2018考研数学一 复习教材

合集下载

2018考研数学10-12月复习指南

2018考研数学10-12月复习指南

2018考研数学10-12月复习指南2018考研数学的考试大纲已经公布,较往年没有变化,从2009年考研数学大纲合并后数学考试分为数一、数二、数三、数农。

2013年线性代数将克莱姆法则改成了克拉默法则。

概率论中将两个及两个以上随机变量的函数分布,改为两个及两个以上随机变量的简单函数分布,会求多个相互独立的随机变量的联合分布及函数分布改为会求多个相互独立的随机变量的联合分布及简单的函数分布,现在针对今年的考试大纲,对最后的考研复习进行说明:▶一、考试的时间:今年硕士研究生统一考试数学科目的考试时间为2018年12月27日8:30-11:30.考试时间仍为180分钟。

考研倒计时也从3位数变成了两位数,希望大家继续坚持下去!▶二、考试的性质:全国硕士研究生入学统一考试数学科考试是为招收工学、经济学、管理学硕士研究生而设置的具有常模参照性的水平考试。

水平考试是指命题不以教学基本要求和某一指定教材为依据,而以《考试大纲》为依据.对于考试大纲以外的内容大家不用涉及。

▶三、命题趋势和考点分析。

1、考研数学试题科学性和公平性原则作为公共基础课,考研数学试题以基础性,生活类试题为主尽量避免对于广大考生来说过于专业和抽象难懂的内容:为了体现不同学科专业对考生应具备数学知识和能力的不同要求.2、考研数学知识点,覆盖全面的原则考研数学的试题内容要求涵盖所有考纲要求考核的内容,尤其涵盖数一、数二、数三相区别之处(2013年数学一空间解析几何与向量代数在之前的近十年都未曾考过,13年考了一个大题一个小题共16分,那一年好多同学都是很凄惨的,所以知识点平时大家一定要无遗漏的复习,并且要抓住区别之处。

3、控制难易度的原则考研数学试题要求以中等偏上的题为主,考试及格率控制在30%—40%。

平均分稳定在75—82分。

不会出现幅度较大的变化。

4、控制题量的原则考研数学的试卷结构:可参照历年考研真题试卷。

其中客观题考查基本概念、基本理论、基本运算,解答题考查简单的分析综合及应用能力。

2018考研数学大纲权威解读及复习规划(杨超老师)

2018考研数学大纲权威解读及复习规划(杨超老师)

参数估计
(数一、 三)
数字特征(数 一)
数字特征及参数 估计(数三)
参数估计
(数一、 三)
数学第 15 题考什么?偏导数计算,这个属于最基本的计算,有时会考抽象的多元函数求 偏导数。考了一个抽象的多元函数求偏导数的填空题。求数列求极限,K 从 1 到 N,这个 题看完以后,标准的定积分定义,你可以马上写等于多少,0 到 1,这个规律永远没有改 变,积分区间 0 到 1。把 N 分之 K 改成积分变量,审题很简单,这叫思维定式,用定积分 的定义把它写出来,涉及到基本计算能力。18 题考了一个中值定理证明,过去在真题里面 也有,19 题考了曲面积分,涉及到简单的物理应用。
数学题考什么?三种能力:
沪江网校·考研 VIP 2018 考研新大纲权威解析
第一点运算能力,这一点是我始终强调的,目前 70%、80%的同学都会遇到这个问题,觉 得很慌,其实这个能力需要不断的去重复练习,一直到进入考场,这个是要一直锻炼的;
第二点,做过的题目还是不会。9 月份 10 月份会是一个关键时期,在这个阶段心态调整好, 加紧复习,重复并且回忆做过的知识点和错题。三门课,以高数为例子,你重点要计算过 关,可以关注我微博视频课程总结的高等数学 10 大最基本的计算。
数字特征 (数三)
第 23 题 混合型随 (11 分) 机变量
(数一、 三)
二维随机 变量
(数一、 三)
一维随机变 量及数字特 征
(数一、 三)
混合随机变量及 期望(数一、 三)
一维随机变 量(数一)
二维随机变 量(数三)
第 24 题 (11 分)
参数估计
(数一、 三)
参数估计 (数一)
数字特征 (数三)

2018年考研数学一大纲

2018年考研数学一大纲

2018年数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:和.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分。

2018年考研数学一真题及全面解析(Word版)

2018年考研数学一真题及全面解析(Word版)

