初三数学第一轮复习教案1

合集下载

城头中学初三数学第一轮复习教学案 初三备课组 主备人

城头中学初三数学第一轮复习教学案    初三备课组    主备人

城头中学初三数学第一轮复习教学案 初三备课组 主备人:魏东成第九课时 二次函数及其应用【课前复习与演练】1.(2010年浙江省金华). 已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( )A . 最小值 -3B . 最大值-3C . 最小值2D . 最大值22.(2010年山东省济南市)在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A .3B .2C .1D .03.(2010年北京崇文区) 函数y=x 2-2x-2的图象如右图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .31≤≤-xB .31<<-xC .31>-<x x 或D .31≥-≤x x 或4.(2010年北京崇文区) 已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点. (1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.【典型例题】 【例题1】(2010年广东省广州市)已知抛物线y =-x 2+2x +2.(1)该抛物线的对称轴是 ,顶点坐标 ;(2)选取适当的数据填入下表,并在图7的直角坐标系内描点画出该抛物线的图象;(3)若该抛物线上两点A (x 1,y 1),B (x 2,y 2)的横坐标满足x 1>x 2>1,试比较y 1与y 2的大小.【例题2】(2010年浙江省东阳市)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半. (1抛物线的表达式.(2)足球第一次落地点C 距守门员多少 米?(取734≈)(3)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取562≈)【当堂检测】(2010重庆市潼南县)如图, 已知抛物线c bx x y ++=221与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1). (1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,题图26A米第5题图城头中学初三数学第一轮复习教学案初三备课组主备人:魏东成第十课时锐角三角函数及其应用【课前复习与演练】1.(2010年毕节地区)在正方形网格中,ABC△的位置如图所示,则cos B∠的值为()A.12B.2CD2.(2010年湖北黄冈市)在△ABC中,∠C=90°,sinA=45,则tanB的值为()A.43B.34C.35D.453.(2010年日照市)如图,在等腰Rt△ABC中,∠C=90o,AC=6,D是AC上一点,若tan∠DBA=51,则AD的长为(A)2(B)3(C)2(D)14.(2010江苏宿迁)如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,53sin=∠CAM,则B∠tan的值为.5.(2010福建泉州市惠安县) 如图,先锋村准备在坡角为030=α山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为__________米.【典型例题】【例题1】.(2010重庆市潼南县)如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为30m,则电梯楼的高BC为米(精确到0.1).(参考数据:414.12≈732.13≈)【例题2】(2010年山东省济南市)我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=600,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过450时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B沿BC削进到E 处,问BE至少是多少米(结果保留根号)?AB Ca α【当堂检测】1.(2010江苏宿迁)小明沿着坡度为1:2的山坡向上走了1000m ,则他升高了( )A .5200mB .500mC .3500mD .1000m2.(2010年浙江省东阳县)如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向点C 处测得AC =a ,∠ACB =α,那么AB 等于 ( ) A 、a ·sin α B 、a ·tan α C 、a ·cos αD 、αtan a3. (2010年辽宁省丹东市)45sin 60)︒-︒+的值为4.(2010重庆市) 已知:如图,在Rt △ABC 中,∠C =90°,AC = 3 .点D 为BC 边上一点,且BD =2AD ,∠AD C =60°求△ABC 的周长(结果保留根号)5. (2010年兰州市) 如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米.(1)求新传送带AC 的长度; (2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)城头中学初三数学第一轮复习教学案初三备课组主备人:吴艳霞第十一课时统计的简单应用【课前复习与演练】1. (2010重庆市)下列调查中,适宜采用全面调查(普查)方式的是()A.对全国中学生心理健康现状的调查B.对冷饮市场上冰淇淋质量情况的调查C.对我市市民实施低碳生活情况的调查D对我国首架大型民用直升机各零部件的检查2.(2010年宁波)为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)25 25.5 26 26.5 27购买量(双) 1 2 3 2 2则这10双运动鞋尺码的众数和中位数分别为()A、25.5厘米,26厘米B、26厘米,25.5厘米C、25.5厘米,25.5厘米D、26厘米,26厘米3.(2010年浙江省绍兴市)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:A.甲B.乙C.丙D.丁4.(2010年福建省晋江市)已知一组数据2, 1,-1,0, 3,则这组数据的极差是______.5.(2010年山东省济南市)某次器乐比赛设置了6个获奖名额,共有ll名选手参加,他们的比赛得分均不相同.若知道某位选手的得分.要判断他能否获奖,在下列ll名选手成绩的统计量中,只需知道()A.方差B.平均数C.众数D.中位数【典型例题】【例题】(2010年宁德市)(本题满分8分)某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D 四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:⑴九年级(1)班参加体育测试的学生有_________人;⑵将条形统计图补充完整;⑶在扇形统计图中,等级B部分所占的百分比是___,等级C对应的圆心角的度数为__⑷若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有__人.【当堂检测】1. .(2010年山东聊城)某班主任老师为了对学生乱花钱的现象进行教育指导,对班里每位同根据这个统计可知,该班学生一周花钱数额的众数、平均数是()A .15,14B .18,14C .25,12D .15,122.(2010福建泉州市惠安县)有关部门准备对某居民小区的自来水管网系统进行改造,为此,需了解该小区的自来水用水的情况.该部门通过随机抽样,调查了其中的20户家庭,这20户家庭的月用水量见下表:(1)求这20户家庭的户均月用水量;(2)若该居民小区共有400户家庭,试估计该小区的月用水量.(2010年门头沟区)初中生对待学习的态度一直是教育工作者关注的问题之一. 为此,某区教委对该区部分学校的八年级学生对待学习的态度 进行了一次抽样调查(把学习态度分为三个层级,A 级:对学 习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴 趣),并将调查结果绘制成图①和图②的统计图(不完整). 请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了 名学生; (2)将图①补充完整;(3)求出图②中C 级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该区近20000名初中生中大 约有多少名学生学习态度达标(达标包括A 级和B 级)?10% DAC30%B人数城头中学初三数学第一轮复习教学案 初三备课组 主备人:吴艳霞第十二课时 概率的简单应用【课前复习与演练】1. (2010年宁德市)下列事件是必然事件的是( ).A.随意掷两个均匀的骰子,朝上面的点数之和为6B.抛一枚硬币,正面朝上C.3个人分成两组,一定有2个人分在一组D.打开电视,正在播放动画片 2.(2010年北京崇文区) 在 6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形和圆. 在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是( )A .61B .31C . 21D .32 3. (2010年门头沟区)小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是A .121 B .61 C .41D .31 4.(2010年山东省青岛市)一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有个黄球 个. 【典型例题】【例题1】(2010年山东省济南市) 从车站到书城有A 1、A 2、A 3、A 4四条路线可走,从书城到广场有B 1、B 2、B 3三条路线可走,现让你随机选择一条从车站出发经过书城到达广场的行走路线.(1) 画树状图分析你所有可能选择的路线. (2) 你恰好选到经过路线B 1的概率是多少?【例题2】.(2010年滨州)儿童节期间,某公园游戏场举行一场活动.有一种游戏规则是:在一个装有8个红球和若干白球(每个球除颜色外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个世博会吉祥物海宝玩具.已知参加这种游戏的儿童有40000人,公园游戏场发放海宝玩具8000个.(1) 求参加此次活动得到海宝玩具的频率?(2)请你估计袋中白球的数量接近多少?第4题【当堂检测】1.(2010年福建省晋江市)下列事件中,是确定事件的是( ) .A.打雷后会下雨B. 明天是睛天C. 1小时等于60分钟D.下雨后有彩虹2.(2010年广东省广州市)从图2的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称称图形的卡片的概率是( )图2A .41B .21 C .43D .1 3.(2010年山东省济宁市)某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是 . 4 .(2010年连云港市)一只自由飞行的小鸟,将随意地落在如图所示方格地面上(每个小方格都是边长相等的正方形),则小鸟落在阴影方格地面上的概率为___________.5. (2010年连云港市) 从甲地到乙地有A 1、A 2两条路线,从乙地到丙地有B 1、B 2、B 3三条路线,从丙地到丁地有C 1、C 2两条路线.一个人任意先了一条从甲地到丁地的路线.求他恰好选到B 2路线的概率是多少?6. (2010年四川省眉山市)有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率; (2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.。

人教版中考数学第一轮总复习教案(135课时)

人教版中考数学第一轮总复习教案(135课时)

其中 a、 b、 c 表示任意实数.运用运算律有时可使运算简便
3.实数的运算顺序 : 在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.同
一级运算按照从左到 右的顺序依次进行 .
4. 实数大小的比较
⑴ 数轴上两个点表示的数,右边的点表示的数总比左边的点表示的数大
.
⑵ 正数> 0,负数< 0,正数>负数;两个负数比较大小,绝对值大的
(6) 开方 如果 x 2= a 且 x ≥ 0,那么
a = x; 如果 x3=a,那么 3 a x
2.实数的运算律
(1) 加法交换律 a+b = b+a ; (2) 加法结合律 (a+b)+c=a+(b+c) ; (3) 乘法交换律 ab = ba.
(4) 乘法结合律 (ab)c=a(bc) ; (5) 分配律 a(b+c)=ab+ac
⑶十字相乘法 ,⑷ 分组分解法 .
3. 提公因式法 : ma mb mc m(a+b+c).
4. 公式法 : ⑴ a 2 b 2 ( a+ b)(a - b) ;⑵ a 2 2ab b 2 (a + b) 2; ⑶ a 2 5. 十字相乘法 : x2 a b x ab ( x a)( x b) .
6. 因式分解的一般步骤 : (1) 一 “提”(取公因式) ,二“用”(公式); (2)
3. 实数的分类 有理数和无理数统称实数 . 有理数 : 有限小数或无限循环小数 . 无理数 : 无限不循环小数 . 注 : 凡是分数都是有理数 .
4.易错知识辨析
实数
有理数 无理数
正整数
整数 0
负整数
有限小数或无限循环小数

中考数学第一轮总复习教案(26-32课时)

中考数学第一轮总复习教案(26-32课时)

