人教版2019-2020九年级数学月考试题及答案
人教版2019-2020学年九年级数学上册第二次月考试卷(含答案)
2019-2020学年九年级(上)第二次月考数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D四个备选答案,其中只有一个是正确的,请你将正确答案的序号涂在相应的答题卡上.1.﹣的倒数是()A.B.C.﹣D.﹣2.下列方程中,是一元二次方程的为()A.3x2﹣6xy+2=0B.x2﹣5=﹣2xC.x2+3x﹣1=x2D.x2+=03.近似数3.0×102精确到()A.十分位B.个位C.十位D.百位4.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°5.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.6.一元二次方程x2﹣3x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定7.小张的爷爷每天坚持锻炼身体,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路漫步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象的是()A.B.C.D.8.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若菱形边长为4,则反比例函数解析式为()A.y=B.y=﹣C.y=﹣D.y=9.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC 于E,交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BEC C.△BAC∽△BDA D.△BDF∽△BAE 10.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)二、填空题:(本大题共8个小题,每小题4分,共32分)11.9的算术平方根是.12.若方程x2﹣5x+3=0两根为x1,x2,则x1x2=.13.设点P(x,y)在第二象限,且|x|=2,|y|=1,则点P的坐标为.14.函数的自变量x的取值范围是.15.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=.16.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯米.17.在△ABC中,∠A=30°,∠B=45°,AC=,则BC=.18.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为.三、解答题:(本题共4个小题,第19,20,21、22题每题10分,共40分)19.(1)计算:()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°.(2)用公式法解方程:3x2+2x﹣1=0.20.先化简,(﹣)×,再从1,2,3中选取一个适当的数代入求值.21.已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.22.某商店商品每件成本20元,按30元销售时,每天可销售100件,根据市场调查:若销售单价每上涨1元,该商品每天销售量就减少5件.若该商店计划该商品每天获利1125元,求该商品的售价?四、(本题满分12分)23.如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C 在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.五、(本题满分12分)24.小明为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小明此时与地面的垂直距离CD的值;(2)小明的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(sin15°≈0.2588 cos15°≈0.9659 tan≈.0.2677 )六.(本题满分14分)25.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,当EG宽为多少mm时,矩形有最大面积,最大面积是多少?参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A 、B 、C 、D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号涂在相应的答题卡上.1.﹣的倒数是( )A .B .C .﹣D .﹣【分析】乘积是1的两数互为倒数,结合选项进行判断即可.【解答】解:﹣的倒数为﹣.故选:D .【点评】本题考查了倒数的定义,属于基础题,注意掌握乘积是1的两数互为倒数. 2.下列方程中,是一元二次方程的为( )A .3x 2﹣6xy +2=0B .x 2﹣5=﹣2xC .x 2+3x ﹣1=x 2D .x 2+=0 【分析】根据判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”进行分析即可.【解答】解:A 、不是一元二次方程,故此选项错误;B 、是一元二次方程,故此选项正确;C 、不是一元二次方程,故此选项错误;D 、不是一元二次方程,故此选项错误;故选:B .【点评】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.近似数3.0×102精确到( )A .十分位B .个位C .十位D .百位【分析】要判断科学记数法表示的数精确到哪一位,应当看最后一个数字在什么位,即精确到了什么位.【解答】解:近似数3.0×102精确到十位,故选:C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.4.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°【分析】根据两直线平行,同位角相等求出∠2的同位角,再根据三角形的外角性质求解即可.【解答】解:如图,∵∠2=50°,并且是直尺,∴∠4=∠2=50°(两直线平行,同位角相等),∵∠1=30°,∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:D.【点评】本题主要考查了两直线平行,同位角相等的性质以及三角形的外角性质,熟练掌握性质定理是解题的关键.5.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.一元二次方程x2﹣3x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】先计算出判别式的值,然后利用判别式的意义判断方程根的情况.【解答】解:∵△=(﹣3)2﹣4×(﹣2)=17>0,∴方程有两个不相等的两个实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.7.小张的爷爷每天坚持锻炼身体,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路漫步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象的是()A.B.C.D.【分析】由爷爷锻炼身体的行程,可得出距离的变化是先增加、中间有段不变后减少,再根据跑步的速度快于漫步的速度,对照选项即可得出结论.【解答】解:∵爷爷跑步去公园,漫步回家,且在公园停留打了一会儿太极拳,∴距离的变化是先增加、中间有段不变后减少,且增加的快,减少的慢.故选:D.【点评】本题考查了函数的图象,根据爷爷锻炼身体的行程找出爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象是解题的关键.8.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若菱形边长为4,则反比例函数解析式为()A.y=B.y=﹣C.y=﹣D.y=【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.【解答】解:∵在菱形ABOC中,∠A=60°,菱形边长为4,∴OC=4,∠COB=60°,∴点C的坐标为(﹣2,2),∵顶点C在反比例函数y=的图象上,∴2=,得k=﹣4,即y=﹣,故选:C.【点评】本题考查待定系数法求反比例函数解析式、菱形的性质,解答本题的关键是明确题意,求出点C的坐标,利用反比例函数的性质解答.9.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC 于E,交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BEC C.△BAC∽△BDA D.△BDF∽△BAE【分析】根据相似三角形的判定,采用排除法,逐项分析判断.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故C正确.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正确.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正确.而不能证明△BDF∽△BEC,故A错误.故选:A.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.10.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)【分析】作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,根据A的坐标为(﹣4,5),得到A′(4,5),B(﹣4,0),D(﹣2,0),求出直线DA′的解析式为y=x+,即可得到结论.【解答】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,∵四边形ABOC是矩形,∴AC∥OB,AC=OB,∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0),∵D是OB的中点,∴D(﹣2,0),设直线DA′的解析式为y=kx+b,∴,∴,∴直线DA′的解析式为y=x+,当x=0时,y=,∴E(0,),故选:B.【点评】此题主要考查轴对称﹣﹣最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是三角形两边之和大于第三边.二、填空题:(本大题共8个小题,每小题4分,共32分)11.9的算术平方根是3.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.12.若方程x2﹣5x+3=0两根为x1,x2,则x1x2=3.【分析】直接由方程根与系数的关系可求得答案.【解答】解:∵方程x2﹣5x+3=0两根为x1,x2,∴x1x2=3,故答案为:3.【点评】本题主要考查根与系数的关系,掌握一元二次方程两根之和等于﹣、两根之积等于是解题的关键.13.设点P(x,y)在第二象限,且|x|=2,|y|=1,则点P的坐标为(﹣2,1).【分析】根据第二象限内点的横坐标是负数,纵坐标是正数结合绝对值的性质求出x、y 的值,然后写出即可.【解答】解:∵点P(x,y)在第二象限,且|x|=2,|y|=1,∴x=﹣2,y=1,∴点P的坐标为(﹣2,1).故答案为:(﹣2,1).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.函数的自变量x的取值范围是x≥2.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.15.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=15°.【分析】由四边形ABCD为正方形,三角形ADE为等比三角形,可得出正方形的四条边相等,三角形的三边相等,进而得到AB=AE,且得到∠BAD为直角,∠DAE为60°,由∠BAD+∠DAE求出∠BAE的度数,进而利用等腰三角形的性质及三角形的内角和定理即可求出∠AEB的度数.【解答】解:∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=90°,∠DAE=60°,∴∠BAE=∠BAD+∠DAE=150°,又∵AB=AE,∴∠AEB==15°.故答案为:15°.【点评】此题考查了正方形的性质,以及等边三角形的性质,利用了等量代换的思想,熟练掌握性质是解本题的关键.16.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯2+2米.【分析】利用直角三角形中30°角对的直角边等于斜边的一半求出BC的长,再根据勾股定理求出AB的长,进而可得出结论.【解答】解:∵△ABC是直角三角形,∠A=30°,斜边AC是4米,∴BC=AC=2米,∴AB===2(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=(2)米.故答案为:2+2【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.17.在△ABC中,∠A=30°,∠B=45°,AC=,则BC=1.【分析】作CD⊥AB,由AC=、∠A=30°知CD=,由∠B=45°知CD=BD=,最后由勾股定理可得答案.【解答】解:如图,过点C作CD⊥AB于点D,在Rt△ACD中,∵AC=,∠A=30°,∴CD=AC=,∵在Rt△BCD中,∠B=45°,∴CD=BD=,则BC==1,故答案为1;【点评】本题主要考查勾股定理、直角三角形的性质,熟练掌握直角三角形的性质和勾股定理是解题的关键.18.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为199.【分析】根据条件第二个比第一个大2,第三个比第二个大3,第四个比第三个大4,依此类推,可以得到:第n个比第n﹣1个大n.则第100个三角形数与第99个三角形数的差100,第99个三角形数与第98个三角形数的差99,∴第100个三角形数与第98个三角形数的差为100+99=199.【解答】解:第100个三角形数与第98个三角形数的差为199.【点评】这是一个探索性问题,是一个经常出现的问题.三、解答题:(本题共4个小题,第19,20,21、22题每题10分,共40分)19.(1)计算:()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°. (2)用公式法解方程:3x 2+2x ﹣1=0.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先求出b 24ac 的值,再代入公式求出即可.【解答】解:(1)()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°=2+1﹣(2﹣)﹣2× =1;(2)3x 2+2x ﹣1=0,a=3,b=2,c=﹣1,∵b 2﹣4ac=22﹣4×3×(﹣1)=16>0,∴x=,∴x 1=,x 2=﹣1.【点评】本题考查了解一元二次方程,零指数幂,负整数指数幂,特殊角的三角函数值等知识点,能求出每一部分的值是解(1)的关键,能选择适当的方法解一元二次方程是解(2)的关键.20.先化简,(﹣)×,再从1,2,3中选取一个适当的数代入求值.【分析】根据分式的减法和乘法可以化简题目中的式子,在从1,2,3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(﹣)×===,当x=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.【分析】证出∠ADE=∠CBF,AD=CB,由AAS证△ADE≌△CBF即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS).【点评】此题考查了平行四边形的性质、全等三角形的判定.熟练掌握平行四边形的性质是解决问题的关键.22.某商店商品每件成本20元,按30元销售时,每天可销售100件,根据市场调查:若销售单价每上涨1元,该商品每天销售量就减少5件.若该商店计划该商品每天获利1125元,求该商品的售价?【分析】设商品售价为每件(30+x)元,则每天销售(100﹣5x)件,根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,将其代入30+x中即可求出该商品的售价.【解答】解:设商品售价为每件(30+x)元,则每天销售(100﹣5x)件,根据题意得:(30+x﹣20)×(100﹣5x)=1125,整理得:x2﹣10x+25=0,解得:x1=x2=5,∴x+30=35.