谷胱甘肽荧光探针的研究进展

合集下载

选择性检测谷胱甘肽的荧光探针

选择性检测谷胱甘肽的荧光探针

选择性检测谷胱甘肽的荧光探针王媛;陈潇潇;刘学良;陈玉哲;牛丽亚;吴骊珠;杨清正【摘要】本文设计合成了一种基于BODIPY衍生物选择性检测谷胱甘肽的比率式荧光探针1.荧光探针1中BODIPY的3位连有苯乙炔基团,5位连有咪唑盐离去基团,利用其与谷胱甘肽和半胱氨酸反应机理的不同实现了对谷胱甘肽的选择性检测.紫外可见吸收光谱和荧光光谱实验结果表明探针分子1与谷胱甘肽反应后的光谱发生明显红移,可以实现对谷胱甘肽的比率式检测.探针分子1对谷胱甘肽有极高的选择性,不受其它氨基酸尤其是半胱氨酸的干扰.荧光滴定实验表明探针分子1可实现对谷胱甘肽的定量检测,检测限为3.3×10-8 mol/L.探针分子成功地应用于活体细胞中检测谷胱甘肽.%We developed a ratiometric fluorescent probe based on BODIPY which can detect GSH selectively.We did UV-Vis and fluorescence experiments and found that the UV-Vis and fluorescence spectra of probe 1 with GSH exhibited obvious red shifts.Probe 1 exhibited high selectivity and the detection inhibited the interference of Cys and was not interfered by other amino acids.The fluorescence titration experiments showed that probe 1 realized the quantitative detection of GSH with detection limit of 3.3 × 10 8 mol/L.The probe was successfully applied to the detection of GSH in living cells.【期刊名称】《影像科学与光化学》【年(卷),期】2017(035)004【总页数】10页(P536-545)【关键词】BODIPY;荧光探针;谷胱甘肽【作者】王媛;陈潇潇;刘学良;陈玉哲;牛丽亚;吴骊珠;杨清正【作者单位】中国科学院理化技术研究所,北京100190;中国科学院大学,北京100049;北京师范大学化学学院,北京100875;北京师范大学化学学院,北京100875;中国科学院理化技术研究所,北京100190;北京师范大学化学学院,北京100875;中国科学院理化技术研究所,北京100190;北京师范大学化学学院,北京100875【正文语种】中文生物硫醇如半胱氨酸(Cys)和谷胱甘肽(GSH)等,在维持生命体氧化还原的平衡中扮演着重要角色。

谷胱甘肽检测荧光探针研究进展

谷胱甘肽检测荧光探针研究进展

CHEMICALANDMATERIALS化工与材料-4㊀-谷胱甘肽检测荧光探针研究进展韩笑ꎬ戴志超ꎬ田露基金项目:临沂大学大学生创新创业训练计划项目资助(S201910452094)作者简介:韩笑(1999-)ꎬ女ꎬ汉族ꎬ山东临沂人ꎬ本科生ꎬ临沂大学化学化工学院应用化学专业ꎬ研究方向:荧光分析ꎮ(临沂大学ꎬ山东临沂276000)摘㊀要:谷胱甘肽作(GSH)为一种重要的生物硫醇ꎬ其在各种生理活动中起着重要的作用ꎬ其含量的改变往往与许多疾病有关ꎮ因此ꎬ对GSH的检测对于疾病的诊断具有重要意义ꎮ本论文介绍了几种用于谷胱甘肽检测的荧光探针ꎮ关键词:GSHꎻ荧光探针中图分类号:O657㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀文章编号:1671-1602(2020)04-0004-01㊀㊀细胞内的小分子硫醇主要包括谷胱甘肽(GSH)㊁半胱氨酸(Cys)及同型半胱氨酸(Hcy)ꎬ其在维持细胞氧化还原平衡㊁活性氧清除等许多生理活动中发挥着重要作用ꎮ然而ꎬ其含量的改变往往与很多疾病相关ꎬ如中风㊁肺损伤㊁皮肤病变及痴呆等ꎮ因此对于它们含量的检测尤为重要ꎮ荧光检测技术具有检测灵敏度高㊁选择性好及操作简便等优点ꎬ在生理活性组分的检测中有着重要应用[1]ꎮLiu等人基于迈克加成反应ꎬ设计并合成了一种用于生物硫醇检测的荧光探针ꎮ该探针以三苯胺为发光基团ꎬ马来酸酐为识别基团ꎬ当生物硫醇存在时ꎬ其能够与马来酸酐发生加成反应ꎬ从而使探针的荧光强度显著增强ꎬ反应前后探针的荧光强度增加约12倍ꎮ实验结果表明ꎬ该探针具有较快的反应速率ꎬ能够用于GSH和Hcy的高灵敏度检测ꎬ其它干扰氨基酸的存在不会对测定结果造成影响ꎮ此外ꎬ该探针被成功用于了HepG2细胞中生物硫醇的检测[2]ꎮZhang等人以三苯胺为发光基团ꎬ2ꎬ4-二硝基苯磺酰氯为识别基团ꎬ设计并合成了一种用于生物硫醇检测的荧光探针ꎬ并利用紫外-可见吸收光谱和荧光光谱对该探针与生物硫醇反应后的光谱性质进行了考察ꎬ只有GSH㊁Cys及Hcy与探针作用后ꎬ才能引起探针溶液明显的荧光信号增强ꎬ结果表明该探针具有良好的选择性ꎮ此外ꎬ该探针与生物硫醇作用后呈现良好的线性ꎬ因此其可以用于生物硫醇的定量检测ꎬ其检测灵敏度达10-8mol/Lꎮ细胞成像实验结果说明该探针能够用于生物体系中硫醇的检测[3]ꎮLiu等人以萘二甲酰亚胺为发光基团ꎬ马来酰亚胺为识别基团ꎬ设计合成了一种用于生物硫醇快速检测的荧光探针ꎮ探针与Hcy㊁Cys及GSH作用后ꎬ探针的荧光轻度显著增强ꎬ其它干扰氨基酸的存在不会引起光谱信号的明显变化ꎮ反应动力学研究表明该探针对生物硫醇的检测具有很快的反应速率ꎬ其能够在120秒内完成对生物硫醇的检测ꎮ此外ꎬ该探针被成功用于了细胞中生物硫醇的检测[4]ꎮ与小分子荧光探针相比ꎬ纳米探针具有制备简单等优点ꎬ也被广泛用于了生物硫醇的检测ꎮ二氧化锰(MnO2)作为一种新型的二维米材料ꎬ其本身具有较宽的吸收峰ꎬ与荧光染料结合后可以淬灭染料的荧光ꎻ另一方面ꎬ二氧化锰具有较强的氧化性ꎬ其可以被GSH还原ꎬ因此在GSH的荧光检测方面得到了广泛的应用ꎮDong等人以Ir(III)荧光配合物为识别基团ꎬ其发射光谱与二氧化锰有较好的重叠ꎬ将其与与MnO2纳米片连接后ꎬ成功制备了一种用于谷胱甘肽检测的荧光纳米探针ꎮ该探针中ꎬMnO2纳米片表面带负电ꎬ而Ir(III)配合物带正电ꎬ当将Ir(III)配合物加入到MnO2纳米片溶液中后ꎬ二者之间通过静电吸附作用连接在一起ꎬ使得Ir(III)配合物的荧光被淬灭ꎮ在谷胱甘肽存在时ꎬMnO2纳米片被还原ꎬ使得Ir(III)配合物的荧光恢复ꎮ研究结果表明ꎬ当GSH浓度为1-200μmol/L时ꎬ探针荧光信号与GSH浓度呈现良好的线性ꎬ其对GSH的检测线为0.13μmol/Lꎮ此外ꎬ该纳米探针被用于了斑马鱼中GSH的荧光成像[5]ꎮ随着研究的不断深入ꎬ越来越多的用于生物硫醇检测的荧光探针被开发报道出来ꎬ在其的检测应用中发挥着重要作用ꎮ参考文献:[1]㊀L.HymanꎬK.Franz.Probingoxidativestress:Smallmoleculefluorescentsensorsofmetalionsꎬreactiveoxygenspeciesꎬandthiols.Coordin.Chem.Rev.256(2012)2333-2356.[2]㊀T.LiuꎬF.HuoꎬC.Yinꎬetal.Atriphenylamineasafluoro ̄phoreandmaleimideasabondinggroupselectiveturn-onfluo ̄rescentimagingprobeforthiols[J].DyesPigments128(2016)209-214.[3]㊀W.ZhangꎬC.YinꎬY.Zhangꎬetal.Aturn-onfluorescentprobebasedon2ꎬ4-dinitrosulfonylfunctionalgroupanditsap ̄plicationforbioimaging[J].Sensor.Actuat.B233(2016)307-313.[4]㊀T.LiuꎬF.HuoꎬJ.Liꎬetal.Afastresponseandhighsensi ̄tivitythiolfluorescentprobeinlivingcells[J].Sensor.Actuat.B232(2016)619–624.[5]㊀Z.DongꎬL.LuꎬC.Koꎬetal.AMnO2nanosheet-assistedGSHdetectionplatformusinganiridium(III)complexasaswitch-onluminescentprobe.Nanoscaleꎬ2017ꎬ9ꎬ4677-4682.。