第六章 三角形课时26.几何初步及平行线、相交线【课前热身】1. 如图,延长线段AB 到C ,使4BC =, 若8AB =,则线段AC 是BC的 倍.2.如图,已知直线a b ∥,135=∠,则2∠的度数是 .3.如图,在不等边ABC △中,DE BC ∥,60ADE =∠,图中等于60的角还有______________.4.经过任意三点中的两点共可以画出的直线条数是( )A .一条或三条B .三条C .两条D .一条 5.如图,直线a b ∥,则A ∠的度数是( )A .28B .31C .39D .42【考点链接】1. 两点确定一条直线,两点之间线段最短._______________叫两点间距离.2. 1周角=__________平角=_____________直角=____________.3. 如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.4. ___________________________________叫对顶角,对顶角___________.5. 过直线外一点心___________条直线与这条直线平行.6. 平行线的性质:两直线平行,_________相等,________相等,________互补.7. 平行线的判定:________相等,或______相等,或______互补,两直线平行.8. 平面内,过一点有且只有_____条直线与已知直线垂直.【典例精析】例1 如图:AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=720,则∠2等于多少度?(第1题)E A B(第3题)1 2 (第2题)(第4题)图70°31°例2 如图,ABC △中,B C ∠∠,的平分线相交于点O ,过O 作DE BC ∥,若5BD EC +=,则DE 等于多少?【中考演练】1.(08永州) 如图,直线a 、b 被直线c 所截,若要a ∥ b ,需增加条件 _____________.(填一个即可) 2.(08义乌) 如图直线l 1//l 2,AB ⊥CD ,∠1=34°,那么∠2的度数是 . 3.(08河南) 如图, 已知直线25,115,//=∠=∠A C CD AB , 则=∠E ( ) A.70 B. 80 C. 90 D. 100( 第1题) ( 第2题) (第3题) 4.(08益阳) 如图,在△ABC 中,AB =BC =12cm ,∠ABC =80°,BD 是∠ABC 的平分线,DE ∥BC .(1) 求∠EDB 的度数;(2) 求DE 的长.21D CBAl 2l 1ABCD E5. (08宁夏)如图,AB ∥CD , AC ⊥BC ,∠BAC =65°,求∠BCD 度数.﹡6. (08东莞) 如图,在ΔABC 中,AB =AC =10,BC =8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.课时27.三角形的有关概念【课前热身】1. 如图,在△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD = 度.2. ABC△中,D E ,分别是AB AC ,的 中点,当10cm BC =时,DE = cm . (第1题) 3. 如图在△ABC 中,AD 是高线,AE 是角平分线,AF 中线.(1) ∠ADC = =90°; (2) ∠CAE = =12 ;(3) CF = =12; (4) S △ABC = .C DB7060A A B CE DC BAF(第3题) (第4题)4. 如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF = 度. 5. 如果两条平行直线被第三条直线所截,一对同旁内角的度数之比为3:6,那么这两个角分别等于 °和 °.【考点链接】一、三角形的分类:1.三角形按角分为______________,______________,_____________. 2.三角形按边分为_______________,__________________. 二、三角形的性质:1.三角形中任意两边之和____第三边,两边之差_____第三边2.三角形的内角和为_______,外角与内角的关系:__________________. 三、三角形中的主要线段:1.___________________________________叫三角形的中位线.2.中位线的性质:____________________________________________. 3.三角形的中线、高线、角平分线都是____________.(线段、射线、直线)【典例精析】例1 如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°. 求∠DAC 的度数.例2 如图,已知D 、E 分别是△ABC 的边BC 和边AC 的中点,连接DE 、AD ,若S ABC △=24cm 2,求△DEC 的面积.4321D CB A例3 如图,在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,求DE DF +的长.【中考演练】1.在△ABC 中,若∠A =∠C=13∠B ,则∠A=,∠B = ,这个三角形是 .2. (07深圳)已知三角形的三边长分别为3、8、x ,若x 的值为偶数,则x 的值有( )A. 6个B. 5个C. 4 个D. 3个 3.(07济南)已知一个三角形三个内角度数的比是1:5:6,则其最大内角度数为( )A.60°B.75°C.90°D.120°4.如图,AB ∥CD ,AE 平分∠BAC ,CE 平分∠ACD ,求∠E 的度数.5. 如图,已知DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°, 求∠EDC 和∠BDC 的度数.﹡6. △ABC 中,AD 是高,AE 、BF 是角角平分线相交于点O ,∠BAC=50°,∠C=70°,EDCBAAB CD E求∠DAC,∠BOA的度数.课时28.等腰三角形与直角三角形【课前热身】1.等腰三角形的一个角为50°,那么它的一个底角为______.2. 在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=_____°.3.在△ABC中,AB=AC,D为AC边上一点,且BD=BC=AD. 则∠A等于()A.30° B.36° C.45° D.72°(第2题)(第3题)(第4题)4.(07南充)一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距()A.30海里 B.40海里 C.50海里 D.60海里【考点链接】一.等腰三角形的性质与判定:1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;3. 有两个角相等的三角形是_________.二.等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.三.直角三角形的性质与判定:1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________.【典例精析】例1 如图,等腰三角形ABC中,AB=AC,一腰上的中线BD 将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.例2 (06包头)《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时”. 一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O”, 测得该车从北偏西60°的A点行驶到北偏西30°的B点,所用时间为1.5秒.(1)试求该车从A点到B的平均速度;(2)试说明该车是否超过限速.【中考演练】1.(08湖州)已知等腰三角形的一个底角为70,则它的顶角为____________.度.2.(08白银)已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为____. 3. (08武汉) 如图,小雅家(图中点O处)门前 有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔 所在的位置到公路的距离AB 是____________.(第3题)4.如图,已知在直角三角形中,∠C=90°,BD 平分∠ABC 且交AC 于D . ⑴ 若∠BAC=30°,求证:AD=BD ;⑵ 若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.5.(08义乌) 如图,小明用一块有一个锐角为30的直角三角板测量树高,已知小明离 树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)P D C B AA O B东北课时29.全等三角形【课前热身】1.如图1所示,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=____.ACFEDB(第1题)(第2题)(第3题)2.如图2,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去3.如图,已知AE∥BF, ∠E=∠F,要使△ADE≌△BCF,可添加的条件是________.4. 在⊿ABC和⊿A/B/C/中,AB=A/B/,∠A=∠A/,若证⊿ABC≌⊿A/B/C/还要从下列条件中补选一个,错误的选法是()A. ∠B=∠B/B. ∠C=∠C/C. BC=B/C/,D. AC=A/C/,【考点链接】1.全等三角形:____________、______________的三角形叫全等三角形.2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定除以上的方法还有________.3. 全等三角形的性质:全等三角形___________,____________.4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.【典例精析】例1 已知:在梯形ABCD中,AB//CD,E是BC的中点,直线AE与DC的延长线交于点F. 求证:AB=CF.例2 (06重庆)如图所示,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE BC.求证:(1) AEF BCD;(2)EF CD.【中考演练】1.(08遵义)如图,OA OB =,OC OD =,50O ∠=,35D ∠=,则AEC ∠等于( )A .60B .50C .45D .302. ( 08双柏) 如图,点P 在AOB ∠的平分线上,AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线):(第1题) (第2题) (第3题)3. ( 08郴州) 如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC上F 处,若50B ∠=︒,则BDF ∠= __________度.4. (08荆州)如图,矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连结DE ,求证:DF =DC .5. 如图,AB=AD ,BC=DC ,AC 与BD 交于点E ,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母,不写推理过程,只要求写出四个你认为正确的结论即可)F E DC B AEDO E AB D CA B C D F﹡6. (08东莞) 如图,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小.课时30.相似三角形【课前热身】1.两个相似三角形对应边上中线的比等于3:2,则对应边上的高的比为______,周长之比为________,面积之比为_________.2.若两个相似三角形的周长的比为4:5,且周长之和为45,则这两个三角形的周长分别为__________.C B ODA E3.如图,在△ABC 中,已知∠ADE=∠B ,则下列等式成立的是( )A.AD AE AB AC = B .AE ADBC BD =C .DE AE BC AB =D .DE ADBC AC=4.在△ABC 与△A′B ′C ′中,有下列条件: (1)''''AB BC A B B C =;(2)''''BC ACB C A C =;(3)∠A=∠A′;(4)∠C=∠C′. 如果从中任取两个条件组成一组,那么能判断△ABC ∽△A′B ′C ′的共有多少组( ) A .1 B .2 C .3 D .4【考点链接】一、相似三角形的定义三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 二、相似三角形的判定方法1. 若DE ∥BC (A 型和X 型)则______________.2. 射影定理:若CD 为Rt △ABC 斜边上的高(双直角图形)则Rt △ABC ∽Rt △ACD ∽Rt △CBD 且AC 2=________,CD 2=_______,BC 2=__ ____.3. 两个角对应相等的两个三角形__________.4. 两边对应成_________且夹角相等的两个三角形相似.5. 三边对应成比例的两个三角形___________. 三、相似三角形的性质1. 相似三角形的对应边_________,对应角________.2. 相似三角形的对应边的比叫做________,一般用k 表示.3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________.【典例精析】例1 在△ABC 和△DEF 中,已知∠A=∠D ,AB=4,AC=3,DE=1,当DF 等于多少时,这两个三角形相似.E A D CBEADCBA D CB例2 如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm , 要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上, 这个正方形零件的边长是多少?例3 一般的室外放映的电影胶片上每一个图片的规格为:3.5cm ×3.5cm ,放映的荧屏的规格为2m ×2m ,若放映机的光源距胶片20cm 时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?【中考演练】1.(08大连)如图,若△ABC ∽△DEF ,则∠D 的度数为______________.2. (08杭州) 在中, 为直角, 于点,,写出其中的一对相似三角形是 _ 和 _;并写出它的面积比_____.(第1题) (第2题) (第3题) 3.( 08常州) 如图,在△ABC 中,若DE ∥BC,=,DE =4cm,则BC 的长为 ( ) A.8cm B.12cm C.11cm D.10cmRt ABC ∆C ∠AB CD ⊥D 5,3==AB BC AD DB 12B(0,-4)A(3,0)xy4. (08无锡) 如图,已知是矩形的边上一点,于,试证明.课时31.锐角三角函数【课前热身】1.(06黑龙江)在△ABC 中,∠C =90°,BC =2,sinA =23,则AC 的长是( ) A .5 B .3 C .45D .13 2.Rt ∆ABC 中,∠C=︒90,∠A ∶∠B=1∶2,则sinA 的值( )A .21B .22C .23D .13.如图,在平面直角坐标系中,已知点A (3,0), 点B (0,-4),则cos OAB ∠ 等于_______.4.︒+︒30sin 130cos =____________.【考点链接】1.sin α,cos α,tan α定义sin α=____,cos α=_______,tan α=______ . 2.特殊角三角函数值E ABCD CD BF AE ⊥F ABF EAD △∽△α bc【典例精析】例1 在Rt △ABC 中,a =5,c =13,求sinA ,cosA ,tanA .例2 计算:4sin 302cos 453tan 60︒-︒+︒.例3 等腰△ABC 中,AB =AC =5,BC =8,求底角∠B 的四个三角函数值.【中考演练】1.(08威海) 在△ABC 中,∠C = 90°,tan A =13,则sin B =( ) A .10 B .23 C .34D .310 2.若3cos 4A =,则下列结论正确的为( ) 30° 45° 60° sin α cos α tan αA . 0°< ∠A < 30°B .30°< ∠A < 45°C . 45°< ∠A < 60°D .60°< ∠A < 90° 3. (08连云港) 在Rt ABC △中,90C ∠=,5AC =,4BC =,则tan A = .4.(07济宁) 计算45tan 30cos 60sin -的值是 . 5. 已知3tan 30 A -=∠A =则 .6.△ABC 中,若(sinA -12)2+|32-cosB|=0,求∠C 的大小.﹡7.(07长春)图中有两个正方形,A ,C 两点在大正方形的对角线上,△HAC 是等边三角形,若AB=2,求EF 的长.﹡8. 矩形ABCD 中AB =10,BC =8, E 为AD 边上一点,沿BE 将△BDE 对折,点D 正好落在AB 边上,求 tan ∠AFE ._ E_ A_ F_ D_ C _ B_ O _ H_ G FA BC DE课时32.解直角三角形及其应用【课前热身】1.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(结果保留根号)(第1题) 2. 某坡面的坡度为1:3,则坡角是_______度.3.(07山东)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )A .150mB .350mC .100 mD .3100m【考点链接】1.解直角三角形的概念:在直角三角形中已知一些_____________叫做解直角三角形. 2.解直角三角形的类型:已知____________;已知___________________. 3.如图(1)解直角三角形的公式:(1)三边关系:__________________.(2)角关系:∠A+∠B =_____,(3)边角关系:sinA=___,sinB=____,cosA=_______.cosB=____,tanA=_____ ,tanB=_____. 4.如图(2)仰角是____________,俯角是____________. 5.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 6.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tanα=i =____.(图2) (图3) (图4)αA C B45︒南北西东60︒A D C B 70︒O O A B Cc ba A C B【典例精析】例1 Rt ABC ∆的斜边AB =5, 3cos 5A =,求ABC ∆中的其他量.例2 (08十堰) 海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.例3(07辽宁)为了农田灌溉的需要,某乡利用一土堤修筑一条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的土堆在两旁,使土堤高度比原来增加了0.6米.(如图所示) 求:(1)渠面宽EF ;(2)修200米长的渠道需挖的土方数.【中考演练】1.在Rt ABC ∆中,090C ∠=,AB =5,AC =4,则 sinA 的值是_________.2.(07乌兰察布)升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面 1.2m,则旗杆高度约为_______.(取 ,结果精确到0.1m)3 1.733.(07云南)已知:如图,在△ABC中,∠B = 45°,∠C = 60°,AB = 6.求BC的长. (结果保留根号)﹡4.(06哈尔滨)如图,在测量塔高AB时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°.已知测角仪器高CE=1.5米,CD=30米,求塔高AB.(保留根号)。

