复合函数知识总结及例题整理版
复合函数的定义域详细讲义及练习详细标准答案
复合函数的定义域详细讲义及练习详细标准答案复合函数的定义域详细讲义及练习详细答案————————————————————————————————作者:————————————————————————————————日期:2复合函数一,复合函数的定义:设y是u的函数,即y=f(u),u是x的函数,即u=g(x),且g(x)的值域与f(u)的定义域的交集非空,那么y通过u 的联系成为x的函数,这个函数称为由y=f(u),u=g(x)复合而成的复合函数,记作y=f[g(x)],其中u称为中间变量。
二,对高中复合函数的通解法——综合分析法1、解复合函数题的关键之一是写出复合过程例1:指出下列函数的复合过程。
(1)y=√2-x2 (2)y=sin3x (3)y=sin3x (4)y=3cos√1-x2解:(1) y=√2-x2是由y=√u,u=2-x2复合而成的。
(2)y=sin3x是由y=sinu,u=3x复合而成的。
(3)∵y=sin3x=(sinx)-3∴y=sin3x是由y=u-3,u=sinx复合而成的。
(4)y=3cos√1+x2是由y=3cosu,u=√r,r=1+x2复合而成的。
2、解复合函数题的关键之二是正确理解复合函数的定义。
看下例题:例2:已知f(x+3)的定义域为[1、2],求f(2x-5) 的定义域。
经典误解1:解:f(x+3)是由y=f(u),u=g(x)=x+3复合而成的。
F(2x-5)是由y=f(u2),u2=g(x)=2x-5复合而成的。
由g(x),G(x)得:u2=2x-11即:y=f(u2),u2=2x-11∵f(u1)的定义域为[1、2]∴1≤x﹤2∴-9≤2x-11﹤-6即:y=f(u2)的定义域为[-9、-6]∴f(2x-5)的定义域为[-9、-6]经典误解2:解:∵f(x+3)的定义域为[1、2]∴1≤x+3﹤2∴-2≤x﹤-1∴-4≤2x﹤-2∴-9≤2x-5﹤-7∴f(2x-5)的定义域为[-9、-7](下转2页)注:通过以上两例误解可得,解高中复合函数题会出错主要原因是对复合函数的概念的理解模棱两可,从定义域中找出“y”通过u的联系成为x的函数,这个函数称为由y=f(u),u=g(x)复合而成的复合函数,记作y=f[g(x)],其中u称为“中间变量”。
高考数学经典常考题型第12专题 复合函数零点问题
高考数学经典常考题型第12专题复合函数零点问题第12专题训练:复合函数零点问题一、基础知识:1、复合函数定义:设 $y=f(t),t=g(x)$,且函数 $g(x)$ 的值域为 $f(t)$ 的定义域的子集,那么 $y$ 通过 $t$ 的联系而得到自变量 $x$ 的函数,称 $y$ 是 $x$ 的复合函数,记为$y=f(g(x))$。
2、复合函数函数值计算的步骤:求 $y=g(f(x))$ 函数值遵循“由内到外”的顺序,一层层求出函数值。
例如:已知$f(x)=2x,g(x)=x^2-x$,计算 $g(f(2))$。
解:$f(2)=2\times 2=4$,$\therefore g(f(2))=g(4)=12$3、已知函数值求自变量的步骤:若已知函数值求 $x$ 的解,则遵循“由外到内”的顺序,一层层拆解直到求出 $x$ 的值。
例如:已知 $f(x)=2x,g(x)=x^2-2x$,若 $g(f(x))=0$,求 $x$。
解:令 $t=f(x)$,则 $g(t)=0$,$\therefore t=0$ 或 $t=2$。
当 $t=0$ 时,$f(x)=0$,XXX;当 $t=2$ 时,$f(x)=2$,$\therefore x=1$。
综上所述,$x=1$。
由上例可得,要想求出 $g(f(x))=0$ 的根,则需要先将$f(x)$ 视为整体,先求出 $f(x)$ 的值,再求对应 $x$ 的解。
这种思路也用来解决复合函数零点问题。
先回顾零点的定义:4、函数的零点:设 $f(x)$ 的定义域为 $D$,若存在 $x\in D$,使得 $f(x)=0$,则称 $x$ 是 $f(x)$ 的一个零点。
5、复合函数零点问题的特点:考虑关于 $x$ 的方程$g(f(x))=0$ 的根的个数,在解此类问题时,要分为两层来分析。
第一层是解关于 $f(x)$ 的方程,观察有几个 $f(x)$ 的值使得等式成立;第二层是结合着第一层 $f(x)$ 的值求出每一个$f(x)$ 被几个 $x$ 对应,将 $x$ 的个数汇总后即为$g(f(x))=0$ 的根的个数。
1.2复合函数专题
复合函数专题
复合函数的单调性(同增异减)
判断复合函数的单调性的步骤如下:
(1)求复合函数定义域;
(2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);
(3)判断每个常见函数的单调性;
(4)将中间变量的取值范围转化为自变量的取值范围;
(5)求出复合函数的单调性。
典型例题
例1、求下列函数的定义域,值域,单调区间。
(1)x x y 22)3
1(-=; (2))43lg(2x x y -+=
(3)2616x x y -+=)40(≤≤x ; (4))34(log 23.0+-=x x y
例2、已知)2(log ax y a -=在[]1,0上是x 的减函数,求a 的取值范围.
例3、求下列函数的值域
()
]2,1[,2323)(12∈+⋅-=x x f x x ; ()3log 2log 2222+-=x x y ;
)8(2 4log 8log )
3(22≤≤=x x x y
例4、已知)(x f y =是在R 上的减函数,且3)2(=f .判断|3)(|-=x f y 的单调性
巩固练习
1. 若函数)2(log )(22a x x x f +--=在)1,(--∞上是增函数,求a 的取值范围.
2.求下列函数的单调区间:
(1)x y -=2)
51(; (2)x y 41-=; (3)15.0-=x y ;
(4)122
+=x y ; (5)31)21(+=x y .
3.若函数1
3)(--=a ax x f 在区间[]1,0上是减函数,求实数a 的取值范围.。
2023年复合函数知识点总结例题分类讲解
复合函数旳定义域和解析式以及单调性【复合函数有关知识】1、复合函数旳定义假如y 是u 旳函数,u 又是x 旳函数,即()y f u =,()u g x =,那么y 有关x 旳 函数(())y f g x =叫做函数()y f u =(外函数)和()u g x =(内函数)旳复合函数,其中u 是中间变量,自变量为x 函数值为y 。
例如:函数212x y += 是由2u y =和21u x =+ 复合而成立。
阐明:⑴复合函数旳定义域,就是复合函数(())y f g x =中x 旳取值范围。
⑵x 称为直接变量,u 称为中间变量,u 旳取值范围即为()g x 旳值域。
⑶))((x g f 与))((x f g 表达不一样旳复合函数。
2.求有关复合函数旳定义域① 已知)(x f 旳定义域为)(b a ,,求))((x g f 旳定义域旳措施:已知)(x f 旳定义域为)(b a ,,求))((x g f 旳定义域。
实际上是已知中间变量旳u 旳取值范围,即)(b a u ,∈,)()(b a x g ,∈。
通过解不等式b x g a <<)(求得x 旳范围,即为))((x g f 旳定义域。
② 已知))((x g f 旳定义域为)(b a ,,求)(x f 旳定义域旳措施:若已知))((x g f 旳定义域为)(b a ,,求)(x f 旳定义域。
实际上是已知直接变量x 旳取值范围,即)(b a x ,∈。
先运用b x a <<求得)(x g 旳范围,则)(x g 旳范围即是)(x f 旳定义域。
3.求有关复合函数旳解析式①已知)(x f 求复合函数)]([x g f 旳解析式,直接把)(x f 中旳x 换成)(x g 即可。
②已知)]([x g f 求)(x f 旳常用措施有:配凑法和换元法。
配凑法:就是在)]([x g f 中把有关变量x 旳体现式先凑成)(x g 整体旳体现式,再直接把)(x g 换成x 而得)(x f 。
(完整word)复合函数知识总结及例题,推荐文档
复合函数问题一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A B ,则y 关于x 函数的⊇y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、复合函数定义域问题:(1)、已知的定义域,求的定义域f x ()[]fg x ()思路:设函数的定义域为D ,即,所以的作用范围为D ,又f 对作用,作用范f x ()x D ∈f g x ()围不变,所以,解得,E 为的定义域。
D x g ∈)(xE ∈[]f g x ()例1. 设函数的定义域为(0,1),则函数的定义域为_____________。
f u ()f x (ln )解析:函数的定义域为(0,1)即,所以的作用范围为(0,1)f u ()u ∈()01,f 又f 对lnx 作用,作用范围不变,所以01<<ln x 解得,故函数的定义域为(1,e )x e ∈()1,f x (ln )例2. 若函数,则函数的定义域为______________。
f x x ()=+11[]f f x ()解析:先求f 的作用范围,由,知f x x ()=+11x ≠-1即f 的作用范围为,又f 对f(x)作用所以,即中x{}x R x ∈≠-|1f x R f x ()()∈≠-且1[]f f x ()应满足即,解得x f x ≠-≠-⎧⎨⎩11()x x ≠-+≠-⎧⎨⎪⎩⎪1111x x ≠-≠-12且故函数的定义域为[]f f x (){}x R x x ∈≠-≠-|12且(2)、已知的定义域,求的定义域[]f g x ()f x ()思路:设的定义域为D ,即,由此得,所以f 的作用范围为E ,又f 对x 作[]f g x ()x D ∈g x E ()∈用,作用范围不变,所以为的定义域。
x E E ∈,f x ()例3. 已知的定义域为,则函数的定义域为_________。
f x ()32-[]x ∈-12,f x ()解析:的定义域为,即,由此得f x ()32-[]-12,[]x ∈-12,[]3215-∈-x ,所以f 的作用范围为,又f 对x 作用,作用范围不变,所以[]-15,[]x ∈-15,即函数的定义域为例4. 已知,则函数的定义域为-------f x ()[]-15,f x x x ()lg 22248-=-f x ()解析:先求f 的作用范围,由,知f x x x ()lg 22248-=-x x 2280->解得,f 的作用范围为,又f 对x 作用,作用范围不变,所以,x 244->()4,+∞x ∈+∞()4,即的定义域为f x ()()4,+∞(3)、已知的定义域,求的定义域[]f g x ()[]f h x ()思路:设的定义域为D ,即,由此得,的作用范围为E ,又f 对[]f g x ()x D ∈g x E ()∈f 作用,作用范围不变,所以,解得,F 为的定义域。
复合函数(知识点总结、例题分类讲解)[1]