谷胱甘肽包被的CdTe量子点作为荧光探针测定微量银

谷胱甘肽包被的CdTe量子点作为荧光探针测定微量银

谷胱甘肽包被的CdTe量子点作为荧光探针测定微量银董微;王莹;宋有涛;董焱;周巳琪;曹智星【摘要】目的:建立了一种以CdTe量子点为离子探针测定微量银的新方法.方法:选择谷胱甘肽作为表面修饰剂,合成水溶性CdTe量子点.根据Ag+对CdTe量子点的荧光猝灭效应,用CdTe量子点作为荧光探针实现了对Ag+的定量检测.结果:在0.0001 mol/L、pH值为7.4的磷酸缓冲溶液中,当量子点浓度为0.004 g/L时,反应时间为5 min,体系的相对荧光强度与Ag+浓度呈良好的线性关系,其线性范围为25.06~98.60μg/L,线性系数为0.9957,检出限为0.15 μg/L.结论:该法已成功应用于实体水样中微量银的测定.【期刊名称】《沈阳医学院学报》【年(卷),期】2012(014)001【总页数】3页(P6-8)【关键词】谷胱甘肽;CdTe量子点;荧光探针;银【作者】董微;王莹;宋有涛;董焱;周巳琪;曹智星【作者单位】沈阳医学院基础医学院化学教研室,辽宁沈阳110034;辽宁大学生命科学院动物资源与疫病防治重点实验室;辽宁大学生命科学院动物资源与疫病防治重点实验室;沈阳药科大学中药学院实验中心;沈阳医学院奉天医院重症医学科;沈阳医学院沈洲医院医保科【正文语种】中文【中图分类】R737.25金属离子的高灵敏检测一直是离子探针领域研究的热点。

目前已经有很多有机染料成功应用于金属离子的检测。

但是有机染料自身具有局限性,如激发光谱窄、发射光谱宽、容易光漂白等缺点[1]。

量子点(quantum dots,QDs)是一种半径小于或接近于激子玻尔半径的新型半导体纳米材料,与传统有机荧光染料相比,QDs具有量子产率高,抗漂白能力强,光化学稳定性好等优良特性[2-3],是一种很有发展潜力的荧光探针。

目前应用于银离子检测的方法有原子吸收分光光度法、电感耦合等离子体发射光谱法(inductively coupled plasma atomic emission spectrometry,ICP-AES)、电感耦合等离子体质谱法(inductively coupled plasma mass spectrometry,ICP-MS)[4-6]等。

一种识别谷胱甘肽的荧光探针[发明专利]

一种识别谷胱甘肽的荧光探针[发明专利]