九年级数学中考一轮复习教学案:第12课时 二次函数的图像与性质(一)

九年级数学中考一轮复习教学案:第12课时 二次函数的图像与性质(一)

第12课时 二次函数的图像与性质(一)【复习目标】1.通过对实际问题的分析,体会二次函数的意义.2.会用描点法画出二次函数的图象,通过图象了解二次函数的性质.3.会用配方法将数字系数的二次函数的解析式化为y =a(x -h)2+k 的形式,并能由此得到二次函数图象的顶点坐标,知道图象的开口方向,会画出图象的对称轴,知道二次函数的增减性,并掌握二次函数图象的平移规律.【知识梳理】1.一般地,形如_______的函数叫做二次函数,当a_______ ,b________时,是一次函数. 2.二次函数y =ax 2+bx +c 的图象是_______,对称轴是_______,顶点坐标是_______. 3.抛物线的开口方向由a 确定,当a>0时,开口_______;当a<0时,开口_______;越大,开口越_______.4.抛物线与y 轴的交点坐标为_______.当c>0时,与y 轴的_______半轴有交点;当c<0时,与y 轴的_______半轴有交点;当c =0时,抛物线过________. 5.若a_______0,当x =2ba -时,y 有最小值,为_______; 若a_______0,当x =2ba-时,y 有最大值,为_______.6.当a>0时,在对称轴的左侧,y 随x 的增大而_______,在对称轴的右侧,y 随x 的增大而_______;当a<0时,在对称轴的左侧,y 随x 的增大而_______,在对称轴的右侧.y 随x 的增大而_______.7.当m>0时,二次函数y =ax 2的图象向_______平移_______个单位得到二次函数y =a (x +m)2的图象;当k>0时,二次函数y =ax 2的图象向_______平移_______个单位得到二次函数y =ax 2+k 的图象.平移的口诀:左“+”右 “-”;上“+”下“-”.【考点例析】考点一 二次函数的有关概念例1已知二次函数y =x 2-4x +5的顶点坐标为 ( ) A .(-2,-1) B .(2,1) C .(2,- 1)D (-2,1)提示由配方可得y=x2-4x+5=(x-2)2+1,从而求得抛物线的顶点坐标.考点二抛物线的平移例2 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为 ( )A.y=3(x+2)2+3 B.y=3(x-2)2+3C.y=3(x+2)2-3 D.y=3(x-2)2-3提示由平移规律“上加下减.左加右减”,根据抛物线y=3x2向上平移3个单位,再向左平移2个单位得到平移后抛物线的解析式.考点三同一坐标系下二次函数与其他函数图象的共存问题例 3 在同一坐标系中°一次函数y=ax+1与二次函数y=x2+a的图象可能是( )提示本题主要考查一次函数和二次函数图象位置的确定,由一次函数y=ax+1可知其图象经过(0,1),与y轴交于正半轴.又二次函数y=x2+a.当a>0时,一次函数经过第一、二、三象限,二次函数图象的开口向上,顶点在y轴正半轴上,没有选项符合;当a<0时,一次函数的图象经过第一、二、四象限.二次函数开口向上,顶点在y轴负半轴上,从而确定正确选项.考点四利用二次函数的增减性比较坐标大小例4设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+m上的三点,则y1、y2、y3的大小关系为 ( )A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y1>y3提示本题根据二次函数图象在对称轴两边的增减性解题,要注意所有点必须先放在对称轴同一侧,然后进行比较.【反馈练习】1.抛物线y=-2x2+1的对称轴是 ( )A.直线y=12B.直线x=-12C.y轴D.直线x=22.已知二次函数y=2(x-3)2+1,下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象的顶点坐标为(3,-1);④当x<3时,y随x的增大而减小.其中说法正确的有 ( )A.1个B.2个C.3个D.4个3.抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是 ( ) A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位4.(2012.上海)将抛物线y=x2+x向下平移2个单位.所得新抛物线的解析式是________.5.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x-1)2+1的图象上,若x1>x2>1,则y1_______y2.6.已知二次函数y=-12x2-x+32.(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y<0时,x的取值范围;(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.。

第一轮复习统计与概率教案及反思

第一轮复习统计与概率教案及反思

教案中考第一轮复习《统计与概率》第二节概率姓名:陈桂玲单位:河南省郑州市中牟县实验学校第一轮复习统计与概率第二节概率教学目标:知识目标:1、正确区分确定事件(包括不可能事件和必然事件)和不确定事件(随机随机)2、在确定的情境中了解概率的含义,运用列表法或画树状图法计算简单事件发生的概率。

3、通过实验,获得事件发生概率的估计值。

4、能用概率知识解决一些实际问题。

5、能用实验或模拟试验的方法估计一些复杂的随机事件发生的概率。

过程与方法:通过中考真题再现,在解决问题的过程中,让学生初步体会成功的喜悦,增强学习的自信心。

情感态度与价值观:通过解决实际问题,培养学生用数学思维方式解决问题,增强学生的学习数学的兴趣。

教学重点:运用列表法或画树状图法计算简单事件发生的概率。

教学难点:能用概率知识解决一些实际问题。

教学方法:启发式教学、讲练结合教具准备:多媒体课件教学过程:一、知识梳理考点再现考点一:确定事件与随机事件1、_______和________称为确定事件。

2、在一定条件下,__________的事件,叫做随机事件。

考点二:概率1、概率的定义。

一般地,在大量重复试验中,如果事件A发生的频率mn会稳定在某个常数P附近,•那么这个常数P就叫做事件A的概率,记为P(A)=P.2、确定事件和随机事件的概率。

3、概率的计算。

列表法或画树状图法计算简单事件发生的概率考点三:频率与概率的关系是大量试验后频率趋于稳定的值,对于一个随机事件做大量试验时发现,随机事件发生的次数与试验次数的比总是在一个固定值附近摆动,这个固定的值叫做随机事件的概率,概率的大小反映随机事件的可能性的大小。

二、典例精析例1 (2010台州市).下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件;B .某次抽奖活动中奖的概率为1001,说明每买100张奖券,一定有一次中奖; C .数据1,1,2,2,3的众数是3;D .想了解台州市城镇居民人均年收入水平,宜采用抽样调查. 例2(2010陕西省).某班毕业联欢会设计的即兴表演节目的摸球游戏,游戏采用一个不透明的盒子,里面装有五个分别标有数字1、2、3、4、5的乒乓球,这些球除数字外,其他完全相同,游戏规则是参加联欢会的50名同学,每人将盒子乒乓球摇匀后闭上眼睛从中随即一次..摸出两个球(......每位同学必须且只能摸一次)。

中考一轮复习教案:一元一次方程与二元一次方程组

中考一轮复习教案:一元一次方程与二元一次方程组

一元一次方程与二元一次方程组辅导教案1.了解等式、方程、一元一次方程和二元一次方程(组)的概念,掌握等式的基本性质.2.掌握一元一次方程的标准形式,熟练掌握一元一次方程和二元一次方程组的解法.3.会列方程(组)解决实际问题.3.我州某校计划购买甲、乙两种树苗共1000株用以绿化校园,甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲,乙两种树苗成活率分别是90%和95%.(1)若购买这种树苗共用去28000元,则甲、乙两种树苗各购买多少株?(2)要使这批树苗的总成活率不低于92%,则甲种树苗最多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.4.海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元.李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?五、牛刀小试1、若代数式x+2的值为1,则x等于()A.1 B.﹣1 C.3 D.﹣32、某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x3、某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚(2)甲的套餐费用为199元,其中含600MB 的月流量;丙的套餐费用为244.2元,其中包含1GB 的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m 的值.巩固练习1.方程x +5=4的解是( )A .B .C .D . 2.方程3x+2(1-x)=4的解是( )A.x=52B.x=65C.x=2D.x=13.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .(9﹣7)x =1B .(9+7)x =1C .11()179x -= D .11()179x += 4.若单项式22a bx y+与413a b x y --是同类项,则a ,b 的值分别为( ) A .a=3,b=1 B .a=﹣3,b=1 C .a=3,b=﹣1 D .a=﹣3,b=﹣1 5.方程2x 13-=的解是( ) A .-1 B .C .1D .2 6.一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组33-11-12强化提升1.某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为元.2.已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为.3.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,可列方程为.4.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多元.5.方程组的解是.6.已知:若代数式x﹣5与2x﹣1的值相等,则x的值是.7.某城市现有42万人口,计划一年后城镇人口增加0.8%,农人口增加1.1%,这样全市人口将增加1%,求这个城市现有的城镇人口数与农村人口数.若设城镇现有人口为x万,农村现有人口为y万,则所列方程组为。

中考数学总复习的教案5篇

中考数学总复习的教案5篇

中考数学总复习的教案5篇中考数学总复习的教案篇1一、第一轮复习【3月初—4月中旬】1、第一轮复习的形式:“梳理知识脉络,构建知识体系”————理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。

