文章骈 散结合 ,以骈 句为主 ,句式 整齐, 节奏分 明,音 韵和谐 。
6.了解和名著有关的作家作品及相关 的诗句 、名言 、成语 和歇后 语等, 能按要 求向他 人推介 某部文 学名著 。
平面与平面垂直的判定定理(高中数学人教版必修二)
解:因为 CDG 是坡面,设 DH 是地平面的垂线
段,DH 就是所求的高度.作 HG⊥AB,垂足为 G,
那么 DG⊥AB,∠DGH 就是坡面和地平面所成
的二面角的平面角,所以∠DGH=600 .
D
又 CD 与 AB 所成角为∠DCG= 300 .
DH DG sin 600 CD sin 300 sin 600 100 sin 300 sin 600 25 3 43.3(m)
证明:由AB是圆O的直径,可得AC⊥BC
PA 平面ABC
BC
平面ABC
PA BC BC AC
P
PA AC A
BC 平面PAC
C
BC 平面PBC
A
O
B 平面PAC⊥平面PBC
练习
例2、已知直线PA垂直正方形ABCD所在的平面,A为垂足。 求证:平面PAC平面PBD。 证明:
P
A
A
∪
∵AB⊥β,CD β,∴AB⊥CD.
a
在平面β内过B点作直线BE⊥CD,则
C
B
D
∠ABE就是二面角α-CD-β的平面角,
β
E
∪
∵AB⊥β,BE β,
∴AB⊥BE. ∴二面角α-CD-β是直二面角,∴α⊥β.
back
例1: 如图,AB是圆O的直径,PA垂直于圆O所在的平 面于A,C是圆O上不同于A、B的任意一点. 求证:平面PAC⊥平面PBC
A
二面角画法
3、举出二面角的实例,并画出二面角。
直立式
平卧式
由上可知:各二面角的“张角”不同,那么如 何度量二面角的大小呢?
(4) 二面角的平面角
以二面角的棱上任意一点为端点,在两个面内分别作垂直于 棱的两条射线,这两条射线所成的角叫做二面角的平面角.
高中数学(人教A版,必修二)第2章 2.3.2 课时作业(含答案)
2.3.2 平面与平面垂直的判定【课时目标】 1.掌握二面角的概念,二面角的平面角的概念,会求简单的二面角的大小.2.掌握两个平面互相垂直的概念,并能利用判定定理判定两个平面垂直.1.二面角:从一条直线出发的________________所组成的图形叫做二面角.________________叫做二面角的棱.________________________叫做二面角的面.2.二面角的平面角如图:在二面角α-l -β的棱l 上任取一点O ,以点O 为________,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的________叫做二面角的平面角.3.平面与平面的垂直(1)定义:如果两个平面相交,且它们所成的二面角是________________,就说这两个平面互相垂直.(2)面面垂直的判定定理文字语言:一个平面过另一个平面的________,则这两个平面垂直.符号表示:⎭⎪⎬⎪⎫a ⊥β ⇒α⊥β.一、选择题1.下列命题:①两个相交平面组成的图形叫做二面角;②异面直线a 、b 分别和一个二面角的两个面垂直,则a 、b 组成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成角的最小角; ④二面角的大小与其平面角的顶点在棱上的位置没有关系.其中正确的是( )A .①③B .②④C .③④D .①②2.下列命题中正确的是( )A .平面α和β分别过两条互相垂直的直线,则α⊥βB .若平面α内的一条直线垂直于平面β内两条平行线,则α⊥βC .若平面α内的一条直线垂直于平面β内两条相交直线,则α⊥βD .若平面α内的一条直线垂直于平面β内无数条直线,则α⊥β3.设有直线M 、n 和平面α、β,则下列结论中正确的是( )①若M ∥n ,n ⊥β,M ⊂α,则α⊥β;②若M ⊥n ,α∩β=M ,n ⊂α,则α⊥β;③若M ⊥α,n ⊥β,M ⊥n ,则α⊥β.A .①②B .①③C .②③D .①②③4.过两点与一个已知平面垂直的平面( )A .有且只有一个B .