答:该商品的售价为35元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.四、(本题满分12分)23.如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C 在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.【分析】(1)过点A作AD垂直于OC,由AC=AO,得到CD=DO,确定出三角形ADO与三角形ACD面积,即可求出k的值;(2)根据函数图象,找出满足题意x的范围即可.【解答】解:(1)如图,过点A作AD⊥OC,∵AC=AO,∴CD=DO,=S△ACD=6,∴S△ADO∴k=﹣12;(2)联立得:,解得:或,即A(﹣2,6),B(2,﹣6),根据图象得:当y1>y2时,x的范围为x<﹣2或0<x<2.【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握各函数的性质是解本题的关键.五、(本题满分12分)24.小明为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小明此时与地面的垂直距离CD的值;(2)小明的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(sin15°≈0.2588 cos15°≈0.9659 tan≈.0.2677 )【分析】(1)利用在Rt△BCD中,∠CBD=15°,BD=20,得出CD=BD•sin15°求得答案即可;(2)由图可知:AB=AF+DE+CD,利用直角三角形的性质和锐角三角函数的意义,求得AF即可.【解答】解:(1)在Rt△BCD中,∵∠CBD=15°,BD=20,∴CD=BD•sin15°,∴CD≈5.2m;答:小明与地面的垂直距离CD的值是5.2m;(2)在Rt△AFE中,∵∠AEF=45°,∴AF=EF=BC,由(1)知,BC=BD•cos15°≈19.3(m),∴AB=AF+DE+CD=19.3+1.6+5.2=26.1(m).答:楼房AB的高度是26.1m.【点评】本题考查了解直角三角形的应用,题目中涉及到了仰角和坡角的问题,解题的关键是构造直角三角形.六.(本题满分14分)25.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,当EG宽为多少mm时,矩形有最大面积,最大面积是多少?【分析】(1)根据矩形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可.(2)设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,根据EF∥BC,得到△AEF ∽△ABC,根据相似三角形的性质得到比例式,解方程即可得到结果;(3)根据矩形面积公式得到关于a的二次函数,根据二次函数求出矩形的最大值.【解答】解:(1)∵正方形EGHF∴EF∥BC∴△AEF∽△ABC(2)设EG=EF=x∵△AEF∽△ABC∴∴∴x=48∴正方形零件的边长为48mm,(3)设EG=a∵矩形EGHF∴EF∥BC∴△AEF∽△ABC∴∴∴EF=120﹣a∴矩形面积S=a(120﹣a)=﹣a2+120a=﹣(a﹣40)2+2400当a=40时,此时矩形面积最大,最大面积是2400mm2,即:当EG=40时,此时矩形面积最大,最大面积是2400mm2.【点评】此题是相似形综合题,主要考查了正方形的性质,矩形的性质,相似三角形的判定和性质,解本题的关键是判断出△AEF∽△ABC.。
20192020学年新人教版九年级上数学月考试卷含
20192020学年新人教版九年级上数学月考试卷含2019-2020 学年新人教版九年级上数学 9 月月考试卷含 答案 7—2018 学年第一学期 九 年级 数学 科 9 月测试考试时间 60分钟满分 100分2017. 10第Ⅰ卷 A卷 (选择题)一、选择题(每题 3 分,共 39 分)1. 抛物线 y x 223 的极点坐标是( )A. (- 2, 3)B.( 2, 3) C.(- 2,- 3) D.( 2,-3)2、抛物线 y3x 2 经过平移获得抛物线 y3( x 1) 22 ,平移的方法是 ()A .向左平移 1 个,再向下平移2 个单位B .向右平移 1 个,再向下平移 2 个单位C .向左平移 1 个,再向上平移 2 个单位D .向右平移 1 个,再向上平移 2 个单位3. 二次函数 y ax 2 bx c( a 0) 的图象如右图,当y0时, x 的取值范围是()A . 1 x 3B . x 3C . x1D . x 3或 x14、以下对于抛物线y2x 2 x 1 的描绘不正确的选项是()绩 17成A 、对称轴是直线 x=B 、函数 y 的最大值是48C 、与 y 轴交点是( 0, 1)D 、当 x=1 时, y=05. 二次函数 ykx 2 6x 3 的图象与 x 轴有交点,则 k 的取值范围是( ) 且k3A . k 3B .C . 名k3 kD . k3且k姓ax 26. 若点( 2, 5),( 4, 5)是抛物线 ybx c 上的两个点,则抛物线的对称轴是( ) A .直线 x 1B .直线 x2 C .直线x 3 D .直线 x 47 、假如二次函数 y ax 2 bx c ( a>0)的极点在x 轴的上方,那么()级A 、 b 24ac 0B 、 b 24ac 0C 、 b 24ac 0 D 、班b 24ac 08. 用配方法将 yx 2 6x 11 化成 ya( x h)2 k 的形式为() .A . y ( x 3)22 B . y ( x 3) 2 2C . y ( x 6)22D . y ( x 3)229、已知二次函数的 象 (0 ≤x ≤ 3)如右 所示.对于 函数在所 自 量取 范 内,以下 法正确的选项是( ) A .有最小 0,有最大 3 B .有最小 - 1,有最大C .有最小 - 1,有最大 3D .有最小 - 1,无最大10y x 22kx2与 x 交点的个数 ()、抛物A 、 0B 、 1C 、 2D 、以上都不11、二次函数 y ax 2bx c ( a0 )的 象如右 所示,yx=1有以下 4 个 :① abc0 ;② b a c ;③ 4a 2b c0 ;④ b 2 4ac0 ;此中正确的 有()A . 1 个B . 2 个C .3 个D . 4 个- 1 Ox12. 二次函数 y ax 2bxc 的 y 与 x 的部分 以下表: 以下判断正确的选项是( )x ⋯ 1 0 1 3 ⋯y⋯3131⋯A .抛物 张口向上B .抛物 与 y 交于 半C .当 x = 4 , y > 0D .方程 ax 2bxc 0 的正根在 3 与 4 之13、如 , 点 P 从点 A 出 ,沿 段AB 运 至点 B 后,立刻按原路返回,点 P 在运 程中速度大小不 , 以点 A 心, 段AP 半径的 的面 S 与点 P 的运 t 之 的函数 象大概 ()SSSSA P BOtOt Ot OtA .B .C .D .第Ⅱ卷B卷 ( 非 )二、填空 (每 3 分,共 21 分)14.抛物 点的坐;与 x 的交点坐,与 y15 的交点的坐y ax,4x2 4x的 象与 有两个交点,a 的取、已知二次函数范 是 _____________16、已知函数 y = (m + 2) x m 2 2是二次函数, m 等于17、已知函数 yax 2 bx c 的部分 象如右 所示 ,当 x____ __, y 随 x 的增大而减小 .18、当 a,二次函数y ax 2 2x 4 的 是 .第 17 题19、 A 市“安居工程”新建成的一批楼房都是8 层高,房屋的价钱y(元 / 平方米)随楼层数x(楼)的变化而变化(x=1, 2, 3, 4,5, 6, 7, 8);已知点(x,y)都在一个二次函数的图像上(以下图所示),则 6 楼房屋的价钱为元/ 平方米.第 20 题20、以以下图为二次函数y=ax2+ bx+ c 的图象,在以下说法中:① ac< 0;②方程 ax2+ bx+ c=0 的根是 x1= -1, x2= 3③ a+ b+ c> 0④当 x> 1时, y 随 x 的增大而增大 . 以上说法中,正确的有_____________ 。
九年级(上)月考数学试卷(9月份)
2019-2020年九年级(上)月考数学试卷(9月份)一、选择题1.下列运算正确的是()A.B.C.D.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=93.下列二次根式中与是同类二次根式的是()A.B.C.D.4.若,则=()A.B.C.D.5.如图,已知D、E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE :S四边形DBCE=1:8,那么AE:AC等于()A.1:9 B.1:3 C.1:8 D.1:26.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.07.如图,等边三角形ABC的边长为4,点P为BC边上一点,且BP=1,点D为AC边上一点.若∠APD=60°,则CD的长为()A. B. C. D.18.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.4二、填空题9.=2x﹣3,x的取值范围是.10.如图,△ABC是一块锐角三角形材料,边BC=80mm,高AD=60mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是mm.11.如图所示,在四边形ABCD中,AD∥BC,如果要使△ABC∽△DCA,那么还要补充的一个条件是.(只要求写出一个条件即可)12.小亮的身高是1.6米,某一时刻他在水平面上的影长是2米,若同一时刻测得附近一古塔在水平地面上的影长为20米,则古塔的高度是米.13.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是.14.如图,在△ABC中,∠B=90°,AB=3厘米,BC=4厘米,点P从A沿AB边向点B以1厘米/秒的速度移动,点Q从B沿BC边向点C以2厘米/秒的速度移动,如P与Q同时出发,且当一点移动到端点并停止时,另一点也同时停下,秒后三角形PBQ的面积为2平方厘米.三、解答题15.(1)计算:﹣﹣;(2)计算:()﹣2﹣|2﹣3|+.16.解方程:(1)x2﹣2x=0;(2)30x2﹣45=0.17.解方程:x2+3x+1=0.18.解方程:(x﹣5)(x﹣6)=x﹣5.19.已知y=++3,求﹣的值.20.某企业xx年盈利3000万元,xx年克服全球金融危机的不利影响,仍实现盈利4320万元,从xx年到xx年,如果该企业每年盈利的年增长率相同,求:(1)该企业每年盈利的年增长率?(2)若该企业盈利的年增长率继续保持不变,预计xx年盈利多少万元?21.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.22.已知▱ABCD的两边AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,当m 为何值时,四边形ABCD是菱形?求出这时菱形的边长.23.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.24.如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF ⊥AE于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.xx吉林省长春108中学九年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题1.下列运算正确的是()A. B. C. D.【考点】二次根式的混合运算.【分析】根据二次根式的混合运算的相关知识进行解答.需要注意的是,无论怎么化简、变形,原式值的符号不能改变.【解答】解:A、原式=6×=3,故A错误;B、原式=﹣,故B错误;C、a2=a2×=a,故C错误;D、原式=3﹣2=,故D正确.故选D.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=6∴(x﹣1)2=6.故选:C.3.下列二次根式中与是同类二次根式的是()A. B. C. D.【考点】同类二次根式.【分析】根据同类二次根式的定义,先化简,再判断.【解答】解:A、=2,与的被开方数不同,不是同类二次根式,故A选项错误;B、=,与的被开方数不同,不是同类二次根式,故B选项错误;C、=,与的被开方数不同,不是同类二次根式,故C选项错误;D、=3,与的被开方数相同,是同类二次根式,故D选项正确.故选:D.4.若,则=()【考点】比例的性质.【分析】由题干可得2b=3a ﹣3b ,根据比等式的性质即可解得a 、b 的比值.【解答】解:∵,∴5b=3a ,∴,故选D .5.如图,已知D 、E 分别是△ABC 的AB ,AC 边上的点,DE ∥BC ,且S △ADE :S 四边形DBCE =1:8,那么AE :AC 等于( )A .1:9B .1:3C .1:8D .1:2【考点】相似三角形的判定与性质.【分析】由题可知:△ADE ∽△ABC ,相似比为AE :AC ,由S △ADE :S 四边形DBCE =1:8,得S △ADE :S △ABC =1:9,根据相似三角形面积的比等于相似比的平方.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴S △ADE :S △ABC =AE 2:AC 2,∵S △ADE :S 四边形DBCE =1:8,∴S △ADE :S △ABC =1:9,∴AE :AC=1:3.故选B .6.关于x 的一元二次方程(m ﹣1)x 2+5x +m 2﹣3m +2=0的常数项为0,则m 等于( ) A .1 B .2 C .1或2 D .0【考点】一元二次方程的一般形式.【分析】根据一元二次方程成立的条件及常数项为0列出方程组,求出m 的值即可.【解答】解:根据题意,知,,解方程得:m=2.故选:B .7.如图,等边三角形ABC 的边长为4,点P 为BC 边上一点,且BP=1,点D 为AC 边上一点.若∠APD=60°,则CD 的长为( )【考点】相似三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形性质求出AB=BC=AC=4,∠B=∠C=60°,推出∠BAP=∠DPC,证△BAP∽△CPD,得出=,代入求出即可.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∴∠BAP+∠APB=180°﹣60°=120°,∵∠APD=60°,∴∠APB+∠DPC=180°﹣60°=120°,∴∠BAP=∠DPC,即∠B=∠C,∠BAP=∠DPC,∴△BAP∽△CPD,∴=,∵AB=BC=4,CP=BC﹣BP=4﹣1=3,BP=1,即=,解得:CD=,故选C.8.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.4【考点】相似三角形的判定.【分析】由图可知△ABC与△ACD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【解答】解:有三个.①∠B=∠ACD,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;②∠ADC=∠ACB,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;③中∠A不是已知的比例线段的夹角,不正确④可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;故选:C.二、填空题9.=2x﹣3,x的取值范围是x≥.【考点】二次根式的性质与化简.【分析】根据公式=|a|,可得出x的取值范围.【解答】解:∵=2x﹣3,∴3﹣2x≤0,解得x≥,∴x的取值范围是x≥,故答案为x≥.10.如图,△ABC是一块锐角三角形材料,边BC=80mm,高AD=60mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是mm.【考点】相似三角形的应用.【分析】如图,设正方形EFGH的边长为x,EF与AD交于点K.由EF∥BC,得到△AEF ∽△ABC,得到=,得=,列方程即可.【解答】解:如图,设正方形EFGH的边长为x,EF与AD交于点K.∵EF∥BC,∴△AEF∽△ABC,∴=,∴=,∴x=,故答案为.11.如图所示,在四边形ABCD中,AD∥BC,如果要使△ABC∽△DCA,那么还要补充的一个条件是∠B=∠DCA或∠BAC=∠D或.(只要求写出一个条件即可)【考点】相似三角形的判定.【分析】本题主要根据平行推出角的等量关系,再根据对应边的关系,利用两三角形相似的判定定理,做题即可.【解答】解:∵AD∥BC∴∠DAC=∠ACB∴当∠B=∠DCA或∠BAC=∠D或AD:AC=AC:BC∴都可得相似.答案不唯一,如∠B=∠DCA或∠BAC=∠D或AD:AC=AC:BC.12.