②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,整体法,待定系数法,构造法,反证法等。

③过基本技能关应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。

(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。

①数与代数分为3个大单元:数与式、方程与不等式、函数。

②空间和图形分为5个大单元:几何基本概念(线与角)与三角形,四边形,圆与视图,相似与解直角三角形,图形的变换。

③统计与概率分为2个大单元:统计与概率。

(3)配套练习以《中考精英》为主,复习完每个单元进行一次单元测试,重视补缺工作。

2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。

(2)必须深钻教材,不能脱离课本。

(3)掌握基础知识,一定要从理解角度出发。

数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。

相对而言,“题海战术”在这个阶段是不适用的。

(5)定期检查学生完成的作业,及时反馈对于作业、练习、测验中的问题,将问题渗透在以后的教学过程中,进行反馈、矫正和强化。

二、第二轮复习【4月中旬—5月初】1、第二轮复习的形式第一阶段是总复习的基础,侧重双基训练,第二阶段是第一阶段复习的延伸和提高,侧重培养学生的数学能力。

第二轮复习时间相对集中,在第一轮复习的基础上,进行拔高,适当增加难度;主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。

中考一轮复习教案:尺规作图

中考一轮复习教案:尺规作图

尺规作图辅导教案课前热身1.尺规的作图是指()A用直尺规范作图B用刻度尺和圆规作图C用没有刻度的直尺和圆规作图D直尺和圆规是作图工具2.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线时,用到的三角形全等的判定方法是()作法:以O为圆心,任意长为半径作弧,交OA,OB于点D,E.分别以D,E为圆心,以大于12DE的长为半径作弧,两弧在∠AOB内交于点C.作射线OC.则OC就是∠AOB的平分线.A.SSS B.SAS C.ASA D.AAS3.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中不正确的是()A.AD是∠B AC的平分线B.∠ADC=60°C.点D在AB的中垂线上D.S△DAC:S△ABD=1:34.如图,已知△ABC,∠ABC=2∠C,以B为圆心任意长为半径作弧,交BA、BC于点E、F,分别以E、F为圆心,以大于12EF的长为半径作弧,两弧交于点P,作射线BP交AC于点,则下列说法不正确的是()A.∠ADB=∠ABC B.AB=BD C.AC=AD+BD D.∠ABD=∠BCD 5.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形6. 老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a,小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.勾股定理是逆定理C.直径所对的圆周角是直角D.90°的圆周角所对的弦是直径遗漏分析知识精讲【基础知识重温】(一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.(二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.(三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.四、例题分析题型一基本作图例1.(2016广西河池)如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.【趁热打铁】1.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.题型二基本作图的实际应用例.(2016湖南怀化)如图,在Rt△ABC中,∠BAC=90°(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.【趁热打铁】1.如图,在Rt△ABC中,∠ACB=90°.(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论.五、牛刀小试1、下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.2、如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.3B.5C.6D.73、任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形4、如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD 的面积是()A .15B .30C .45D .605、如图,在矩形ABCD 中,AB=10,AD=6,点M 为AB 上的一动点,将矩形ABCD 沿某一直线对折,使点C 与点M 重合,该直线与AB (或BC )、CD(或DA )分别交于点P 、Q(1)用直尺和圆规在图甲中画出折痕所在直线(不要求写画法,但要求保留作图痕迹)(2)如果PQ 与AB 、C D 都相交,试判断△MPQ 的形状并证明你的结论;(3)设AM=x ,d 为点M 到直线PQ 的距离,2y d ,①求y 关于x 的函数解析式,并指出x 的取值范围;②当直线PQ 恰好通过点D 时,求点M 到直线PQ 的距离.巩固练习1.如图,在△ABC 中,∠ACB=90°,分别以点A 和B 为圆心,以相同的长(大于AB )为半径作弧,两弧相交于点M 和N ,作直线MN 交AB 于点D ,交BC 于点E ,连接CD ,下列结论错误的是( ).12A .AD=BDB .BD=CDC .∠A=∠BED D .∠ECD=∠EDC2.用直尺和圆规作一个以线段AB 为边的菱形,作图痕迹如图所示,能得到四边形ABCD 是菱形的依据是( )A .一组邻边相等的四边形是菱形B .四边相等的四边形是菱形C .对角线互相垂直的平行四边形是菱形D .每条对角线平分一组对角的平行四边形是菱形3.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,点D 是AC 的中点,连接BD ,按以下步骤作图:①分别以B ,D 为圆心,大于BD 的长为半径作弧,两弧相交于点P 和点Q ;②作直线PQ 交AB 于点E ,交BC 于点F ,则BF=( ).A .B .1C .D . 4.如图,在△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为( )125613652A .65°B .60°C .55°D .45°5.用直尺和圆规作已知角的平分线的示意图如图,则说明∠CAD =∠DAB 的依据是( )A .SSSB .SASC .ASAD .AAS课堂小结强化提升1.如图,AB ∥CD ,以点B 为圆心,小于DB 长为半径作圆弧,分别交BA 、BD 于点E 、F ,再分别以点E 、F 为圆心,大于EF 长为半径作圆弧,两弧交于点G ,作射线BG 交CD 于点H .若∠D=116°,则∠DHB 的大小为 度.2.如图,在△ABC 中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A 为圆心,小于AC 的长为半径画弧,分别交AB 、AC 于点E 、F ;②分别以12点E 、F 为圆心,大于EF 的长为半径画弧,两弧相交于点G ;③作射线AG 交BC 于点D .则∠ADB 的度数为 °.3.如图,在△ABC 中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A ,B 为圆心,以大于AB 的长为半径做弧,两弧相交于点P 和Q . ②作直线PQ 交AB 于点D ,交BC 于点E ,连接AE .若CE=4,则AE= .课后作业1.如图,已知线段a 和h .求作:△ABC ,使得AB=AC ,BC=a ,且BC 边上的高AD=h .要求:尺规作图,不写作法,保留作图痕迹.12122.如图所示,点C、D是∠AOB内部的两点.(1)作∠AOB的平分线OE;(2)在射线OE上,求作一点P,使PC=PD.(要求用尺规作图,保留作图痕迹)3.如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.4.如图,△ABC中,AB=AC,∠A=40°.(1)作边AB的垂直平分线MN(保留作图痕迹,不写作法);(2)在已作的图中,若MN交AC于点D,连结BD,求∠DBC的度数。

初三数学一轮复习面积问题综合教案(含练习)

初三数学一轮复习面积问题综合教案(含练习)

Presented by Csuzzy,All Rights Reserved.7面积问题§7-1铅锤法如图,抛物线2y x bx c =++(b ,c 为常数)与x 轴相交于点()1,0A -,()3,0B ,与y 轴相交于点C ,其对称轴与x 轴相交于点D ,作直线BC .(1)求抛物线的解析式.(2)设点P 为抛物线对称轴上的一个动点.①如图1,若点P 为抛物线的顶点,求PBC △的面积.②是否存在点P 使PBC △的面积为6?若存在,求出点P 坐标;若不存在,请说明理由.面积定值1Presented by Csuzzy ,All Rights Reserved. 1.如图,长方形OABC 的OA 边在x 轴的正半轴上,OC 在y 轴的正半轴上,抛物线2y ax bx =+经过点()1,4B 和点()3,0E 两点.(1)求抛物线的解析式;(2)若点D 在线段OC 上,且BD DE ⊥,BD DE =,求D 点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M ,使得BDM △的周长为最小,并求BDM △周长的最小值及此时点M 的坐标;(4)在条件(2)下,从B 点到E 点这段抛物线的图象上,是否存在一个点F ,使得FAD △的面积最大?若存在,请求出FAD △面积的最大值及此时F 点的坐标;若不存在,请说明理由.2面积最大如图,曲线1y 抛物线的一部分,且表达式为()()2132333y x x x =--≤,曲线2y 与曲线1y 关于直线3x =对称.(1)求A ,B ,C 三点的坐标和曲线2y 的表达式;(2)过点C 作CD x 轴交曲线1y 于点D ,连接AD ,在曲线2y 上有一点M ,使得四边形ACDM 为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M 的横坐标;(3)在(2)的条件下,设直线CM 与x 轴交于点N ,试问在线段MN 下方的曲线2y 上是否存在一点P ,使PMN △的面积最大?若存在,求出点P 的坐标;若不存在,请说明理由.Presented by Csuzzy ,All Rights Reserved.如图1,抛物线2y x bx c =-++经过()1,0A -,()4,0B 两点,与y 轴相交于点C ,连接BC .点P 为抛物线上一动点,过点P 作x 轴的垂线l ,交直线BC 于点G ,交x 轴于点E .(1)求抛物线的表达式;(2)当P 位于y 轴右边的抛物线上运动时,过点C 作CF ⊥直线l ,F 为垂足.当点P 运动到何处时,以P ,C ,F 为顶点的三角形与OBC △相似?并求出此时点P的坐标;(3)如图2,当点P 在位于直线BC 上方的抛物线上运动时,连接PC ,PB .请问PBC △的面积S 能否取得最大值?若能,请求出最大面积S ,并求出此时点P 的坐标;若不能,请说明理由.3§7-2面积综合(2018福建)如图,直线与双曲线相交于,两点,轴,轴,则面积的最小值为.如图,OAC△和BAD△都是等腰直角三角形,90ACO ADB∠=∠= ,反比例函数6yx=在第一象限的图象经过点B,则OAC△与BAD△的面积之差OAC BADS S-△△为()A.36B.12C.6D.3 1Presented by Csuzzy ,All Rights Reserved.(2018盐城)如图①,在平面直角坐标系中,抛物线经过点,两点,且与轴交于点.(1)求抛物线的表达式;(2)如图②,用宽为个单位长度的直尺垂直于轴,并沿轴左右平移,直尺的左右两边所在的直线与抛物线相交于,两点(点在点的左侧),连接,在线段上方抛物线上有一动点,连接,.(Ⅰ)若点的横坐标为面积最大值,并求此时点的坐标;(Ⅱ)直尺在平移过程中,面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.2如图,已知抛物线交x 轴于A ,B 两点,交y 轴于C 点,A 点坐标为()1,0-,2OC =,3OB =,点D 为抛物线的顶点.(1)求抛物线的解析式;(2)P 为坐标平面内一点,以B ,C ,D ,P 为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点1M ,2M ,3M 使得1M BC △,2M BC △,3M BC △的面积均为定值S ,求出定值S 及1M ,2M ,3M 这三个点的坐标.Presented by Csuzzy ,All Rights Reserved.(2017苏州)如图,二次函数的图象与轴交于,两点,与轴交于点,.点在函数图象上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.(1)求,的值;(2)如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;(3)如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.3如图①,己知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中()0,3C ,BAC ∠的平分线AD 交BC 于点D ,交第一象限的抛物线于点E .(1)求a 的值;(2)如图①,抛物线上两点C ,E 间的一动点F 关于AD 的对称点F '恰好落在线段BD 上,求F 点坐标;(3)若动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得PQN △的面积是APM △面积的2倍,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.Presented by Csuzzy ,All Rights Reserved.如图(1),在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于点()4,0A -,与y 轴交于点()0,4B .(1)求抛物线的函数解析式;(2)在x 轴上有一点P ,点P 在直线AB 的垂线段为PC ,C 为垂足,且2PC =求点P 的坐标;(3)如图(2),将原抛物线向左平移,使平移后的抛物线过原点,与原抛物线交于点D ,在平移后的抛物线上是否存在点E ,使APE ACD S S =△△?若存在,请求出点E的坐标,若不存在,请说明理由.4如图,在平面直角坐标系中,二次函数223y x x =--的图象与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC ,点D 为抛物线的顶点,点P 是第四象限的抛物线上的一个动点(不与点D 重合).(1)求OBC ∠的度数;(2)连接CD 、BD 、DP ,延长DP 交x 轴正半轴于点E ,且OCE OCDB S S =△四边形,求此时P 点的坐标;(3)过点P 作PF x ⊥轴交BC 于点F ,求线段PF 长度的最大值.Presented by Csuzzy ,All Rights Reserved.第7次课同步练习1.如图,在平面直角坐标系中,抛物线经过点()0,4A ,()1,0B ,()5,0C ,其对称轴与x 轴相交于点M .(1)求此抛物线的解析式和对称轴;(2)在此抛物线的对称轴上是否存在一点P ,使PAB △的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)连接AC ,在直线AC 下方的抛物线上,是否存在一点N ,使NAC △的面积最大?若存在,请求出点N 的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过点()3,0A 和点()2,3B ,过点A 的直线与y 轴的负半轴相交于点C ,且1tan 3CAO ∠=.(1)求这条抛物线的表达式及对称轴;(2)连接AB ,BC ,求ABC ∠的正切值;(3)若点D 在x 轴下方的对称轴上,当DBC ADC S S =△△时,求点D 的坐标.Presented by Csuzzy ,All Rights Reserved.第7次课作业1.如图,在平面直角坐标系中,已知抛物线2y x bx c =++经过A ,B ,C 三点,已知()4,0B ,()2,6C -.(1)求该抛物线的解析式和点A 的坐标;(2)点()(),12D m n m -<<在抛物线图象上,当ACD △的面积为278时,求点D 的坐标;2.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点()4,0B ,与过A 点的直线相交于另一点53,2D ⎛⎫ ⎪⎝⎭,过点D 作DC x ⊥轴,垂足为C .(1)求抛物线的表达式;(2)点P 在线段OC 上(不与点O ,C 重合),过P作PN x ⊥轴,交直线AD 于M ,交抛物线于点N ,连接CM ,求PCM △面积的最大值。