(直打版)复合函数(知识点总结、例题分类讲解)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)复合函数(知识点总结、例题分类讲解)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)复合函数(知识点总结、例题分类讲解)(word版可编辑修改)的全部内容。
复合函数的定义域和解析式以及单调性【复合函数相关知识】 1、复合函数的定义如果y 是u 的函数,u 又是x 的函数,即()y f u =,()u g x =,那么y 关于x 的 函数(())y f g x =叫做函数()y f u =(外函数)和()u g x =(内函数)的复合函数,其中u 是中间变量,自变量为x 函数值为y . 例如:函数212x y += 是由2u y =和21u x =+ 复合而成立.说明:⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。
⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。
⑶))((x g f 与))((x f g 表示不同的复合函数。
2.求有关复合函数的定义域① 已知)(x f 的定义域为)(b a ,,求))((x g f 的定义域的方法:已知)(x f 的定义域为)(b a ,,求))((x g f 的定义域。
实际上是已知中间变量的u 的取值范围,即)(b a u ,∈,)()(b a x g ,∈.通过解不等式b x g a <<)(求得x 的范围,即为))((x g f 的定义域。
② 已知))((x g f 的定义域为)(b a ,,求)(x f 的定义域的方法:若已知))((x g f 的定义域为)(b a ,,求)(x f 的定义域。
复合函数知识点总结题型
复合函数知识点总结题型一、复合函数的定义1.1 复合函数的概念复合函数是指一个函数作用于另一个函数的结果,即一个函数的输入值是另一个函数的输出值。
设有两个函数f(x)和g(x),那么复合函数可以表示为f(g(x))或g(f(x))。
例如,若f(x) = 2x,g(x) = x^2,则f(g(x)) = 2x^2,g(f(x)) = (2x)^2。
1.2 复合函数的符号表示复合函数一般用圆括号来表示,如f(g(x))或g(f(x)),表示函数g和f的复合函数。
若有多个函数进行复合,如f(g(h(x))),则可以用括号表示复合次序,从内到外进行计算。
1.3 复合函数的定义域和值域复合函数的定义域和值域需要满足前一个函数的值域和后一个函数的定义域的交集,即f(g(x))的定义域是g(x)的定义域,f(g(x))的值域是f的值域。
二、复合函数的性质2.1 复合函数的可交换性对于函数f(x)和g(x),一般情况下f(g(x)) ≠ g(f(x)),即复合函数的次序一般是不能交换的。
但对于一些特殊的函数,如幂函数、指数函数等,复合函数的次序可以交换。
2.2 复合函数的代数性质复合函数具有分配律、结合律等代数性质,如(f+g)(x) = f(x) + g(x)、(f·g)(x) = f(x)·g(x)等。
2.3 复合函数的可逆性如果两个函数f和g满足f(g(x)) = x和g(f(x)) = x,则称f和g是互逆的函数。
在这种情况下,f和g都是可逆的函数,且f(g(x))和g(f(x))互为逆函数。
三、复合函数的求导3.1 复合函数的导数法则复合函数的求导可以使用链式法则,即对于复合函数f(g(x)),其导数为f'(g(x))·g'(x)。
链式法则是求导复合函数的一般方法,可以推广到多重复合函数的情况。
3.2 复合函数的高阶导数对于复合函数的高阶导数,可以依次求导,或者使用高阶链式法则进行求导。
复合函数(知识点总结、例题分类讲解)
2
x 1
在区间 [0,) 上都是增函数。
其中正确命题的序号是:__________。 (把你认为正确的命题序号都填上)
7
2.函数 y e |ln x| | x 1 | 的图象大致是(
)
6
Go the distance
3. (2008 江苏南通模拟, 5 分) 设 f ( x) o g l
3 3
a
( a 0 且 a 1) , 若 f ( x1 ) f ( x2 ) f ( xn ) 1 ( xi R , x
a a a 函数.而实质上原函数的最大单调增区间是 , ,由 ,3 , 得 3 ,即 a 6 . 2 2 2
【过关检测】
1. (1) f ( x)
x 2 5x 4 ;
2) g ( x) ( ) 4( ) 5
4.求复合函数的单调性 若 u g ( x) 增函数 减函数 增函数 减函数 即“同增异减”法则 5.复合函数的奇偶性 一偶则偶,同奇则奇
【例题讲解】
y f ( x)
增函数 减函数 减函数 增函数
则 y f [ g ( x)] 增函数 增函数 减函数 减函数
一、复合函数定义域解析式 例1 设函数 f ( x) 2 x 3, g ( x) 3x 5 ,求 f ( g ( x)), g ( f ( x)) .
1 2
2
2.求函数 y 4
x
3 2 x 5 的单调区间和值域.
例2
求 f ( x) = 5 - 4 x - x 2 的单调区间及值域
变式练习 2 求函数 f(x)= 2
(整理)复合函数求导
复合函数导数、定积分一、考试说明要求:二、应知应会知识和方法:1.已知x >0,比较2x 与ln(2x +1)的大小. 解 2x >ln(2x +1).说明 利用函数f (x )=2x -ln(2x +1)的导数,研究其单调性,进而说明其恒大于0.2.已知函数f (x )=sin x ,x ∈[0,32π]的图象如图所示,求图中阴影部分的面积.解 3.3.计算抛物线y =x 2-2x +3与直线y =x +3解 如图,由⎩⎨⎧y =x 2-2x +3,y =x +3.解得x 1=0,x 2=3.因此,所求图形的面积是S =⎠⎛03[(x +3)-(x 2-2x +3)]dx=(-13x 3+32x 2)|30=92.4.若(2x -1x )n 展开式中,各项二项式系数之和为64,求⎠⎜⎛1n(2x -1x )dx 的值.解 由条件得n =6.所以⎠⎜⎛1n(2x -1x )n3dx =⎠⎛16(2x -1x )2dx =⎠⎛16(4x 2-4+1x 2)dx =(43x 3-4x -1x )|61=5352.5.如图,用图“以直代曲”的方法计算直线x =0,x =1,y =0和曲线y =ax 2(a >0)围成的阴影图形的面积.x解 (1)分割——把区间[0,1]等分成n 个小区间:[0,1n ],[1n ,2n ],…,[i -1n ,i n ],…,[n -1n ,n n ].(2)以直代曲——△S i ≈f (i n )⋅△x =a⎝⎛⎭⎫i n 2⋅1n .(3)作和——因为每个小矩形的面积是相应的小曲边梯形面积的近似值,所以以n 个小矩形面积之和就是曲边三角形面积S 的近似值,即S =△S 1+△S 2+…+△S n =∑ni=1△S i ≈a n 3⋅16n ⋅(n +1)⋅(2n +1)=a 6⋅(1+1n )⋅(2+1n ).(4)逼近——当分割无限变细,即△x 无限趋近于0(亦即n 趋向于+∞)时,a 6⋅(1+1n )⋅(2+1n )无限趋近于S ,而当n 趋向于+∞时,a 6⋅(1+1n )⋅(2+1n )无限趋近于a 3.由此可知S =a3.二 复合函数的求导法则掌握导数的四则运算,复合函数的求导法则. 并能熟练运用法则解决实际问题。
复合函数的单调性例题和知识点总结
复合函数的单调性例题和知识点总结在数学的学习中,函数是一个非常重要的概念,而复合函数的单调性更是函数知识中的重点和难点。
理解并掌握复合函数的单调性,对于解决函数相关的问题有着至关重要的作用。
下面,我们将通过一些例题来深入探讨复合函数的单调性,并对相关知识点进行总结。
首先,我们来明确一下复合函数的概念。
如果函数$y=f(u)$的定义域为$D_1$,函数$u=g(x)$的值域为$D_2$,且$D_2\subseteq D_1$,那么对于定义域内的某个区间上的任意一个$x$,经过中间变量$u$,有唯一确定的$y$值与之对应,则变量$y$是变量$x$的复合函数,记为$y=fg(x)$。
接下来,我们探讨复合函数单调性的判断方法——同增异减。
也就是说,当内层函数与外层函数的单调性相同时,复合函数为增函数;当内层函数与外层函数的单调性不同时,复合函数为减函数。
下面通过几个例题来加深对复合函数单调性的理解。
例题 1:求函数$f(x)=\log_2(x^2 2x + 3)$的单调性。
首先,令$u = x^2 2x + 3$,则$f(u) =\log_2 u$。
对于$u = x^2 2x + 3$,其图象开口向上,对称轴为$x = 1$。
所以$u$在$(\infty, 1)$上单调递减,在$(1, +\infty)$上单调递增。
而$f(u) =\log_2 u$在定义域$(0, +\infty)$上单调递增。
因为内层函数$u$在$(1, +\infty)$上单调递增,外层函数$f(u)$也单调递增,根据同增异减,所以复合函数$f(x)$在$(1, +\infty)$上单调递增。
又因为内层函数$u$在$(\infty, 1)$上单调递减,外层函数$f(u)$单调递增,所以复合函数$f(x)$在$(\infty, 1)$上单调递减。
例题 2:求函数$f(x) = 2^{x^2 + 2x 3}$的单调性。
令$u = x^2 + 2x 3$,则$f(u) = 2^u$。
高一数学复合函数例题
高一数学复合函数例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一篇、复合函数问题一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、复合函数定义域问题: (一)例题剖析:(1)、已知f x ()的定义域,求[]f g x ()的定义域例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。
解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1)又f 对lnx 作用,作用范围不变,所以01<<ln x 解得x e ∈()1,,故函数f x (ln )的定义域为(1,e )例2. 若函数f x x ()=+11,则函数[]f f x ()的定义域为______________。
解析:先求f 的作用范围,由f x x ()=+11,知x ≠-1即f 的作用范围为{}x R x ∈≠-|1,又f 对f(x)作用所以f x R f x ()()∈≠-且1,即[]f f x ()中x 应满足x f x ≠-≠-⎧⎨⎩11()即x x ≠-+≠-⎧⎨⎪⎩⎪1111,解得x x ≠-≠-12且故函数[]f f x ()的定义域为{}x R x x ∈≠-≠-|12且 (2)、已知[]f g x ()的定义域,求f x ()的定义域例3. 已知f x ()32-的定义域为[]x ∈-12,,则函数f x ()的定义域为_________。