2021年全国硕士研究生入学统一考试数学一考研真题与全面解析一、选择题:1~8小题,每题4分,共32分,以下每题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1. 以下函数中在0x=处不可导的是〔 〕〔A 〕()sin f x x x = 〔B〕()sin f x x =〔C 〕()cos f x x = 〔D〕()f x =【答案】(D )【解析】根据导数定义,A. 000sin ()(0)limlim lim 0x x x x x x x f x f x x x→→→-=== ,可导; B.000()(0)lim0x x x x x f x f x x→→→-===, 可导; C. 20001cos 1()(0)2lim lim lim 0x x x x x f x f x x x→→→---=== ,可导;D. 20001122lim limx x x x x x→→→--== ,极限不存在。

应选〔D 〕. 2. 过点(1,0,0),(0,1,0),且与曲面22z x y =+相切的平面为〔 〕〔A 〕01zx y z =+-=与 〔B 〕022z x y z =+-=与2 〔C 〕1x y x y z =+-=与 〔D 〕22x y x y z =+-=与2【答案】〔B 〕【解析一】设平面与曲面的切点为000(,,)x y z ,那么曲面在该点的法向量为00(2,2,1)n x y →=-,切平面方程为000002()2()()0x x x y y y z z -+---=切平面过点(1,0,0),(0,1,0),故有000002(1)2(0)(0)0x x y y z -+---=,〔1〕 000002(0)2(1)(0)0x x y y z -+---=,〔2〕又000(,,)x y z 是曲面上的点,故22000z x y =+ ,〔3〕 解方程 〔1〕〔2〕〔3〕,可得切点坐标(0,0,0) 或 (1,1,2)。

2018会计专硕考研数学参考书

2018会计专硕考研数学参考书

凯程考研辅导班,中国最权威的考研辅导机构第 1 页 共 1 页 2018会计专硕考研数学参考书管理类联考数学考研辅导书籍五花八门,质量水平参差不齐,一本好的辅导资料可以让考生事半功倍,一本坑爹的辅导书轻则会无实际作用,重则会让人误入歧途、害人不吐骨头。

到底哪些辅导书目真正是经得起大浪淘沙的?哪些书目是成功考生收益最大的?根据考生不同备考阶段的需求筛选了以下几本书供参考。

一、备考初期--《数学分册》或《管理类联考核心教程》这是两本唤醒同学们中学时代记忆的书,特点是基础、题目简单,可以达到快速梳理大纲知识点的目的。

其中《数学分册》更加简单,适合基础非常差的同学使用;《管理类联考核心教程》相对难一点点,适合基础一般和比较好的学生使用。

切记:此阶段不要做数学真题!带有大量真题的辅导资料不适合此阶段使用。

二、备考中期:《高分指南》联考数学要想拿高分,这本书是必备的。

《高分指南》题量大、题型全,有简单题、有难题,适合中期强化使用。

当然这本书也是缺点的,比如少部分题目拔高过多,是肯定不会考的;比如部分题目解析过于简略(可能是题目太多的缘故)。

建议使用方法:第一遍先做书中例题和基础习题,第二遍做提高题,并复习例题和基础题中的经典题和错题。

对于复习时间紧张的考生,提高题可不做,但是此书至少做两遍是必须的。

注意:此阶段可少量接触真题,拿出两套真题测测自己的水平是可行的,但还不可大量做。

三、备考后期:《名家详解》这是一本数学真题,是目前市面上最全的真题,其题目解析明显比《高分指南》高出一个档次,冲刺阶段必备书目!建议使用方法:每天或每两天一套真题,最好和逻辑写作一起做,坚持到考前一天。

书中还另有一部分习题,这部分没时间可不做,因为这部分和《高分指南》重合很大,做《高分指南》即可。

注意:数学真题要留到后期做模拟,模拟之后反复琢磨,前期过早大量做真题的考生基本考不出高分。

2018年考研数学(高数、线代、概率论)最全公式手册

2018年考研数学(高数、线代、概率论)最全公式手册

dy (ln x) 1 x
1 dx x ln a d (ln x) 1 dx x
特例 y ln x (5) y sin x (6) y cos x (7) y tan x (8) y cot x (9) y sec x (10) y csc x
y cos x y sin x
x x0
f ( x) f ( x0 ) x x0
(2)
2 函数 f ( x) 在 x0 处的左、右导数分别定义为: 左导数:
f ( x0 ) lim
x 0
f ( x0 x) f ( x0 ) f ( x) f ( x0 ) lim , ( x x0 x) x x0 x x x0
x 的复合函数.例如
1 , y 2 , ln y , e y 等均是 x 的复合函数. y
F ( x, y) dy ,其中, Fx( x, y) , x dx Fy( x, y )
对 x 求导应按复合函数连锁法则做. (2)公式法.由 F ( x, y) 0 知
Fy( x, y) 分别表示 F ( x, y) 对 x 和 y 的偏导数
常用的等阶无穷小:当x 0时 sin x arcsin x tan x x, arctan x ln(1 x) ex 1
1 cos x
1 2 x 2 1 1 (1 x) n 1 x n
无穷小的性质 (1) 有限个无穷小的代数和为无穷小 (2) 有限个无穷小的乘积为无穷小 (3) 无穷小乘以有界变量为无穷小 Th 在同一变化趋势下,无穷大的倒数为无穷小;非零的 无穷小的倒数为无穷大
设函数f ( x)在x x0处可导,则f ( x)在M ( x0 , y0 )处的