初三中考第一轮复习全等三角形(一对一教案)

初三中考第一轮复习全等三角形(一对一教案)

初三中考第⼀轮复习全等三⾓形(⼀对⼀教案)学科教师辅导讲义学员编号:年级:课时数:学员姓名:辅导科⽬:学科教师:授课类型T全等三⾓形判定 C 全等三⾓形的判定特点T 中考题型分析授课⽇期及时段教学内容⼀、同步知识梳理1.判定和性质⼀般三⾓形直⾓三⾓形判定边⾓边(SAS)、⾓边⾓(ASA)⾓⾓边(AAS)、边边边(SSS)具备⼀般三⾓形的判定⽅法斜边和⼀条直⾓边对应相等(HL)性质对应边相等,对应⾓相等对应中线相等,对应⾼相等,对应⾓平分线相等注:①判定两个三⾓形全等必须有⼀组边对应相等;②全等三⾓形⾯积相等.2.证题的思路:)找任意⼀边()找两⾓的夹边(已知两⾓)找夹已知边的另⼀⾓()找已知边的对⾓(找已知⾓的另⼀边(边为⾓的邻边)任意⾓(若边为⾓的对边,则找已知⼀边⼀⾓)找第三边()找直⾓()找夹⾓(已知两边AASASAASAAASSASAASSSSHLSAS⼆、同步题型分析题型1:边边边(SSS)的证明(.★.)例..1.:.已知:如图1,AD=BC.AC=BD.试证明:∠CAD=∠DBC.图1提⽰:证明△ABD≌△BAC,得到∠BAD=∠ABC,∠DBA=∠CAB,通过∠BAD—∠CAB=∠ABC—∠DBA,证明∠CAD=∠DBC。

题型2:边⾓边(SAS)的证明(.★.)例..1.:.已知:如图2,AB=AC,BE=CD.求证:∠B=∠C.图2提⽰:由....AB=AC,BE=CD,得到AD=AE,证明△ABD≌△ACE,得到∠B=∠C(.★.)例..2.:.已知:如图3,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3提⽰:由....∠1=∠2,得到∠BAC=∠DAE,证明△BAC≌△DAE,得到BC=DE(.★★..3.:.如图4,将两个⼀⼤、⼀⼩的等腰直⾓三⾓尺拼接(A、B、D三点共线,AB=CB,EB=DB,..)例∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图4提⽰:延长..AB=CB,EB=DB,∠ABE=∠CBD=90°,证明△ABE≌△CBD,得到..F.,由.....AE..交.CD..于点AE=CD,∠EAB=∠DCB,再由∠CDB+∠DCB=90o,得到∠CEF+∠ECF=90°,证明AE⊥CD 题型3:⾓边⾓(ASA)、⾓⾓边(AAS)的证明(.★.)例..1.:.已知:如图5,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .图5提⽰:由....AB ⊥AE ,AD ⊥AC ,得到∠CAB =∠DAE ,根据∠E =∠B ,DE =CB ,证明△C AB≌△DAE ,得到AD =AC(.★★..)例..2.:.已知:如图6,在△MPN 中,H 是⾼MQ 和NR 的交点,且MQ =NQ .求证:HN =PM .图6提⽰:由....MQ 和NR 是△MPN 的⾼,得到∠MQP =∠NRP =90°,继⽽得到∠PMQ =∠PNR ,结合MQ =NQ ,证明△PMQ ≌△HNQ ,得到HN =PM(.★★..)例..3.:.阅读下题及⼀位同学的解答过程:如图7,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,∠=∠=∠=∠),(),(),(对顶⾓相等已知已知COB AOD OB OA C A∴△AOD ≌△COB (ASA ).图7问:这位同学的回答及证明过程正确吗?为什么?提⽰:⼀定要找准对应边和对应⾓题型4、斜边和⼀条直⾓边对应相等(HL )(.★★..).已知:如图7,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;图7提.⽰:连接....DC ..,即可证明.....△ADC ≌△BCD三、课堂达标检测(★)检测题1:如图(1),点P 是AB 上任意⼀点,ABC ABD ∠=∠,还应补充⼀个条件,才能推出APC APD △≌△.从下列条件中补充⼀个条件,不⼀定能....推出APC APD △≌△的是()A .BC BD =B .AC AD = C .ACB ADB ∠=∠D .CAB DAB ∠=∠答案:B(★)检测题2:如图2,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是(写出⼀个即可).答案:AE=AC(★★)检测题3:如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O.求证:(1) △ABC ≌△AED ; (2) OB =OE .图(3)CADP B图(1)A CEBD(2)BDA⼀、专题精讲(★★)题型⼀:全等三⾓形证明等量例1:2010四川宜宾,13(3),5分)如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂⾜分别为E、F.求证:BF=CE.提⽰:证明△CED≌△BFD题型⼆:全等三⾓形证明位置关系(★★)例2:如图所⽰,已知,AD为△ABC的⾼,E为AC上⼀点,BE交AD于F ,且有BF=AC,FD=CD.求证:BE⊥AC提⽰:证明△BDF≌△ADC题型三、构造全等证明结论(★★)例3:如图,已知E是正⽅形ABCD的边CD 的中点,点F在BC上,且∠DAE=∠FAE.求证:AF=AD+CFABDCEF提⽰:证明△DBA ≌△ECA(★★★)检测题2:△DAC, △EBC 均是等边三⾓形,AE,BD 分别与CD,CE 交于点M,N,求证:(1)AE=BD (2)CM=CN (3) △CMN 为等边三⾓形(4)MN ∥BC提⽰:(1)证明△ACE ≌△DCB (2)△ACM ≌△DCN 或△EMC ≌△BNC(★★★)检测题3:如图甲,在△ABC 中,∠ACB 为锐⾓.点D 为射线BC 上⼀动点,连接AD ,以AD 为⼀边且在AD 的右侧作正⽅形ADEF .解答下列问题:(1)如果AB=AC ,∠BAC=90o.①当点D 在线段BC 上时(与点B 不重合),如图⼄,线段CF 、BD 之间的位置关系为,数量关系为.②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成⽴,为什么?D AMEAFFEAFA(2)如果AB≠AC,∠BAC≠90o,点D在线段BC上运动.试探究:当△ABC满⾜⼀个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)提⽰:证明△ABD≌△ACF即可三、学法提炼1、专题特点:主要是了解全等三⾓形的运⽤特点,全等三⾓形的构造⽅法2、解题⽅法:主要是从全等三⾓形的四⼤条件⼊⼿(公共边、公共⾓、重合边、重合⾓),运⽤已知条件,达到全等证明3、注意事项:在条件运⽤中,⼀定要清楚条件所适⽤的判定,不能张冠李戴。

初三第一轮数学复习教案

初三第一轮数学复习教案

初三第一轮数学复习教案一、教学内容1. 实数与数轴2. 代数式的简化与运算3. 方程与不等式4. 函数及其图像5. 三角形与四边形6. 圆二、教学目标1. 熟练掌握实数、代数式、方程、不等式、函数、图形等基本概念及其性质。

2. 提高学生的运算能力,培养学生的逻辑思维能力和解决问题的能力。

3. 帮助学生建立知识体系,提高综合运用所学知识解决实际问题的能力。

三、教学难点与重点重点:实数与数轴、代数式的简化与运算、方程与不等式、函数及其图像、三角形与四边形、圆的基本概念及其性质。

难点:函数的性质及其图像、不等式的解法、几何图形的综合应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:教材、练习本、草稿纸、直尺、圆规。

五、教学过程1. 导入:通过实际生活中的例子,引入实数、方程、函数等概念,激发学生的兴趣。

2. 复习实数与数轴:讲解实数的分类、数轴上的点与实数的对应关系,举例说明实数在生活中的应用。

3. 复习代数式的简化与运算:讲解代数式的性质、运算法则,通过例题讲解,让学生掌握代数式的简化与运算。

4. 复习方程与不等式:讲解方程、不等式的解法,结合实际例子,让学生学会解决实际问题。

5. 复习函数及其图像:讲解函数的定义、性质,通过绘制图像,让学生直观地理解函数的变化规律。

6. 复习三角形与四边形:讲解三角形、四边形的性质,结合实例,让学生掌握几何图形的应用。

7. 复习圆:讲解圆的性质、圆与直线的关系,通过实例,让学生了解圆在实际生活中的应用。

8. 随堂练习:针对每个知识点,设计练习题,让学生及时巩固所学知识。

六、板书设计1. 实数与数轴2. 代数式的简化与运算3. 方程与不等式4. 函数及其图像5. 三角形与四边形6. 圆七、作业设计1. 作业题目:(1)计算:2^3 5 × (4 ÷ 2) + 7(2)解方程:2x 5 = 3(x + 1)(3)解不等式:3(x 1) > 2(x + 2)(4)绘制函数y = 2x + 1的图像(5)证明:等腰三角形的底角相等。