有无数个C .有且只有一个或无数个D .可能不存在 5.在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( )A .13B .12C .223D .326.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A .BC ∥面PDFB .DF ⊥面P AEC .面PDF ⊥面ABCD .面P AE ⊥面ABC二、填空题7.过正方形ABCD 的顶点A 作线段AP ⊥平面ABCD ,且AP =AB ,则平面ABP 与平面CDP 所成的二面角的度数是________.8.如图所示,已知P A ⊥矩形ABCD 所在的平面,图中互相垂直的平面有________对.9.已知α、β是两个不同的平面,M 、n 是平面α及β之外的两条不同直线,给出四个论断:①M ⊥n ;②α⊥β;③n ⊥β;④M ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________________.三、解答题10.如图所示,在空间四边形ABCD 中,AB =BC ,CD =DA ,E 、F 、G 分别为CD 、DA 和对角线AC 的中点.求证:平面BEF ⊥平面BGD .11.如图所示,四棱锥P —ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,P A ⊥底面ABCD ,P A =3.(1)证明:平面PBE ⊥平面P AB ;(2)求二面角A —BE —P 的大小.能力提升12.如图,在直三棱柱ABC—A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C.求证:(1)EF∥平面ABC;(2)平面A1FD⊥平面BB1C1C.13.如图,在三棱锥P—ABC中,P A⊥底面ABC,P A=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面P AC.(2)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.1.证明两个平面垂直的主要途径(1)利用面面垂直的定义,即如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.(2)面面垂直的判定定理,即如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.2.利用面面垂直的判定定理证明面面垂直时的一般方法:先从现有的直线中寻找平面的垂线,若图中存在这样的直线,则可通过线面垂直来证明面面垂直;若图中不存在这样的直线,则可通过作辅助线来解决,而作辅助线则应有理论依据并有利于证明,不能随意添加.3.证明两个平面垂直,通常是通过证明线线垂直→线面垂直→面面垂直来实现的,因此,在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.每一垂直的判定都是从某一垂直开始转向另一垂直,最终达到目的的.2.3.2 平面与平面垂直的判定 答案知识梳理1.两个半平面 这条直线 这两个半平面2.垂足 ∠AOB3.(1)直二面角 (2)垂线 a ⊂α作业设计1.B [①不符合二面角定义,③从运动的角度演示可知,二面角的平面角不是最小角.故选B .]2.C3.B [②错,当两平面不垂直时,在一个平面内可以找到无数条直线与两个平面的交线垂直.]4.C [当两点连线与平面垂直时,有无数个平面与已知平面垂直,当两点连线与平面不垂直时,有且只有一个平面与已知平面垂直.]5.B [如图所示,由二面角的定义知∠BOD 即为二面角的平面角.∵DO =OB =BD =32, ∴∠BOD =60°.]6.C [如图所示,∵BC ∥DF ,∴BC ∥平面PDF .∴A 正确.由BC ⊥PE ,BC ⊥AE ,∴BC ⊥平面PAE .∴DF ⊥平面PAE .∴B 正确.∴平面ABC ⊥平面PAE(BC ⊥平面PAE).