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201910426246.8(22)申请日 2019.05.21(71)申请人 郑州大学地址 450001 河南省郑州市高新区科学大道100号(72)发明人 刘兴江 周爽 肜一凡 魏柳荷 孙爱灵 (51)Int.Cl.C07D 471/06(2006.01)C09K 11/06(2006.01)G01N 21/64(2006.01)(54)发明名称一种识别谷胱甘肽的荧光探针(57)摘要本发明公开了一种基于萘酰亚胺-吲哚生色团的特异性识别谷胱甘肽的荧光探针及其制备方法,其结构如下:该探针选择性好,抗干扰能力强,同时在检测过程中具有较长波长发射和较大斯托克斯位移,可以减少背景干扰以及提高检测灵敏度。

该探针可用于样品内谷胱甘肽的检测,并能区分谷胱甘肽与半胱氨酸/同型半胱氨酸。

权利要求书1页 说明书5页 附图4页CN 111978323 A 2020.11.24C N 111978323A权 利 要 求 书1/1页CN 111978323 A1.一种识别谷胱甘肽的荧光探针,其结构式为:一种识别谷胱甘肽的荧光探针技术领域[0001]本发明属于化学分析检测技术领域,具体涉及一种新型的谷胱甘肽荧光探针的制备方法,以及该探针在检测谷胱甘肽方面的应用。

背景技术[0002]谷胱甘肽(GSH)在哺乳动物,尤其是人类的生物系统中含量非常丰富,其在维持氧化还原稳态、防御自由基和毒素方面起着至关重要的作用,许多研究都集中在确定健康所需的,细胞和血浆中谷胱甘肽的浓度水平。

生命系统中异常浓度的谷胱甘肽与各种疾病密切相关,如癌症、帕金森病、阿尔茨海默病、骨质疏松症和心血管疾病等。

目前识别巯基类化合物的荧光探针大多数都基于巯基的亲核性,但是由于谷胱甘肽与半胱氨酸(Cys)和同型半胱氨酸(Hcy)具有相似的结构,导致很多巯基类探针无法很好地区分三者中的某一种。

谷胱甘肽响应型探针的制备及其在天然药物筛选中的应用

谷胱甘肽响应型探针的制备及其在天然药物筛选中的应用

谷胱甘肽响应型探针的制备及其在天然药物筛选中的应用毛林夕,王梦云,杨皓宇,覃艳,王炜*湖南中医药大学药学院,湖南长沙410208〔收稿日期〕2023-03-06〔基金项目〕国家自然科学基金项目(82174078,82003931);湖湘青年科技人才创新项目(2021RC3100)。

〔第一作者〕毛林夕,女,硕士研究生,研究方向:天然产物活性筛选及其作用机制研究。

〔通信作者〕*王炜,男,博士,教授,博士研究生导师,E-mail:**********************。

〔摘要〕目的制备谷胱甘肽(glutathione,GSH )响应的香豆素类荧光探针并应用于中药GSH 调节剂的筛选。

方法以香豆素为荧光团,2-氯-5-硝基嘧啶为淬灭基团,构建GSH 响应的荧光探针(HCN ),通过紫外、高效液相色谱、荧光光谱和核磁等表征手段确定HCN 的结构及其对GSH 响应的可行性、特异性、灵敏性,以确定最佳响应条件。

通过MTT 实验及细胞成像考察HCN 的细胞毒性及胞内荧光信号。

以GSH 商品化消耗剂(NEM )为阳性对照,选取民族药血筒中16种化合物为筛选对象,通过HCN 检测所选化合物对GSH 水平的调控能力,并进一步采用分子对接手段验证筛选结果的可靠性。

结果核磁谱表明HCN 合成成功,能与GSH 特异性响应并呈线性关系,且HCN 的最佳反应温度和反应时间分别为37℃和100min 。

MTT 实验表明,在HepG2细胞中,与0μmol/mL 相比,80μmol/mL 和100μmol/mL 的HCN 降低了细胞活力(P <0.05),说明HCN 对HepG2细胞增殖有影响;在HL -7702细胞中,与0μmol/mL 相比,各浓度HCN 对细胞活力影响微弱(P >0.05),说明HCN 对HL-7702细胞增殖无影响。

在细胞成像实验中,与0μmol/mL 相比,各浓度HCN 的荧光强度增强(P <0.05)。

谷胱甘肽包覆的碲化镉量子点荧光探针法快速测定多巴胺

谷胱甘肽包覆的碲化镉量子点荧光探针法快速测定多巴胺
l f u o r e s c e n t q u e n c h i n g f u n c t i o n o f DA f o r g l u t a t h i o n e . c o a t e d C d T e q u a n t u m d o t s . Ex p e r i me n t a 1 r e s u l t s s h o w t h a t a
第4 4 卷第 1 0期 2 0 1 5年 1 0月




C o n t e m p o r a r y C h e m i c a l I n d u s t r y
V o 1 . 4 4. N o . 1 0 O c t o b e r ,2 0 1 5
Ab s t r a c t :A n e w l f u o r e s c e n t p r o b e a n a l y s i s me t h o d f o r d e t e r mi n a t i o n o f d o p a mi n e f DA、wa s d e v e l o p e d b a s e d o n
g o o d l i n e a r r e l a t i o n s h i p b e t we e n t h e l f u o r e s c e n t i n t e n s i t y q u e n c h i n g f △n a n d t h e c o n c e n t r a t i o n o f DA c a n b e o b t a i n e d
探针分 析法 。实验结 果表明 ,在 T r i s . HC I ( p H = 7 . 0 ) 溶液 中,多 巴胺浓度在 0 . 0 6 ~ 2 . 1 g mo l / L范围 内,碲化镉量子 点荧光强度 的猝灭值 ( △ 与多 巴胺的浓度呈线性关系 ,线性方程 关 键 1 6 5 . 4 3 c D A +9 . 5 7 , 相关 系数( O . 9 9 8 6 , 方