中考一轮复习教案:图形的轴对称、平移与旋转

中考一轮复习教案:图形的轴对称、平移与旋转

图形的轴对称、平移与旋转辅导教案 课前热身1.下列图形中,既是轴对称图形,又是中心对称图形的有( )A 、1个B 、2个C 、3个D 、4个2.如图,∠AOB 内一点P ,,分别是P 关于OA 、OB 的对称点,交OA 于点M ,交OB 于点N .若△PMN 的周长是5cm ,则的长为( ).A .3cmB .4cmC .5cmD .6cm 1P 2P 1P 2P 1P 2P3.如图,在△ABC 中,∠CAB=70°.在同一平面内,将△ABC 绕点A 旋转到△ABC′的位置,使得CC′∥AB ,则∠BAB′=( )A .30°B .35°C .40°D .50°4.在平面直角坐标系中,已知直线y=-x+3与x 轴、y 轴分别交于A 、B 两点,点C(0,n)是y 轴上一点,把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )A.(0,)B.(0,)C.(0,3)D.(0,4) 5.如图,在△ABC 中,∠ACB=90°,AC=2,BC=4,E 为边AB 的中点,点D是BC 边上的动点,把△ACD 沿AD 翻折,点C 落在C′处,若△AC′E 是直角三角形,则CD 的长为 .6.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是 .遗漏分析知识精讲343443【基础知识重温】一.平移1.定义:在平面内,将一个图形沿某个___ ____移动一定的__ __,这样的图形移动称为平移.2.平移的性质:(1)对应线段平行(或共线)且___,对应点所连的线段________,图形上的每个点都沿同一个方向移动了相同的距离;(2)对应角分别________,且对应角的两边分别平行、方向一致;(3)平移变换后的图形与原图形_______二. 轴对称与轴对称图形1.轴对称(1)定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形_ ___,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.折叠后重合的点是对应点,叫对称点.(2)性质:①对应点的连线被对称轴____;②对应线段_______;③成轴对称的两个图形_________2.轴对称图形:定义:如果一个图形沿某一条直线对折后,直线两旁的部分能够互相重合,这个图形叫做___ __,这条直线叫做它的对称轴.这时我们也说这个图形关于这条直线(成轴)对称.3.轴对称图形与轴对称的区别与联系:(1)区别:轴对称是指_______全等图形之间的相互位置关系;轴对称图形是指具有特殊形状的____图形.(2)联系:①如果把成轴对称的两个图形看成一个整体(一个图形),那么这个图形是轴对称图形;②如果把一个轴对称图形中对称的部分看成是两个图形,那么它们成轴对称.4. 平移与轴对称的坐标特征(1)平移的坐标特征:①点(x,y)向右(或向左)平移a个单位长度后,对应点的坐标为_________;②点(x,y)向上(或向下)平移a个单位长度后,对应点的坐标为_ ________.(2)轴对称的坐标特征:①关于x轴对称的两个图形中,点(x,y)的对称点的坐标为________;②关于y轴对称的两个图形中,点(x,y)的对称点的坐标为_ _____.三.旋转1.旋转的定义:在平面内,把一个图形绕着某一个定点沿着某个方向旋转一定的角度,这样的图形运动称为旋转.这个定点叫做____,转动的角叫做_____2. 图形的旋转有三个基本条件:(1);(2);(3).3.旋转的性质:(1)对应点到旋转中心的距离__;(2)对应点与旋转中心所连线段的夹角等于______;(3)旋转前后的图形___4. 中心对称与中心对称图形(1)中心对称的定义:把一个图形绕着某一点旋转_____后,如果它能与另一个图形_______,那么就说这两个图形关于这个点成中心对称,该点叫做_____ (2)中心对称的性质:①成中心对称的两个图形,对应点所连线段都经过对称中心,而且被对称中心_______;②成中心对称的两个图形______③中心对称图形的定义:把一个图形绕着某一点旋转____,如果旋转后的图形能够与原来的图形重合,那么我们把这个图形叫中心对称图形,这个点叫做___ 四、例题分析题型一、平移 【例1】如图,△ABC 中,BC=5cm ,将△ABC 沿BC 方向平移至△A’B’C’的位置时,A’B’恰好经过AC 的中点O ,则△ABC 平移的距离为 cm.【趁热打铁】如图,如果把△ABC 的顶点A 先向下平移3格,再向左平移1格到达A′点,连接A′B ,则线段A′B 与线段AC 的关系是( )A .垂直B .相等C .平分D .平分且垂直题型二、旋转【例2】(2016吉林长春)如图,在Rt △ABC 中,∠BAC=90°,将Rt △ABC绕点C 按逆时针方向旋转48°得到Rt △A′B′C′,点A 在边B′C 上,则∠B′的大小为( )A .42°B .48°C .52°D .58°【趁热打铁】如图,已知△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为( )OB A A'B'C C'A .B .C .D .1 题型三、轴对称图形与中心对称图形【例3】(2016四川眉山)下列既是轴对称图形又是中心对称图形的是( )A .B .C .D .【趁热打铁】 下列对称图形中,是轴对称图形,但不是中心对称图形的有( )A .1个B .2 个C .3 个D .4个题型四、图形的折叠与轴对称【例4】(2016浙江金华)如图,Rt △ABC 纸片中,∠C=90°,AC=6,BC=8,点D 在边BC 上,以AD 为折痕将△ABD 折叠得到△AB′D,AB′与边BC 交于点E .若△DEB′为直角三角形,则BD 的长是_______.【趁热打铁】已知:如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,CM 是斜边AB 上的中线,将△ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂22-3231-直,那么∠A的度数是()A.30°B.40°C.50°D.60°题型五平移、旋转的作图【例5】(2016贵州黔南州)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上):①把△ABC沿BA方向平移,请在网格中画出当点A移动到点A1时的△A1B1C1;②把△A1B1C1绕点A1按逆时针方向旋转90°后得到△A2B2C2,如果网格中小正方形的边长为1,求点B1旋转到B2的路径长.【趁热打铁】如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C 的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.五、牛刀小试1、下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.2.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)3.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A .6B .6C .3D .3+34.如图,正△ABC 的边长为2,过点B 的直线l ⊥AB ,且△ABC 与△A′BC′关于直线l 对称,D 为线段BC′上一动点,则AD+CD 的最小值是( )A .4B .3C .2D .2+5.如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AC =2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是( )A .B .C .3D .6.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (2,﹣1),B (3,﹣3),C (0,﹣4)(1)画出△ABC 关于原点O 成中心对称的△A 1B 1C 1;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2.222233722237.已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.巩固练习1.已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.(1,7)C.(1,1)D.(2,1)2.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有( )A .1条B .2条C .3条D .4条3.为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中是轴对称图形又是中心对称图形的是( )A .B .C .D .4.将含有30°角的直角三角板OAB 如图放置在平面直角坐标系中,OB 在x轴上,若OA=2,将三角板绕原点O 顺时针旋转75°,则点A 的对应点A′的坐标为( )A .(,﹣1)B .(1,﹣)C .(,﹣)D .(﹣,)5.如图,在Rt △AOB 中,∠AOB=90°,OA=3,OB=2,将Rt △AOB 绕点O顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA 、ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是( )A .πB .C .3+πD .8﹣π 332222546.在平面直角坐标系中,将△AOB绕原点O顺时针旋转180°后得到△A1OB1,若点B的坐标为(2,1),则点B的对应点B1的坐标为()A.(1,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)7.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(2,5)B.(5,2)C.(2,﹣5)D.(5,﹣2)8.如图,在△A BC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()102225 A.B.C.3 D.9.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60°B.90°C.120°D.150°10.如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°课堂小结强化提升1.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为.2.如图,已知正方形A BCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM 的长为.3.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.4.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B 3的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为.5.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD= .6.如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为.课后作业1.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.2.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.3.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.。

中考数学第一轮复习教案9篇

中考数学第一轮复习教案9篇

中考数学第一轮复习教案9篇中考数学第一轮复习教案9篇数学教案对于老师是很重要的。

教案是老师在进行教学的重要参考材料,对教学进度和节奏的把控有重要的作用,可以提高教学效率。

下面小编给大家带来关于中考数学第一轮复习教案,希望会对大家的工作与学习有所帮助。

中考数学第一轮复习教案(篇1)本学期是初中学习的关键时期,教学任务非常艰巨。

因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。

九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。

下面特制定以下教学复习计划。

一、学情分析经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。

通过上个学期多次摸底测试及期末检测发现,本班的特点是两极分化现象极为严重。

虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。

其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。

二、指导思想坚持贯彻党的__大教育方针,继续深入开展新课程教学改革。

立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。

并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。

三、教学内容分析本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。

在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。

中考数学第一轮复习教案(实数、整式、分式、根式)

中考数学第一轮复习教案(实数、整式、分式、根式)

中考总习1 实数1、平方根定义1:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根。

a 的算术平方根记作a ,读作“根号a ”,a 叫做被开方数。

即a x =。

规定:0的算术平方根是0。

定义2:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根。

即如果x 2=a ,那么x 叫做a 的平方根。

即a x ±=。

定义3:求一个数a 的平方根的运算,叫做开平方。

因为一个非零实数的平分肯定是正数,所以,正数有两个平方根,它们互为相反数;例如:4的平分根为±2,是互为相反数的;0的平方根是0;负数没有平方根。

2、立方根定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。

即如果x 3=a ,那么x 叫做a 的立方根,记作3a 。

即3a x =。

求一个数的立方根的运算,叫做开立方。

正数的立方根是正数;负数的立方根是负数;0的立方根是0。

3、无理数无限不循环小数又叫做无理数。

初中常见的无理数有:带有根号开不出来的式子,例如:、、等等;带有的式子,例如: ,等等;无限不循环小数,例如:1.325…,-0.2587…等等4、实数有理数和无理数统称实数。

即实数包括有理数和无理数。

备注:最小的正整数是1,最大的负整数是-1,绝对值最小的数是0。

有理数关于相反数和绝对值的意义同样适合于实数。

例如:3-的相反数为3,倒数为3331-=-,3-的绝对值为。

5、实数的分类分法一:负有理数 0 无理数 实数有理数正有理数负无理数 正无理数 有限小数或 无限循环小数无限不循环小数 知识要点分法二:实数 0由上可知,一个数要是分数,前提必须是有理数,所以,不是所有的a/b 这样的数,都是分数。