解析:f x ()32-的定义域为[]-12,,即[]x ∈-12,,由此得[]3215-∈-x ,所以f 的作用范围为[]-15,,又f 对x 作用,作用范围不变,所以[]x ∈-15,即函数f x ()的定义域为[]-15,例4. 已知f x x x ()lg 22248-=-,则函数f x ()的定义域为______________。
高中数学《简单复合函数的导数》知识点讲解及重点练习
5.2.3 简单复合函数的导数学习目标 1.进一步运用导数公式和导数运算法则求函数的导数.2.了解复合函数的概念,掌握复合函数的求导法则.知识点 复合函数的导数1.复合函数的概念一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)).思考 函数y=log2(x+1)是由哪些函数复合而成的?答案 函数y=log2(x+1)是由y=log2u及u=x+1两个函数复合而成的.2.复合函数的求导法则一般地,对于由函数y=f(u)和u=g(x)复合而成的函数y=f(g(x)),它的导数与函数y=f(u),u =g(x)的导数间的关系为y′x=y′u·u′x,即y对x的导数等于y对u的导数与u对x的导数的乘积.1.y=cos 3x由函数y=cos u,u=3x复合而成.( √ )2.函数f(x)=sin(2x)的导数为f′(x)=cos 2x.( × )3.函数f(x)=e2x-1的导数为f′(x)=2e2x-1.( √ )一、求复合函数的导数例1 求下列函数的导数:(1)y=1(1-3x)4;(2)y=cos(x2);(3)y=log2(2x+1);(4)y=e3x+2.解 (1)令u=1-3x,则y=1u4=u-4,所以y′u=-4u-5,u′x=-3.所以y′x=y′u·u′x=12u-5=12 (1-3x)5.(2)令u =x 2,则y =cos u ,所以y ′x =y ′u ·u ′x =-sin u ·2x =-2x sin(x 2).(3)设y =log 2u ,u =2x +1,则y x ′=y u ′u x ′=2u ln 2=2(2x +1)ln 2.(4)设y =e u ,u =3x +2,则y x ′=(e u )′·(3x +2)′=3e u =3e 3x +2.反思感悟 (1)求复合函数的导数的步骤(2)求复合函数的导数的注意点:①分解的函数通常为基本初等函数;②求导时分清是对哪个变量求导;③计算结果尽量简洁.跟踪训练1 求下列函数的导数:(1)y =11-2x ;(2)y =5log 2(1-x );(3)y =sin (2x +π3).解 (1)()12=12,y x --设y =12u -,u =1-2x ,则y ′x =()1212u 'x '⎛⎫- ⎪⎝⎭-()32212u -⎛⎫-⋅ ⎪⎝⎭=-()32=12x .--(2)函数y =5log 2(1-x )可看作函数y =5log 2u 和u =1-x 的复合函数,所以y ′x =y ′u ·u ′x =5(log 2u )′·(1-x )′=-5u ln 2=5(x -1)ln 2.(3) 设y =sin u ,u =2x +π3,则y x ′=(sin u )′(2x +π3)′=cos u ·2=2cos (2x +π3).二、复合函数与导数的运算法则的综合应用例2 求下列函数的导数:(1)y =ln 3x e x ;(2)y =x 1+x 2;(3)y =x cos (2x +π2)sin (2x +π2).解 (1)∵(ln 3x )′=13x ×(3x )′=1x,∴y ′=(ln 3x )′e x -(ln 3x )(e x )′(e x )2=1x -ln 3x e x =1-x ln 3x x e x .(2)y ′=(x 1+x 2)′=x ′1+x 2+x (1+x 2)′=1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2.(3)∵y =x cos (2x +π2)sin (2x +π2)=x (-sin 2x )cos 2x =-12x sin 4x ,∴y ′=(-12x sin 4x )′=-12sin 4x -x 2cos 4x ·4=-12sin 4x -2x cos 4x .反思感悟 (1)在对函数求导时,应仔细观察及分析函数的结构特征,紧扣求导法则,联系学过的求导公式,对不易用求导法则求导的函数,可适当地进行等价变形,以达到化异求同、化繁为简的目的.(2)复合函数的求导熟练后,中间步骤可以省略,即不必再写出函数的复合过程,直接运用公式,从外层开始由外及内逐层求导.跟踪训练2 求下列函数的导数:(1)y =sin 2x 3;(2)y =sin 3x +sin x 3;(3)y =x ln(1+x ).解 (1)方法一 ∵y =1-cos 23x 2,∴y ′=(12-cos 23x 2)′=13sin 23x .方法二 y ′=2sin x 3cos x 3·13=23sin x 3cos x 3=13sin 23x .(2)y ′=(sin 3x +sin x 3)′=(sin 3x )′+(sin x 3)′=3sin 2x cos x +cos x 3·3x 2=3sin 2x cos x +3x 2cos x 3.(3)y ′=x ′ln(1+x )+x [ln(1+x )]′=ln(1+x )+x 1+x.三、与切线有关的综合问题例3 (1)曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( )A.5 B .25 C .35 D .0答案 A解析 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行.∵y ′=22x -1,∴0=|x x y'=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是5.(2)设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值.解 由曲线y =f (x )过(0,0)点,可得ln 1+1+b =0,故b =-1.由f (x )=ln(x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a ,即为曲线y =f (x )在点(0,0)处的切线的斜率.由题意,得32+a =32,故a =0.反思感悟 (1)求切线的关键要素为切点,若切点已知便直接使用,切点未知则需先设再求.两直线平行与垂直关系与直线的斜率密切相关,进而成为解出切点横坐标的关键条件.(2)在考虑函数问题时首先要找到函数的定义域.在解出自变量的值或范围时也要验证其是否在定义域内.跟踪训练3 (1)已知函数f (x )=k +ln x e x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,则k 的值为 .答案 1解析 由f (x )=ln x +k e x,得f ′(x )=1-kx -x ln x x e x,x ∈(0,+∞).由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1.(2)设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a = .该切线与坐标轴围成的面积为 .答案 2 14解析 令y =f (x ),则曲线y =e ax 在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax ,所以f′(0)=a e0=a,故a=2.由题意可知,切线方程为y-1=2x,即2x-y+1=0.令x=0得y=1;令y=0得x=-1 2 .∴S=12×12×1=14.1.(多选)函数y=(x2-1)n的复合过程正确的是( ) A.y=u n,u=x2-1 B.y=(u-1)n,u=x2 C.y=t n,t=(x2-1)n D. t=x2-1, y=t n答案 AD2.函数y=(2 020-8x)3的导数y′等于( )A.3(2 020-8x)2B.-24xC.-24(2 020-8x)2D.24(2 020-8x)2答案 C解析 y′=3(2 020-8x)2×(2 020-8x)′=3(2 020-8x)2×(-8)=-24(2 020-8x)2.3.函数y=x2cos 2x的导数为( )A.y′=2x cos 2x-x2sin 2xB.y′=2x cos 2x-2x2sin 2xC.y′=x2cos 2x-2x sin 2xD.y′=2x cos 2x+2x2sin 2x答案 B解析 y′=(x2)′cos 2x+x2(cos 2x)′=2x cos 2x+x2(-sin 2x)·(2x)′=2x cos 2x-2x2sin 2x.4.已知f(x)=ln(3x-1),则f′(1)= .答案 3 2解析 ∵f′(x)=33x-1,∴f′(1)=33-1=32.5.曲线y=ln(2-x)在点(1,0)处的切线方程为.答案 x+y-1=0解析 ∵y ′=-12-x =1x -2,∴y ′| x =1=11-2=-1,即切线的斜率是k =-1,又切点坐标为(1,0).∴y =ln(2-x )在点(1,0)处的切线方程为y =-(x -1),即x +y -1=0.1.知识清单:(1)复合函数的概念.(2)复合函数的求导法则.2.方法归纳:转化法.3.常见误区:求复合函数的导数时不能正确分解函数;求导时不能分清是对哪个变量求导;计算结果复杂化.1.(多选)下列函数是复合函数的是( )A .y =-x 3-1x +1 B .y =cos (x +π4)C .y =1ln xD .y =(2x +3)4答案 BCD解析 A 不是复合函数,B ,C ,D 均是复合函数,其中B 由y =cos u ,u =x +π4复合而成;C 由y =1u,u =ln x 复合而成;D 由y =u 4,u =2x +3复合而成.2.函数y =x ln(2x +5)的导数为( )A .ln(2x +5)-x 2x +5B .ln(2x +5)+2x 2x +5C .2x ln(2x +5)D.x 2x +5答案 B解析 ∵y =x ln(2x +5),∴y ′=ln(2x +5)+2x 2x +5.3.函数y =x 3e cos x 的导数为( )A .y ′=3x 2e cos x +x 3e cos xB .y ′=3x 2e cos x -x 3e cos x sin xC .y ′=3x 2e cos x -x 3e sin xD .y ′=3x 2e cos x +x 3e cos x sin x答案 B解析 y ′=(x 3)′e cos x +x 3(e cos x )′=3x 2e cos x +x 3e cos x ·(cos x )′=3x 2e cos x -x 3e cos x sin x .4.曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1答案 C解析 ∵y =x e x -1,∴y ′=e x -1+x e x -1,∴k =y ′|x =1=e 0+e 0=2,故选C.5.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( )A .1B .2C .-1D .-2答案 B解析 设切点坐标是(x 0,x 0+1),依题意有Error!