∴D 正确.]7.45°解析 可将图形补成以AB 、AP 为棱的正方体,不难求出二面角的大小为45°.8.5解析 由PA ⊥面ABCD 知面PAD ⊥面ABCD ,面PAB ⊥面ABCD ,又PA ⊥AD ,PA ⊥AB 且AD ⊥AB ,∴∠DAB 为二面角D —PA —B 的平面角,∴面DPA ⊥面PAB .又BC ⊥面PAB ,∴面PBC ⊥面PAB ,同理DC ⊥面PDA ,∴面PDC ⊥面PDA .9.①③④⇒②(或②③④⇒①)10.证明 ∵AB =BC ,CD =AD ,G 是AC 的中点,∴BG ⊥AC ,DG ⊥AC ,∴AC ⊥平面BGD .又EF ∥AC ,∴EF ⊥平面BGD .∵EF ⊂平面BEF ,∴平面BEF ⊥平面BGD .11.(1)证明 如图所示,连接BD ,由ABCD 是菱形且∠BCD =60°知,△BCD 是等边三角形.因为E 是CD 的中点,所以BE ⊥CD .又AB ∥CD ,所以BE ⊥AB .又因为PA ⊥平面ABCD ,BE ⊂平面ABCD ,所以PA ⊥BE .而PA ∩AB =A ,因此BE ⊥平面PAB .又BE ⊂平面PBE ,所以平面PBE ⊥平面PAB .(2)解 由(1)知,BE ⊥平面PAB ,PB ⊂平面PAB ,所以PB ⊥BE .又AB ⊥BE ,所以∠PBA 是二面角A —BE —P 的平面角.在Rt △PAB 中,tan ∠PBA =PA AB =3,则∠PBA =60°. 故二面角A —BE —P 的大小是60°.12.证明 (1)由E 、F 分别是A 1B 、A 1C 的中点知EF ∥BC .因为EF ⊄平面ABC .BC ⊂平面ABC .所以EF ∥平面ABC .(2)由三棱柱ABC —A 1B 1C 1为直三棱柱知CC 1⊥平面A 1B 1C 1.又A 1D ⊂平面A 1B 1C 1,故CC 1⊥A 1D .又因为A 1D ⊥B 1C ,CC 1∩B 1C =C ,故A 1D ⊥平面BB 1C 1C ,又A 1D ⊂平面A 1FD ,所以平面A 1FD ⊥平面BB 1C 1C .13.(1)证明 ∵PA ⊥底面ABC ,∴PA ⊥BC .又∠BCA =90°,∴AC ⊥BC .又∵AC ∩PA =A ,∴BC ⊥平面PAC .(2)解 ∵DE ∥BC ,又由(1)知,BC ⊥平面PAC ,∴DE ⊥平面PAC .又∵AE ⊂平面PAC ,PE ⊂平面PAC ,∴DE ⊥AE ,DE ⊥PE .∴∠AEP 为二面角A —DE —P 的平面角.∵PA ⊥底面ABC ,∴PA ⊥AC ,∴∠PAC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A —DE —P 为直二面角.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
C
D
2.如图所示:在Rt△ABC中,∠ABC=900 ,P为△ABC所在平 面外一点,PA⊥平面ABC,你能发现哪些平面互相垂直, 为什么? P
PA 面ABC 面PAC 面ABC PA 面PAC
PA 面ABC 面PAB 面ABC PA 面PAB
解:因为 CDG 是坡面,设 DH 是地平面的垂线 段,DH 就是所求的高度.作 HG⊥AB,垂足为 G, 那么 DG⊥AB,∠DGH 就是坡面和地平面所成 的二面角的平面角,所以∠DGH= 60 .
0
D
600
300
又 CD 与 AB 所成角为∠DCG= 30 .
DH DG sin 60 0
back
2: 如图,M是正方体ABCD-A1B1C1D1的棱AB的中点,求二 面角A1-MC-A的正切值. 思路分析:①找基面 平面ABCD ②找基面的垂线 AA1 ③作平面角 作AH⊥CM交CM的延长 线于H,连结A1H
D1 A1
C1
B1
D M B
C
解:作AH⊥CM交CM的延长线于H,连 A 结A1H.∵A1A⊥平面AC,AH是A1H 在平面AC内的射影,∴A1H⊥CM, N ∴∠A1HA为二面角A1-CM-A的平面角.