小亮的身高是1.6米,某一时刻他在水平面上的影长是2米,若同一时刻测得附近一古塔在水平地面上的影长为20米,则古塔的高度是16米.【考点】相似三角形的应用;平行投影.【分析】利用相似及投影知识解题,因为某一时刻,实际高度和影长之比是一定的,进而得出答案.【解答】解:由题意可得:=,解得:古塔的高=16,故答案为:16.13.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是(32﹣2x)(20﹣x)=570.【考点】由实际问题抽象出一元二次方程.【分析】设宽为xm,从图(2)可看出剩下的耕田面积可平移成长方形,且能表示出长和宽,从而根据面积可列出方程.【解答】解:设宽为xm,(32﹣2x)(20﹣x)=570.故答案为:(32﹣2x)(20﹣x)=570.14.如图,在△ABC中,∠B=90°,AB=3厘米,BC=4厘米,点P从A沿AB边向点B以1厘米/秒的速度移动,点Q从B沿BC边向点C以2厘米/秒的速度移动,如P与Q同时出发,且当一点移动到端点并停止时,另一点也同时停下,1秒或2秒后三角形PBQ 的面积为2平方厘米.【考点】一元二次方程的应用.【分析】根据题意表示出BP,BQ的长,进而利用三角形面积求出答案.【解答】解:设x秒后三角形PBQ的面积为2平方厘米,根据题意可得:BP=3﹣x,BQ=2x,故×2x(3﹣x)=2,解得:x1=1,x2=2,故1或2秒后三角形PBQ的面积为2平方厘米.故答案为:1或2.三、解答题15.(1)计算:﹣﹣;(2)计算:()﹣2﹣|2﹣3|+.【考点】实数的运算;负整数指数幂.【分析】(1)原式化简后,合并即可得到结果;(2)原式利用负整数指数幂法则,绝对值的代数意义,以及分母有理化计算即可得到结果.【解答】解:(1)原式=3﹣﹣2=﹣;(2)原式=4﹣3+2+=1+.16.解方程:(1)x2﹣2x=0;(2)30x2﹣45=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)原方程有公因式x,先提取公因式,然后再分解因式求解;(2)系数化为1后,利用直接开平方法求出方程的解.【解答】解:(1)∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.(2)∵30x2﹣45=0,∴x2=,∴x=±,∴x1=,x2=﹣17.解方程:x2+3x+1=0.【考点】解一元二次方程-公式法.【分析】先找出a,b,c,再求出△,代入求根公式即可.【解答】解:a=1,b=3,c=1,…∴△=b2﹣4ac=9﹣4×1×1=5>0,…∴x=﹣3±,…∴x1=﹣3+,x2=﹣3﹣….18.解方程:(x﹣5)(x﹣6)=x﹣5.【考点】解一元二次方程-因式分解法.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:(x﹣5)(x﹣6)﹣(x﹣5)=0,分解因式得:(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7.19.已知y=++3,求﹣的值.【考点】分式的化简求值;二次根式有意义的条件.【分析】先算括号里面的,再算除法,最后求出x、y的值代入进行计算即可.【解答】解:原式=﹣==,∵与有意义,∴,解得x=2,∴y=3,∴原式==﹣9.20.某企业xx年盈利3000万元,xx年克服全球金融危机的不利影响,仍实现盈利4320万元,从xx年到xx年,如果该企业每年盈利的年增长率相同,求:(1)该企业每年盈利的年增长率?(2)若该企业盈利的年增长率继续保持不变,预计xx年盈利多少万元?【考点】一元二次方程的应用.【分析】(1)设每年盈利的年增长率为x,就可以表示出xx年的盈利,根据xx年的盈利为4320万元建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.【解答】解:(1)设每年盈利的年增长率为x,根据意,得3000(1+x)2=4320解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得4320(1+0.2)=5184万元答:预计xx年该企业盈利5184万元.21.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.【考点】相似三角形的判定与性质;三角形内角和定理.【分析】(1)从图中得到AC=3,CD=2,BC=6,CE=4,∠ACB=∠DCE=90°,故有,所以△ACB∽△DCE;(2)由1知,∠B=∠E,可得∠B+∠A=∠E+A=180°﹣∠AFE=90°,即∠EFA=90°,故EF ⊥AB.【解答】证明:(1)∵,,∴.又∵∠ACB=∠DCE=90°,∴△ACB∽△DCE.(2)∵△ACB∽△DCE,∴∠ABC=∠DEC.又∵∠ABC+∠A=90°,∴∠DEC+∠A=90°.∴∠EFA=90°.∴EF⊥AB.22.已知▱ABCD的两边AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,当m 为何值时,四边形ABCD是菱形?求出这时菱形的边长.【考点】菱形的判定;根的判别式.【分析】由题意可知:AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,也就是方程有两个相等的实数根,利用根的判别式为0即可求得m,进而求得方程的根即为菱形的边长.【解答】解:∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5.故当m=1时,四边形ABCD是菱形,菱形的边长是0.5.23.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.【考点】一元二次方程的应用.【分析】可设矩形草坪BC边的长为x米,则AB的长是,根据长方形的面积公式列出一元二次方程求解.【解答】解:设BC边的长为x米,则AB=CD=米,根据题意得:×x=120,解得:x1=12,x2=20,∵20>16,∴x2=20不合题意,舍去,答:矩形草坪BC边的长为12米.24.如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF ⊥AE于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.【考点】相似三角形的判定;正方形的性质.【分析】(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.【解答】(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)解:若△EFP∽△ABE,则∠PEF=∠EAB.∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE==2,∴EF=AE=.∵,即,∴PE=5,即x=5.∴满足条件的x的值为2或5.xx年12月12日23216 5AB0 媰29913 74D9 瓙33039 810F 脏40267 9D4B 鵋R20983 51F7 凷30721 7801 码23662 5C6E 屮Y32954 80BA 肺9?39290 997A 饺!20537 5039 倹。
人教版2019-2020学年九年级数学3月月考试卷及答案
2020年3月份月考九年级数 学 试 题一、选择题(共8小题,每小题3分,共24分)1.反比例函数y =-3x(x <0)如图所示,则矩形OAPB 的面积是( )A .3B .-3 C.32 D .-32(第3题图)2.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为( )3.如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)4.如图,以原点O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是( )A .(sin α,sin α)B .(cos α,cos α)C .(cos α,sin α)D .(sin α,cos α)第4题图)第5题图)第6题图)5.如图,AB 是⊙O 的直径,D ,E 是半圆上任意两点,连接AD ,DE ,AE 与BD 相交于点C ,要使△ADC 与△BDA 相似,可以添加一个条件.下列添加的条件中错误的是( )A .∠ACD =∠DAB B .AD =DEC .AD ·AB =CD ·BD D .AD 2=BD ·CD6.如图,一次函数y 1=k 1x +b 的图象和反比例函数y 2=k 2x 的图象交于A(1,2),B(-2,-1)两点,若y 1<y 2,则x 的取值范围是( )A .x <1B .x <-2C .-2<x <0或x >1D .x <-2或0<x <17.如图,有一轮船在A 处测得南偏东30°方向上有一小岛P ,轮船沿正南方向航行至B 处,测得小岛P 在南偏东45°方向上,按原方向再航行10海里至C 处,测得小岛P 在正东方向上,则A ,B 之间的距离是( )A .103海里B .(102-10)海里C .10海里D .(103-10)海里,(第7题) (第8题第11题第128.如图,正方形ABCD 的对角线AC 与BD 相交于点O ,∠ACB 的角平分线分别交AB ,BD 于M ,N 两点.若AM =2,则线段ON 的长为( )A.22 B.32 C .1 D.62二、填空题(本大题共8个小题,每小题3分,共24分)9.△ABC 中,∠A ,∠B 都是锐角,若sin A =32,cos B =12,则∠C = .10.已知点A(-1,y 1),B(-2,y 2)和C(3,y 3)都在反比例函数y =kx(k<0)的图象上,则y 1,y 2,y 3的大小关系为__ .(用“<”连接)11.如图,P(12,a)在反比例函数y =60x 的图象上,PH ⊥x 轴于点H ,则tan ∠POH 的值为____.第13题) 第14题 第15题图)12.如图,▱ABCD 中,点E 是边BC 上一点,AE 交BD 于点F ,若BE =2,EC =3,△BEF 的面积是1,则▱ABCD 的面积为_ _.13.全球最大的关公塑像矗立在荆州古城东门外,如图,张三同学在东门城墙上C 处测得塑像底部B处的俯角为18°48′,测得塑像顶部A 处的仰角为45°,点D 在观测点C 正下方城墙底的地面上,若CD=10米,则此塑像的高AB 约为____米.(参考数据:tan78°12′≈4.8)14. 如图是一个几何体的三视图,已知主视图和左视图都是边长为2的等边三角形,则这个几何体的表面积为 .15.如图是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是____个.16.如图,在△ABC 中,AB =AC =10,点D 是边BC 上一动点(不与B ,C 重合),∠ADE =∠B =α,DE交AC 于点E ,且cos α=45.下列结论:①△ADE ∽△ACD ;②当BD =6时,△ABD 与△DCE 全等;③△DCE为直角三角形时,BD 为8或252;④0<CE ≤6.4.其中正确的结论是 .(填序号)第16题图)三、解答题(共8题,共72分) 17.(本题8分)解下列方程: (1). 2sin 60°-4cos 230°+sin 45°·tan 60°; (2). (-2018)0+|1-3|-2sin60°+2tan45°-4cos30°.18.(8分)如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm ),求这个立体图形的表面积.19.(9分)如图,△ABC 中,A(-4,4),B(-4,-2),C(-2,2).(1)请画出将△ABC 向右平移8个单位长度后的△A 1B 1C 1; (2)求出∠A 1B 1C 1的余弦值;(3)以O 为位似中心,将△A 1B 1C 1缩小为原来的12,得到△A 2B 2C 2,请在y 轴右侧画出△A 2B 2C 2.20.(8分)如图,在平面直角坐标系x Oy 中,一次函数y =kx +b 的图象与反比例函数y =mx 的图象交于A(2,3),B(-3,n)两点.(1)求一次函数和反比例函数的解析式;(2)若P 是y 轴上一点,且满足△PAB 的面积是5,直接写出OP 的长.20题 21题 22题21.(8分)如图,某塔观光层的最外沿点E 为蹦极项目的起跳点.已知点E 离塔的中轴线AB 的距离OE 为10米,塔高AB 为123米(A B 垂直地面BC),在地面C 处测得点E 的仰角α=45°,从点C 沿CB 方向前行40米到达D 点,在D 处测得塔尖A 的仰角β=60°,求点E 离地面的高度EF.(结果精确到1米,参考数据2≈1.4,3≈1.7)22.(9分)如图,在△ABC 中,∠ABC =90°,BC =3,D 为AC 延长线上一点,AC =3CD ,过点D 作DH ∥AB ,交BC 的延长线于点H.(1)求BD ·cos ∠HBD 的值; (2)若∠CBD =∠A ,求AB 的长.23.(10分)如图,以点O 为圆心,AB 长为直径作圆,在⊙O 上取一点C ,延长AB 至点D ,连接DC ,过点A 作⊙O 的切线交DC 的延长线于点E ,且∠DCB =∠DAC.(1)求证:CD 是⊙O 的切线;(2)若AD =6,tan ∠DCB =23,求AE 的长.(23题) (24题)24.(12分) (12分)如图,在Rt △ABC 中,∠ACB =90°,AC =8,B C =6,CD ⊥AB 于点D.点P从点D 出发,沿线段DC 向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到C 时,两点都停止.设运动时间为t 秒.(1)求线段CD 的长;(2)设△CPQ 的面积为S ,求S 与t 之间的函数关系式,并确定在运动过程中是否存在某一时刻t ,使得S △CPQ ∶S △ABC =9∶100?若存在,求出t 的值;若不存在,说明理由;(3)当t 为何值时,△CPQ 为等腰三角形?九年级数学参考答案一、选择题(共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案ABACCDDC二、填空题(共8小题,每小题3分,共24分) 9.60° 10.y 3<y 2<y 1_ 11.51212. 13,5814._3π15. 716.①②③④三、解答题(共8题,共72分) 17.解:(1) 解:原式=2×32-4×(32)2+22×3=6-3. (2) 解:原式=1+3-1-2×32+2×1-4×32=2-2 3. 18.解:根据三视图可得:上面的长方体长4 mm ,高4 mm ,宽2 mm ,下面的长方体长6 mm ,宽8 mm ,高 2 mm ,∴立体图形的表面积是4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2-4×2=200(mm 2)19.解: (1)△A 1B 1C 1如图所示.(2)B 1C 1=22+42=25,cos ∠A 1B 1C 1=42 5=2 55.(3)△A 2B 2C 2如图所示.20.解:(1)y =6x,y =x +1 (2)对于一次函数y =x +1,令x =0求出y =1,即该函数与y 轴的交点为C (0,1),∴OC =1,根据题意得S △ABP =12PC ×2+12PC ×3=5,解得PC =2,则OP =OC +PC =1+2=3或OP =PC -OC =2-1=121.解:在直角△ABD 中,BD =AB tan β=123tan60°=413(米),则DF =BD -OE =413-10(米),CF =DF +CD =413-10+40=413+30(米),则在直角△CEF 中,EF =CF ·tan α=413+30≈41×1.7+30=99.7≈100(米),则点E 离地面的高度EF 是100米.22.解: (1)∵DH ∥AB ,∴∠BHD =∠ABC =90°,∴△ABC ∽△DHC ,∴AC CD =BCCH=3, ∴CH =1,BH =BC +CH =4,在Rt △BHD 中,cos ∠HBD =BHBD,∴BD ·cos ∠HBD =BH =4(2)∵∠CBD =∠A ,∠ABC =∠BHD ,∴△ABC ∽△BHD ,∴BC HD =AB BH ,∵△ABC ∽△DHC ,∴AB DH =ACCD =3,∴AB =3DH ,∴3DH =3DH4,解得DH =2,∴AB =3DH =3×2=6,即AB 的长是623.解: (1)连接OC ,OE ,∵AB 为直径,∴∠ACB =90°,即∠BCO +∠ACO =90°,又∵∠DCB =∠CAD ,∠CAD =∠ACO ,∴∠ACO =∠DCB ,∴∠DCB +∠BCO =90°,即∠DCO =90°,∴CD 是⊙O 的切线(2)∵EA 为⊙O 的切线,∴EC =EA ,EA ⊥AD ,OE ⊥AC ,∴∠BAC +∠CAE =90°,∠CAE +∠OEA =90°,∴∠BAC =∠OEA ,∴∠DCB =∠OEA.∵tan ∠DCB =23,∴tan ∠OEA =OA AE =23,易证Rt △DCO ∽Rt △DAE ,∴CDDA =OC AE =OD DE =23,∴CD =23×6=4,在Rt △DAE 中,设AE =x ,∴(x +4)2=x 2+62,解得x =52,即AE 的长为5224.解:(1)线段CD 的长为4.8(2)过点P 作PH ⊥AC ,垂足为H ,由题意可知DP =t ,CQ =t ,则CP =4.8-t.由△CHP ∽△BCA 得PH AC =PC AB ,∴PH 8=4.8-t 10,∴PH =9625-45t ,∴S △CPQ =12CQ ·PH =12t (9625-45t )=-25t 2+4825t.设存在某一时刻t ,使得S △CPQ ∶S △ABC =9∶100.∵S △ABC =12×6×8=24,且S △CPQ ∶S △ABC =9∶100,∴(-25t 2+4825t )∶24=9∶100,整理得5t 2-24t +27=0,即(5t -9)(t -3)=0,解得t =95或t =3,∵0≤t ≤4.8,∴当t =95或t=3时,S △CPQ ∶S △ABC =9∶100(3)①若CQ =CP ,则t =4.8-t.解得t =2.4;②若PQ =PC ,作PH ⊥QC 于点H ,∴QH =CH =12QC =t 2,∵△CHP ∽△BCA ,∴CH BC =CPAB ,∴t 26=4.8-t 10,解得t =14455; ③若QC =QP ,过点Q 作QE ⊥CP ,垂足为E ,同理可得t =2411.综上所述:当t 为2.4或14455或2411时,△CPQ 为等腰三角形。