[实用参考]2018年考研数学一考试大纲及其解读

[实用参考]2018年考研数学一考试大纲及其解读

2017-09-18考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分1高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.函数——对任意自变量,只有唯一因变量与之对应(知道就行)2.了解函数的有界性、单调性、周期性和奇偶性.一般性了解(知道就行),有界性(连续函数必有界),单调性、周期性、奇偶性后面几章会用到3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.会求分段函数的复合函数,知道反函数的基本性质(与原函数对应关系相反),隐函数了解概念即可(非显函数)4.掌握基本初等函数的性质及其图形,了解初等函数的概念.要求同考纲,初等函数在定义域内均连续5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.了解(知道)极限定义,相关证明没有要求,左右极限需要掌握6.掌握极限的性质及四则运算法则.唯一性和保号性(重要),熟练掌握四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.掌握用夹逼定理(适用于函数和数列)和单调有界定理(适用于数列)求极限8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.知道什么是无穷小量(趋于0)、无穷大量(趋于正负无穷),掌握无穷小量的比较方法(作比,理解低阶、同阶、等价和高阶无穷小),熟练掌握用等价无穷小求极限(只适用于因式)9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.掌握连续判断、间断点类型及其判断10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.熟练掌握并会使用有界性(闭区间连续函数必有界)、最值定理、零点定理和介值定理解题2二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.导数定义式必须熟练掌握并会使用,其他要求同上(会计算)2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.尽可能掌握一阶微分形式不变性并会用其解题,其他要求同上3.了解高阶导数的概念,会求简单函数的高阶导数.知道什么是高阶导数,会用莱布尼茨公式求高阶导数4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.要求同上,特别注意分段点的导数(用定义式)5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(TaPlor)定理,了解并会用柯西(CauchP)中值定理.熟练掌握并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理、柯西中值定理和泰勒(TaPlor)定理,前三个定理证明也需要掌握6.掌握用洛必达法则求未定式极限的方法.要求同上,牢记洛必达法则使用的三个条件7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.以上内容需全部掌握,还需要分清极值与最值,极值与导数为零的点的关系8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.函数形态、拐点、渐近线重点掌握9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.会计算曲率和曲率半径(两个公式),曲率圆一般性了解3三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.非常清晰的理解原函数和可积的关系,弄清不定积分(函数)和定积分(常数)的本质2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.不定积分和定积分计算是重点内容,近年不定积分解答题出题频率变小,定积分出解答题频率变大,两块都不能掉以轻心3.会求有理函数、三角函数有理式和简单无理函数的积分.必须掌握,可能以填空题形式出现4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.重要考点,常与极限洛必达法则联用,必须掌握5.了解反常积分的概念,会计算反常积分.掌握反常积分和其计算(重点是计算)6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.积分的实际应用必须掌握,大概率解答题内容4四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.1~9加粗部分为本章必须掌握的重点,其余内容一般性了解5五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.知道是什么东西就行2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.2.3会求二重极限和判断连续、可微、可偏导等、理解偏导数和全微分及其表达形式,会用全微分形式不变性求偏导4.理解方向导数与梯度的概念,并掌握其计算方法.掌握方向导数与梯度意义和公式并计算5.掌握多元复合函数一阶、二阶偏导数的求法.多元函数微分学重点——会求偏导数6.了解隐函数存在定理,会求多元隐函数的偏导数.会用多种方法求隐函数的偏导数(树形图、全微分等)7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.掌握空间曲线的切线和法平面及曲面的切平面和法线的求法以及应用8.了解二元函数的二阶泰勒公式.知道就行9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.掌握二元函数极值存在条件并会用公式判断,会用拉格朗日乘数法求条件极值并解决简单的应用题6六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).1~8条加粗的部分是本章必须掌握的重点内容7七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握...及麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.1~11加粗部分为本章必须掌握的重点部分,其余部分一般性了解,计算是重点8八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.非常清楚解、通解、初始条件和特解概念2.掌握变量可分离的微分方程及一阶线性微分方程的解法.重点掌握内容3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:和.2.3.4要求同上5.理解线性微分方程解的性质及解的结构.掌握齐次方程与非齐次方程通解的性质和结构6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.6.7掌握常见二阶常系数齐次线性微分方程解的形式,并会分析解的结构,组合自由项即将微分方程拆为若干项再按一般方法分别求解(重要)8.会解欧拉方程.要求同上9.会用微分方程解决一些简单的应用问题.能解决微分方程相关的实际应用题(重点是把实际问题转换为数学问题)9线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.知道什么是行列式,熟练掌握行列式的性质(计算)2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.掌握求行列式方法(重要)二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.知道什么是单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,并掌握它们的性质用于解题2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.有关矩阵的运算性质及方阵与行列式之间的关系必须熟练掌握并会解题3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.逆矩阵和伴随矩阵是线代中两个非常重要的概念,相关性质以及应用需要熟练掌握4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.掌握常见分块矩阵的运算三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.1.2.3.4需要全部熟练掌握5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.5.6.7.8施密特正交化和正交矩阵概念、性质是掌握重点,其他了解即可四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求1.会用克拉默法则.克拉默法则必会2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.2.3.4.5关于齐次和非齐次线性方程组的求解必须熟练掌握,这是线代大题必考的步骤(结合五六章)五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.1.2.3所列内容均需全部掌握,有关特征值、特征向量必考大题六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.二次型概念及其矩阵、合同矩阵、标准型、规范性及惯性定理需要掌握(等价、合同、相似要清晰分辨)2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.配方法了解即可,出题概率非常小,正交变换法化二次型为标准型是重点3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考点之一,可能以选择题或填空题方式考察概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.有关随机事件关系及运算需要掌握,相关题目会做2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(BaPes)公式.这五大公式特别重要,后续章节涉及相关计算性的问题有可能会用到。