B
二面角的取值范围一般规定为: [ 0o, 180o ]
10
(4) 二面角的平面角
A A
l
O B
注1: ①当二面角的两个面合成一个平面时,规定二面角的大小为180°; ②平面角是直角的二面角叫做直二面角,此时称两半平面所在的两 个平面互相垂直.
二面角的范围为:[0。,180。]
O
B
(5) 二面角的平面角的作法:
又 PB=PC,F为BC的中点, PF BC 而 PF EF=F, BC 面PEF. BC PE 故由PE AC,PE BC,AC BC=C, PE 面ABC. PE 面PAC, 面PAC 面ABC.
back
练2 在长方体ABCD-A1B1C1D1中,AB=2, BC=BB1=1, E为 C1D1的中点,求二面角 E-BD-C的大小.
90,E是BD的中点.求证:平面AEC 平面ABD
1.如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D
是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面 体,使G1,G2,G3三点重合,重合后记为G- SEF,则四面体 S—EFG中必有( ). G3 F D G1 E G2 (A)SG⊥△EFG所在平面 (B)SD⊥△EFG所在平面 (C)GF⊥△SEF所在平面 (D)GD⊥△SEF所在平面 S
则AD⊥ l . ADO就是二面角- l - 的平面角. A.
且AO 2 3, AD 4
在Rt△ADO中, AO 2 3 ∵sin∠ADO= AD 4 ∴ ∠ADO=60°. 即二面角 - l- 的大小为60 °.
D
O
l
练 在二面角α-l-β的一个平面α内有一条直线AB,它与棱 l 所成 的角为45°,与平面β所成的角为30°,则这个二面角的大小是 45°或135° ________________.
D C
B A
D
C
E B
பைடு நூலகம்
A
F
D1 A1
C1
B1 A1
D1
(1)
(2)
O H
C1
G B1
例2: 正方体ABCD—A1B1C1D1中, 45° 二面角B1-AA1-C1的大小为_____, 二面角B-AA1-D的大小为______, 90° 二面角C1-BD-C的正切值是_______. 2
练习
练1: 已知二面角- l - ,A为面内一点,A到 的距离 为2 3,到l的距离为 4. 求二面角 - l - 的大小. 解: 过 A作 AO⊥于O,过 O作 OD⊥ l 于D,连AD,
A B
C
P
CB 面PAB 面PBC 面PAB CB 面PBC
A B
C
作业1: 正方体ABCD-A1B1C1D1中, 求证:平面ACC1 A 平面A BD 1 1
D1 A1 D A
2: 练
C1 B1 C B B
A D
E
C
如图,A是BCD所在平面外一点,AB AD,ABC ADC
看看能推出哪个线面垂直?)
E
P
C
F
(BC垂直与两条直线PE,AB,但是PE和AB异面,得不出线面垂直结论.
通过找PE和AB的平行线,将二者平移至相交即可得到一组线面垂直关系.)
B
取BC的中点F,连接EF,PF,则EF//AB, EF BC
(此时发现BC 面PEF这个结论是正确,接下来只要证明这个结论成立即可.)
空间两个平面有平行、相交两种位置关系.对于两个平面平行, 我们已作了全面的研究,对于两个平面相交,我们应从理论 上有进一步的认识.
两个相交平面的相对位置是由这两个平面所成的“角”来确定的. 在异面直线所成的角、直线与平面所成的角的学习过程中,我们 将三维空间的角转化为二维空间的角,即平面角来刻画.接下来, 我们同样来研究平面与平面的角度问题.
l
B'
O' B
O
②角的两边分别在两个面内 ③角的边都要垂直于二面角的棱
质疑二:在二面角的平面角的定义中O点是在棱上 任取的,那么∠AOB的大小与点O在棱上的位置 有关系吗?
O l
O
.