人教版2019-2020学年九年级(上)月考数学试卷6解析版
人教版2019-2020学年九年级(上)月考数学试卷一、选择题(本小题共10小题,每小题3分,共30分)下列各题给出的四个选项中,只有一个是正确的,请将正确答案的字母代号填写在下面的表格中.1.(3分)如果分式有意义,那么x 的取值范围是( ) A .x >1 B .x <1 C .x ≠1 D .x =12.(3分)下列方程中,是一元一次方程的是( )A .x 2﹣4x =3B .C .x +2y =1D .xy ﹣3=53.(3分)点P (﹣2,1)在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.(3分)一直角三角形两边分别为3和5,则第三边为( )A .4B .C .4或D .25.(3分)下列计算中正确的是( )A .a 2+b 3=2a 5B .a 4÷a =a 4C .a 2•a 4=a 8D .(﹣a 2)3=﹣a 6 6.(3分)下列命题正确的是( )A .同一边上两个角相等的梯形是等腰梯形B .一组对边平行,一组对边相等的四边形是平行四边形C .如果顺次连接一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形D .对角线互相垂直的四边形面积等于对角线乘积的一半7.(3分)如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B =70°,则∠EDC 的大小为( )A .10°B .15°C .20°D .30°8.(3分)用两个全等的等边三角形,可以拼成下列哪种图形( )A .矩形B .菱形C .正方形D .等腰梯形9.(3分)一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣210.(3分)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x•30%×80%=312B.x•30%=312×80%C.312×30%×80%=x D.x(1+30%)×80%=312二、填空题(共6小题,每小题4分,共24分)11.(4分)一组数据8,8,x,10的众数与平均数相等,则x=.12.(4分)一个多边形的内角和是1080°,这个多边形的边数是.13.(4分)将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是.14.(4分)一次函数y=kx+b与y=2x+1平行,且经过点(﹣3,4),则表达式为:.15.(4分)已知△ABC的各边长度分别为3cm,5cm,6cm,连结各边中点所构成的△DEF的周长是cm.16.(4分)如图,在菱形ABCD中,AC=6,BD=8,则此菱形的边长为,面积为.三、解答题(共66分)17.(12分)解方程(1)﹣1(2)x2﹣5x+6=018.(6分)先化简,再求值:x(x﹣2)﹣(x+2)(x﹣2),其中x=.19.(7分)如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE ⊥BE,垂足为E,且AB=DE,BF=CE.求证:(1)△ABC≌△DEF;(2)GF=GC.20.(7分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每天生产多少台机器?21.(7分)为了解中学生的体能情况,某校抽取了50名八年级学生进行一分钟跳绳次数测试,将所得数据整理后,画出了频数分布直方图如下图所示.已知图中从左到右前第一、第二、第三、第五小组的频率分别为0.04,0.12,0.4,0.28,根据已知条件解答下列问题:(1)第四个小组的频率是多少你是怎样得到的?(2)这五小组的频数各是多少?(3)在这次跳绳中,跳绳次数的中位数落在第几小组内?(4)将频数分布直方图补全,并分别写出各个小组的频数,并画出频数分布折线图.22.(9分)如图,▱ABCD中,点E、F在对角线AC上,且AE=CF.求证:四边形BEDF是平行四边形.23.(9分)已知点A(2,0)在函数y=kx+3的图象上,(1)求该函数的表达式;(2)求该函数图象与坐标轴围成的三角形的面积.24.(9分)如图,在边长为4的正方形ABCD中,E是CD的中点,F是BC上的一点,且∠AEF =90°,延长AE交BC的延长线于点G.(1)求GE的长;(2)求证:AE平分∠DAF;(3)求CF的长.参考答案与试题解析一、选择题(本小题共10小题,每小题3分,共30分)下列各题给出的四个选项中,只有一个是正确的,请将正确答案的字母代号填写在下面的表格中.1.解:∵1﹣x≠0,∴x≠1.故选:C.2.解:A、是一元二次方程,故此选项错误;B、是一元一次方程,故此选项正确;C、是二元一次方程,故此选项错误;D、是二元二次方程,故此选项错误;故选:B.3.解:点P(﹣2,1)在第二象限.故选:B.4.解:①当5是斜边时,根据勾股定理,得:第三边是4;②当5是直角边时,根据勾股定理,得:第三边是=.故选:C.5.解:A、不是同类项不能合并,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.6.解:根据所学四边形的知识判断:A、同一底上两个角相等的梯形可能是等腰梯形也可能是直角梯形,故A选项错误;B、一组对边平行且相等的四边形不一定是平行四边形,故B选项错误;C、如果顺次连接一个四边形各边中点得到的是一个正方形,那么原四边形对角线相等且互相垂直,不是任意的四边形,故C选项错误;D、对角线互相垂直的四边形面积等于对角线乘积的一半,故D选项正确.故选:D.7.解:根据菱形的对角相等得∠ADC=∠B=70°.∵AD=AB=AE,∴∠AED=∠ADE.根据折叠得∠AEB=∠B=70°.∵AD∥BC,∴∠DAE=∠AEB=70°,∴∠ADE=∠AED=(180°﹣∠DAE)÷2=55°.∴∠EDC=70°﹣55°=15°.故选:B.8.解:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形.故选:B.9.解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选:B.10.解:由题意得:x(1+30%)×80%=312,故选:D.二、填空题(共6小题,每小题4分,共24分)11.解:当这组数的众数是8.根据平均数得到:(8+8+x+10)=8解得:x=6当这组数的众数是10,则x=10,众数与平均数不相等,所以舍去.故填6.12.解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.13.解:∵将点A(2,1)向左平移2个单位长度得到点A′,∴点A′的横坐标为2﹣2=0,纵坐标为1,∴A′的坐标为(0,1).故答案为(0,1).14.解:∵一次函数y=kx+b与y=2x+1平行,∴k=2,又∵函数经过点(﹣3,4)∴4=﹣6+b,解得:b=10∴函数的表达式为y=2x+10.15.解:∵△ABC的各边长度分别为3cm,5cm,6cm,∴△ABC的周长=3+5+6=14cm,∴连结各边中点所构成的△DEF的周长=×14=7cm.故答案为:7.16.解:在菱形ABCD中,∵AC=6,BD=8,∴AO=3,BO=4,则AB==5,S菱形ABCD=AC•BD=×6×8=24.故答案为:5,24.三、解答题(共66分)17.解:(1)3x=2x﹣(3x+3),解得x=﹣,经检验,原方程的解为x=﹣;(2)(x﹣2)(x﹣3)=0,x﹣2=0或x﹣3=0,所以x1=2,x2=3.18.解:原式=x2﹣2x﹣(x2﹣4)=x2﹣2x﹣x2+4=﹣2x+4,当x=时,原式=﹣1+4=3.19.证明:(1)∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)根据(1)△ABC≌△DEF,所以∠ACB=∠DFE,所以GF=GC(等角对等边).20.解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得:.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.答:现在平均每天生产200台机器.21.解:(1)由1减去已知4个小组的频率之和得到结果,第四个小组的频率=1﹣(0.04+0.12+0.4+0.28)=0.16;(2)由频率=,且知各小组的频率分别为0.04,0.12,0.4,0.16,0.28及总人数为50,故有50×0.04=2,50×0.12=6,50×0.4=20,50×0.16=8,50×0.28=14,从而可知前5个小组的频数分别为2,6,20,8,14;(3)由中位数应是第25个同学、第26个同学跳绳次数之和的一半.由频数分布直方图可知,第25个同学、第26个同学跳绳次数均落在第三个小组内.故而可知在这次测试中,跳绳次数的中位数落在第三小组内;(4)由于第四小组的频数为8,第一小组频数为2,故第四小组的小长方形的高应是第一小组小长方形的高的4倍.22.证明:连接BD交AC于O,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO∵AE=CF,∴AO﹣AE=CO﹣CF.即EO=FO.∴四边形BEDF为平行四边形(对角线互相平分的四边形是平行四边形).23.解:(1)因为点A(2,0)在函数y=kx+3的图象上,所以2k+3=0解得函数解析式为.(2)在中,令y=0,即得x=2,令x=0,得y=3,所以,函数图象与x轴、y轴分别交于点A(2,0)和B(0,3)函数图象与坐标轴围成的三角形即△AOB,.24.(1)解:在正方形ABCD中,∠D=90°,AD∥BC∴∠D=∠DCG=90°,∠DAE=∠G,∵E是CD的中点∴DE=CE∴△ADE≌△GCE∴AD=CG∵AD=DC=4∴CG=4,CE=2在Rt△GCE中,GE===2;(2)证明:由(1)得:△ADE≌△GCE∴AE=GE∵∠AEF=90°∴EF垂直平分AG∴AF=GF∴∠FAE=∠G∵∠DAE=∠G∴∠FAE=∠DAE∴AE平分∠DAF(3)解:在正方形ABCD中∠B=∠BCD=∠D=90°,AB=BC=CD=DA=4∴DE=CE=2设CF=x,则BF=4﹣x根据勾股定理得:AF2=AB2+BF2=42+(4﹣x)2=32﹣8x+x2EF2=CF2+CE2=x2+22=x2+4AE2=AD2+DE2=42+22=20在△AEF中,AF2=EF2+AE2∴32﹣8x+x2=x2+4+20解得:x=1∴CF=1.。
人教版2019-2020学年九年级(上)月考数学试卷(9月份)解析版
人教版2019-2020学年九年级(上)月考数学试卷(9月份)一、选择题(将唯一正确的答案填在答题卡的序号框内,每小题3分,共30分)1.(3分)下列关于x的方程,一定是一元二次方程的是()A.x2﹣2xy=0B.(x+1)(x﹣1)=x2﹣2xC.ax2+bx+c=0D.(m2+1)x2﹣2x﹣3=02.(3分)一元二次方程x2﹣2x+7=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.(3分)用配方法解方程x2﹣2x﹣5=0方程可变形为()A.(x+1)2=4B.(x﹣1)2=4C.(x+1)2=6D.(x﹣1)2=64.(3分)将抛物线y=x2向右平移2个单位,再向上平移3个单位后,抛物线的解析式为()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=(x+2)2﹣3D.y=(x﹣2)2﹣35.(3分)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C.D.6.(3分)已知x=2是关于x的一元二次方程ax2﹣3bx﹣5=0的一个根,则4a﹣6b+6的值是()A.1B.6C.11D.127.(3分)抛物线的对称轴为直线x=3,y的最大值为﹣5,且与y=x2的图象开口大小相同.则这条抛物线解析式为()A.y=﹣(x+3)2+5B.y=﹣(x﹣3)2﹣5C.y=(x+3)2+5D.y=(x﹣3)2﹣58.(3分)关于x的方程(k﹣3)x2+2x+1=0有实数根,则k的取值范围为()A.k≥4B.k≤4且k≠3C.k<4D.k≤49.(3分)已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为()A.﹣7B.0C.7D.1110.(3分)若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1、x2,且x1<x2,则下列结论中错误的是()A.当m=0时,x1=2,x2=3B.m>﹣C.当m>0时,2<x1<x2<3D.二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标为(2,0)和(3,0)二、填空题(每空3分,共18分)11.(6分)一元二次方程x2=4x的根是.12.(3分)已知x1=3是关于x的一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根x2是.13.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:则抛物线y=ax2+bx+c对称轴是直线x=.14.(3分)已知(y2+1)2+(y2+1)﹣6=0,那么y2+1=.15.(3分)若点A(﹣3,y1),B(1,y2)在抛物线上,那么y1与y2的大小关系是:y1y2(填“>”“<”)16.(3分)如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+4上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为.三、解答题.(72分)17.(6分)解方程:2x2﹣4x﹣5=0(用公式法)18.(6分)已知关于x的一元二次方程x2﹣3x+m=0.有两个不相等的实数根x1,x2.(1)求m的取值范围;(2)当x1=1时,求另一个根x2及m的值.19.(6分)某地2016为做好“精准扶贫投资”,投入资金20万元用于异地安置,并规划投入资金逐年增加,2018年在2016的基础上投入资金增加了8.8万元.求2016年到2018这两年的平均增长率为多少?20.(8分)关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.21.(8分)已知二次函数的图象过点P(2,0),对称轴x=4,顶点在直线y=x﹣1.(1)求顶点坐标;(2)求二次函数的解析式.22.(10分)已知k为实数,关于x的方程为x2﹣2(k+1)x+k2=0.(1)请判断x=﹣1是否可为此方程的根,说明理由.(2)设方程的两实根为x1,x2,当2x1+2x2+1=x1x2时,试求k的值.23.(8分)如图,二次函数y=x2﹣m2(m>0且为常数)的图象与x轴交于点A、B(A在B左侧),与y轴交于C.(1)求A,B,C三点的坐标(用含m的式子表示);(2)若∠ACB=90°,求m的值.24.(10分)为了改善小区环境,某小区决定要在一块边靠墙(墙长18m)的空地,修建一个矩形绿地ABCD,绿地一边靠墙,另三边用总长为40m的栅栏围住(如图),设AB边为xm,绿地面积为ym2.(1)求y与x之间的函数关系,并求出自变量x的取值范围;(2)绿地的面积能不能为200m2?如果能,求出x的值,如果不能,请说明理由.25.(10分)如图,抛物线y=ax2+2x﹣3a经过A(1,0)、B(b,0)、C(0,c)三点.