以喹啉酮为核心高选择快速检测谷胱甘肽的荧光探针

以喹啉酮为核心高选择快速检测谷胱甘肽的荧光探针

(Valine) 、谷氨酸( Glutamic acid) 、苯丙氨酸( Phenylalanine) 、丙氨酸( Alanine) 、蛋氨酸( Methionine) 、色
氨酸( Tryptophan) 、亮氨酸( Leucine) 、赖氨酸( Lysine) 、酪氨酸( Tyrosine) 、甘氨酸( Glycine) 、间苯二胺和
法 [13] ꎬ具有简单便捷、稳定性强和灵敏度高等优点ꎬ能够对待测样品进行有效的实时检测ꎬ在临床医学、
化学、生物学以及环境等领域受到广泛关注 [14 ̄15] ꎮ
喹啉酮是一种具有高荧光量子产率和高稳定性的荧光团 [16] ꎬ其衍生物可作为荧光传感器 [17] ꎮ 喹啉
酮类衍生物还具有良好的生物相容性ꎬ含有喹啉酮组块的许多类药物也已在临床疾病的预防和治疗中
得到应用 [18] ꎮ 依布硒啉在与巯基反应时ꎬ硒杂环结构中 Se—N 键会发生断裂 [19] ꎬ可应用此性质将其作
为荧光分子的反应位点ꎮ 由于 GSH 具有巯基ꎬ通过巯基提供的具有亲核性的 HS - ꎬ使探针分子中硒氮
( —Se—N—) 断裂ꎬ可导致探针分子结构发生改变ꎬ进而产生荧光强度的变化以达到检测目的 [20 ̄22] ꎮ 因
一种新型荧光探针 ( E)  ̄N ̄(4 ̄甲基 ̄2 ̄氧代 ̄1ꎬ2 ̄二氢喹啉 ̄7 ̄基)  ̄3 ̄(5 ̄( (4 ̄(3 ̄氧代苯并 [ d] [ 1ꎬ2 ] 硒 烯 唑 ̄
2 (3H)  ̄基) 苯基) 硫基)  ̄1ꎬ3ꎬ4 ̄噁二唑 ̄2 ̄基) 丙烯酰胺( MNQ) ꎮ 通过傅里叶变换红外光谱( FT ̄IR) 、核磁共振
胞内分析物的有效分子工具 [8 ̄9] ꎮ 迄今为止ꎬ已开发出许多识别检测 GSH 的方法ꎬ如高效液相色谱法
(HPLC) [10] 、毛细管电泳 [11] 以及电化学方法 [12] 等ꎮ 这些方法大多都需要复杂且较昂贵的仪器和繁琐的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第46卷第7期2018年4月广 州 化 工Guangzhou Chemical IndustryVol.46No.7Apr.2018谷胱甘肽荧光探针的研究进展*石 磊1,2,黄 玲3,龚盛昭1,2(1广东轻工职业技术学院轻化工技术学院,广东 广州 510300;2广东省绿色日用化工工程技术研究中心,广东 广州 510300;3佛山市安安美容保健品有限公司,广东 佛山 528099)摘 要:谷胱甘肽在生物体的许多生理过程中发挥着重要作用,所以细胞内谷胱甘肽含量的检测对细胞功能研究和病理分析都具有重要的意义㊂以荧光探针为基础的荧光分析法因其操作简便㊁灵敏度高和专一性强等优点而备受大家关注,并且有机小分子荧光探针还可以应用于活体细胞和生物体的成像技术㊂本文主要综述了近年来谷胱甘肽荧光探针的研究现状,并按照谷胱甘肽与探针识别基团的识别机理分类阐述,同时对谷胱甘肽荧光探针的未来发展趋势进行了展望㊂关键词:谷胱甘肽㊁荧光探针㊁识别机理㊁检测 中图分类号:O657.3 文献标志码:A文章编号:1001-9677(2018)07-0023-06*基金项目:广东轻工职业技术学院人才类项目(项目编号:KYRC2017-0031)㊂第一作者:石磊(1985-),男,博士,讲师,主要从事荧光探针的合成与应用㊂通讯作者:龚盛昭㊂Research Progress on Fluorescent Probes for Glutathione *SHI Lei 1,2,HUANG Ling 3,GONG Sheng -zhao 1,2(1School of Chemical Engineering and Technology,Guangdong Industry Polytechnic,Guangdong Guangzhou 510300;2Guangdong Engineering Technical Research Center for Green Household Chemicals,Guangdong Guangzhou 510300;3Foshan Anan beauty &Health products Co,Ltd,Guangdong Foshan 528099,China)Abstract :Glutathione plays an important role in many physiological processes of life system,and the detection of glutathione in cell is significant for the research of cell function and pathological analysis.Fluorometric analysis based on fluorescent probes has attracted much attention due to its advantages,such as simple operation,high sensitivity and specificity.Moreover,the organic fluorescent probes could also be applied to bioimaging technology for living cells and organisms.The research progress on glutathione fluorescent probes was introduced and classified according to the recognition mechanism between glutathione and recognition groups of probes,and the developing trends of fluorescent probes for glutathione were prospected.Key words :glutathione;fluorescence probe;recognition mechanism;detection谷胱甘肽(Glutathione,缩写GSH)是一种含有巯基㊁氨基和γ-酰胺键的三肽,主要由谷氨酸㊁半胱氨酸和甘氨酸组成㊂谷胱甘肽是细胞内一种重要的调节代谢物质;它不仅能够清除体内的过氧化物及其他自由基,促进肝脏酶活性㊁解毒和维持红细胞膜完整性等作用,同时还具有维持DNA 的生物合成和细胞免疫等多种生理功能[1-2]因此,检测生物体中的GSH 含量对于一些疾病的预防㊁研究和治疗都具有十分重要的作用,故而引起了诸多科研工作者的高度关注[3-4]㊂相比于分光光度法㊁色谱法㊁毛细管电泳法㊁电化学法等传统检测方法,以荧光探针为基础的荧光分析法具有测试简单㊁选择性高㊁响应时间短等优点㊂更重要的是,荧光探针还能应用于生物体内的实时监测和生物成像研究,故而被广泛应用于生物医学㊁分析化学和化学生物学等诸多领域[5-6]㊂近年来,基于谷胱甘肽的荧光探针得到了迅猛发展;若按照谷胱甘肽与荧光探针识别基团的识别机理进行分类,可以将其分为加成反应取代反应和还原反应㊂本文主要综述了近年来谷胱甘肽荧光探针的设计合成与应用进展,并分类阐述如下㊂1 加成反应加成反应是利用GSH 中具有亲核性的巯基与不饱和双键(主要是碳碳双键)发生加成反应,使得探针的荧光发射光谱发生变化,从而实现对检测对象的识别与检测㊂1.1 马来酰亚胺类自Kanaoka [7]首次报道了以马来酰亚胺作为生物硫醇识别基团的荧光探针以来,基于马来酰亚胺的香豆素㊁BODIPY㊁喹啉㊁萘酐等[8-10]荧光探针陆续涌现出来,并成功应用于生物体内GSH 