B’
二面角的平面角大小与点O在棱上的位置无 AOB== AOB
A’
A
关,只与二面角的张角大小有关。 等角定理:如果一个角的两边和另 一个角的两边分别平行,并且方向相 结论:二面角是用它的平面角来度量的,一 同,那么这两个角相等。) 个二面角的平面角多大,就说这个二面角是 多少度的二面角。
H
设正方体的棱长为1.∵M是AB的中点,且AM∥CD,则在 直角△AMN中,AM = 0.5,AN= 1,MN = 5 . 2 AM AN 1 A1 A AH tan A1 HA 5 MN AH 5
back
3:如图,山坡倾斜度是60度,山坡上一条路CD和坡底 线AB成30度角.沿这条路向上走100米,升高了多少?
back
例1: 如图,AB是圆O的直径,PA垂直于圆O所在的平 面于A,C是圆O上不同于A、B的任意一点. 求证:平面PAC⊥平面PBC
证明:由AB是圆O的直径,可得AC⊥BC
PA 平面ABC PA BC BC 平面ABC BC AC PA AC A
C A
B
(4) 二面角的平面角
以二面角的棱上任意一点为端点,在两个面内分别作垂直于 棱的两条射线,这两条射线所成的角叫做二面角的平面角.
如图, l , OB l ,则∠AOB成为二面角 l OA 的平面角. 它的大小与点O的选取无关.
A' A
二面角的平面角必须满足: ①角的顶点在棱上
已知:a ,a . 求证:
证明: 设α∩β=CD,AB在α上,则B∈CD. ∵AB⊥β,CD β,∴AB⊥CD. 在平面β内过B点作直线BE⊥CD,则 ∠ABE就是二面角α-CD-β的平面角, ∵AB⊥β,BE β, ∪ ∪
C β α a B D
A
E
∴AB⊥BE. ∴二面角α-CD-β是直二面角,∴α⊥β.
半 平 面
l
半 平 面
面 面
棱
l
(3) 二面角的画法和记法: 面1-棱-面2 ①平卧式: 二面角- l-
点1-棱-点2
l
②直立式: A
二面角-AB-
C
l
二面角C-AB- D B
A
D
B
二面角画法
3、举出二面角的实例,并画出二面角。
直立式
平卧式
由上可知:各二面角的“张角”不同,那么如 何度量二面角的大小呢?
①定义法
A
l
A
O B
B
②垂线法
O
l
③作棱的垂面法
AB , A , B 过A作AO l 连接OB, 则OB l
o
A
l
B
一个平面垂直于二面角 -l- 的棱 l,
l
且与两半平面的交线分别是射线 OA、 OB,O 为垂足,则∠AOB 为二面角 -l- 的平面角.
CD sin 30 0 sin 60 0 100 sin 30 0 sin 60 0 25 3 43.3(m)
0
H B
A C
G
答:沿这条路向上走 100 米,升高约 43.3 米.
练习
一、计算二面角的关键是作出二面角的平面 角,其作法主要有: (1)利用二面角平面角的定义,即在棱上任取 一点,然后分别在两个面内作棱的垂线, 则两垂线所成的角为二面角的平面角. (2)利用棱的垂面,即棱的垂面与两个半平面 的交线所成的角是二面角的平面角. 二、求二面角的思路是 “一作、二证、三算”.
2.3.2 平面与平面垂直的判定定理
复 习 回 顾
1.在平面几何中"角"是怎样定义的? 从一点出发的两条射线所组成的图形叫做角。 或: 一条射线绕其端点旋转而成的图形叫做角。
2.在立体几何中,“异面直线所成的角”是怎样定义的? 直线a、b是异面直线,经过空间任意一点O,分别引直线a' //a, b'// b,我们把相交直线a' 和 b'所成的锐角 (或直角)叫做异面 直线所成的角. 范围:( 0o, 90o ]. 3.在立体几何中,"直线和平面所成的角"是怎样定义的? 平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直 线和这个平面所成的角. 范围:[ 0o, 90o ].