(1)求b,c的值;(2)在抛物线对称轴上找一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(将唯一正确的答案填在答题卡的序号框内,每小题3分,共30分)1.解:A、含有两个未知数,不是一元二次方程,故本选项错误;B、未知数的最高次数是1,不是一元二次方程,故本选项错误;C、当a=0时,不是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确;故选:D.2.解:一元二次方程x2﹣2x+7=0中,∵△=b2﹣4ac=(﹣2)2﹣4×1×7=﹣24<0,∴原方程没有实数根.故选:D.3.解:x2﹣2x﹣5=0,x2﹣2x=5,x2﹣2x+1=5+1,(x+1)2=6,故选:D.4.解:∵将抛物线y=x2向上平移3个单位再向右平移2个单位,∴平移后的抛物线的解析式为:y=(x﹣2)2+3.故选:B.5.解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选:D.6.解:∵x=2是关于x的一元二次方程ax2﹣3bx﹣5=0的一个根,∴4a﹣6b﹣5=0,∴4a﹣6b=5,∴4a﹣6b+6=5+6=11,即4a﹣6b+6=11.故选:C.7.解:设抛物线解析式为y=a(x﹣3)2﹣5,因为所求抛物线与y=x2的图象开口大小相同,而y的最大值为﹣5,所以a=﹣,所以这条抛物线解析式为y=﹣(x﹣3)2﹣5.故选:B.8.解:①当k﹣3=0,即k=3时,方程为2x+1=0,解得:x=﹣,符合题意;②当k﹣3≠0,即k≠3时,△=22﹣4(k﹣3)=16﹣4k≥0,解得:k≤4且k≠3.综上即可得出k的取值范围为k≤4.故选:D.9.解:∵a,b为一元二次方程x2+2x﹣9=0的两个根,∴a2+2a﹣9=0,a+b=﹣2,∴a2+a﹣b=(a2+2a﹣9)﹣(a+b)+9=11.故选:D.10.解:①∵m=0时,方程为(x﹣2)(x﹣3)=0,∴x1=2,x2=3,故A正确;②设y=(x﹣2)(x﹣3)=x2﹣5x+6=(x﹣)2﹣,∴y的最小值为﹣,③∵一元二次方程(x﹣2)(x﹣3)=m有实数根x1、x2,且x1<x2∴m>﹣,故B正确;∵m>0时,y=(x﹣2)(x﹣3)>0,函数y′=(x﹣2)(x﹣3)﹣m与x轴交于(x1,0),(x2,0),∴x1<2<3<x2,故C错误;④∵y=(x﹣x1)(x﹣x2)+m=(x﹣2)(x﹣3)﹣m+m=(x﹣2)(x﹣3),∴函数与x轴交于点(2,0),(3,0).故D正确.故选:C.二、填空题(每空3分,共18分)11.解:移项得,x2﹣4x=0,∵x(x﹣4)=0,∴x=0或x﹣4=0,所以x1=0,x2=4.故答案为x1=0,x2=4.12.解:设方程的另一个根是x2,则:3+x2=4,解得x=1,故另一个根是1.故答案为1.13.解:由表格中相等函数值对应的两个x的值的和的一半得出:可得x=2时,y的值最小,则此二次函数图象的对称轴为直线:x=2;故答案为:214.解:设y2+1=t,则t2+t﹣6=0,整理,得(t+3)(t﹣2)=0,解得t=﹣3(舍去)或t=2.即(y2+1)的值是2.故答案是:2.15.解:∵点A(﹣3,y1),B(1,y2)在抛物线上,∴y1=9(+2),y2=+2.∵+2>0,∴9(+2)>+2,∴y1>y2.故答案为:>.16.解:y=x2﹣2x+4=(x﹣1)2+3,则抛物线的顶点坐标为(1,3),∴当点A在抛物线的顶点时,AC最小,最小值为3,∵四边形ABCD是矩形,∴AC=BD,∴对角线BD的最小值为3,故答案为:3.三、解答题.(72分)17.解:2x2﹣4x﹣5=0,b2﹣4ac=(﹣4)2﹣4×2×(﹣5)=56,x=,x1=,x2=.18.解:(1)由题意得:△=(﹣3)2﹣4×1×m=9﹣4m>0,解得:m<;(2)∵x1+x2=3,x1=1,∴x2=2,∵x1x2=m,∴m=2.19.解:设2016年到2018这两年的平均增长率为x,根据题意,得20(1+x)2=28.8,解得:x1=0.2,x2=﹣2.2(不合题意,应舍去),答:2016年到2018这两年的平均增长率为20%.20.解:(1)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(2)∵当△ABC是等边三角形,∴a=b=c,∵(a+c)x2+2bx+(a﹣c)=0,∴2ax2+2ax=0,∴x1=0,x2=﹣1.21.解:(1)∵对称轴x=4,顶点在直线y=x﹣1,∴y=3,∴顶点坐标为(4,3);(2)设二次函数的解析式为:y=a(x﹣4)2+3,把点P(2,0)代入得,a(2﹣4)2+3=0,解得:a=﹣,∴二次函数的解析式为:y=﹣(x﹣4)2+3.22.解:(1)x=﹣1不是此方程的解;理由如下:当x=﹣1时,方程左边=1+2(k+1)+k2=(k+1)2+2≠0,右边=0≠左边,∴x=﹣1不是此方程的根;(2)由根与系数的关系得:x1+x2=2(k+1),x1x2=k2,∵2x1+2x2+1=x1x2,∴4(k+1)+1=k2,解得:k=﹣1(方程无实根,舍去),或k=5,∴k=5.23.解:(1)当y=0时,x2﹣m2=0,解得x1=﹣m,x2=m,则A(﹣m,0),B(m,0),当x=0时,y=x2﹣m2=﹣m2,则C(0,﹣m2);(2)∵∠ACB=90°,OC⊥AB,OA=OB,∴OC=OB,∴m2=m,解得m1=0(舍去),m2=1,∴m的值为1.24.解:(1)由题意可得,y=x•(40﹣2x)=﹣2x2+40x,即y与x之间的函数关系式是y=﹣2x2+40x(0<x<20);(2)绿化带的面积不能为200m2,理由:将y=200代入y=﹣2x2+40x得200=﹣2x2+40x,解得,x=10,∴BC=40﹣2x=20>18,∴绿化带的面积不能为200m2.25.解:(1)把A(1,0)代入抛物线y=ax2+2x﹣3a,可得:a+2﹣3a=0解得a=1.∴抛物线的解析式为:y=x2+2x﹣3;把B(b,0),C(0,c)代入y=x2+2x﹣3,可得:b=1或b=﹣3,c=﹣3,∵A(1,0),∴b=﹣3;(2)∵抛物线的解析式为:y=x2+2x﹣3,∴其对称轴为直线x=﹣=﹣1,连接BC,如图1所示,∵B(﹣3,0),C(0,﹣3),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=﹣x﹣3,当x=﹣1时,y=1﹣3=﹣2,∴P(﹣1,﹣2);(3)存在点N,使以A,C,M,N四点构成的四边形为平行四边形.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x =﹣1,C (0,﹣3),∴N 1(﹣2,﹣3);②当点N 在x 轴上方时,如图2,过点N '作N 'D ⊥x 轴于点D ,在△AN 'D 与△M 'CO 中,∴△AN 'D ≌△M 'CO (AAS ),∴N 'D =OC =3,即N '点的纵坐标为 3.∴3=x 2+2x ﹣3,解得x =﹣1+或x =﹣1﹣,∴N '(﹣1+,3),N “(﹣1﹣,3).综上所述,符合条件的点N 的坐标为(﹣2,﹣3),(﹣1+,3)或(﹣1﹣,3).。
最新2019-2020年度人教版九年级(上)第二次月考数学试卷及答案解析-精品试卷
九年级(上)第二次月考数学试卷一.选择题(每小题3分,共30分)1.如图所示几何体的左视图是()A.B.C.D.2.下列说法正确的是()A.等腰梯形既是中心对称图形,又是轴对称图形B.矩形是轴对称图形,有四条对称轴C.等腰三角形一腰上的高与底边的夹角等于顶角的一半D.有一个角的平分线平分对边的三角形是等腰直角三角形3.某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号、7号题,第3位选手抽中8号题的概率是()A.B.C.D.4.某工厂计划经过两年的时间将某种产品的产量从每年144万台提高到169万台,则每年平均约增长()A.5% B.8% C.10% D.15%5.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是()A.15°B.30°C.50°D.65°6.如图,在△MBN中,BM=6,点A、C、D分别在MB、NB、MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则▱ABCD的周长是()A.24 B.18 C.16 D.127.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.8.如图,它们是一个物体的三视图,该物体的形状是()A.圆柱B.正方体C.圆锥D.长方体9.在函数的图象上有三点A1(x1,y1)、A2(x2,y2)、A3(x3,y3),若x1<0<x2<x3,则下列正确的是()A.y1<0<y2<y3B.y2<y3<0<y1C.y2<y3<y1<0 D.0<y2<y1<y310.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种二.填空题(每小题3分,共18分)11.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是.12.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP 的长为.13.已知x是一元二次方程x2+3x﹣1=0的实数根,那么代数式的值为.14.已知函数y=(m+1)是反比例函数,则m的值为.15.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是.16.如图,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,PC ⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为.三.解答题(共72分)17.解方程(1)(x﹣8)(x﹣1)=﹣12(2)x2﹣6x+2=0.18.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.19.甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜.请你解决下列问题:(1)利用树状图(或列表)的方法表示游戏所有可能出现的结果;(2)求甲、乙两人获胜的概率.20.如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C′处,折痕DE交BC于点E,连接C′E,试判断四边形CDC′E是什么特殊四边形,并说明理由.21.新苑小区的物业管理部门为了美化环境,在小区靠墙的一侧设计了一处长方形花圃(墙长25m),三边外围用篱笆围起,栽上蝴蝶花,共用篱笆40m,(1)花圃的面积能达到180m2吗?(2)花圃的面积能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.22.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.23.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.24.为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:(1)从消毒开始,经多长时间,教室内每立方米空气含药量为4mg.(2)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?25.将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=,P是AC上的一个动点.(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;(3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时▱DPBQ的面积.参考答案与试题解析一.选择题(每小题3分,共30分)1.如图所示几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形.故选:D.点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.2.下列说法正确的是()A.等腰梯形既是中心对称图形,又是轴对称图形B.矩形是轴对称图形,有四条对称轴C.等腰三角形一腰上的高与底边的夹角等于顶角的一半D.有一个角的平分线平分对边的三角形是等腰直角三角形考点:等腰梯形的性质;等腰三角形的性质;等腰直角三角形;矩形的性质;轴对称图形;中心对称图形.分析:根据等腰梯形的对称性,矩形的对称轴,等腰三角形三线合一的性质,对各选项分析判断后利用排除法.解答:解:A、等腰梯形不是中心对称图形,是轴对称图形,故本选项错误;B、矩形是轴对称图形,对称轴是过对边中点的直线,共2条,故本选项错误;C、如图,过点A作AE⊥BC,则AE平分∠BAC,∴∠2=∠A,∵BD⊥AC,∴∠1+∠C=90°,又∠2+∠C=90°,∴∠1=∠2,∴∠1=∠A,即等腰三角形一腰上的高与底边的夹角等于顶角的一半,故本选项正确;D、有一个角的平分线平分对边的三角形是等腰三角形,不一定是等腰直角三角形,故本选项错误.故选C.点评:本题考查了等腰梯形的对称性,轴对称图形的性质,等腰三角形的性质,是小综合题,难度不大,熟练掌握各种图形的性质是解题的关键.3.某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号、7号题,第3位选手抽中8号题的概率是()A.B.C.D.考点:概率公式.分析:先求出题的总号数及8号的个数,再根据概率公式解答即可.解答:解:前两位选手抽走2号、7号题,第3位选手从1、3、4、5、6、8、9、10共8位中抽一个号,共有8种可能,每个数字被抽到的机会相等,所以抽中8号的概率为.故选B.点评:考查概率的求法,关键是真正理解概率的意义,正确认识到本题是八选一的问题,不受前面叙述的影响.4.某工厂计划经过两年的时间将某种产品的产量从每年144万台提高到169万台,则每年平均约增长()A.5% B.8% C.10% D.15%考点:一元二次方程的应用.专题:增长率问题.分析:设每年平均增长的百分数是x,根据某工厂计划经过两年的时间,把某种产品从现在的年产量144万台提高到169万台,可列方程求解.解答:解:设每年平均增长的百分数是x,144(1+x)2=169,x≈8%或x≈﹣208%(舍去).故每年平均增长的百分数约是8%.故选B.点评:本题考查理解题意的能力,关键是设出增长率,根据两年前和两年后的产量,列方程求解.5.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是()A.15°B.30°C.50°D.65°考点:线段垂直平分线的性质;等腰三角形的性质.专题:计算题.分析:首先由AB=AC可得∠ABC=∠ACB,再由DE垂直平分AC可得DC=AD,推出∠DAC=∠DCA.易求∠DCB.解答:解:AB=AC,∠A=50°⇒∠ABC=∠ACB=65°.∵DE垂直平分AC,∴∠DAC=∠DCA.∴∠DCB=∠ACB﹣∠DCA=65°﹣50°=15°.故选A.点评:本题考查的是线段垂直平分线的性质以及等腰三角形的性质,考生主要了解线段垂直平分线的性质即可求解.6.如图,在△MBN中,BM=6,点A、C、D分别在MB、NB、MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则▱ABCD的周长是()A.24 B.18 C.16 D.12考点:相似三角形的判定与性质;平行四边形的性质.分析:首先根据平行四边形的性质可得AB∥DC,AD∥BN,根据平行线的性质可得∠N=∠ADM,∠M=∠NDC,再由∠NDC=∠MDA,可得∠N=∠NDC,∠M=∠MDA,∠M=∠N,根据等角对等边可得CN=DC,AD=MA,NB=MB,进而得到答案.解答:解:∵四边形ABCD为平行四边形,∴AD=BC,DC=AB,AB∥DC,AD∥BN,∴∠N=∠ADM,∠M=∠NDC,∵∠NDC=∠MDA,∴∠N=∠NDC,∠M=∠MDA,∠M=∠N,∴CN=DC,AD=MA,NB=MB,∴平行四边形ABCD的周长是BM+BN=6+6=12,故答案为:12.点评:此题主要考查了平行四边形的性质,关键是掌握平行四边形对边相等.7.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:数形结合.分析:根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.解答:解:解法一:系统分析①当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数的y=(k≠0)的图象经过一三象限,选项中没有符合条件的图象,②当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数的y=(k≠0)的图象经过二四象限,故D选项的图象符合要求,解法二:具体分析A、由一次函数的图象得出k<0,而反比例函数的开口方向也应该是在第二、四象限即:k<0,不符合题意,故A选项错误;B、由一次函数的图象得出k>0,而反比例函数的开口方向也应该是在第一、三象限即:k>0,不符合题意,故B选项错误;C、由一次函数的图象得出k>0,即与y轴的交点在y轴负半轴,不符合题意,故C选项错误;D、由一次函数的图象得出k<0,与y轴的交点也在正半轴,反比例函数图象也是在第二四象限,符合题意,故D选项正确;故选:D.