2018考研数一大纲完整版

2018考研数一大纲完整版

2018考研数一大纲完整版2018年考研数学一大纲完整版一、数理统计与概率论1. 集合论和事件(1)集合,包含比较基本的集合概念和运算,A,B,A∩B,A∪B,Ac,Bc,A-B。

(2)事件,事件以及事件运算,全集和空集,和事件的差与补,事件之间的包含关系和等价关系。

2. sigma域和随机事件(1)sigma域,虽然很多人对此并不是很熟悉,但是它却是和概率密切相关的,必须掌握。

(2)随机事件,随机事件是和概率密切相关的,必须掌握。

3. 条件概率和全概率公式(1)条件概率,条件概率是概率论研究的核心内容之一,其应用范围非常广。

(2)全概率公式,全概率公式是求解某些事件的概率时非常重要的方法。

4. 贝叶斯公式贝叶斯公式是概率论中非常重要的公式,应用范围十分广泛,所以必须掌握。

5. 随机变量和概率密度函数(1)随机变量,随机变量的概念、离散型和连续型变量。

(2)概率密度函数,概率密度函数是随机变量的重要概念,因为它可以用来计算随机变量取特定值的概率,所以必须掌握。

6. 分布函数和矩(1)分布函数,分布函数又称为累积分布函数,它是随机变量的重要概念之一,因为它可以用来计算随机变量取特定值的概率。

(2)矩,矩是随机变量的重要概念之一,它不仅可以用来计算随机变量的期望值,还可以计算随机变量的各种特征,比如方差和偏度等。

7. 常见分布(1)离散型分布,包括0-1分布、二项分布、泊松分布等。

(2)连续型分布,包括均匀分布、正态分布、指数分布等。

二、高等代数1. 线性代数初步(1)向量、线性方程组,以及它们的基本性质和运算法则。

(2)矩阵、行列式,它们的基本性质和运算法则。

2. 矩阵初等变换矩阵初等变换是将一个矩阵通过一系列基本变换变成标准型的过程,是线性代数中重要的概念,必须掌握。

3. 线性空间的基本概念和性质线性空间是线性代数研究的重要对象,其中包括向量空间、矩阵空间等多种空间,所以必须掌握其基本概念和性质。

考研数学复习一阶和二阶线性微分方程的通解分析

考研数学复习一阶和二阶线性微分方程的通解分析

2018考研数学复习:一阶和二阶线性微
分方程的通解分析
一阶和二阶线性微分方程是高等数学中微分方程的主要内容,也是考研数学中的一个重要考点,每年必考,因此大家对这部分内容应该尽量理解得透彻一些。

这方面的问题主要有两类:一类是具体求解一个微分方程,另一类是关于微分方程的解的结构问题,为了使各位同学对解的结构有一个清晰深入的理解,本文对一阶和二阶线性微分方程的通解形式做些分析总结,供2018考研的学生参考。

一、一阶线性微分方程的通解分析。

考研数学高等数学复习方法和重点

考研数学高等数学复习方法和重点

2018考研数学高等数学复习方法和重点考研数学之高等数学复习方法第一、要将数学基础备考进行到底数学150分,基础性的题目占到70%,也就是105分,这分数对于考生来讲是非常重要的,只要大家把基本概念、性质、公式和定理以及基本解题方法掌握了,这部分分数还是比较容易能拿到手的。