由此得x 0+1=0,x 0=-1,a =2.6.函数y =sin 2x cos 3x 的导数是 .答案 y ′=2cos 2x cos 3x -3sin 2x sin 3x解析 ∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x .7.已知函数f (x )的导函数为f ′(x ),若f (x )=f ′(π9)sin 3x +cos 3x ,则f ′(π9)= .答案 33解析 ∵f (x )=f ′(π9)sin 3x +cos 3x ,∴f ′(x )=f ′(π9)·3cos 3x -3sin 3x ,令x =π9可得f ′(π9)=f ′(π9)×3cos π3-3sin π3=32 f ′(π9)-3×32,解得f ′(π9)=33.8.点P 是f (x )=(x +1)2上任意一点,则点P 到直线y =x -1的最短距离是 ,此时点P 的坐标为 .答案 728 (-12,14)解析 与直线y =x -1平行的f (x )=(x +1)2的切线的切点到直线y =x -1的距离最短.设切点为(x 0,y 0),则f ′(x 0)=2(x 0+1)=1,∴x 0=-12,y 0=14.即P (-12,14)到直线y =x -1的距离最短.∴d =|-12-14-1|(-1)2+12=728.9.求下列函数的导数:(1)y =ln(e x +x 2);(2)y =102x +3;(3)y =sin 4x +cos 4x .解 (1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x +2x )=e x +2x e x +x 2.(2)令u =2x +3,则y =10u ,∴y ′x =y ′u ·u ′x =10u ·ln 10·(2x +3)′=2×102x +3ln 10.(3)∵y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2 x ·cos 2 x =1-12sin 2 2x =1-14(1-cos 4x )=34+14cos 4x .∴y ′=-sin 4x .10.曲线y =e sin x 在点(0,1)处的切线与直线l 平行,且与l 的距离为2,求直线l 的方程.解 ∵y =e sin x ,∴y ′=e sin x cos x ,∴y ′|x =0=1.∴曲线y =e sin x 在点(0,1)处的切线方程为y -1=x ,即x -y +1=0.又直线l 与x -y +1=0平行,故直线l 可设为x -y +m =0.由|m -1|1+(-1)2=2得m =-1或3.∴直线l 的方程为x -y -1=0或x -y +3=0.11.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13 B.12 C.23D .1答案 A解析 依题意得y ′=e -2x ·(-2)=-2e -2x ,y ′|x =0=-2e -2×0=-2.所以曲线y =e -2x +1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2,y =0与y =x 的图象,如图所示.因为直线y =-2x +2与y =x 的交点坐标是(23,23),直线y =-2x +2与x 轴的交点坐标是(1,0),所以结合图象可得,这三条直线所围成的三角形的面积为12×1×23=13.12.(多选)已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值可以是( )A.π4 B.π2 C.3π4 D. 7π8答案 CD解析 因为y =4e x +1,所以y ′=-4e x (e x +1)2=-4e x e 2x +2e x +1=-4e x +1e x+2.因为e x >0,所以e x +1e x ≥2(当且仅当x =0时取等号),所以y ′∈[-1,0),所以tan α∈[-1,0).又因为α∈[0,π),所以α∈[3π4,π).13.设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )是奇函数,则φ= .答案 π6解析 ∵f ′(x )=-3sin(3x +φ),∴f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ),令g (x )=cos(3x +φ)-3sin(3x +φ),∵其为奇函数,∴g (0)=0,即cos φ-3sin φ=0,∴tan φ=33,又0<φ<π,∴φ=π6.14.已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是 .答案 y =-2x -1解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,所以f (x )=ln x -3x ,f ′(x )=1x-3,f ′(1)=-2,所以切线方程为y =-2x -1.15.已知f (1x )=x 1+x ,则f ′(x )等于( )A.11+x B .-11+xC.1(1+x )2 D .-1(1+x )2答案 D解析 由f (1x )=x1+x =11x +1,得f (x )=1x +1,从而f ′(x )=-1(1+x )2,故选D.16.(1)已知f (x )=e πx sin πx ,求f ′(x )及f ′(12);(2)在曲线y =11+x 2上求一点,使过该点的切线平行于x 轴,并求切线方程.解 (1)∵f (x )=e πx sin πx ,∴f ′(x )=πe πx sin πx +πe πx cos πx=πe πx (sin πx +cos πx ).∴f ′(12)=2e sin +cos 22πππ⎛⎫π ⎪⎝⎭2e .π=π(2)设切点坐标为P (x 0,y 0),由题意可知0=|0.x x y'=又y ′=-2x (1+x 2)2,∴0=|x x y'=-2x 0(1+x 20)2=0.解得x 0=0,此时y 0=1.即该点的坐标为P (0,1),切线方程为y -1=0.。
高中数学选择性必修二 5 2 3简单复合函数的导数(知识梳理+例题+变式+练习)(含答案)
5.2.3简单复合函数的导数要点一 复合函数的定义一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )和u =g (x )的复合函数,记作y =f(g(x)) 要点二 复合函数的求导法则复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积,即若y =f (g (x )),则y ′=[f (g (x ))]′=f ′(g (x ))·g ′(x ) 【重点小结】(1)复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数.(2)中学阶段不涉及较复杂的复合函数的求导问题,只研究y =f(ax +b)型复合函数的求导,不难得到y ′=(ax +b) ′·f ′(ax +b)=af ′(ax +b). 【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)函数y =log 3(x +1)是由y =log 3t 及t =x +1两个函数复合而成的.( ) (2)函数f (x )=e -x 的导数是f ′(x )=e -x .( ) (3)函数f (x )=ln (1-x )的导数是f ′(x )=11-x .( )(4)函数f (x )=sin 2x 的导数是f ′(x )=2 cos 2x .( ) 【答案】(1)√(2)×(3)×(4)√ 2.(多选题)下列所给函数为复合函数的是( ) A .y =ln (x -2) B .y =ln x +x -2 C .y =(x -2)ln x D .y =ln 2x 【答案】AD【解析】函数y =ln(x -2)是由函数y =ln u 和u =g (x )=x -2复合而成的,A 符合;函数y =ln 2x 是由函数y =ln u 和u =2x 复合而成的,D 符合,B 与C 不符合复合函数的定义.故选AD. 3.若函数f (x )=3cos(2x +π3),则f ′(π2)等于( )A .-3 3B .33C .-6 3D .63 【答案】B【解析】f ′(x )=-6sin(2x +π3)∴f ′(π2)=-6sin ⎝⎛⎭⎫2×π2+π3=6sin π3=6×32=3 3.故选B.4.曲线y =e -x 在点(0,1)的切线方程为________.【答案】x +y -1=0 【解析】∵y =e -x ∴y ′=-e -x ∴y ′|x =0=-1∴切线方程为y -1=-x 即x +y -1=0题型一 求复合函数的导数【例1】写出下列各函数的中间变量,并利用复合函数的求导法则,求出函数的导数. (1)y =1(3-4x )4;(2)y =cos(2 008x +8); (3)y =21-3x;(4)y =ln(8x +6).【解析】(1)引入中间变量u =φ(x )=3-4x .则函数y =1(3-4x )4是由函数f (u )=1u 4=u -4 与u =φ(x )=3-4x 复合而成的.查导数公式表可得f ′(u )=-4u -5=-4u 5,φ′(x )=-4.根据复合函数求导法则可得⎣⎡⎦⎤1(3-4x )4′=f ′(u )φ′(x )=-4u 5·(-4)=16u 5=16(3-4x )5.(2)引入中间变量u =φ(x )=2 008x +8,则函数y =cos(2 008x +8)是由函数f (u )=cos u 与u =φ(x )=2 008x +8复合而成的,查导数公式表可得 f ′(u )=-sin u ,φ′(x )=2 008. 根据复合函数求导法则可得[cos(2 008x +8)]′=f ′(u )φ′(x )=(-sin u )·2 008 =-2 008sin u =-2 008sin(2 008x +8). (3)引入中间变量u =φ(x )=1-3x , 则函数y =21-3x是由函数f (u )=2u 与u =φ(x )=1-3x 复合而成的,查导数公式表得f ′(u )=2u ln 2,φ′(x )=-3, 根据复合函数求导法则可得 (21-3x)′=f ′(u )φ′(x )=2u ln 2·(-3)=-3×2u ln 2=-3×21-3xln 2.(4)引入中间变量u =φ(x )=8x +6,则函数y =ln(8x +6)是由函数f (u )=ln u 与u =φ(x )=8x +6复合而成的,查导数公式表可得f ′(u )=1u ,φ′(x )=8.根据复合函数求导法则可得[ln(8x +6)]′=f ′(u )·φ′(x )=8u =88x +6=44x +3.选取中间变量,确定原函数复合方式,写出内层,外层函数表达式,利用复合函数求导法则求解 【方法归纳】复合函数求导的步骤【跟踪训练】求下列函数的导数. (1)y =e 2x +1. (2)y =1(2x -1)3.(3)y =5log 2(1-x ). (4)y =sin 3x +sin 3x .