的选择性识别(图1)㊂然而,按此原理构建的大部分荧光探针对半胱氨酸(Cys)㊁同型半胱氨酸(Hcy)和GSH 均有响应,很难对这三者进行区分;仅少许报道是例外㊂其中,24 广 州 化 工2018年4月Gunnlaugsson 等[11]合成了一类含有马来酰亚胺的稀土荧光材料5;该荧光材料对于GSH 具有很强的专一性识别能力,而对其它氨基酸则表现出差异性的荧光响应,从而能够很好区分Cys 和Hcy 等其它氨基酸㊂图1 基于马来酰亚胺类识别基团的荧光探针1~5Fig.1 Fluorescent probe 1~5based on the maleimide recognition group1.2 α,β-不饱和双键和马来酰亚胺类似,α,β-不饱和丙二腈基团㊁α,β-不饱和酮和芳基乙烯基也可以作为小分子硫醇的迈克尔加成反应位点㊂基于此项设计,Kwon 等[12]㊁Chen 等[13]和Chang 等[14]合成了三种荧光探针6㊁7和8(图2),并实现了在细胞体内Cys㊁Hcy 和GSH 等生物硫醇的识别和检测㊂然而遗憾的是,这三种荧光探针无法对生物硫醇进行很好区分㊂图2 基于α,β-不饱和双键识别基团的荧光探针6~8Fig.2 Fluorescent probe 6~8based on the recognition group ofα,β-unsaturated double bond1.3 硝基乙烯图3 基于硝基乙烯识别基团的荧光探针9和10Fig.3 Fluorescent probe 9,10based on the nitroethylenerecognition group2014年,Akkayatwi 等[15]报道了一种利用硝基乙烯基为识别基团的BODIPY 探针9(图3)㊂该荧光探针与GSH 生成硫醚化合物后,抑制了PET 效应,从而使荧光强度大大增强㊂基于PET 和ICT 效应,Zhou 等[16]同样报道了基于硝基乙烯的咔唑荧光探针10,并且实现了从Cys 和Hcy 等氨基酸中高选择性识别出GSH㊂1.4 丙烯酸酯类从2011年开始,基于丙烯酸酯识别基团的多种荧光探针不断被报道出来[4,17-18],并成功应用于生物硫醇的小分子检测㊂相比于GSH 与丙烯酸酯所生成的反应产物,Cys 和Hcy 结构中的氨基可以进一步发生环化反应而使丙烯酸酯离去,所以基于这类识别机理的大部分荧光探针都是用于选择性识别Cys 和Hcy㊂然而,Wang 等[19]所设计了1,3,5-三芳基吡唑啉荧光探针11则有所不同(图4)㊂该荧光探针和GSH 所生产的加成产物具有较高量子产率,而Cys 和Hcy 等巯基氨基酸则与丙烯酸酯形成环化离去,生成具有较低量子产率的酚类化合物,从而实现了对GSH 的高选择性识别和检测㊂图4 基于丙烯酸酯识别基团的荧光探针11Fig.4 Fluorescent probe 11based on the recognition group of acrylate2 取代反应GSH 中的巯基不仅可以发生加成反应,也能够发生亲核取代反应,从而使探针分子结构中某些基团被离去㊂基于该类反应机制的GSH 识别基团主要有:卤素类㊁芳基醚类㊁磺酸酯/磺酰胺类㊁硫醋类等㊂2.1 卤素基团利用Cys /Hcy 结构中氨基与巯基距离较近的结构特点和产物性能的差异,Chen 等[20]和Lin 等[21]设计了2种选择性识别GSH 的BODIPY 荧光探针12和香豆素荧光探针13,并实现了细胞体内GSH 的实时检测与生物成像(图5)㊂2014年,Guo 等[22]报道了一种含3个反应位点的荧光探针14㊂由于GSH 中氨基和巯基相距较远,GSH 中巯基将先与探针先发生亲核取代反应,继而氨基与苯并噻唑中的3号反应位点发生加成反应㊂正是三种生物硫醇的结构特征和产物的不同,使得该荧光探针能够利用不同的荧光通道实现Cys㊁Hcy 和GSH 的高选择性检测㊂同样基于含3个反应位点的香豆素探针,Han 等[23]报道了另一种香豆素荧光探针15,该探针不仅可以选择性检出GSH,而且对于H 2S 也具有很好的检测和分辨能力㊂第46卷第7期石磊,等:谷胱甘肽荧光探针的研究进展25图5 基于卤素取代反应的荧光探针12~15Fig.5 Fluorescent probe 12~15based on substitution reaction of halogen2.2 芳基醚(氧㊁硫㊁硒醚)图6 基于芳基醚取代反应的荧光探针16和17Fig.6 Fluorescent probe 16,17based on substitution reaction of aryl ether2014年,Wang 等[24]和Lim 等[25]先后报道了含间硝基和对(硝基偶氮基)苯基醚的花菁染料探针16和17(图6)㊂上述两种荧光探针可以与GSH 发生亲核取代反应,使得芳基醚离去,并破坏PET 效应,而且这两种探针对GSH 都具有很好的专一检测能力㊂同样基于Cys /Hcy 取代-重排反应和GSH 取代反应的产物差异,Guo 等[26]报道了含对甲氧基苯硫醚基团的荧光探针18,并实现了激发波长分别为455nm 和588nm 的双通道选择性识别与检测(图7)㊂Yang 等[27]则报道了基于ESIPT 和PET 两种发光机理的荧光探针19;Cys /Hcy 与探针分子先后发生巯基和氨基的取代反应,进而生成内醋,最终产物通过ESIPT 机理发出蓝色荧光;然而,探针19则与GSH 只发生酯基的交换反应,阻断原有的PET 效应,最终释放出罗丹明荧光团的红色荧光㊂图7 基于芳基硫醚取代反应的荧光探针17和18Fig.7 Fluorescent probes 17and 18based on substitution reactionof arylthioether图8 基于双识别基团的荧光探针20~22Fig.8 Fluorescent probe 20~22based on double recognition groups2015年,Zhu 等[28]报道了一种同时具备二硫键和芳基硫醚两个独立反应位点的BODIPY 荧光探针20(图8)㊂虽然生物硫醇都能断裂二硫键,并形成五元环离去,但是Cys /Hcy 由于存在巯基-氨基的转换,故而产生差异性的荧光发射光谱,从而实现对GSH 的选择性检测㊂之后,Chen 等[29]和Mulay 等[30]也发表了基于双识别基团的香豆素荧光探针21和22,并利用2个识别基团的联合作用,实现了从其它巯基氨基酸中选择性识别GSH;此外,探针21对H 2S 也具有很好的选择性识别能力㊂2.3 磺酸酯/磺酰胺类磺酸酯/磺酰胺键在生物硫醇的作用下很容易断裂,从而26 广 州 化 工2018年4月释放出荧光信号和SO 2㊂基于此项设计的多种荧光探针不断被报道出来[31-32]㊂然而遗憾的是,这类荧光探针普遍难以实现生物硫醇的选择性识别(图9)㊂图9 基于磺酸酯/磺酰胺键荧光探针的识别机理图Fig.9 The diagram of fluorescent probes based on recognition groupof sulfonyl ester or sulfonamide bond为提升磺酰胺基团的选择性,Yin 等[33]和Liu 等[34]创新性地将苯基改为萘环和氧化硫代吗啉,设计了花菁染料23和萘酐荧光探针24(图10);这两种荧光探针在对GSH 的选择性识别方面都取得了较大突破㊂图10 基于磺酰胺识别基团的荧光探针23和24Fig.10 Fluorescent probe 23,24based on sulfonamide recognition groups2.4 氮-硒键早在2007年和2009年,唐波课题组[35-36]先后发表了利用N-Se 键断裂来识别GSH 的罗丹明荧光探针25和26(图11),并成功应用于细胞体内GSH 的检测和成像㊂图11 基于氮-硒键识别基团的荧光探针25和26Fig.11 Fluorescent