但是复习到现在,很多考生已经把基本知识点抛之脑后了,一味地在做题,甚至只是在看题。

但是我们必须清楚,不管做多少题,考场上都不会遇见你做过的题目,我们做题的目的是巩固知识点,检测对知识点的掌握程度、复习的效果,重要的是知识点本身,万变不离其宗,考场上题目无论如何变化都离不了知识点,所以如果你对基础知识还没用掌握,就一定要对照考试大纲对基本概念、基本理论和基本方法准确把握,或者对基础班的讲义进行复习。

因为只有对基本概念有深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。

第二、要处理好全面和重点的关系,不同层次的考生,要求不同考研预报名后,绝大部分学生已经确定好了院校和专业,那么数学这一学科到底要考多少分基本上也是确定的。

如果考生的分数要求比较高,130、140以上,那么在掌握常考的题型和解题方法的基础上,对照考试大纲对考研不常考的内容也要进行复习,比如说差分方程,只对数三同学做要求,这部分内容虽然已很久没考查,但是这确实是考试大纲上要求的内容,也要复习到。

况且这部分内容只要是花半个小时就可以掌握的,可以与二阶常系数线性微分方程的解法对比记忆。

如果考生的分数要求并不高,只要100-120分就可以的话,还是要对照暑期强化班的讲义重点把常考题型和解题方法掌握好,一些不常考的内容可以适当地放弃,比如说数一的估计的一致性、假设检验。

第三、重视真题,总结题型,熟练掌握常见的解题方法和技巧根据对历年真题的研究,我们发现每年的试卷高等数学内容都有较大的重复率,所以一定要重视对真题的研习,真题至少要做两遍,第一遍按年份做,第二份按章节做。

2018年考研数学一试题与答案解析(完整版)

2018年考研数学一试题与答案解析(完整版)

1 1 1
6.设 A, B 为 n 阶矩阵,记 r ( X ) 为矩阵 X 的秩, ( X Y ) 表示分块矩阵,则 A. r ( A AB ) r ( A). C. r ( A B ) max{r ( A),r ( B )}. 【答案】A. 【解析】根据矩阵的运算性质, r ( E , B ) n r ( A, AB ) r[ A( E , B )] r ( A) ,故 A 正确. 若A B. r ( A BA) r ( A). D. r ( A B ) r ( A B ).
T T
0 0 0 1 1 1 0 0 1 1 ,B , 则 BA , 所 以 r ( A BA) r 2, 1 1 1 0 0 0 1 1 0 0
r ( A) 1. 排除 B. 1 2 0 0 若A ,B , 那么r A B 0 0 3 4 所以C排除. 1 2 0 0 r 2, r A 1, r B 1, 0 0 3 4
1 0 1 B. 0 1 1 0 0 1 1 0 1 D. 0 1 0 0 0 1
1 1 0 令 Q 0 1 1 ,特征值为 1,1,1, r E Q 2 0 0 1 1 1 1 0 1 1 选项 A:令 A 0 1 1 , A 的特征值为 1,1,1, r E A r 0 0 1 2 0 0 1 0 0 0 1 0 1 0 0 1 选项 B:令 B 0 1 1 , B 的特征值为 1,1,1, r E B r 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1 1 选项 C:令 C 0 1 0 , C 的特征值为 1,1,1, r E C r 0 0 0 1 0 0 1 0 0 0

2018年北京交通大学理学院基础数学[070101]考试科目、参考书目、复习经验--新祥旭考研

2018年北京交通大学理学院基础数学[070101]考试科目、参考书目、复习经验--新祥旭考研

2018年北京交通大学理学院基础数学[070101]考试科目、参考书目、复习经验一、招生信息所属学院:理学院所属门类代码、名称:理学[07]所属一级学科代码、名称:数学[0701]二、研究方向01代数学理论与几何理论02函数论与非线性分析三、考试科目①101思想政治理论②201英语一③607数学分析④872高等代数四、复习指导一、参考书的阅读方法(1)目录法:先通读各本参考书的目录,对于知识体系有着初步了解,了解书的内在逻辑结构,然后再去深入研读书的内容。

(2)体系法:为自己所学的知识建立起框架,否则知识内容浩繁,容易遗忘,最好能够闭上眼睛的时候,眼前出现完整的知识体系。

(3)问题法:将自己所学的知识总结成问题写出来,每章的主标题和副标题都是很好的出题素材。

尽可能把所有的知识要点都能够整理成问题。

二、学习笔记的整理方法(1)第一遍学习教材的时候,做笔记主要是归纳主要内容,最好可以整理出知识框架记到笔记本上,同时记下重要知识点,如假设条件,公式,结论,缺陷等。