【解析】(1)函数y =e 2x +1可看作函数y =e u 和u =2x +1的复合函数,所以y ′x =y ′u ·u ′x =(e u )′(2x +1)′=2e u =2e 2x +1.(2)函数y =1(2x -1)3可看作函数y =u -3和u =2x -1的复合函数,所以y ′x =y ′u ·u ′x =(u -3)′(2x -1)′=-6u -4=-6(2x -1)-4=-6(2x -1)4.(3)函数y =5log 2(1-x )可看作函数y =5log 2u 和u =1-x 的复合函数,所以y ′x =y ′u ·u ′x =(5log 2u )′·(1-x )′=-5u ln 2=5(x -1)ln 2.(4)函数y =sin 3 x 可看作函数y =u 3和u =sin x 的复合函数,函数y =sin 3x 可看作函数y =sin v 和v =3x 的复合函数.所以y ′x =(u 3)′·(sin x )′+(sin v )′·(3x )′=3u 2·cos x +3cos v =3 sin 2 x cos x +3cos 3x . 题型二 复合函数求导法则的综合应用 【例2】(1)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.【答案】(1)2x -y =0【解析】(1)设x >0,则-x <0,因为x ≤0时,f (x )=e-x -1-x ,所以f (-x )=e x -1+x ,又因为f (x )为偶函数,所以f (x )=e x -1+x ,f ′(x )=e x -1+1,f ′(1)=e 1-1+1=2,所以切线方程为y -2=2(x -1),即:2x -y =0. (2)已知函数f (x )=ax 2+2ln(2-x )(a ∈R ),设曲线y =f (x )在点(1,f (1))处的切线为l ,若直线l 与圆C :x 2+y 2=14相切,则实数a 的值为__________.【解析】(2)因为f (1)=a ,f ′(x )=2ax +2x -2(x <2),所以f ′(1)=2a -2,所以切线l 的方程为2(a -1)x -y +2-a =0.因为直线l 与圆相切,所以圆心到直线l 的距离等于半径,即d =|2-a |4(a -1)2+1=12,解得a =118【方法归纳】准确利用复合函数求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确. 【跟踪训练2】(1)设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 【答案】(1)2 【解析】(1)令y =f (x )则曲线y =e ax 在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(x )=(e ax )′=a e ax . 所以f ′(0)=a e 0=a 故a =2.(2)已知函数f (x )=ax 2+2ln(2-x )设曲线y =f (x )在点(1,f (1))处的切线为l ,则切线l 的方程为________;若直线l 与圆 C :x 2+y 2=14相交,则实数u 的取值范围为________.【答案】(2)2(a -1)x -y +2-a =0 (118,+∞)【解析】(2)f ′(x )=2ax +2x -2(x <2)∴f ′(1)=2a -2 又f (1)=a∴切线l 的方程为:y -a =(2a -2)(x -1) 即2(a -1)x -y +2-a =0.若直线l 与圆C :x 2+y 2=14相交则圆心到直线l 的距离d =|2-a |4(a -1)2+1<12.解得a >118,即实数a 的取值范围为(118,+∞).【易错辨析】对复合函数求导不完全致错 例3 函数y =x e 1-2x的导数y ′=________. 【答案】(1-2x )e 1-2x【解析】y ′=e 1-2x+x (e 1-2x)′=e 1-2x +x e 1-2x ·(1-2x )′ =e 1-2x+x e 1-2x(-2)=(1-2x )e 1-2x.【易错警示】 出错原因 对e 1-2x的求导没有按照复合函数的求导法则进行,导致求导不完全致错纠错心得复合函数对自变量的导数等于已知函数对中间变量的导数乘以中间变量对自变量的导数,分步计算时,每一步都要明确是对哪个变量求导一、单选题1.随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著的经济效益.假设在放射性同位素钍234的衰变过程中,其含量N (单位:贝克)与时间t (单位:天)满足函数关系()242tN t N -=,其中0N 为0=t 时钍234的含量.已知24t =时,钍234含量的瞬时变化率为8ln2-,则()96N =( )A .12B .12ln2C .24D .24ln2【答案】C 【分析】对()N t 求导得()24012ln 224t N t N -⎛⎫'=⨯⨯- ⎪⎝⎭,根据已知有()248ln 2N '=-即可求0N ,进而求()96N .【解析】 由()242tN t N -=,得()24012ln 224t N t N -⎛⎫'=⨯⨯- ⎪⎝⎭,∵当24t =时,()242401242ln 28ln 224N N -⎛⎫'=⨯⨯-=- ⎪⎝⎭,解得02824384N =⨯⨯=,∵()243842t N t -=⨯,∵当96t =时,()96424963842384224N --=⨯=⨯=.故选:C.2.已知()f x '是函数()f x 的导数,且对任意的实数x 都有()()()e 22xf x x f x -'=--,()08f =则不等式()0f x <的解集是( )A .()2,4-B .()(),02,-∞+∞C .()(),42,-∞-+∞D .()(),24,-∞-+∞【答案】D 【分析】构造新函数()()x g x e f x =,求出()'g x 后由导函数确定()g x ,注意可得(0)8g =,从而得出()f x 的解析式,然后解不等式即可.设()()x g x e f x =,000)e )8((f g ==,因为()()()e 22xf x x f x -'=--,所以()()e (22)x f x f x x -'+=-,所以()e ()e ()e (()())22x x x g x f x f x f x f x x '''=+=+=-. 因此2()2g x x x c =-+,(0)8g c ==,所以2()28g x x x =-++, 228()e xx x f x -++=, 不等式()0f x <即为2280exx x -++< ,2280x x -->,解得2x <-或4x >. 故选:D .3.已知0a b >>,函数axy e =在0x =处的切线与直线20x by -=平行,则22a b a b+-的最小值是( ) A .2 B .3 C .4 D .5【答案】C 【分析】结合复合函数求导求出函数的导函数,进而求出切线的斜率,然后根据两直线平行斜率相等得到2ab =,进而结合均值不等式即可求出结果. 【解析】因为ax y e =,则ax y ae '=,因为切点为()0,1,则切线的斜率为k a =,又因为切线与直线20x by -=平行,所以2a b=,即2ab =, 所以()()222244a b ab a b a b a b a b a b-++==-+≥---, 当且仅当24ab a b a b =⎧⎪⎨-=⎪-⎩,即11a b ⎧=⎪⎨=⎪⎩时,等号成立,则22a b a b +-的最小值是4, 故选:C.4.已知函数()f x 在R 上可导,函数()()()2244F x f x f x =-+-,则()2F '等于( )A .1-B .0C .1D .2【答案】B 【分析】利用复合函数求导法则运算即可.∵()()()2244F x f x f x =-+-,∵()()()222424F x xf x xf x '''=---,∵()()()240400F f f '''=-=. 故选:B.5.已知()2ln 2f x x x =,若()00f x x '=,则0x 等于( )A .12 B .1e 2C .ln 2D .1【答案】A 【解析】因为()2ln 2f x x x =,所以()2ln2f x x x x '=+,又()00f x x '=,所以002ln 20x x =,因为00x >,所以0ln 20x =,所以012x =. 故选:A.6.下列关于函数()21ny x =-的复合过程与导数运算正确的是( )A .()1n y u =-,2u x =,()21ny nx u '=- B .n y t =,()21nt x =-,()121n y nx t -'=-C .n y u =,21u x =-,()1221n y nx x -'=-D .n y u =,21u x =-,()121n y n x -'=-【答案】C 【分析】直接根据函数()21ny x =-的结构,找到内层函数和外层函数,即可得解.【解析】由复合函数求导法则,知函数()21ny x =-由基本初等函数n y u =,21u x =-复合而成,所以()112221n n u x y y u nux nx x --'''=⋅=⋅=-.故选:C.7.函数2sin y x =的导数是( ) A .2sin x B .22sin xC .2cos xD .sin 2x【答案】D 【分析】利用复合函数进行求导,即可得到答案; 【解析】2sin y x =,令sin u x =,则2y u =,从而cos 2cos 2sin cos x u y y x u x x x ''=⨯== sin 2x =.故选:D.8.函数e sin 2x y x =的导数为( ) A .2e cos2x y x '=B .()e sin22cos2xy x x '=+C .()2e sin22cos2xy x x '=+D .()e 2sin2cos2xy x x '=+【答案】B 【分析】结合导数的运算法则即可求出结果. 【解析】由题意结合导数的运算法则可得()()()e sin 2e sin 2e sin 22cos2x x x y x x x x '''=⋅+⋅=+. 故选:B.二、多选题9.以下函数求导正确的是( ) A .若()2211x f x x -=+,则()()2241x f x x '=+ B .若()2e x f x =则()2e xf x '=C .若()f x ()f x '=D .设()f x 的导函数为()f x ',且()()232ln f x x xf x '=++,则()924f '=-【答案】ACD 【分析】利用求导法则逐项检验即可求解. 【解析】对于A ,()()()()()2222222112411x x x xxf x xx+--⋅'==++,故A 正确;对于B ,()22e 22e x xf x =⋅=',故B 错误;对于C ,()()()()111222121212212f x x x x --'⎡⎤'=-=⋅-⋅=-⎢⎥⎣⎦C 正确; 对于D ,()()1232f x x f x''=++,所以()924f '=-,故D 正确.故选:ACD.10.