probe 25,26based on the recognition group ofnitrogen-seleniumbonds图12 基于氮-硒键识别基团的花菁探针27和28Fig.12 The cyanine probe 27,28based on the recognition groupof nitrogen-selenium bonds2012年,Chen 等[37]则将N-Se 键识别位点引入到花菁染料中,合成了用于检测GSH 的近红外荧光探针27(图12)㊂同样是基于花菁染料,唐波课题组[38]则将含N-Se 键的五元环引入到荧光探针28结构中㊂在GSH 作用下N-Se 键断裂,由于产物内存在PET 效应导致荧光淬灭;而此时如果加入H 2O 2,则上述苯硒酚又重新被氧化,并伴随794nm 处荧光强度的不断増强㊂2.5 硒-硒键GSH 不仅可以断裂N-Se 键,也可以断裂Se -Se 键㊂Lou等[39]报道了一种以Se-Se 键为GSH 识别位点的荧光素探针29;该荧光探针不仅可以用于GSH 的快速检测,而且还能用于监视细胞体内GSH 与活性氧之间的氧化还原变化(图13)㊂图13 基于硒-硒键识别基团的荧光探针29Fig.13 Fluorescent probe 29based on recognition groupof selenium-selenium bond3 还原反应GSH 结构中的巯基不仅具有亲核性,同时还具有还原性;并且基于硫醇还原性反应的荧光探针也不断被报道出来[40-41]㊂其中,双硫键-氨基甲酸酯和双硫键-苯乙酸酯等基团是用来构建硫醇荧光探针的常见方法,并被引入到氨基萘乙酮[42]㊁卟啉[43]㊁荧光素[44]等荧光团结构中(图14)㊂然而,此类方法对生物硫醇的选择性识别能力却较为有限㊂图14 以还原反应作为识别机理的探针27和28Fig.14 Fluorescent probe 27and 28based on the recognitionmechanism of reductionreactions图15 利用GSH 还原碲进行识别的荧光探针33Fig.15 Fluorescent probe 33based on the reduction of tellurium by GSH第46卷第7期石磊,等:谷胱甘肽荧光探针的研究进展272013年,Han等[45]报道了一种利用GSH还原碲的花菁染料探针33(图15)㊂该探针在GSH等硫醇作用下发生还原反应,导致体系荧光在820nm处大大减弱;不仅如此,该还原产物又能被ONOO-氧化,同时伴随着荧光强度的急剧增强㊂4摇结论与展望从上述的国内外研究进展来看,近年来基于GSH的荧光探针已经被报道了很多,所设计的荧光探针结构和识别基团也变化多样㊂然而,能够在复杂生命体中专一检测谷胱甘肽而完全不受其它硫醇干扰旳荧光探针仍然存在较大的挑战,相关的报道仍在少数㊂此外,随着生命科学与分析技术的不断发展,人们已经开始从亚细胞层去认识和探究生命活动的本质,但基于细胞器靶向的生物硫醇荧光探针研究仍然处于初始阶段㊂因此,未来关于GSH等生物硫醇化合物的荧光探针研究方向可以集中在以下3个方面:(1)设计更多具有专一性检测GSH的识别基团和荧光探针分子;(2)设计与合成出更多具有细胞器㊁组织㊁器官特异性靶向的探针;(3)利用双光子㊁近红外光的生物应用优势,将双光子和近红外荧光探针应用到细胞和动物组织的生物成像中㊂参考文献[1] TOWNSEND D M,TEW K D,TAPIERO H.The importance ofglutathione in human disease[J].Biomed.Pharmacother,2003,57 (3-4):145-155.[2] 张照明,张海涛,袁利明.国内谷胱甘肽研究进展[J].广州化工,2009,37(3):55-57.[3] 钟华,张慧,许海平.谷胱甘肽的测定方法进展[J].氨基酸和生物资源,2014,36(1):23-26.[4] 谢光杰,户明星,徐丽萍.选择性生物小分子硫醇荧光探针的研究进展[J].化学研究与应用,2016,28(9):1177-1185. [5] SOH N.Recent advances in fluorescent probes for the detection ofreactive oxygen species[J].Anal.Bioanal.Chem,2009,386(3): 532-543.[6] KIM D,RYU H G,AHN K H.Recent development of two-photonfluorescent probes for bioimaging[J].Org.Biomol.Chem,2014,12(26):4550-4566.[7] KANAOKA Y,MACHIDA M,ANDO K,et al.Fluorescence andstructure of proteins as measured by incorporation of fluorophore.Iv.Synthesis and fluorescence characteristics of n-(p-(2-benzimidazolyl) phenyl)maleimide[J].Biochim Biophys Acta,1970,87(207):269-277.[8] MATSUMOTO T,URANO Y,SHODA T,et al.A thiol-reactivefluorescence probe based on donor-excited photoinduced electron transfer:Key role of ortho substitution[J].Or.g Lett,2007,9(17): 3375-3377.[9] KAND D,KALLE A M,VARMA S J,et al.A chromenoquinoline-based fluorescent off-on thiol probe for bioimaging[J].Chem.Commun,2012,48(21):2722-2724.[10]ZHU X,GAO H,ZAN W,et al.A rational designed thiolsfluorescence probe:The positional isomer in pet[J].Tetrahedron, 2016,72(16):2048-2056.[11]MCMAHON B K,GUNNLAUGSSON T.Selective detection of thereduced form of glutathione(gsh)over the oxidized(gssg)form using a combination of glutathione reductase and a tb(iii)-cyclen maleimide based lanthanide luminescent'switch on'assay[J].J.Am.Chem.Soc,2012,134(26):10725-10728.[12]KWON H,LEE K,KIM H.J.:Coumarin-malonitrile conjugate as afluorescence turn-on probe for biothiols and its cellular expression[J].mun,2011,47(6):1773-1775.[13]CHEN X,KO S K,KIM M J,et al.A thiol-specific fluorescent probeand its application for bioimaging[J].Chem Commun,2010,46(16): 2751-2753.