记笔记的过程可以强迫自己对所学内容进行整理,并用自己的语言表达出来,有效地加深印象。

第一遍学习记笔记的工作量较大可能影响复习进度,但是切记第一遍学习要夯实基础,不能一味地追求速度。

第一遍要以稳、细为主,而记笔记能够帮助考生有效地达到以上两个要求。

并且在后期逐步脱离教材以后,笔记是一个很方便携带的知识宝典,可以方便随时查阅相关的知识点。

(2)第一遍的学习笔记和书本知识比较相近,且以基本知识点为主。

第二遍学习的时候可以结合第一遍的笔记查漏补缺,记下自己生疏的或者是任何觉得重要的知识点。

再到后期做题的时候注意记下典型题目和错题。

(3)做笔记要注意分类和编排,便于查询。

可以在不同的阶段使用大小合适的不同的笔记本。

也可以使用统一的笔记本但是要注意各项内容不要混杂在以前,不利于以后的查阅。

同时注意编好页码等序号。

另外注意每隔一定时间对于在此期间自己所做的笔记进行相应的复印备份,以防原件丢失。

2018考研数学真题及答案

2018考研数学真题及答案

2018考研数学真题及答案考研对于许多学子来说,是一场知识与毅力的较量。

而数学作为其中的重要科目,更是备受关注。

下面就让我们一起来回顾一下 2018 年考研数学的真题,并探讨一下相应的答案。

2018 年考研数学一真题涵盖了高等数学、线性代数、概率论与数理统计等多个方面的知识点。

在高等数学部分,函数、极限、连续的相关题目要求考生对基本概念和定理有深入的理解。

比如,有一道关于函数极限存在性的证明题,需要考生熟练运用极限的定义和性质进行推理。

导数与微分的题目则注重考查考生对导数定义和计算方法的掌握,以及运用导数解决函数单调性、极值和凹凸性等问题的能力。

例如,通过求导判断函数在某个区间内的单调性,并求出极值点。

积分的题目类型多样,包括定积分的计算、不定积分的求解以及利用积分解决几何和物理问题等。

线性代数部分,矩阵、向量和线性方程组是重点。

有题目涉及矩阵的运算、矩阵的秩以及向量组的线性相关性。

要求考生能够灵活运用矩阵的初等变换和线性方程组的解法来解决问题。

概率论与数理统计部分,随机变量及其分布、数字特征以及参数估计等内容均有考查。

像计算随机变量的概率密度、期望和方差,以及利用样本数据进行参数估计等。

接下来,我们看一下对应的答案和解题思路。

对于高等数学中函数极限存在性的证明题,首先要明确极限的定义,然后通过适当的放缩和不等式的运用来逐步推导。

在导数与微分的题目中,要准确计算导数,注意复合函数求导法则的应用。

对于积分的题目,熟练掌握积分公式和换元积分法、分部积分法等技巧是关键。

在线性代数中,处理矩阵的运算要细心,注意矩阵乘法的规则。

判断向量组的线性相关性时,可以通过构造矩阵并求秩来得出结论。

在概率论与数理统计部分,计算概率密度要确定分布类型和参数,运用相应的公式进行计算。

参数估计的题目则要根据给定的样本数据,选择合适的估计方法。

总的来说,2018 年考研数学真题难度适中,既考查了基础知识的掌握,又注重对考生综合运用能力和解题技巧的检验。

2018考研数学一真题及答案详解

2018考研数学一真题及答案详解

【答案】 2ln 2 2 【解析】
f (0) 0, f (1) 2, f (1) 2 x ln 2
1
x 1
2 ln 2
1 1 1 1 xf ( x ) dx xdf ( x ) xf ( x ) xf ( x ) dx f (1) xf ( x)dx 0 0 0 0 0
N 1, 2 的概率密度,根据正态分
8. 给定总体 X ~ N ( , ) , 已知,给定样本 X1 , X 2 ,
2
2
, X n ,对总体均值 进行检验,
令 H0 : 0 , H1 : 0 ,则 A. 若显著性水 0.05 时拒绝 H 0 ,则 0.01 时也拒绝 H 0 B. 若显著性水 0.05 时接受 H 0 ,则 0.01 时拒绝 H 0
由此,取特殊值;令 x=1,则法向量为 (2, 2, 1) ,故 B 选项正确。
3.
(1)
n 0

n
2n 3 (2n 1)!
B. 2sin1 cos1 D. 3sin1 2cos1
A. sin1 cos1 C. 2sin1 2cos1 【答案】B. 【解析】
S x 1
x 0 1 sin kx lim
ln(
1 tan x ) 1 tan x sin kx
ln(
1 tan x ) 1 tan x sin kx
10.设函数具有 2 阶连续导数,若曲线 y f ( x) 过点 (0,0) 且与曲线 y 2 x 在点 (1, 2) 处相 切,则

1
0
xf '' ( x)dx __________________.