(多选)函数()x f x x =(0x >),我们可以作变形:()ln ln e e xx x x x f x x ===,所以()xf x x =可看作是由函数()e t p t =和()ln g x x x =复合而成的,即()x f x x =(0x >)为初等函数.对于初等函数()1x h x x =(0x >)的说法正确的是( ) A .无极小值 B .有极小值1 C .无极大值 D .有极大值1e e【答案】AD 【分析】根据材料,把函数改写为复合函数的形式()111ln ln e exx x xxh x x ===,求导,分析导函数正负,研究极值,即得解【解析】根据材料知()111ln ln e exx x xxh x x ===,所以()ln ln 111ee ln x x xx x h x x '⎛⎫'=⋅=⋅ ⎪⎝⎭()1ln 222ln ln 111e 1x x x x x x x ⎛⎫-+=⋅- ⎪⎝⎭. 令()0h x '=,得e x =,当0e x <<时,()0h x '>,此时函数()h x 单调递增, 当e x >时,()0h x '<,此时函数()h x 单调递减, 所以()h x 有极大值()1e e e h =,无极小值 故选:AD .11.函数()y g x =在区间[a ,]b 上连续,对[a ,]b 上任意二点1x 与2x ,有1212()()()22x x g x g x g ++<时,我们称函数()g x 在[a ,]b 上严格上凹,若用导数的知识可以简单地解释为原函数的导函数的导函数(二阶导函数)在给定区间内恒为正,即()0g x ''>.下列所列函数在所给定义域中“严格上凹”的有( ) A .2()log (0)f x x x => B .()2x f x e x -=+C .3()2(0)f x x x x =-+<D .2()sin (0)f x x x x π=-<<【答案】BC 【分析】根据题目中定义,逐个判断各函数是否满足条件二阶导函数大于零,即可解出. 【解析】由题意可知,若函数在所给定义域中“严格上凹”,则满足()0f x ''>在定义域内恒成立. 对于A ,2()log (0)f x x x =>,则2111()()0ln 2ln 2f x x x '''==-⋅<在0x >时恒成立, 不符合题意,故选项A 错误;对于B ,()2x f x e x -=+,则()(21)20x x f x e e --'''=-+=>恒成立, 符合题意,故选项B 正确;对于C ,3()2(0)f x x x x =-+<,则2()(32)60f x x x '''=-+=->在0x <时恒成立, 符合题意,故选项C 正确;对于D ,2()sin (0)f x x x x π=-<<,则()(cos 2)sin 20f x x x x ''=-'=--<在0πx <<时恒成立,不符合题意,故选项D 错误. 故选:BC.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.若定义在R 上的函数()f x 满足()()30f x f x '->,13f e ⎛⎫= ⎪⎝⎭,则不等式()3xf x e >的解集为________________. 【答案】1,3⎛+∞⎫⎪⎝⎭【分析】 构造()3()xf x F e x =,由已知结合导数判断函数的单调性,利用函数的单调性解不等式. 【解析】构造()3()x f x F e x =,则()3363()3()()3()x x x x e f x e f x F f x f x e x e''-=-=', 函数()f x 满足()()30f x f x '->,则()0F x '>,故()F x 在R 上单调递增.又∵13f e ⎛⎫= ⎪⎝⎭,则113F ⎛⎫= ⎪⎝⎭, 则不等式3()x f x e >∵3()1x f x e >,即1()3F x F ⎛⎫> ⎪⎝⎭, 根据()F x 在R 上单调递增,可知1,3x ⎛⎫∈+∞ ⎪⎝⎭. 故答案为:1,3⎛+∞⎫ ⎪⎝⎭13.已知函数())()cos0f x θθπ=+<<,若()()f x f x '+是奇函数,则θ=______. 【答案】6π【分析】首先利用复合函数求导法则求出()f x ',然后利用辅助角公式化简()()f x f x '+,根据奇函数性质可得到()6k k Z πθπ-=∈,最后结合θ的范围即可求解.【解析】因为())f x θ'=+,所以()()))cos 2sin 6f x f x πθθθ⎫'+=++=-+-⎪⎭, 若()()f x f x '+为奇函数,则()()000f f '+=,即2sin 06πθ⎛⎫-= ⎪⎝⎭, 所以()6k k Z πθπ-=∈,又因为()0,θπ∈,所以6πθ=. 故答案为:6π.14.设()f x =()2f '=______. 【答案】2##0.45【分析】利用复合函数求导求出'()f x 即可求解.【解析】令ln y u =,12u t ==,21t x =+, 从而'1yu =,1'212u t -=='2t x =, 故'21()21x f x x u x ==+, 所以()225f '=. 故答案为:25.四、解答题 15.求下列函数的导数.(1)()991y x =+(2)y =(3)()()23sin 25y x x =-+;(4)cos(32)2x y x-= (5)()()231ln 3y x x =+(6)33x x y e -=.【答案】(1)9899(1)y x '=+(2)()122121x x y x -+'=+(3)()()()2sin 2c 6os 5425y x x x +'=+-+(4)()()26sin 322cos 324x x x y x ----'=(5)()()()236311ln 3x x x x y ++=+(6)333ln 333x x x x y e e --'=-⋅【分析】直接利用导数的运算法则、基本初等函数的导数公式以及简单复合函数的导数计算法则求解. (1)解:99(1)y x =+,989899(1)(1)99(1)y x x x ∴'=++'=+;(2)解:因为y =()()1222121x x x x y x -''⋅-+'==+(3)解:因为()()23sin 25y x x =-+,所以()()()()()()()23sin 2523sin 2552sin 2546cos 2x y x x x x x x '''+=-=⎤-+++⎡⎣+-+⎦(4) 解:因为cos(32)2x y x -=,所以[]()()()()()22cos(32)22cos 326sin 322cos 3242x x x x x x x y x x ''-------'== (5)解:因为()()231ln 3y x x =+,所以()()()()()()()222ln ln 31313313631ln 3x x x x y x x x x '+'⎡⎤+=⎣+=+++⎡⎤⎣⎦⎦ (6)解:因为33x x y e -=,所以()()3333333ln 333x x x x x x x x y e e e e ----'''=+=-⋅16.求下列函数的导数.(1)()sin 23y x =+;(2)21e x y -+=;(3)()22log 21y x =-. 【答案】(1)()2cos 23x +(2)212e x -+-(3)()2421ln 2x x -⋅【分析】(1)函数()sin 23y x =+可以看作函数sin y u =和23u x =+的复合函数,由复合函数的求导法则即可求出结果;(2)函数21e x y -+=可以看作函数u y e =和21u x =-+的复合函数,由复合函数的求导法则即可求出结果;(3)函数()22log 21y x =-可以看作函数2log y u =和221u x =-的复合函数,由复合函数的求导法则即可求出结果.(1)函数()sin 23y x =+可以看作函数sin y u =和23u x =+的复合函数,由复合函数的求导法则可得()()()sin 23cos 22cos 2cos 23x u x y y u u x u u x ''⋅'''=⋅=+=⋅==+. (2)函数21e x y -+=可以看作函数u y e =和21u x =-+的复合函数,由复合函数的求导法则可得()()()21e 21e 22eu u x x u x y y u x -+''''=⋅=⋅-+=⋅-=-'. (3)函数()22log 21y x =-可以看作函数2log y u =和221u x =-的复合函数,由复合函数的求导法则可得()2144ln 221ln 2x u x x y y u x u x '''=⋅=⋅=-⋅.。
复合函数讲义
复合函数教师:司马红丽复合函数【知识要点归纳】 1、复合函数的定义2、定义域和值域:3、单调性【经典例题】例1:设函数2(32)35f x x x +=+−,求()f x 的解析式例2:设函数f (x )的定义域是[—1,1]那么函数f (x 2-1)的定义域是________例3:若,且,求的最值。
例4:若函数的值域为一切实数,求实数的取值范围。
例5:求函数23log (32)y x x =++的单调增区间和单调减区间。
例6:讨论函数3428.0+−=x x y 的单调性。
例7:已知)32(log 24x x y −+=. (1)求定义域;(2)求f (x )的单调区间;(3)求y 的最大值,并求取最大值时x 值.例8:若)3(log ax y a −=在[0,1]上是减函数,则a 的取值范围是_______。
例9:若()()25log 3log 3x x −≥()()25log 3log 3yy−−−,则( )A .x y −≥ 0B .x y +≥ 0C .x y −≤ 0D .x y +≤ 0【课堂练习】 1.函数y=在区间[4,5]上的最大值是_______,最小值是_______。
2.函数y =(2 – x – x 2)的单调减区间是_______。
3.已知y = a log (2-xa )在[0,1]上是x 的减函数,求a 的取值范围.4.若y = f (x )定义域为[-2, 1],求y = f (2x + 1)和y = f (x 2)的定义域5.求函数1x x 24325−−⋅+的单调区间和值域.6.已知y = f (x )在R 上是增函数,试判断y = f (-2x + 3x + 1)的单调性.7.已知函数122−+−=ax x y 在区间()3,∞−上是增函数,求a 的范围.8.是否存在常数λ使函数y=4x +(2-λ)2x +2-λ在区间(-∞,-2)上是减函数,在[-1,0]上是增函数?若存在,求出λ范围,若不存在求出λ的取值范围。
复合函数(知识点总结、例题分类讲解)
千里之行,始于足下。
复合函数(知识点总结、例题分类讲解)复合函数是指由两个或多个函数相互作用形成的新函数。
在数学中,复合函数是一种常见的概念,并且在高等数学、线性代数、微积分等多个领域中都有应用。
本文将对复合函数的知识点进行总结,并通过分类讲解一些例题。
一、复合函数的定义:设有函数f和g,对于g的定义域中的每个x,存在f的定义域中的y,使得y=g(x),则有一个复合函数h(x)=f(g(x)),它的定义域是所有能使得g(x)的值能成为f(x)定义域中的自变量的值的x。