点评:此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k值相同,则两个函数图象必有交点;一次函数与y轴的交点与一次函数的常数项相关.8.如图,它们是一个物体的三视图,该物体的形状是()A.圆柱B.正方体C.圆锥D.长方体考点:由三视图判断几何体.分析:根据题意,正视图与左视图均为三角形,俯视图为圆形故可以看出该几何体为圆锥.解答:解:本题中,圆柱的三视图不可能由三角形,正方体的三视图均为正方形,长方体的三视图不可能由圆和三角形,因此只有圆锥符合条件.故选:C.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.9.在函数的图象上有三点A1(x1,y1)、A2(x2,y2)、A3(x3,y3),若x1<0<x2<x3,则下列正确的是()A.y1<0<y2<y3B.y2<y3<0<y1C.y2<y3<y1<0 D.0<y2<y1<y3考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象的性质,点A1在第二象限,y1>0,所以,A2、A3在第四象限,因为在每个象限内,y随x的增大而增大,所以y2<y3.解答:解:∵k=﹣<0,∴点A1在第二象限,点A2、A3在第四象限,如图,y2<y3<0<y1.故选B.点评:本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.10.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种考点:平行四边形的判定.专题:压轴题.分析:根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①③;(2)两组对边相等②④;(3)一组对边平行且相等①②或③④,所以有四种组合.解答:解:依题意得有四种组合方式:(1)①③,利用两组对边平行的四边形是平行四边形判定;(2)②④,利用两组对边相等的四边形是平行四边形判定;(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.故选:C.点评:此题主要考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.二.填空题(每小题3分,共18分)11.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是.考点:概率公式;一次函数图象与系数的关系.分析:从﹣1,1,2三个数中任取一个,共有三种取法,其中函数y=﹣1•x+3是y随x增大而减小的,函数y=1•x+3和y=2•x+3都是y随x增大而增大的,所以符合题意的概率为.解答:解:P(y随x增大而增大)=.故本题答案为:.点评:用到的知识点为:概率=所求情况数与总情况数之比;一次函数未知数的比例系数大于0,y 随x的增大而增大.12.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为或.考点:菱形的性质.专题:压轴题;分类讨论.分析:根据题意得,应分P与A在BD的同侧与异侧两种情况进行讨论.解答:解:当P与A在BD的异侧时:连接AP交BD于M,∵AD=AB,DP=BP,∴AP⊥BD(到线段两端距离相等的点在垂直平分线上),在直角△ABM中,∠BAM=30°,∴AM=AB•cos30°=3,BM=AB•sin30°=3,∴PM==,∴AP=AM+PM=4;当P与A在BD的同侧时:连接AP并延长AP交BD于点MAP=AM﹣PM=2;当P与M重合时,PD=PB=3,与PB=PD=2矛盾,舍去.AP的长为4或2.故答案为4或2.点评:本题注意到应分两种情况讨论,并且注意两种情况都存在关系AP⊥BD,这是解决本题的关键.13.已知x是一元二次方程x2+3x﹣1=0的实数根,那么代数式的值为.考点:一元二次方程的解;分式的化简求值.分析:利用方程解的定义找到等式x2+3x=1,再把所求的代数式利用分式的计算法则化简后整理出x2+3x的形式,再整体代入x2+3x=1,即可求解.解答:解:∵x是一元二次方程x2+3x﹣1=0的实数根,∴x2+3x=1,∴=÷=•==.故填空答案:.点评:此题主要考查了方程解的定义和分式的运算,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.14.已知函数y=(m+1)是反比例函数,则m的值为 1 .考点:反比例函数的定义.分析:根据反比例函数的定义知m2﹣2=﹣1,且m+1≠0,据此可以求得m的值.解答:解:∵y=(m+1)x m2﹣2是反比例函数,∴m2﹣2=﹣1,且m+1≠0,∴m=±1,且m≠﹣1,∴m=1;故答案是:1.点评:本题考查了反比例函数的定义,重点是将一般式y=(k≠0)转化为y=kx﹣1(k≠0)的形式.15.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是对角线互相垂直.考点:矩形的判定;三角形中位线定理.分析:可连接AC、BD,利用三角形中位线定理及矩形的性质求解.解答:解:连接BD、AC;∵H、G分别是AD、CD的中点,∴HG是△DAC的中位线;∴HG∥AC;同理可证得EF∥AC,HE∥BD∥FG;若四边形EHGF是矩形,则∠FEH=∠EHG=∠HGF=∠EFG=90°;∴DB⊥AC.故四边形ABCD应具备的条件为对角线互相垂直.点评:本题考查的是矩形的判定和性质以及三角形中位线定理的应用.16.如图,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,PC ⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为 4 .考点:反比例函数系数k的几何意义.专题:数形结合.分析:四边形PAOB的面积=矩形OCPD的面积﹣△ODB的面积﹣△OAC的面积,根据反比例函数中k的几何意义即可求出.解答:解:根据题意可得四边形PAOB的面积=S矩形OCPD﹣S△OBD﹣S△OAC,由反比例函数中k的几何意义,可知其面积为四边形PAOB的面积=8﹣2﹣2=4.故答案为:4.点评:主要考查了反比例函数中k的几何意义,即在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.三.解答题(共72分)17.解方程(1)(x﹣8)(x﹣1)=﹣12(2)x2﹣6x+2=0.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.专题:计算题.分析:(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用配方法得到(x﹣3)2=7,然后利用直接开平方法解方程.解答:解:(1)x2﹣9x+20=0,(x﹣5)(x﹣4)=0,x﹣5=0或x﹣4=0,所以x1=5,x2=4;(2)x2﹣6x=2,x2﹣6x+9=7,(x﹣3)2=7,x﹣3=±,所以x1=3+,x2=3﹣.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.18.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.考点:全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再根据AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可证出BC=AD,(2)根据Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.解答:证明:(1)∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,(2)∵Rt△ABC≌Rt△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形.点评:本题考查了全等三角形的判定及性质;用到的知识点是全等三角形的判定及性质、等腰三角形的判定等,全等三角形的判定是重点,本题是道基础题,是对全等三角形的判定的训练.19.甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜.请你解决下列问题:(1)利用树状图(或列表)的方法表示游戏所有可能出现的结果;(2)求甲、乙两人获胜的概率.考点:列表法与树状图法.分析:先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解答:解:(1)树状图法:或列表法:× 1 2 34 4 8 125 5 10 15(2)根据列出的表,P(甲)==,P(乙)==.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C′处,折痕DE交BC于点E,连接C′E,试判断四边形CDC′E是什么特殊四边形,并说明理由.考点:翻折变换(折叠问题).分析:首先由折叠的性质可得:CD=C′D,∠C′DE=∠CDE,CE=C′E,又由AD∥BC,即可证得△CDE是等腰三角形,可得CD=CE,然后根据四条边都相等的四边形是菱形,即可证得四边形CDC′E为菱形.解答:解:四边形CDC′E是菱形.理由:根据折叠的性质,可得:CD=C′D,∠C′DE=∠CDE,CE=C′E,∵AD∥BC,∴∠C′DE=∠CED,∴∠CDE=∠CED,∴CD=CE,∴CD=C′D=C′E=CE,∴四边形CDC′E为菱形.点评:此题考查了折叠的性质,等腰三角形的判定与性质以及菱形的判定等知识.此题难度适中,解题的关键是注意数形结合思想的应用,注意根据折叠的性质找到对应边与对应角.21.新苑小区的物业管理部门为了美化环境,在小区靠墙的一侧设计了一处长方形花圃(墙长25m),三边外围用篱笆围起,栽上蝴蝶花,共用篱笆40m,(1)花圃的面积能达到180m2吗?(2)花圃的面积能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.考点:一元二次方程的应用.专题:几何图形问题.分析:设BC=xm,则AB=(40﹣x)m,花圃的面积为x(40﹣x).(1)(2)假设花圃的面积能达到180 m2,250m2,只需令x(40﹣x)等于200或250,判断所列方程是否有解,若有解求出x的值,即花圃的面积能达到,否则不能达到;解答:解:(1)设BC=xm,则AB=(40﹣x)=(20﹣x)m①由题意得:x(20﹣x)=180,x2﹣40x+360=0,△=402﹣4×360=0,解之得,x=20m答:能达到200m2.(2)x(20﹣x)=250,x2﹣40x+500=0,△=402﹣4×500=﹣400<0,即:此方程无解,答:不能达到250m2点评:本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解.22.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.考点:反比例函数综合题.专题:计算题;综合题;数形结合.分析:(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为3且为负数,由此即可求出k;(2)交点A、C的坐标是方程组的解,解之即得;(3)从图形上可看出△AOC的面积为两小三角形面积之和,根据三角形的面积公式即可求出.解答:解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.点评:此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.23.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.考点:平行投影;相似三角形的性质;相似三角形的判定.专题:计算题;作图题.分析:(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).解答:解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.点评:本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.24.为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:(1)从消毒开始,经多长时间,教室内每立方米空气含药量为4mg.(2)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?考点:反比例函数的应用;一次函数的应用.分析:(1)首先根据题意,药物燃烧阶段,室内每立方米空气中的含药量y与燃烧时间x成正比例;燃烧后,y与x成反比例,且其图象都过点(10,8),将数据代入用待定系数法可得反比例函数的关系式,分别求出函数解析式,再计算出y=4时,x的值即可;(2)根据题意可知得<1.6,解不等式即可.解答:解:(1)设药物燃烧阶段函数解析式为y=k1x(k1≠0),由题意得:8=10k1,∴k1=,∴此阶段函数解析式为y=x(0≤x≤10).当y=4时,x=5;设药物燃烧结束后函数解析式为y=(k2≠0),由题意得:,∴k2=80,∴此阶段函数解析式为y=(x≥10).,当y=4时,x=20,答:从消毒开始,经5分钟和20分钟,教室内每立方米空气含药量为4mg;(2)当y<1.6时,得<1.6,∵x>0,∴1.6x>80,解得x>50.答:从消毒开始经过50分钟学生才可返回教室.点评:本题主要考查了一次函数、反比例函数的应用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.25.将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=,P是AC上的一个动点.(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;(3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时▱DPBQ的面积.考点:解直角三角形;平行四边形的性质.专题:压轴题;动点型.分析:(1)作DF⊥AC,由AB的长求得BC、AC的长.在等腰Rt△DAC中,DF=FA=FC;在Rt△BCP中,求得PC的长.则由勾股定理即可求得DP的长.(2)由(1)得BC与DF的关系,则DP与DF的关系也已知,先求得∠PDF的度数,则∠PDA的度数也可求出,需注意有两种情况.(3)由于四边形DPBQ为平行四边形,则BC∥DF,P为AC中点,作出平行四边形,求得面积.解答:解:在Rt△ABC中,AB=2,∠BAC=30°,∴BC=,AC=3.(1)如图(1),作DF⊥AC.∵Rt△ACD中,AD=CD,∴DF=AF=CF=.∵BP平分∠ABC,∴∠PBC=30°,∴CP=BC•tan30°=1,∴PF=,∴DP==.(2)当P点位置如图(2)所示时,根据(1)中结论,DF=,∠ADF=45°,又∵PD=BC=,∴cos∠PDF==,。
2019-2020年九年级数学9月月考试卷 新人教版