2018考研数学一真题及答案解析

2018考研数学一真题及答案解析

2018考研数学一真题及答案解析2018年考研数学一真题及答案解析2018年考研数学一真题及答案解析是考研考生备考过程中非常重要的一部分。

通过对真题的分析和解答,考生可以更好地了解考试的难度和重点,有针对性地进行复习和训练。

本文将对2018年考研数学一真题进行解析,帮助考生更好地理解和掌握考试内容。

第一部分:选择题选择题是考研数学一考试的重点和难点,也是考生们普遍关注的部分。

2018年的数学一选择题主要涉及概率与统计、线性代数和高等数学等内容。

下面将分别对每道题进行解析。

第1题:概率与统计该题考察了条件概率的计算。

题目给出了两个箱子,每个箱子里有两个球,一个红球和一个白球。

从第一个箱子中随机取出一个球放入第二个箱子,然后从第二个箱子中随机取出一个球。

问从第二个箱子中取出的球是红球的概率是多少。

解析:根据条件概率的定义,我们可以得出答案。

设事件A表示从第二个箱子中取出红球,事件B表示从第一个箱子中取出红球。

根据题意,我们需要求解的是P(A|B),即在事件B发生的条件下事件A发生的概率。

根据条件概率的公式,我们有P(A|B) = P(A∩B) / P(B)。

根据题目中给出的信息,我们可以得出P(A∩B) = 1/4,P(B) = 1/2。

将这些值代入公式,我们可以得出P(A|B) = 1/2。

第2题:线性代数该题考察了矩阵的特征值和特征向量。

题目给出了一个3阶方阵A,要求求解其特征值和对应的特征向量。

解析:根据线性代数的相关知识,我们知道特征值和特征向量是方阵的重要性质。

我们可以通过求解方程|A-λI|=0来求解特征值,其中A表示方阵,λ表示特征值,I表示单位矩阵。

将方阵A代入该方程,我们可以得到一个关于λ的多项式。

通过求解该多项式的根,我们可以得到方阵A的特征值。

然后,我们可以通过代入特征值求解线性方程组(A-λI)x=0来求解特征向量。

将特征值代入方程组,我们可以得到一组关于特征向量的线性方程组。

2018年考研数学一二三真题解析及点评(史上最强版)

2018年考研数学一二三真题解析及点评(史上最强版)

证明数列收敛只有唯一的方法:证明数列单调有界。 《金讲》17页予以重要说明并给出两道难度高于本题 的同型例题详解,本题再不济,直接用第一问的结论 求出第二问的结果应该是一丝难度都没有。
数一第20题 数三第20题 数二第22题
《金讲》403-405页不仅给出了通用性齐次 方程组的详细解题过程,还给予具体具体方 程解析示例,详细程度超越市面任何一本数 学参考书,足以解答任何复杂齐次方程组。
本质 一样
数一第18题
(Ⅰ)是简单一阶微分方程求解,直接套公式即得, 送分题;(Ⅱ)不定积分函数与变现积分函数的灵活 转换,需要对两者关系有较深度地掌握方可轻易转 换,稍有难度,本题完整证明出来的同学应该不超 过万分之一。
较 难 题
考查不等式的证明,具有天然的难题属性。但 《金讲》在142页对这类题型设了一个专题给予 了本质性的总结,任何不等式证明本质都可以归 结到两类情况,每类情况的证明有唯一思路,因 此,不等式证明对于《金讲》读者不太可能成为 难题,但《金讲》以外,没有任何参考书做过这 种深度总结,因此本道题对于有些人是难题。
数二第18题
数三第18题
简单函数的级数展开并求通项。展开部分直接套公 式,属于送分。求通项虽偶有难度,但任何求通项 都可以通过适当展开进行归纳这一万能方法,在 《金讲》 中有强调,所以也属于半送分。《金讲》 254页至259页用了一个重点专题予以详解本考点, 足以解决任何函数的展开式。
数一第19题 数三第19题 数二第21题
数二第20题
考查微分的基本应用,将题目 内容用数学式子表示出来,问 题就转化为了最简单的微分或 积分问题,本题几乎是《金 讲》配套暑期集训讲义中的原 题。
数一第11题
考查旋度公式的记忆,直接用 旋度公式计算即得答案。旋度 公式的详细计算公式参见《金 讲》288页,属送分题。