二、复合函数的求解步骤:1. 确定复合函数的形式h(x)=f(g(x))。
2. 确定g(x)的定义域和f(x)的定义域,并找到能使得g(x)的值成为f(x)的自变量的值。
3. 将g(x)的值代入f(x)中,得到新的函数h(x)。
三、复合函数的性质:1. 复合函数的定义域是g(x)的定义域和f(x)的定义域的交集。
2. 复合函数的值域是f(x)的值域的子集。
四、复合函数的例题分类讲解:1. 简单的复合函数求导:例题1:已知f(x)=x²和g(x)=2x+1,求复合函数h(x)=f(g(x))的导函数h'(x)。
第1页/共2页锲而不舍,金石可镂。
解析:首先计算g'(x)=2,然后计算f'的导函数f'(x)=2x。
根据链式法则,h'(x)=f'(g(x))*g'(x)=2(2x+1)*2=8x+4。
2. 复合函数中含有指数函数:例题2:已知f(x)=eˣ和g(x)=ln(x),求复合函数h(x)=f(g(x))的导函数h'(x)。
解析:首先计算g'(x)=1/x,然后计算f'的导函数f'(x)=eˣ。
根据链式法则,h'(x)=f'(g(x))*g'(x)=eˣ*(1/x)=eˣ/x。
3. 复合函数中含有三角函数:例题3:已知f(x)=sin(x)和g(x)=x²,求复合函数h(x)=f(g(x))的导函数h'(x)。
复合函数求导例题大全
复合函数求导例题大全一、基本概念。
在学习复合函数求导之前,我们首先需要了解一些基本概念。
复合函数是由两个或多个函数组合而成的新函数。
设有函数y=f(u)和u=g(x),则复合函数可以表示为y=f(g(x))。
在求解复合函数的导数时,我们需要运用链式法则,即将复合函数的导数分解为内函数和外函数的导数相乘。
这是复合函数求导的核心概念,也是我们解题的关键所在。
二、常见例题。
1. 求解 y=(3x^2+2x+1)^3 的导数。
解析,首先,我们将内函数和外函数分别确定。
内函数是3x^2+2x+1,外函数是x^3。
根据链式法则,我们可以得到导数的计算公式。
首先求内函数的导数,然后求外函数的导数,最后将两者相乘。
按照这个步骤,我们可以得到最终的导数结果。
2. 求解 y=sin(2x+1) 的导数。
解析,这是一个三角函数的复合函数求导题目。
同样地,我们需要先确定内函数和外函数,然后按照链式法则进行求导计算。
首先求内函数的导数,然后求外函数的导数,最后将两者相乘。
通过这样的步骤,我们可以得到最终的导数结果。
3. 求解 y=e^(2x+1) 的导数。
解析,这是一个指数函数的复合函数求导题目。
同样地,我们需要先确定内函数和外函数,然后按照链式法则进行求导计算。
首先求内函数的导数,然后求外函数的导数,最后将两者相乘。
通过这样的步骤,我们可以得到最终的导数结果。
4. 求解 y=ln(3x^2+2x+1) 的导数。
解析,这是一个对数函数的复合函数求导题目。
同样地,我们需要先确定内函数和外函数,然后按照链式法则进行求导计算。
首先求内函数的导数,然后求外函数的导数,最后将两者相乘。
通过这样的步骤,我们可以得到最终的导数结果。
5. 求解 y=tan(2x+1) 的导数。
解析,这是一个切线函数的复合函数求导题目。
同样地,我们需要先确定内函数和外函数,然后按照链式法则进行求导计算。
首先求内函数的导数,然后求外函数的导数,最后将两者相乘。
复合函数知识总结及例题
复合函数问题一、复合函数定义:设y=f(u)的定义域为A, u=g(x)的值域为B,若A=B,则y关于X函数的y=f[g(x)]叫做函数f与g的复合函数,U叫中间量.二、复合函数定义域问题:(1)、已知f (χ)的定义域,求f[g(χ) 1的定义域思路:设函数f (X)的定义域为D,即X ∙ D ,所以f的作用范围为D,又f对g(χ)作用,作用范围不变,所以g(x)∙ D ,解得X ∙E,E为f Ig(X)]的定义域。
例1.设函数f (u)的定义域为(O,1),贝U函数f (Inx)的定义域为___________________ 。
解析:函数f (U)的定义域为(0,1)即u • (0,1),所以f的作用范围为(0,1)又f对InX作用,作用范围不变,所以0 ::: In X ::: 1解得X • (1, e),故函数f (In x)的定义域为(1, e)1例2.若函数f (X)= ----------- ,则函数f [f (x)]的定义域为 ___________________ 。
X +11解析:先求f的作用范围,由f (X) ,知X = -1X +1即f的作用范围为■ RlX= ,又f对f(χ)作用所以f (X) ∙R且f (x) - -1 ,即f If(X) 1中X应r d x≠-1X 式一1 L满足彳即{1 ,解得x≠一1且x≠一2I f(X)H—1 —≠-1ιX +1故函数f If (X) 的定义域为CX R|x = -1且Xn -2(2)、已知f Ig(X)】的定义域,求f (x)的定义域思路:设f Ig(X) 1的定义域为D,即X ∙D ,由此得g(x) ∙E ,所以f的作用范围为E,又f对X作用,作用范围不变,所以X ∙E, E为f (X)的定义域。
例3.已知f (3 —2x)的定义域为X E[―1, 2 ],则函数f (x)的定义域为 _________________ 。
高中数学复合函数知识点总结
高中数学复合函数知识点总结高中数学复合函数知识点总结1.复合函数定义域若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。
求函数的定义域主要应考虑以下几点:⑴当为整式或奇次根式时,R的值域;⑵当为偶次根式时,被开方数不小于0(即≥0);⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
⑹分段函数的定义域是各段上自变量的取值集合的并集。
⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求。
⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
⑼对数函数的真数必须大于零,底数大于零且不等于1。
⑽三角函数中的切割函数要注意对角变量的限制。
注:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的'最小正周期为T1xT2,任一周期可表示为kxT1xT2(k属于R+)2.复合函数单调性依y=f(u),μ=φ(x)的单调性来决定。
即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。
⑴求复合函数的定义域;⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);⑶判断每个常见函数的单调性;⑷将中间变量的取值范围转化为自变量的取值范围;⑸求出复合函数的单调性。
3.复合函数周期性设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1xT2,任一周期可表示为kxT1xT2(k属于R+)。
离散数学复合函数f°g例题a到a
离散数学复合函数f°g例题a到a摘要:1.离散数学中的复合函数概念2.复合函数的性质3.例题:复合函数f°g在集合a到a上的应用正文:离散数学中的复合函数是指将两个函数f和g组合在一起,形成一个新的函数。
复合函数的定义为:若f是从X到Y的函数,g是从Y到Z的函数,则复合函数f°g是从X到Z的函数。
具体地,对于X中的元素x,我们有f(x)在Y中的像,然后这个像在g的作用下得到Z中的元素f(x)°g(x)。
复合函数具有以下性质:1.结合律:对于任意的函数f、g和h,有(f°g)°h = f°(g°h)。
2.交换律:对于任意的函数f和g,有f°g = g°f。
3.单位元:对于任意的函数f,有id°f = f,其中id是恒等函数。
4.逆函数:若f是从X到Y的函数,g是从Y到X的函数,且f°g = id (恒等函数),则g°f是f的逆函数。
现在我们来看一个复合函数f°g在集合a到a上的例题。
题目:设f和g分别是集合a上的函数,且f(x)°g(x) = x。
解题步骤如下:1.首先,我们需要找到f(x)和g(x)的表达式。
由于f(x)°g(x) = x,我们可以设f(x) = a,g(x) = b,其中a和b是未知的函数。
2.接下来,我们需要求解a和b的关系。
将f(x)和g(x)的表达式代入f(x)°g(x) = x,得到a°b = x。
根据复合函数的性质,我们知道a°b = ab。
因此,我们有ab = x。
3.根据ab = x,我们可以得到b = x/a。
由此,我们知道g(x) = x/a。
4.将g(x) = x/a代入f(x)°g(x) = x,得到f(x)°(x/a) = x。
解这个方程,我们可以得到f(x) = a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合函数问题一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、复合函数定义域问题:(1)、已知f x ()的定义域,求[]f g x ()的定义域思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。
例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。
解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<<ln x 解得x e ∈()1,,故函数f x (ln )的定义域为(1,e )例2. 若函数f x x ()=+11,则函数[]f f x ()的定义域为______________。
解析:先求f 的作用范围,由f x x ()=+11,知x ≠-1即f 的作用范围为{}x R x ∈≠-|1,又f 对f(x)作用所以f x R f x ()()∈≠-且1,即[]f f x ()中x 应满足x f x ≠-≠-⎧⎨⎩11()即x x ≠-+≠-⎧⎨⎪⎩⎪1111,解得x x ≠-≠-12且故函数[]f f x ()的定义域为{}x R x x ∈≠-≠-|12且 (2)、已知[]f g x ()的定义域,求f x ()的定义域思路:设[]f g x ()的定义域为D ,即x D ∈,由此得g x E ()∈,所以f 的作用范围为E ,又f 对x 作用,作用范围不变,所以x E E ∈,为f x ()的定义域。
例3. 已知f x ()32-的定义域为[]x ∈-12,,则函数f x ()的定义域为_________。
解析:f x ()32-的定义域为[]-12,,即[]x ∈-12,,由此得[]3215-∈-x , 所以f 的作用范围为[]-15,,又f 对x 作用,作用范围不变,所以[]x ∈-15,即函数f x ()的定义域为[]-15,例4. 已知f x x x ()lg 22248-=-,则函数f x ()的定义域为-------解析:先求f 的作用范围,由f x x x ()lg 22248-=-,知x x 2280-> 解得x 244->,f 的作用范围为()4,+∞,又f 对x 作用,作用范围不变,所以x ∈+∞()4,,即f x ()的定义域为()4,+∞(3)、已知[]f g x ()的定义域,求[]f h x ()的定义域思路:设[]f g x ()的定义域为D ,即x D ∈,由此得g x E ()∈,f 的作用范围为E ,又f 对h x ()作用,作用范围不变,所以h x E ()∈,解得x F ∈,F 为[]f h x ()的定义域。