例如:不是分数,是无理数。

6、实数的比较大小有理数的比较大小的法则在实数范围内同样适用。

备注:遇到有理数和带根号的无理数比较大小时,让“数全部回到根号下”,再比较大小。

山东省中考数学科一轮复习教案之数与式1--4

山东省中考数学科一轮复习教案之数与式1--4

第一篇 数与式专题一 实数一、中考要求:1.在经历数系扩X 、探某某数性质及其运算规律的过程;从事借助计算器探索数学规律的活动中,发展同学们的抽象概括能力,并在活动中进一步发展独立思考、合作交流的意识和能力. 2.结合具体情境,理解估算的意义,掌握估算的方法,发展数感和估算能力.3.了解平方根、立方根、实数及其相关概念;会用根号表示并会求数的平方根、立方根;能进行有关实数的简单四则运算.4.能运用实数的运算解决简单的实际问题,提高应用意识,发展解决问题的能力,从中体会数学的应用价值. 二、中考热点:本章多考查平方根、立方根、二次根式的有关运算以及实数的有关概念,另外还有一类新情境下的探索性、开放性问题也是本章的热点考题. 三、考点扫描 1、实数的分类:实数0⎧⎧⎪⎨⎨⎩⎪⎩正实数有理数或无理数负实数2、实数和数轴上的点是一一对应的.3、相反数:只有符号不同的两个数互为相反数. 若a 、b 互为相反数,则a+b=0,1-=ab(a 、b ≠0) 4、绝对值:从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a5、近似数和有效数字;6、科学记数法;7、整指数幂的运算:()()m m mmn nmn m n m b a ab a a a a a ⋅===⋅+,, (a ≠0)负整指数幂的性质:pp pa a a⎪⎭⎫ ⎝⎛==-11零整指数幂的性质:10=a (a ≠0)8、实数的开方运算:()aa a a a =≥=22;0)(9、实数的混合运算顺序*10、无理数的错误认识:⑴无限小数就是无理数如1.414141···(41 无限循环);(2);(3)两个无理数的和、差、积、商也还是无理数,但它们的积却是有理数;(4)无理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,每一个无理数在数轴上都有一个唯一位*11、实数的大小比较: (1).数形结合法(2).作差法比较(3).作商法比较 (4).倒数法: 如6756--与(5).平方法 四、考点训练1有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的平方根,其中正确的有( ) A .0个 B .1个 C .2个 D .3个2那么x 取值X 围是()A 、x ≤2 B. x <2 C. x ≥2 D. x >2 3、-8)A .2B .0C .2或一4D .0或-44、若2m -4与3m -1是同一个数的平方根,则m 为( ) A .-3 B .1 C .-3或1 D .-15、若实数a 和 b 满足 b=a+5+-a-5 ,则ab 的值等于_______6、在3-2的相反数是________,绝对值是______.7、81的平方根是( )A .9B .9C .±9D .±3 8、若实数满足|x|+x=0, 则x 是( )五、例题剖析1、设a=3- 2 ,b=2-3,c =5-1,则a 、b 、c 的大小关系是()A .a >b >cB 、a >c >bC .c >b >aD b >c >a化简|1-x|-2x -8x+162x-5的结果是,则x 的取值X 围是()2、若A .X 为任意实数B .1≤X ≤4C .x ≥1D .x <43、阅读下面的文字后,回答问题:小明和小芳解答题目:“先化简下式,再求值:a+21-2a+a 其中a=9时”,得出了不同的答案 ,小明的解答:原式=a+21-2a+a = a+(1-a)=1,小芳的解答:原式= a+(a -1)=2a -1=2×9-1=17 ⑴___________是错误的;⑵错误的解答错在未能正确运用二次根式的性质: ________ 4、计算:20012002(2-3)(2+3)5、我国1990年的人口出生数为23784659人。

2020年初三数学中考第一轮复习:整式和分式的 复习课 学案

2020年初三数学中考第一轮复习:整式和分式的 复习课 学案

课题整式与分式的复习【教学目标】1.通过梳理知识点,回顾整式、分式有关概念和运算方法;2.通过精选的例题讲解,深化幂的运算、因式分解和分式相关计算等核心知识、方法的理解,掌握解决相关问题的一般思路;3.在云视讯交流平台下,加强师生互动,提高教学效率.【教学重点、难点】重点是整式与分式的运算,因式分解的基本方法,整数指数幂的运算;难点是选择适当的方法因式分解及代数式的混合运算的符号问题.【教学过程】一、知识梳理1、表格梳理学习内容学习水平识记(A)理解(B)运用(C)综合(D)代数式的有关概念字母表示数的意义√代数式的有关概念√列代数式和求代数式的值文字语言与作为符号语言的代数式互相转换√求代数式的值√整数指数幂及其运算正整数指数幂、零指数幂、负整数指数幂的有关概念√整数指数幂的乘(除)、乘方等运算法则√整式及其运算整式的加、减、乘、除及乘方的运算法则√平方差公式和完全平方公式√因式分解提取公因式法、分组分解法、公式法和十字相乘法√分式及其运算分式的有关概念√分式的基本性质√分式的加、减、乘、除运算法则√2、重点知识(1)整式的运算①幂的运算法则:(以下的m,n,p是整数)1a m ⋅a n =a m+n (a≠0);2(a m )n =a mn (a≠0);3(ab)n =a n b n (a≠0,b≠0);( b )n⎩ m n m -nb n4 a ÷ a = a( a ≠ 0 );5 =( a ≠ 0,b ≠ 0 ); 6 a an= 1(a ≠ 0) ;7 a - p = 1a p ( a ≠ 0 ).② 乘法公式:1 (a + b )(a - b ) = a2 - b 2 ;2 (a + b )2 = a 2 + 2ab + b 2 ;3 (a - b )2 = a 2 - 2ab + b 2(2) 因式分解① 因式分解要首先考虑提公因式法,而且要提尽;② 公式法: a 2 - b 2 = (a + b )(a - b );a 2 + 2ab + b 2 = (a + b )2;a 2 - 2ab + b 2 = (a - b )2; ③ 十字相乘法: x 2 + (a + b ) x + ab = ( x + a )( x + b ) ;④ 分组分解法:如果四项多项式因式分解,要尝试“二、二分组”或“一、三分组”. (3) 分式的意义与性质A1、 分式 B的特征:(1)A 、B 都是整式,(2)B 中含有字母;b 2、 分式的基本性质: a= b ⋅ m a ⋅ m = b ÷ m a ÷ m (m ≠ 0) ;A ⎧A = 0 3、 分式 B的值为 0 的条件:B ≠ 0;A4、 分式 B有意义的条件: B ≠ 0 ;5、 分式的运算结果是最简分式或整式.二、例题讲解1. 整数指数幂的运算例 1 下列运算正确的是( )(A ) (a 2 )3 = a 5; (B ) a 2 ⋅ a 3 = a 5 ;(C )(2a )2= 4a ; (D ) a 6 ÷ a 3 = a 2.2. 因式分解例 2 分解因式:(1)(2)2x 4 + 4x 2- 6 ;4 - x 2 - 4y 2 + 4xy .3. 分式的有关概念例 3 当 x 什么值时,分式x 2+ 2x - 3 x + 3满足以下条件.(1)分式无意义 (2) 分式值为零4. 分式的运算例 4 先化简,再求值:3 - m 2m -4 ÷(m + 2 - 5m - 2) ,其中m = 2 - 3.例 5 已知:AB =2,AD =4,∠DAB =90°,AD ∥BC (如图).点 E 是射线 BC 上的动点(点 E 与点 B 不重合),BE =x .(1) 求线段 DE 的长(用 x 表示); (2) 如果以线段 AB 为直径的圆与以线段 DE 为直径的圆外切,求 BE 的长.变式 1 已知:AB =2,AD =4,∠DAB =90°,AD ∥BC (如图).点 E 是射线 BC 上的动点 (点 E 与点 B 不重合),BE =x .如果以线段 AB 为直径的圆与以线段 DE 为直径的圆相切,求 BE 的长.变式 2 已知:AB =2,AD =4,∠DAB =90°,AD ∥BC (如图).点 E 是直线 BC 上的动点 (点 E 与点 B 不重合),BE =x .如果以线段 AB 为直径的圆与以线段 DE 为直径的圆内切,求 BE 的长.二、课堂练习1.下列计算中,正确的是( )(A )(a 2 )3 = a 5 ; (B )a 2 ⋅ a 3 = a 6 ; (C )2a ⋅ 3a = 6a 2 ;(D )2a + 3a = 5a 2 .B E CBECBE2.分解因式:x2 -x +y -y2 =.3.分解因式:m2- 2mn+n2- 4 = .4.(1)如果分式x2 -4x - 2的值为零,那么x=.(2)如果分式x +y有意义,那么x 与y 必须满足()x -y(A)x =-y;(B)x ≠-y;(C)x =y ;(D)x ≠y .5.先化简,再求值:2a + 2÷ (a +1) -a -1a -1a2 - 2a +1,其中a =.三、小结四、自我反馈检测一、选择题1.(19 松江二模)下列计算正确的是()(A)a2+a2=a4;(B)(2a)3=6a3;(C)3a2 ⋅(-a3 )=-3a5 ;(D)4a6 ÷ 2a2 = 2a3 .2.(19 徐汇二模)下列各式中,运算结果为x2 的是( )A.x4 -x2 ;B.x4 ⋅x-2 ;C.x6 ÷x3 ;D.(x-1 )2 .二.填空题3.(19 青浦二模)计算:(-2x2 )3 = .4.(19 奉贤二模)计算:m3( m)2= .5.(19 杨浦二模)计算:( y3 )2 ÷y5 = .6.(19 静安二模)计算(1-a)(-1-a)的结果是 .7.(19 徐汇二模)分解因式:a3-4a= .8.(19 杨浦二模)分解因式:a2-2ab+b2-1=.三.解答题9.(19 奉贤二模)先化简,再求值:,其中 x= .10. (19 长宁二模)先化简,再求值:,其中 x=.13196122+-÷-+---x x x x x x x 2)44(24222-+÷+-x x x x x 3。

中考数学一轮复习教案: (正方形)

中考数学一轮复习教案:  (正方形)

初三数学复习教案(正方形)课 题:正方形教学目标:使学生掌握正方形的性质、判定及应用。

教学过程:一、 知识要点:1. 性质:名 称 边 角 对角线 对称性 正方形 对边平行四边相等都是直角垂直平分且相等轴对称、 中心对称2.判定:正方形有一组邻边相等的矩形; 有一个角是直角的菱形。

二、 范例分析:例1.填空:(1)对角线 的菱形是正方形。

(2)对角线 的平行四边形是正方形。

(3)对角线 的矩形是正方形。

(4)顺次连结 四边形各边中点得正方形。

例2.已知:正方形ABCD 中,E 、F 、G 、H 分别是边上的点,EF ⊥GH ,求证:EF=GH 。

例3.已知:正方形ABCD 中,O 为中心,以O 为顶点作正方形OEFG ,(1)求证:BE=CG ; (2)求证:BE⊥CG;(3)求证:AB=BM+DN ;(4)若S OMCN =3,求正方形的边长;(5)若MN=3,正方形边长为2+1,求tan∠MOC。

例4.已知:M 为正方形ABCD 中AD 边中点,∠PMB=∠MBC,求证:DP=2PC 。

例5.已知四边形ABCD 是正方形,且边长为2+1,延长BC 到E ,使CE =5-2,并作正方形CEFG ,(如图),求△BDF 的面积.例6. 如图,∠POQ =90°,边长为2cm 的正方形ABCD 的顶点B 在OP 上,C 在OQ 上,且∠OBC =30°,分别求点A 、D 到OP 的距离.例7.如图,在正方形ABCD 中,E 是AB 的中点,连结CE ,过B 作BF ⊥CE 交AC 于F 。

求证:CF=2FA例8.如图.正方形 ABCD 是⊙O 的内接正方形,延长BA 到E ,使AE =AB ,连结ED . ⑴求证:直线ED 是⊙O 的切线;⑵ 连结EO 交AD 于点F ,求证:EF=2FO ,FD=2FA 。