[14]ZHAI D,LEE S C,YUN S W,et al.A ratiometric fluorescent dye forthe detection of glutathione in live cells and liver cancer tissue[J].mun,2013,49(65):7207-7209.[15]IŞıK M,GULIYEV R,KOLEMEN S,et al.Designing an intracellularfluorescent probe for glutathione:Two modulation sites for selective signal transduction[J].Org.Lett,2014,16(12):3260-3263. [16]PANG L,ZHOU Y,WANG E,et al.A turn-on”fluorescent probeused for the specific recognition of intracellular gsh and its application in bioimaging[J].Rsc Advances,2016,6(20):16467-16473. [17]NIU L Y,CHEN Y Z,ZHENG H R,et al,Cheminform abstract:Design strategies of fluorescent probes for selective detection among biothiols[J].Chem.Soc.Rev,2015,44(17):6143-6160. [18]祝新月,王建西,张海霞:生物小分子巯基化合物荧光探针研究进展[J].分析测试技术与仪器,2017,23(3):143-158. [19]WANG S Q,WU Q H,WANG H Y,et al.Novel pyrazoline-basedfluorescent probe for detecting glutathione and its application in cells [J].Biosens Bioelectron,2014,55(9):386-390.[20]NIU L Y,GUAN Y S,CHEN Y Z,et al.Bodipy-based ratiometricfluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine[J].J.Am.Chem.Soc,2012,134(46): 18928-18931.[21]HE L,XU Q,LIU Y,et al.Coumarin-based turn-on fluorescenceprobe for specific detection of glutathione over cysteine and homocysteine[J].Acs Applied Materials&Interfaces,2015,7(23): 12809-12813.[22]LIU J,SUN Y Q,HUO Y,et al.Simultaneous fluorescence sensing ofcys and gsh from different emission channels[J].J.Am.Chem.Soc, 2014,136(2):574-577.[23]CHEN F,HAN D,LIU H,et al.A tri-site fluorescent probe forsimultaneous sensing of hydrogen sulfide and glutathione and its bioimaging applications[J].Analyst,2018,143(2):440-448. [24]WANG X,LV J,YAO X,et al.Screening and investigation of acyanine fluorescent probe for simultaneous sensing of glutathione and cysteine under single excitation[J].Chem Commun,2014,50(97): 15439-15442.[25]LIM S Y,HONG K H,KIM D I,et al.Tunable heptamethine-azo dyeconjugate as an nir fluorescent probe for the selective detection of mitochondrial glutathione over cysteine and homocysteine[J].J.Am.Chem.Soc,2014,136(19):7018-7025.[26]LIU J,SUN Y.-Q,ZHANG H,et al.Simultaneous fluorescentimaging of cys/hcy and gsh from different emission channels[J].Chem.Sci,2014,5(8):3183-3188.[27]YANG X F,HUANG Q,ZHONG Y,et al.A dual emission fluorescentprobe enables simultaneous detection of glutathione and cysteine/ homocysteine[J].Chem.Sci,2014,5(6):2177-2183. [28]WANG F,ZHOU L,ZHAO C,et al.A dual-response bodipy-basedfluorescent probe for the discrimination of glutathione from cystein and homocystein[J].Chem.Sci,2015,6(4):2584-2589. [29]CHEN W,YUE X,ZHANG H,et al.Simultaneous detection ofglutathione and hydrogen polysulfides from different emission channels [J].Anal.Chem,2017,89(23):12984-12991.[30]MULAY S.V,KIM Y,CHOI M,et al.Enhanced doubly-activateddual emission fluorescent probes for selective imaging of glutathione or cysteine in living systems[J].Anal.Chem,2018.(下转第107页)第46卷第7期马海龙:重整装置掺炼加氢粗汽油技术研究107 换费用㊂(2)停止加氢粗汽油销售,防止部分加氢粗汽油流入市场,扰乱正常油品销售市场,社会效益得到进一步提高㊂(3)调运至兄弟单位的石脑油经过加工处理,最终成为成品汽油销售,年增加经济效益1039.5万元㊂表5 重整装置掺炼粗汽油循环氢化验分析数据前后对比表Table 5 Comparison table of the data before and after analysis of the crude gasoline circulating hydrogen test by the reforming unit项目试验前4.74.84.9试验后4.104.114.12Cl<0.5<0.5<0.5<0.5<0.5<0.5水2.632.633.62.6氢气85.5588.9388.1588.8187.8487.85氧气0.990.160.170.10.060.09氮气3.090.430.930.550.110.26甲烷3.532.943.723.433.994.19乙烷2.72.52.872.743.043.04丙烷2.282.682.352.312.592.43异丁烷0.91.010.830.851.020.89正丁烷0.630.80.580.690.830.74C5组分0.330.550.40.550.520.51质量判定合格合格合格合格合格合格5 结 论在前期调研㊁化验分析的基础上,结合生产实际编制重整装置掺炼加氢粗汽油试生产方案,根据方案4月10日组织15万吨/年重整装置掺炼加氢粗汽油,常压石脑油与加氢粗汽油按4︓1比例混合作为重整装置原料,经过十天实验生产,重整装置汽油辛烷值提高1个单位,全厂汽油基础辛烷值整体提高0.2个单位,经济效益增加明显㊂ 参考文献[1] 李启胜.