2019-2020年九年级数学9月月考试卷新人教版一、选择题(每小题4分,共40 分)1.若矩形的一条对角线与一边的夹角是 40°,则两条对角线相交所成的锐角是()A.20°B.40°C.80° D.100°2.若方程x2+ax+b=0 中有一个根为0,另一个根非0,则a、b 的值是()A.a=0,b=0 B.a≠0,b=0 C.a=0,b≠03.关于x的一元二次方程k x2+kx+1=0 是一元二次方程的条件是()A.k≠0 B.k≠3 C.k≠﹣2 且 k≠3 D.k≠﹣24.三角形两边的长是4和6,第三边的长是方程x2﹣6x+8=0 的解.则这个三角形的第三边的长是()A.2 B.4 C.2 或4D.85.方程x2﹣6x+9=0 可化成(x+m)2=n 的形式,则m、n 的值分别为()A.m=3,n=10 B.m=﹣3,n=0 C.m=6,n=1 D.以上答案都不对6.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB 的理由是()A.SAS B.ASA C.AAS D.HL7.具有下列条件的两个等腰三角形,不能判断它们全等的是()A.顶角、一腰对应相等B.底边、一腰对应相等C.两腰对应相等D.一底角、底边对应相等8.正方形的一条对角线长为2厘米,则正方形的面积()A.2 B.3 C.4 D.9.同时抛掷两枚1元的硬币,菊花图案都朝上的概率是()A. B. C. D.10.两个正四面体骰子的各面上分别标明数字 1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为()A. B. C. D.二.填空题(每小题5分,共40 分)11.将方程3x2=4x+1 化成一元二次方程的一般形式为.12.在正方形A BCD 中,AB=12cm,对角线A C、BD 相交于O,则△AOB 的周长是cm.13.已知菱形的一条对角线的长为5,面积是15,则另一条对角线的长是.14.甲公司前年缴税100 万元,今年缴税121 万元,则该公司缴税的年平均增长率.15.从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是24cm2,则原来的正方形铁皮的边长为cm.16.用反证法证明命题“在一个三角形中,至少有一个内角不小于 60°”,假设为.17.请你给出一个c值,c= ,使方程x2﹣3x+c=0 无解.18.已知一个一元二次方程的二次项是 2y2,一次项系数是﹣3,常数项是﹣2,那么这个方程的一般形式是.三、简答题(第19 题20 分,第20 题7分,第21 题7分,第22 题7分,第22,23,24,25 均7分,第26 题8分)19.解方程:(1)x2﹣25=0 x2﹣6x=﹣9(x﹣1)2+2x(x﹣1)=0(3)(4)x2+x=12.20.一个菱形的周长是200cm.一条对角线长60cm,求:(1)另一条对角线的长度;菱形的面积.21.如图,在△ABC 中,∠ACB=90°,CD 是角平分线,DE⊥AC,DF⊥BC,垂足分别是 E,F.求证:四边形D ECF 是正方形.22.某商场销售一种成本为每千克50 元的水产品,据市场分析,若按每千克60 元销售,一个月能售出500 千克,销售单价从60 元每涨1元,月销售量就减少10 千克,针对这种水产品的销售情况,要使利润最大,每千克应涨价多少元?23.某企业五月份的利润是25 万元,预计七月份的利润达到36 万元,求平均月增长率.24.如图,在R t△ACB 中,∠C=90°,AC=8cm,BC=6cm,点P、Q 同时由A、B 两点出发分别沿 AC、BC 向点C匀速移动,它们的速度都是1米/秒,问:几秒后△PCQ 的面积为R t△ACB 面积的一半?25.如图,某小区规划在一个长40 米,宽为26 米的矩形场地A BCD 上,修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若使每块草坪的面积都为144 平方米,求道路的宽度.26.在一个不透明的口袋里装有分别标有数字 1、2、3、4、的四个小球,除数字不同外,小球没有任何区别,每次试验前先搅拌均匀.(1)若从中任取一球,球上数字为偶数的概率是多少?若从中任取一球(不放回),再从中任取一球,请用画树状图或列表格的方法求出两个球上的数字之和为偶数的概率.贵州省六盘水二十一中x x 届九年级上学期月考数学试卷(9 月份)参考答案与试题解析一、选择题(每小题4分,共40 分)1.若矩形的一条对角线与一边的夹角是 40°,则两条对角线相交所成的锐角是()A.20°B.40°C.80° D.100°【考点】矩形的性质.【专题】计算题.【分析】根据矩形的性质,得△BOC 是等腰三角形,再由等腰三角形的性质进行答题.【解答】解:图形中∠1=40°,∵矩形的性质对角线相等且互相平分,∴OB=OC,∴△BOC 是等腰三角形,∴∠OBC=∠1,则∠AOB=2∠1=80°.故选C.【点评】本题主要考查了矩形的性质,对角线相等且互相平分,矩形被对角线分成四个等腰三角形.2.若方程x2+ax+b=0 中有一个根为0,另一个根非0,则a、b 的值是()A.a=0,b=0 B.a≠0,b=0 C.a=0,b≠0【考点】一元二次方程的解.【专题】计算题.【分析】把x=0 代入方程易得b=0,然后根据方程另一个根非0可判断a的取值范围.【解答】解:把x=0 代入x2+ax+b=0 得b=0,而方程另一个根非0,则a≠0.故选B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.关于x的一元二次方程k x2+kx+1=0 是一元二次方程的条件是()A.k≠0 B.k≠3 C.k≠﹣2 且 k≠3 D.k≠﹣2【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:由关于x的一元二次方程k x2+kx+1=0,得k≠0.故选:A.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是 2.4.三角形两边的长是4和6,第三边的长是方程x2﹣6x+8=0 的解.则这个三角形的第三边的长是()A.2 B.4 C.2 或4D.8【考点】解一元二次方程-因式分解法;三角形三边关系.【专题】计算题;一次方程(组)及应用.【分析】利用因式分解法求出方程的解确定出第三边长即可.【解答】解:方程x2﹣6x+8=0,解得:(x﹣2)(x﹣4)=0,解得:x=2 或x=4,当x=2 时,2,4,6 不能构成三角形,舍去;当x=4 时,4,4,6 能构成三角形,则这个三角形的第三边长为4.故选B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5.方程x2﹣6x+9=0 可化成(x+m)2=n 的形式,则m、n 的值分别为()A.m=3,n=10 B.m=﹣3,n=0 C.m=6,n=1 D.以上答案都不对【考点】解一元二次方程-配方法.【分析】方程移项变形后,配方得到结果,即可求出m与n的值.【解答】解:∵x2﹣6x+9=0,∴(x﹣3)2=0,∴m=﹣3,n=0.故选:B.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.6.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB 的理由是()A.SAS B.ASA C.AAS D.HL【考点】全等三角形的判定.【分析】直角三角形的判定定理有S AS,ASA,AAS,SSS,HL,根据H L 推出两三角形全等即可.【解答】解:∵∠A=∠D=90°,∴在R t△ABC 和R t△DCB 中∴Rt△ABC≌Rt△DCB(HL),故选D.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有 SAS,ASA,AAS,SSS,HL.7.具有下列条件的两个等腰三角形,不能判断它们全等的是()A.顶角、一腰对应相等B.底边、一腰对应相等C.两腰对应相等D.一底角、底边对应相等【考点】全等三角形的判定;等腰三角形的性质.【分析】此题考查等腰三角形的判定问题,A 中两边及夹角相等,可判断全等,B 中三边相等,也全等,C 中角不确定,不能判断其是否全等,D 中角边固定,亦全等.【解答】解:A 中顶角与一腰,对应相等,另一腰也相等,两边加一角,可证全等;B 底边一腰对应相等,即三边对应相等,也可以判断其全等;C 中两腰相等,但角的关系不确定,故不能确定其是否全等;D 中底边,底角固定,可证明其全等,故C不正确,答案选C.【点评】本题考查了全等三角形的判定与性质及等腰三角形的性质;熟练掌握等腰三角形的性质及判定定理是解决问题的前提.8.正方形的一条对角线长为 2 厘米,则正方形的面积()A.2 B.3 C.4 D.【考点】正方形的性质.【分析】根据正方形的面积等于两对角线乘积的一半求解即可.【解答】解:正方形的面积= =2.故选:A.【点评】本题主要考查的是正方形的性质,明确正方形的面积等于两对角线乘积的一半是解题的关键.9.同时抛掷两枚 1 元的硬币,菊花图案都朝上的概率是()A. B. C. D.【考点】概率公式.【专题】压轴题.【分析】本题是由两步完成的实验,我们把有菊花图案的一面看做正面,另一面是反面.则会有:正正,正反,反正,反反.四种结果.并且出现每种结果的机会相同,可以用列举法求概率.【解答】解:有正正,正反,反正,反反四种结果,菊花图案都朝上只有一种结果即:正正,所以P(菊花图案都朝上)=.故选C.【点评】用到的知识点为:概率=所求情况数与总情况数之比.10.两个正四面体骰子的各面上分别标明数字 1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为()A. B. C.D.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:列表得:1 2 3 41 1+1=2 2+1=3 3+1=4 4+1=52 1+2=3 2+2=4 3+2=5 4+2=63 1+3=4 2+3=5 3+3=6 4+3=74 1+4=5 2+4=6 3+4=7 4+4=8∴一共有16 种情况,着地的面所得的点数之和等于5的有4种,∴着地的面所得的点数之和等于 5 的概率为= .故选A.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.二.填空题(每小题5分,共40 分)11.将方程 3x2=4x+1 化成一元二次方程的一般形式为 3x2﹣4x﹣1=0 .【考点】一元二次方程的一般形式.【专题】计算题;一次方程(组)及应用.【分析】将已知方程整理为一般形式即可.【解答】解:方程整理得:3x2﹣4x﹣1=0,.故答案为:3x2﹣4x﹣1=0.【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且a≠0)特别要注意a≠0 的条件.这是在做题过程中容易忽视的知识点.在一般形式中a x2 叫二次项,bx 叫一次项,c 是常数项.其中a,b,c 分别叫二次项系数,一次项系数,常数项.12.在正方形 ABCD 中,AB=12cm,对角线AC、BD 相交于 O,则△AOB 的周长是12+12 cm.【考点】正方形的性质.【分析】根据正方形的性质可求得其对角线的长,即可求△AOB 的周长.【解答】解:在正方形A BCD 中,AB=12cm,由勾股定理可知,对角线为12cm,则对角线的一半是6cm,所以三角形的周长是12+12(cm),故答案为12+12.【点评】此题主要考查了正方形的对角线的性质,即互相平分.13.已知菱形的一条对角线的长为 5,面积是 15,则另一条对角线的长是 6 .【考点】菱形的性质.【分析】设菱形的另一对角线长为 x,根据菱形面积公式得到得•x•5=15,然后解方程即可.【解答】解:设菱形的另一对角线长为x,根据题意得•x•5=15,解得x=6,即菱形的另一对角线长为6.故答案为6.【点评】本题考查了菱形的性质,掌握菱形的面积等于对角线乘积的一半是解题的关键.14.甲公司前年缴税 100 万元,今年缴税 121 万元,则该公司缴税的年平均增长率 10% .【考点】一元二次方程的应用.【专题】增长率问题.【分析】设公司缴税的年平均增长率为x,根据增长后的纳税额=增长前的纳税额×(1+增长率),即可得到去年的纳税额是100(1+x)万元,今年的纳税额是100(1+x)2 万元,据此即可列出方程求解.【解答】解:设该公司缴税的年平均增长率为x,依题意得100(1+x)2=121解方程得x1=0.1=10%,x2=﹣2.1(舍去)所以该公司缴税的年平均增长率为10%.故答案为:10%.【点评】本题运用增长率(下降率)的模型解题.读懂题意,找到等量关系准确的列出式子是解题的关键.15.从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是24cm2,则原来的正方形铁皮的边长为 6cm.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】可设正方形的边长是xcm,根据“余下的面积是24cm2”,余下的图形是一个矩形,矩形的长是正方形的边长,宽是 x﹣2,根据矩形的面积公式即可列出方程求解.【解答】解:设正方形的边长是x cm,根据题意得: x(x﹣2)=24,解得:x=﹣4(舍去)或x=6,故答案为:6.【点评】本题考查了一元二次方程应用以及矩形及正方形面积公式,表示出矩形各边长是解题关键.16.用反证法证明命题“在一个三角形中,至少有一个内角不小于60°”,假设为一个三角形中,三个内角都小于60°.【考点】反证法.【分析】熟记反证法的步骤,直接填空即可.【解答】解:在一个三角形中,至少有一个内角不小于 60°的反面是:一个三角形中,三个内角都小于60°.则应先假设在一个三角形中,三个内角都小于60°.故答案是:一个三角形中,三个内角都小于60°.【点评】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.17.请你给出一个 c 值,c= 3(答案不唯一),使方程 x2﹣3x+c=0 无解.【考点】根的判别式.【专题】开放型.【分析】只要给出的 c 值能使方程的△<0,就使方程无解.【解答】解:由题意知△=9﹣4c<0,∴c>,∴答案不唯一,只要满足c>时就能使方程无解,如3、4 等.故填空答案:3、4.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.已知一个一元二次方程的二次项是 2y2,一次项系数是﹣3,常数项是﹣2,那么这个方程的一般形式是2y2﹣3y﹣2=0 .【考点】一元二次方程的一般形式.【专题】计算题;一次方程(组)及应用.【分析】根据题意写出所求方程即可.【解答】解:根据题意得:2y2﹣3y﹣2=0,故答案为:2y2﹣3y﹣2=0【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且a≠0)特别要注意a≠0 的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2 叫二次项,bx 叫一次项,c 是常数项.其中a,b,c 分别叫二次项系数,一次项系数,常数项.三、简答题(第19 题20 分,第20 题7分,第21 题7分,第22 题7分,第22,23,24,25 均7分,第26 题8分)19.解方程:(1)x2﹣25=0 x2﹣6x=﹣9(x﹣1)2+2x(x﹣1)=0(3)(4)x2+x=12.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法;解一元二次方程-配方法.【专题】计算题.【分析】(1)只需运用直接开平方法即可解决问题;只需运用配方法即可解决问题;(3)只需运用因式分解法即可解决问题;(4)只需运用因式分解法即可解决问题.(1)原方程可转化为【解答】解:x2=25,解得:x1=5,x2=﹣5;原方程可转化为x2﹣6x+9=0,配方得(x﹣3)2=0,解得:x1=x2=3;(3)原方程可转化为(x﹣1)2﹣2x(x﹣1)=0,即(x﹣1)(x﹣1﹣2x)=0,也即(x﹣1)(﹣x﹣1)=0,解得:x1=1,x2=﹣1;(4)原方程可转化为 x2+x﹣12=0,即(x+4)(x﹣3)=0,解得:x1=﹣4,x2=3.【点评】本题主要考查的是运用适当的方法解一元二次方程,解一元二次方程通常有四种方法(直接开平方法、因式分解法、配方法、公式法),通常可根据一元二次方程的特点选择相应的方法.20.一个菱形的周长是200cm.一条对角线长60cm,求:(1)另一条对角线的长度;菱形的面积.【考点】菱形的性质.【分析】(1)根据菱形四条边都相等求出边长,再根据菱形的对角线互相垂直平分,利用勾股定理列式求出另一对角线的一半,从而得到另一对角线的长度;再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:∵菱形的周长是200cm,∴菱形的边长为200÷4=50cm,∵一条对角线长60cm,∴该对角线的一半=60÷2=30cm,∴另一对角线的一半= =40cm,∴另一对角线长是40×2=80cm;由(1)可知这个菱形的面积=60×80=2400cm2.【点评】本题主要考查了菱形四条边都相等的性质,对角线互相垂直的性质,勾股定理的应用,熟记性质是解题的关键.21.如图,在△ABC 中,∠ACB=90°,CD 是角平分线,DE⊥AC,DF⊥BC,垂足分别是E,F.求证:四边形D ECF 是正方形.【考点】正方形的判定;角平分线的性质.【专题】证明题.【分析】先证明四边形D ECF 是矩形,再由角平分线的性质得出D E=DF,即可得出结论.【解答】证明:∵CD 是角平分线,DE⊥AC,DF⊥BC,∴DE=DF,∠CED=∠CFD=90°,∵∠ACB=90°,∴四边形D ECF 是矩形,又∵DE=DF,∴四边形D ECF 是正方形.【点评】本题考查了正方形的判定方法、矩形的判定方法、角平分线的性质;熟练掌握正方形的判定方法,证明四边形是矩形是解决问题的关键,难度适中.22.某商场销售一种成本为每千克50 元的水产品,据市场分析,若按每千克60 元销售,一个月能售出500 千克,销售单价从60 元每涨1元,月销售量就减少10 千克,针对这种水产品的销售情况,要使利润最大,每千克应涨价多少元?【考点】一元二次方程的应用.【专题】销售问题.【分析】利润=销售量×单位利润.单位利润为(x﹣50)元,销售量为[500﹣10(x﹣60)千克,据此表示利润得关系式,求最值.