例5. 若函数f x ()2的定义域为[]-11,,则f x (log )2的定义域为____________。
解析:f x()2的定义域为[]-11,,即[]x ∈-11,,由此得2122x∈⎡⎣⎢⎤⎦⎥,f 的作用范围为122,⎡⎣⎢⎤⎦⎥,又f 对log 2x 作用,所以log 2122x ∈⎡⎣⎢⎤⎦⎥,,解得[]x ∈24,即f x (log )2的定义域为[]24,评注:函数定义域是自变量x 的取值范围(用集合或区间表示)f 对谁作用,则谁的范围是f 的作用范围,f 的作用对象可以变,但f 的作用范围不会变。
利用这种理念求此类定义域问题会有“得来全不费功夫”的感觉,值得大家探讨。
三、复合函数单调性问题(1)引理证明已知函数))((x g f y =.若)(x g u =在区间b a ,( )上是减函数,其值域为(c ,d),又函数)(u f y =在区间(c,d)上是减函数,那么,原复合函数))((x g f y =在区间b a ,( )上是增函数.证明:在区间b a ,()内任取两个数21,x x ,使b x x a <<<21因为)(x g u =在区间b a ,()上是减函数,所以)()(21x g x g >,记)(11x g u =, )(22x g u =即),(,21,21d c u u u u ∈>且因为函数)(u f y =在区间(c,d)上是减函数,所以)()(21u f u f <,即))(())((21x g f x g f <, 故函数))((x g f y =在区间b a ,()上是增函数. (2).复合函数单调性的判断复合函数的单调性是由两个函数共同决定。
为了记忆方便,我们把它们总结成一个图表:以上规律还可总结为:“同向得增,异向得减”或“同增异减”. (3)、复合函数))((x g f y =的单调性判断步骤: ⅰ 确定函数的定义域;ⅱ 将复合函数分解成两个简单函数:)(u f y =与)(x g u =。
ⅲ 分别确定分解成的两个函数的单调性;ⅳ 若两个函数在对应的区间上的单调性相同(即都是增函数,或都是减函数),则复合后的函数))((x g f y =为增函数; 若两个函数在对应的区间上的单调性相异(即一个是增函数,而另一个是减函数),则复合后的函数))((x g f y =为减函数。
(4)例题演练例1、 求函数)32(log 221--=x x y 的单调区间,并用单调定义给予证明解:定义域 130322-<>⇒>--x x x x 或单调减区间是),3(+∞ 设2121),3(,x x x x <+∞∈且 则)32(log 121211--=x x y )32(log 222212--=x x y---)32(121x x )32(222--x x =)2)((1212-+-x x x x∵312>>x x ∴012>-x x 0212>-+x x∴)32(121--x x >)32(222--x x 又底数1210<< ∴012<-y y 即 12y y < ∴y 在),3(+∞上是减函数同理可证:y 在)1,(--∞上是增函数[例]2、讨论函数)123(log )(2--=x x x f a 的单调性. [解]由01232>--x x 得函数的定义域为}.31,1|{-<>x x x 或则当1>a 时,若1>x ,∵1232--=x x u 为增函数,∴)123(log )(2--=x x x f a 为增函数. 若31-<x ,∵1232--=x x u 为减函数. ∴)123(log )(2--=x x x f a 为减函数。
当10<<a 时,若1>x ,则)123(l o g )(2--=x x x f a 为减函数,若31-<x ,则)123(l o g )(2--=x x x f a 为增函数.例3、.已知y=a log (2-xa )在[0,1]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1当a >1时,函数t=2-xa >0是减函数由y=a log (2-xa )在[0,1]上x 的减函数,知y=a log t 是增函数, ∴a >1由x ∈[0,1]时,2-xa ≥2-a >0,得a <2, ∴1<a <2当0<a<1时,函数t=2-xa >0是增函数由y=a log (2-xa )在[0,1]上x 的减函数,知y=a log t 是减函数, ∴0<a<1由x ∈[0,1]时,2-xa ≥2-1>0, ∴0<a<1 综上述,0<a<1或1<a <2例4、已知函数2)3()2(2-+--=-a x a ax x f (a 为负整数)的图象经过点R m m ∈-),0,2(,设)()()()],([)(x f x pg x F x f f x g +==.问是否存在实数)0(<p p 使得)(x F 在区间)]2(,(f -∞上是减函数,且在区间)0),2((f 上是减函数?并证明你的结论。
[解析]由已知0)2(=-m f ,得02)3(2=-+--a m a am ,其中.0,≠∈a R m ∴0≥∆即09232≤--a a , 解得.37213721+≤≤-a ∵a 为负整数,∴.1-=a∴1)2(34)2(2+--=-+-=-2x x x x f ,即.1)(2+-=x x f 242221)1()]([)(x x x x f f x g +-=++--==, ∴.1)12()()()(24+-+-=+=x p px x f x pg x F假设存在实数)0(<p p ,使得)(x F 满足条件,设21x x <,∴].12)()[()()(2221222121-++--=-p x x p x x x F x F ∵3)2(-=f ,当)3,(,21--∞∈x x 时,)(x F 为减函数,∴0)()(21>-x F x F ,∴.012)(,022212221>-++->-p x x p x x ∵3,321-<-<x x ,∴182221>+x x , ∴11612)(2221-->-++-p p x x p , ∴.0116≥--p ①当)0,3(,21-∈x x 时,)(x F 增函数,∴.0)()(21<-x F x F∵02221>-x x ,∴11612)(2221--<-++-p p x x p , ∴0116≤--p . ②由①、②可知161-=p ,故存在.161-=p一.指数函数与对数函数.同底的指数函数xy a =与对数函数log a y x =互为反函数;(二)主要方法:1.解决与对数函数有关的问题,要特别重视定义域;2.指数函数、对数函数的单调性决定于底数大于1还是小于1,要注意对底数的讨论; 3.比较几个数的大小的常用方法有:①以0和1为桥梁;②利用函数的单调性;③作差. (三)例题分析:例1.(1)若21a b a >>>,则log bba,log b a ,log a b 从小到大依次为 ; (2)若235x y z==,且x ,y ,z 都是正数,则2x ,3y ,5z 从小到大依次为 ;(3)设0x >,且1x xa b <<(0a >,0b >),则a 与b 的大小关系是 ( ) (A )1b a << (B )1a b << (C )1b a << (D )1a b <<解:(1)由21a b a >>>得b a a <,故log b b a<log b a 1<<log a b .(2)令235x y z t ===,则1t >,lg lg 2t x =,lg lg 3t y =,lg lg5tz =, ∴2lg 3lg lg (lg9lg8)230lg 2lg3lg 2lg3t t t x y ⋅--=-=>⋅,∴23x y >;同理可得:250x z -<,∴25x z <,∴325y x z <<.(3)取1x =,知选(B ).例2.已知函数2()1xx f x a x -=++(1)a >,求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根. 证明:(1)设121x x -<<,则1212121222()()11x x x x f x f x a a x x ---=+--++ 121212*********()11(1)(1)x x x x x x x x a a a a x x x x ---=-+-=-+++++, ∵121x x -<<,∴110x +>,210x +>,120x x -<,∴12123()0(1)(1)x x x x -<++; ∵121x x -<<,且1a >,∴12x xa a <,∴120x x a a -<,∴12()()0f x f x -<,即12()()f x f x <,∴函数()f x 在(1,)-+∞上为增函数; (2)假设0x 是方程()0f x =的负数根,且01x ≠-,则000201xx a x -+=+, 即00000023(1)31111x x x ax x x --+===-+++, ① 当010x -<<时,0011x <+<,∴0331x >+,∴03121x ->+,而由1a >知01x a <,∴①式不成立;当01x <-时,010x +<,∴0301x <+,∴03111x -<-+,而00x a >, ∴①式不成立.综上所述,方程()0f x =没有负数根.例3.已知函数()log (1)x a f x a =-(0a >且1a ≠). 求证:(1)函数()f x 的图象在y 轴的一侧;(2)函数()f x 图象上任意两点连线的斜率都大于0.证明:(1)由10xa ->得:1xa >,∴当1a >时,0x >,即函数()f x 的定义域为(0,)+∞,此时函数()f x 的图象在y 轴的右侧; 当01a <<时,0x <,即函数()f x 的定义域为(,0)-∞,此时函数()f x 的图象在y 轴的左侧. ∴函数()f x 的图象在y 轴的一侧;(2)设11(,)A x y 、22(,)B x y 是函数()f x 图象上任意两点,且12x x <,则直线AB 的斜率1212y y k x x -=-,1122121log (1)log (1)log 1x x x a a a x a y y a a a --=---=-,当1a >时,由(1)知120x x <<,∴121x x a a <<,∴12011x xa a <-<-,∴121011x xa a -<<-,∴120y y -<,又120x x -<,∴0k >; 当01a <<时,由(1)知120x x <<,∴121x x a a >>,∴12110x xa a ->->, ∴12111x xa a ->-,∴120y y -<,又120x x -<,∴0k >. ∴函数()f x 图象上任意两点连线的斜率都大于0.同步练习(二)同步练习:1、 已知函数)x (f 的定义域为]1,0[,求函数)x (f 2的定义域。