重整装置掺炼加氢裂化重石脑油和乙烯抽余油运行分析[J].齐鲁石油化工,2014,42(4):281-284.[2] 谭英刚,韩长虹,赵海军.直馏汽油掺炼催化汽油作重整原料[J].油气田地面工程,2005,24(11):55-55.[3] 周孟番.重整装置掺炼加氢焦化汽油试验及运行分析[J].催化重整通讯,2001(3):26-32.[4] 耿彦青,南晓钟,王志坤,等.半再生催化重整装置掺炼催化裂化汽油的工业应用[J].当代化工,2005,34(4):273-275.[5] 郭群,董建伟,石玉林.直馏汽油掺炼催化裂化汽油加氢作重整原料的研究[J].石油炼制与化工,2003,34(6):10-13.(上接第27页)[31]MAITY D,GOVINDARAJU T.A turn -on nir fluorescence andcolourimetric cyanine probe for monitoring the thiol content in serum and the glutathione reductase assisted glutathione redox process[J].Org.Biomol.Chem,2013,11(13):2098-2104.[32]WANG S Q,WU Q H,WANG H Y,et al.A novel pyrazoline-basedselective fluorescent probe for detecting reduced glutathione and its application in living cells and serum[J].Analyst,2013,138(23):7169-7174.[33]YIN J,KWON Y,KIM D,et al.Cyanine-based fluorescent probe forhighly selective detection of glutathione in cell cultures and live mouse tissues[J].J.Am.Chem.Soc,2014,136(14):5351-5358.[34]LIU G,HAN X,ZHANG J,et al.Oxidized -morpholine dressingratiometric fluorescent probe for specifically visualizing the intracellular glutathione[J].Dyes and Pigments,2018,148(292-297.[35]TANG B,XING Y,LI P,et al.A rhodamine-based fluorescent probecontaining a se-n bond for detecting thiols and its application in living cells[J].J.Am.Chem.Soc,2007,129(38):11666-11667.[36]TANG B,YIN L,WANG X,et al.A fast-response,highly sensitiveand specific organoselenium fluorescent probe for thiols and its application in bioimaging [J]mun,2009,35):5293-5295.[37]WANG R,CHEN L,LIU P,et al.Sensitive near-infrared fluorescentprobes for thiols based on se-n bond cleavage:Imaging in living cells and tissues[J].Chem.-Eur.J,2012,18(36):11343-11349.[38]XU K,QIANG M,GAO W,et al.A near -infrared reversiblefluorescent probe for real-time imaging of redox status changes in vivo [J].Chem.Sci,2013,4(3):1079-1086.[39]LOU Z,LI P,SUN X,et al.A fluorescent probe for rapid detection of thiols and imaging of thiols reducing repair and H 2O 2oxidative stress cycles in living cells[J].Chem Commun,2013,49(4):391-393.[40]CHEN X,ZHOU Y,PENG X,et al.Fluorescent and colorimetric probes for detection of thiols[J].Chem Soc Rev,2010,39(6):2120-2135.[41]JUNG H.S,CHEN X,KIM J.S,et al.Recent progress in luminescent and colorimetric chemosensors for detection of thiols[J].Chem Soc Rev,2013,42(14):6019-6031.[42]LEE J.H,LIM C.S,TIAN Y.S,et al.A two-photon fluorescent probe for thiols in live cells and tissues [J].J.Am.Chem.Soc,2010,132(4):1216-1217.[43]CAO X,LIN W,YU Q.A ratiometric fluorescent probe for thiols based on a tetrakis(4-hydroxyphenyl)porphyrin -coumarin scaffold [J].Chem,2011,76(18):7423-7430.[44]HOU X,LI Z,LI B,et al.An off-on”fluorescein-based colormetric and fluorescent probe for the detection of glutathione and cysteine over homocysteine and its application for cell imaging[J].Sens.Actuators B Chem,2018,260:295-302.[45]YU F,LI P,WANG B,et al.Reversible near -infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo [J].J.Am.Chem.Soc,2013,135(20):7674-7680.。

相关文档
最新文档