【解答】解:设销售单价定为每千克x元,获得利润为y元,则:y=(x﹣50)[500﹣(x﹣60)×10 ,(1100﹣10x),=(x﹣50)=﹣10x2+1600x﹣55000=﹣10(x﹣80)2+9000;所以,当销售单价定为每千克80 元,获得利润最大, 80﹣60=20(元),答:针对这种水产品的销售情况,要使利润最大,每千克应涨价20 元.【点评】此题主要考查了二次函数在实际问题中的运用,根据利润=(售价﹣进价)×销量,列出函数解析式,求最值是解题关键.23.某企业五月份的利润是25 万元,预计七月份的利润达到36 万元,求平均月增长率.【考点】一元二次方程的应用.【专题】增长率问题.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这个增长率为x,根据“五月份的利润是25 万元,预计七月份的利润将达到36 万元”,即可得出方程求解.【解答】解:设这个增长率为x,根据题意可得:25(1+x)2=36,解得:x=0.2=20%或x=﹣2.2.答:平均月增长率为20%.【点评】本题考查了一元二次方程的应用,为增长率问题,一般形式为 a(1+x)2=b,a 为起始时间的有关数量,b 为终止时间的有关数量.24.如图,在R t△ACB 中,∠C=90°,AC=8cm,BC=6cm,点P、Q 同时由A、B 两点出发分别沿 AC、BC 向点C匀速移动,它们的速度都是1米/秒,问:几秒后△PCQ 的面积为R t△ACB 面积的一半?【考点】一元二次方程的应用.【专题】几何动点问题.【分析】根据题意∠C=90°,可以得出△ABC 面积为×6×8,△PCQ 的面积为(8﹣x)(6﹣x),设出t秒后满足要求,则根据△PCQ 的面积是△ABC 面积的一半列出等量关系求出t的值即可.【解答】解:设经过x秒后△PCQ 的面积是R t△ACB 面积的一半,则:=12,,x2=2.解得x1=12(舍去)答:经2秒△PCQ 的面积是R t△ACB 面积的一半.【点评】本题考查了三角形面积的计算方法,找到等量关系式,列出方程求解即可.要注意结合图形找到等量关系.25.如图,某小区规划在一个长40 米,宽为26 米的矩形场地A BCD 上,修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若使每块草坪的面积都为144 平方米,求道路的宽度.【考点】一元二次方程的应用.【专题】工程问题.【分析】本题中草坪的总面积=矩形场地的面积﹣三条道路的面积和+三条道路中重叠的两个小正方形的面积,据此可得出关于道路宽度的方程,求出道路的宽度.【解答】解:设道路的宽为x米,由题意得:40×26﹣2×26x﹣40x+2x2=144×6 化简得:x2﹣46x+88=0 解得:x=2,x=44当x=44 时,道路的宽就超过了矩形场地的长和宽,因此不合题意舍去.答:道路的宽为2米.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.在一个不透明的口袋里装有分别标有数字 1、2、3、4、的四个小球,除数字不同外,小球没有任何区别,每次试验前先搅拌均匀.(1)若从中任取一球,球上数字为偶数的概率是多少?若从中任取一球(不放回),再从中任取一球,请用画树状图或列表格的方法求出两个球上的数字之和为偶数的概率.【考点】列表法与树状图法.【分析】(1)由在一个不透明的口袋里装有分别标有数字1、2、3、4、的四个小球,除数字不同外,小球没有任何区别,直接利用概率公式求解即可求得答案;首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个球上的数字之和为偶数的情况,再利用概率公式即可求得答案.【解答】解:(1)∵在一个不透明的口袋里装有分别标有数字1、2、3、4、的四个小球,除数字不同外,小球没有任何区别,∴若从中任取一球,球上数字为偶数的概率是:=;画树状图得:∵共有12 种等可能的结果,两个球上的数字之和为偶数的有4种情况,∴两个球上的数字之和为偶数的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.。
九年级数学上学期第二次月考试题 新人教版
2019-2020年九年级数学上学期第二次月考试题 新人教版一、选择题(本大题共10小题,每小题3分,共30分)1、函数的最小值是( )A .1B .-1C .2D .-22.若关于的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则的值等于( )A .1B .2C .1或2D .03.三角形的两边长分别为3和6,第三边的长是方程的一个根,则这个三角形的周长是( )A.9 B.11 C.13 D 、144.过⊙O 内一点M 的最长弦长为10cm,最短弦长为8cm,那么OM 的长为( )A.3cmB.6cmC. cmD.9cm5.下列图形中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D .6.图中∠BOD 的度数是( )A .55°B .110°C .125°D .150°7.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠B=50°,则∠DFE 的度数是( )A.55°B.60°C.65°D.70°(第6题) (第7题)8.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同。
小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白球的个数很可能是( )A .6B .16C .18D .249.如图,四边形ABCD 内接于⊙O ,BC 是直径,AD =DC ,∠ADB =20º,则∠ACB ,∠DBC 分别为( )A .15º与30ºB .20º与35ºC .20º与40ºD .30º与35º10.如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向行走。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
月考九年级数 学 试 题一、选择题(共8小题,每小题3分,共24分)1.反比例函数y =-3x(x <0)如图所示,则矩形OAPB 的面积是( )A .3B .-3 C.32 D .-32(第3题图)2.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为( )3.如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)4.如图,以原点O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是( )A .(sin α,sin α)B .(cos α,cos α)C .(cos α,sin α)D .(sin α,cos α)第4题图) 第5题图) 第6题图)5.如图,AB 是⊙O 的直径,D ,E 是半圆上任意两点,连接AD ,DE ,AE 与BD 相交于点C ,要使△ADC 与△BDA 相似,可以添加一个条件.下列添加的条件中错误的是( )A .∠ACD =∠DAB B .AD =DEC .AD ·AB =CD ·BD D .AD 2=BD ·CD6.如图,一次函数y 1=k 1x +b 的图象和反比例函数y 2=k 2x 的图象交于A(1,2),B(-2,-1)两点,若y 1<y 2,则x 的取值范围是( )A .x <1B .x <-2C .-2<x <0或x >1D .x <-2或0<x <17.如图,有一轮船在A 处测得南偏东30°方向上有一小岛P ,轮船沿正南方向航行至B 处,测得小岛P 在南偏东45°方向上,按原方向再航行10海里至C 处,测得小岛P 在正东方向上,则A ,B 之间的距离是( )A .103海里B .(102-10)海里C .10海里D .(103-10)海里,(第7题) (第8题第11题第128.如图,正方形ABCD 的对角线AC 与BD 相交于点O ,∠ACB 的角平分线分别交AB ,BD 于M ,N 两点.若AM =2,则线段ON 的长为( )A.22 B.32 C .1 D.62二、填空题(本大题共8个小题,每小题3分,共24分)9.△ABC 中,∠A ,∠B 都是锐角,若sin A =32,cos B =12,则∠C = .10.已知点A(-1,y 1),B(-2,y 2)和C(3,y 3)都在反比例函数y =kx(k<0)的图象上,则y 1,y 2,y 3的大小关系为__ .(用“<”连接)11.如图,P(12,a)在反比例函数y =60x的图象上,PH ⊥x 轴于点H ,则tan ∠POH 的值为____.第13题) 第14题 第15题图)12.如图,▱ABCD 中,点E 是边BC 上一点,AE 交BD 于点F ,若BE =2,EC =3,△BEF的面积是1,则▱ABCD 的面积为_ _.13.全球最大的关公塑像矗立在荆州古城东门外,如图,张三同学在东门城墙上C 处测得塑像底部B 处的俯角为18°48′,测得塑像顶部A 处的仰角为45°,点D 在观测点C 正下方城墙底的地面上,若CD =10米,则此塑像的高AB 约为____米.(参考数据:tan78°12′≈4.8)14. 如图是一个几何体的三视图,已知主视图和左视图都是边长为2的等边三角形,则这个几何体的表面积为 .15.如图是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是____个.16.如图,在△ABC 中,AB =AC =10,点D 是边BC 上一动点(不与B ,C 重合),∠ADE =∠B =α,DE 交AC 于点E ,且cos α=45.下列结论:①△ADE ∽△ACD ;②当BD =6时,△ABD 与△DCE 全等;③△DCE 为直角三角形时,BD 为8或252;④0<CE ≤6.4.其中正确的结论是 .(填序号)第16题图)三、解答题(共8题,共72分) 17.(本题8分)解下列方程:(1). 2sin 60°-4cos 230°+sin 45°·tan 60°;(2). (-2018)0+|1-3|-2sin60°+2tan45°-4cos30°.18.(8分)如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm ),求这个立体图形的表面积.19.(9分)如图,△ABC 中,A(-4,4),B(-4,-2),C(-2,2).(1)请画出将△ABC 向右平移8个单位长度后的△A 1B 1C 1; (2)求出∠A 1B 1C 1的余弦值;(3)以O 为位似中心,将△A 1B 1C 1缩小为原来的12,得到△A 2B 2C 2,请在y 轴右侧画出△A 2B 2C 2.20.(8分)如图,在平面直角坐标系x Oy 中,一次函数y =kx +b 的图象与反比例函数y =mx 的图象交于A(2,3),B(-3,n)两点.(1)求一次函数和反比例函数的解析式;(2)若P 是y 轴上一点,且满足△PAB 的面积是5,直接写出OP 的长.20题21题 22题21.(8分)如图,某塔观光层的最外沿点E 为蹦极项目的起跳点.已知点E 离塔的中轴线AB的距离OE 为10米,塔高AB 为123米(A B 垂直地面BC),在地面C 处测得点E 的仰角α=45°,从点C 沿CB 方向前行40米到达D 点,在D 处测得塔尖A 的仰角β=60°,求点E 离地面的高度EF.(结果精确到1米,参考数据2≈1.4,3≈1.7)22.(9分)如图,在△ABC 中,∠ABC =90°,BC =3,D 为AC 延长线上一点,AC =3CD ,过点D 作DH ∥AB ,交BC 的延长线于点H.(1)求BD ·cos ∠HBD 的值; (2)若∠CBD =∠A ,求AB 的长.23.(10分)如图,以点O 为圆心,AB 长为直径作圆,在⊙O 上取一点C ,延长AB 至点D ,连接DC ,过点A 作⊙O 的切线交DC 的延长线于点E ,且∠DCB =∠DAC.(1)求证:CD 是⊙O 的切线;(2)若AD =6,tan ∠DCB =23,求AE 的长.(23题)(24题)24.(12分) (12分)如图,在Rt △ABC 中,∠ACB =90°,AC =8,B C =6,CD ⊥AB 于点D.点P 从点D 出发,沿线段DC 向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到C 时,两点都停止.设运动时间为t 秒.(1)求线段CD 的长;(2)设△CPQ 的面积为S ,求S 与t 之间的函数关系式,并确定在运动过程中是否存在某一时刻t ,使得S △CPQ ∶S △ABC =9∶100?若存在,求出t 的值;若不存在,说明理由;(3)当t 为何值时,△CPQ 为等腰三角形?九年级数学参考答案一、选择题(共8小题,每小题3分,共24分)二、填空题(共8小题,每小题3分,共24分)9.60° 10.y 3<y 2<y 1_ 11.51212. 13,58 14._3π15. 716.①②③④三、解答题(共8题,共72分) 17.解:(1) 解:原式=2×32-4×(32)2+22×3=6-3. (2) 解:原式=1+3-1-2×32+2×1-4×32=2-2 3. 18.解:根据三视图可得:上面的长方体长4 mm ,高4 mm ,宽2 mm ,下面的长方体长6 mm ,宽8 mm ,高2 mm ,∴立体图形的表面积是4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2-4×2=200(mm 2)19.解: (1)△A 1B 1C 1如图所示.(2)B 1C 1=22+42=2 5,cos ∠A 1B 1C 1=42 5=2 55.(3)△A 2B 2C 2如图所示.20.解:(1)y =6x,y =x +1 (2)对于一次函数y =x +1,令x =0求出y =1,即该函数与y 轴的交点为C (0,1),∴OC =1,根据题意得S △ABP =12PC ×2+12PC ×3=5,解得PC =2,则OP =OC +PC=1+2=3或OP =PC -OC =2-1=121.解:在直角△ABD 中,BD =AB tan β=123tan60°=413(米),则DF =BD -OE =413-10(米),CF =DF +CD =413-10+40=413+30(米),则在直角△CEF 中,EF =CF ·tan α=413+30≈41×1.7+30=99.7≈100(米),则点E 离地面的高度EF 是100米.22.解: (1)∵DH ∥AB ,∴∠BHD =∠ABC =90°,∴△ABC ∽△DHC ,∴AC CD =BCCH=3, ∴CH =1,BH =BC +CH =4,在Rt △BHD 中,cos ∠HBD =BHBD,∴BD ·cos ∠HBD =BH =4(2)∵∠CBD =∠A ,∠ABC =∠BHD ,∴△ABC ∽△BHD ,∴BC HD =AB BH ,∵△ABC ∽△DHC ,∴AB DH =ACCD =3,∴AB =3DH ,∴3DH =3DH4,解得DH =2,∴AB =3DH =3×2=6,即AB 的长是623.解: (1)连接OC ,OE ,∵AB 为直径,∴∠ACB =90°,即∠BCO +∠ACO =90°,又∵∠DCB=∠CAD ,∠CAD =∠ACO ,∴∠ACO =∠DCB ,∴∠DCB +∠BCO =90°,即∠DCO =90°,∴CD 是⊙O 的切线(2)∵EA 为⊙O 的切线,∴EC =EA ,EA ⊥AD ,OE ⊥AC ,∴∠BAC +∠CAE =90°,∠CAE +∠OEA =90°,∴∠BAC =∠OEA ,∴∠DCB =∠OEA.∵tan ∠DCB =23,∴tan ∠OEA =OA AE =23,易证Rt △DCO∽Rt △DAE ,∴CD DA =OC AE =OD DE =23,∴CD =23×6=4,在Rt △DAE 中,设AE =x ,∴(x +4)2=x 2+62,解得x =52,即AE 的长为5224.解:(1)线段CD 的长为4.8(2)过点P 作PH ⊥AC ,垂足为H ,由题意可知DP =t ,CQ =t ,则CP =4.8-t.由△CHP ∽△BCA 得PH AC =PC AB ,∴PH 8=4.8-t 10,∴PH =9625-45t ,∴S △CPQ =12CQ ·PH =12t (9625-45t )=-25t 2+4825t.设存在某一时刻t ,使得S △CPQ ∶S △ABC =9∶100.∵S △ABC =12×6×8=24,且S △CPQ ∶S △ABC =9∶100,∴(-25t 2+4825t )∶24=9∶100,整理得5t 2-24t +27=0,即(5t -9)(t -3)=0,解得t =95或t =3,∵0≤t ≤4.8,∴当t =95或t =3时,S △CPQ ∶S △ABC =9∶100(3)①若CQ =CP ,则t =4.8-t.解得t =2.4;②若PQ =PC ,作PH ⊥QC 于点H ,∴QH =CH =12QC =t 2,∵△CHP ∽△BCA ,∴CH BC =CPAB ,∴t26=4.8-t 10,解得t =14455; ③若QC =QP ,过点Q 作QE ⊥CP ,垂足为E ,同理可得t =2411.综上所述:当t 为2.4或14455或2411时,△CPQ 为等腰三角形。