同步练习1.如图:E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值是( )A 、23B 、21C 、22D 、322. 设将一张正方形纸片沿右图中虚线剪开后,能拼成下列四个图形,则其中是中心对称图形的是( ).第9题图 EQ R PD CB AABCDPMB C H A DG E F A B CDN OM EFG GDF E C B A M F ED C BA(A ) (B ) (C ) (D )3. 如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF .则下列结论正确的是( ).(A )∠BAE =30° (B ) CE 2=AB ·CF (C ) CF=31CD (D )△ABE ∽△AEF 4.如图,圆的直径是10厘米,A 、B 、C 、D 分别为正方形各边的中点,则图中阴影部分的面积是 .5.某正方开园地是由边长为1的四个小正方形组成,现要在园地上建一个花坛(阴影部分),使花坛面积是园地面积的一半,以下图中设计不合要求的是6.下图是某同学在沙滩上用石于摆成的小房子.观察图形的变化规律,写出第n 个小房子用了 块石子. 7.某校有一个正方形的花坛,现要将它分成形状和面积都相同的四块种上不同颜色的花卉,请你帮助设计三种不同的方案,分别画在下面三个正方形图形上(用尺规作图或徒手作图均可,但要尽可能准确些、美观些).8.右图是用8个大小一样边长为整数的矩形搭成的,其中中间阴影部分是一边长为2的正方形,试写出符合要求的三个不同的矩形边长___________________.9.如图所示,在正方形ABCD 中,点E 、F 是BC 边上的三等分点,求证:AF =DE10. 如图,已知正方形ABCD 的边AB 与正方形AEFM 的边AM 在同一直线上,直线BE 与DM 交于点N.求证:BN ⊥DM11.已知Q 是正方形ABCD 中CD 边上一点,P 是BC 边上一点; (1) 若∠DAQ=∠PAQ,求证:AP=BP+QD;(2) 若AP=BP+QD,则∠DAQ=∠PAQ 成立吗?为什么?12.在平面上有且只有四个点,这四个点有一个独特的性质:每两个点之间的距离有且只有两种长度.例如,正方形ABCD 中,有AB=BC=CD=DA ≠AC=BD ,请画出具有这种独特的性质的另外四种不同的图形,并标明相等的线段.13.已知:如图,点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA ⊥AF .求证:DE =BF .14.将正方形ABCD 折叠,使顶点A 与CD 边上的点M 重合,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G(如图). ⑴如果M 为CD 边的中点,求DE ∶DM ∶EM ; ⑵如果M 为CD 边上的任意一点,设AB =2a ,问ΔCMG 的周长与点M 的位置有关吗?为什么?ACDBB A DC E FA B C D Q PA M FD E NB C A D C B A B C D A D B F EC15.如图,△ABC 中,∠C=900,AC=BC=2,D 为BC 上一点,AD 的垂直平分线EF 交AC 于E ,交AB 于F ,(1) 当CD=2时,求AE 的长;(2) 当CD=2(2-1)时,证明:四边形AEDF 是菱形.A CEFBDO。

最新2010年九年级数学中考一轮复习精品教案(第一讲:实数)

最新2010年九年级数学中考一轮复习精品教案(第一讲:实数)

第一讲:实数本期分四个专题复习:有理数及其运算、实数及其运算、二次根式及科学计数法与有效数字中考对这部分内容的考查一般以选择题、填空题及简单的解答题出现,大多都比较简单,但近几年出现了一些设计新颖的创新试题.由于这部分试题的概念较多,且逻辑性较强,命题者又对这部分内容常常设置一些易混、易错的题目,因此同学们在复习这部分知识时,一定要理解有关概念、运算法则及运算律等,着重训练基本运算方法与技能.例3 : 计算:22-5×51+2 . 思路点拨 :本题是有理数的混合运算,除了要熟练掌握有关运算法则,还要注意运算顺序.解:原式=4-1+2 =3+2 =5. 练习:1. 如果向东走80 m 记为80 m ,那么向西走60 m 记为( ) A.-60 m B.︱-60︱m C.60 m D.601m 2. )下面的几个有理数中,最大的数是( )A .2B .13C .-3D .15- 3. 如果2()13⨯-=,则“”内应填的 数是( ) A .32B .23C .23-D .32-4. A 为数轴上表示1-的点,将A 点沿数轴向左移动2个单位长度到B 点,则B 点所表示的数为( ) A .3-B .3C .1D .1或3-5. 一种商品原价120元,按八折(即原价的80%)出售,则现售价应为 _______元.6. 计算:121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭.答案: 1.A 2.A 3.D 提示:1÷(32-)=-234.A 提示:-1-2=-35.96 提示:120×80%=966.解:121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭463=-+1=.最新考题1.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 2.(2009年黄石市)实数a 在数轴上对应的点如图所示,则a ,a -,1-的大小关系是( )A .1a a -<<-B .a a a -<-<C .1a a <-<-D .1a a <-<-3.(2009营口)计算:12345314,3110,3128,3182,31244,+=+=+=+=+=,归纳各计算结果中的个位数字的规律,猜测200931+的个位数字是()A. 0B. 2C. 4D. 84.(2009年浙江省绍兴市)将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm”和“15cm”分别对应数轴上的 3.6-和x ,则( )A .9<x <10B .10<x <11C .11<x <12D .12<x <13 答案:1. A 2. C 3. C 4.C 知识点2:实数及其运算例1: |-9|的平方根是( ) A.81 B.±3 C.3 D.-3思路点拨 :因为|-9|=9,而9的平方根为±3,所以|-9|的平方根是±3,故选B.例31的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间思路点拨:解答有关无理数的估算问题一般有两种途径:直接估算或利用计算器求解.这里用的是直接估算的方法——平方法,只要首先将原数平方,看其在哪两个平方数之间,运用这种方法可以估计一个带根号的数的整数部分,估计其大致范围.解:因为16<17<25,所以4<17<5,所以1<6.故选D.例4_________.思路点拨:实数的运算与有理数的运算一样,要注意运算顺序:先乘方、开方,再乘除,后加减,如果有括号先算括号里面的,能运用运算律的就运用,简化运算,解答实数运算题时,一定要注意把结果化为最简形式.-4×2222+=3.练习1. 4的算术平方根是()A.2±B.2 C.D2. 在实数0,10.1235中,无理数的个数为()A.0个B.1个C.2个D.3个3. 实数a、b在数轴上的位置如图1所示,则a与b的大小关系是()A.ba< B.ba= C.ba> D.无法确定4.2的值( )A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间5.= .6.计算:⎛÷⎝图1答案: 1.B2.B3.C 提示:观察实数a 、b 在数轴上所对应的位置可知b<a.4.C 提示:因为25<27<36,所以5<27<6,所以2<4. 5.3 提示:原式=23-3=36.解:原式⎛=÷ ⎝143==. 最新考题1.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( )A .32B .23C .23-D .32-2.(2009年黄冈市)1.8的立方根为()A .2B .±2C .4D .±43.(2009年湖南长沙)已知实数a 在数轴上的位置如图所示,则化简|1|a -为( )A .1B .1-C .12a -D .21a -4. (2009年义乌)平方根节是数学爱好者的节目,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如2009年的3月3日,2016年的4月4日.请你写出本世纪内你喜欢的一个平方根(题中所举例子除外)._______年_______月_______日.答案:1. D 2. A 3. A 4.答案不唯一,如2025年5月5日.知识点3: 二次根式例1有意义,则实数x 的取值范围是 .思路点拨 :在何种形式中出现二次根式,都要注意被开方数为非负数这一条件,有时它还可能成为隐含的解题的关键条件.解:被开方数x -3≥0,得x≥3. 例2: 若333.3.33.332.3132,022222或的值等于())(则D C B A x x x x x x +--+-=--思路点拨 :认真观察所给条件和所求的代数式的特点才可发现思路,找准解题 的“出发点”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九一班数学第一轮复习教案
代数部分
第一章:实数
教学目的:
1、掌握数的概念及分类,正确理解和运用数学概念;
2、熟练掌握数轴、相反数、绝对值、倒数的概念,灵活运用这些知识解决实际问题。

3、会进行实数的大小比较。

4、理解近似数与有效数字、指数、科学记数法等概念。

5、会熟练灵活正确地进行有理数的运算。

6、了解平方根、算术平方根、立方根的概念,会用平方运算求某些非负数的平方根和算术平方根。

基础知识点:
一、实数的分类:
⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q
p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念
1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0
2、倒数:
(1)实数a (a ≠0)的倒数是a
1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:
(1)一个数a 的绝对值有以下三种情况:
⎪⎩⎪⎨⎧-==0,0,
00, a a a a a a
(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对
值符号。

4、n 次方根
(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴
1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

实数和数轴上的点是一一对应的关系。

四、实数大小的比较
1、在数轴上表示两个数,右边的数总比左边的数大。

2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。

五、实数的运算
1、加法:
(1)同号两数相加,取原来的符号,并把它们的绝对值相加;
(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

可使用加法交换律、结合律。

2、减法:
减去一个数等于加上这个数的相反数。

3、乘法:
(1)两数相乘,同号取正,异号取负,并把绝对值相乘。

(2)n 个实数相乘,有一个因数为0,积就为0;若n 个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。

(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。

4、除法:
(1)两数相除,同号得正,异号得负,并把绝对值相除。

(2)除以一个数等于乘以这个数的倒数。

(3)0除以任何数都等于0,0不能做被除数。

5、乘方与开方:乘方与开方互为逆运算。

6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。

无论何种运算,都要注意先定符号后运算。

六、有效数字和科学记数法
1、科学记数法:设N >0,则N= a ×n
10(其中1≤a <10,n 为整数)。

2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。

精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。

例题:
例1、已知实数a 、b 在数轴上的对应点的位置如图所示,且b a 。

化简:a b b a a --+-
分析:从数轴上a 、b 两点的位置可以看到:a <0,b >0且b a
所以可得:
解:a a b b a a =+-++-=原式
例2、若333)43(,)4
3(,)43
(--=-=-=c b a ,比较a 、b 、c 的大小。

分析:1)34(3--= a ;01433 b b 且-⎪⎭
⎫ ⎝⎛-=;c >0;所以容易得出: a <b <c 。

解:略
例3、若22+-b a 与互为相反数,求a+b 的值 分析:由绝对值非负特性,可知02,02≥+≥-b a ,又由题意可知:022=++-b a 所以只能是:a –2=0,b+2=0,即a=2,b= –2 ,所以a+b=0
解:略
例4、已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值是1,求
2m cd m
b a +-+的值。

解:原式=0110=+- 例5、计算:(1)199********.08⨯ (2)222121⎪⎪⎪⎪⎭
⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛+e e e e 解:(1)原式=11)125.08(19941994==⨯
(2)原式=⎪⎪⎪⎪⎭
⎫ ⎝⎛--+⋅⎪⎪⎪⎪⎭⎫ ⎝⎛-++21212121e e e e e e e e =11=⋅e e。

相关文档
最新文档