武忠祥教授高等数学考研第一章第一节

武忠祥教授高等数学考研第一章第一节
y f (u) 与 u g( x) 的复(2) 合函数.它的定义域为
2. 反函数
x x Dg , g( x) Df
定义6 设函数 y f ( x) 的定义域为 D, 值域为 Ry .若对任意 y Ry ,有唯一确定的 x D ,使得 y f ( x) ,则记为 x f 1( y) 称其为函数 y f ( x) 的反函数.
2 x, x 0.
知识回顾 Knowledge
Review
y loga x (a 0, a 1)
y sin x y cos x, y tan x y cot x
y arcsin x y arccos x y arctan x,
4. 初等函数
定义9 由常数和基本初等函数经过有限次的加、减、
乘、除和复合所得到且能用一个解析式表示的函数.
3)如果对任意的 M 0 , 至少存在一个 x0 X , 使得 f ( x0 ) M , 则 f ( x) 为 X 上的无界函数.
(三)常见函数
1. 复合函数
定义7 设 y f (u) 的定义域为 D f , u g( x) 的定义域为 Dg 值域为 Rg , 若 D f Rg , 则称函数 y f [g( x)] 为函数
定义5 若存在 M 0 , 使得对任意的 x X , 恒有 | f ( x) | M
则称 f ( x) 在 X 上为有界函数.
【注】1)sin x 1; cos x 1; arcsin x ; arctan x , arccos x ;
2
2
2) f ( x) 为有界函数
2018考研 数学基础班
主讲 武忠祥 教授

2018考研数学:科目一复习

2018考研数学:科目一复习

2018考研数学:科目一复习计划1.基础阶段考生可根据自身的情况调整这个阶段的长短,基础好一点的同学,这个时间可以短一点,基础差一点的同学,这个阶段可以长一点。

我们建议基础再差的同学也要尽量在六月份前完成基础阶段复习。

数学基础阶段复习的指导原则是:注重大纲和基础,加强练习和应用。

(1)注重大纲和基础“纲”是《数学考试大纲》,“本”为课本。

虽然今年的数学考试大纲尚未颁布,但万变不离其宗,考研数学的基本内容一般变化不大,考生可以参照去年的《数学考试大纲》和《数学考试大纲导读》进行复习,详细了解本专业应考的数学卷种的基本要求,考试的题型、类别和难易度,以便更好地展开复习。

凡是在大纲中表述为“会”、“理解”、“掌握”等的考试内容往往都是主要考点,务必要作为复习的重点。

考研数学的复习主要靠教材打下坚实的基础。

翻一下数学大纲,上面列出的凯程全部来源于教材。

现在市面上并没有专门针对考研的数学教材,有些辅导老师根据自己多年的经验会给出同学们一些建议参考的教材,如同济编高教版《高等数学》、同济编高教版《线性代数》、浙大编高教版《概率论与数理统计》等,这些教材仅仅是建议,因为相对于其他教材来说,编写更有条理一些,,也可以用自己已经习惯使用的大学数学教材,但关键是一定要老老实实参照大纲的要求进行全面扎实的复习,按照大纲规定对数学基本概念、基本方法、基本性质和基本定理进行准确把握。

数学学习中最重要的莫过于坚实的基础,包括对定理公式的深入理解,对基本运算的熟练和高正确率,对基本解题方法的掌握和运用。

近几年的数学统考试题很少有偏题、怪题。

凯程网考研频道老师通过多年的分析和授课经验,发现很多考生由于对基本概念、定理记不全、记不牢、理解不准确而丢分,所以数学首轮复习一定要注重基础。

(2)加强练习和应用研究生数学考试注重考查考生的综合能力,最终要看解题的真功夫,而能力的提高要通过大量的练习,所以考生切忌眼高手低、只看书不做题。

这一阶段的复习可以将课本和复习指导书配套进行,在精读课本的基础上,配合一定的题目练习及时加以巩固。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凯程考研辅导班,中国最权威的考研辅导机构
第 1 页 共 1 页 2018考研数学一 复习教材
考研数学一考高数、线性代数和概率,这三个科目复习选用什么教材?哪个版本?经大家推荐,整理了2017考研数学一教材及配套辅导书,2018考生可以参考。

教材:
①《高等数学》(上、下):高等教育出版社第6版同济大学数学系
②《工程数学线性代数》(第五版)同济大学数学系 高等教育出版社
③《概率论与数理统计》:高等教育出版社浙大第4版盛骤
教材辅导书:
①同济大学数学系:高等数学习题全解指南(上下册)高等教育出版社
②工程数学线性代数(第五版)同济大学数学系
高等教育出版社辅导书
③概率论与数理统计:高等教育出版社浙大第4版。

相关文档
最新文档