新课标高三第一轮复习单元讲座第讲空间中的平行关系

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标高三第一轮复习单元讲座第讲空间中的

平行关系

TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

普通高中课程标准实验教科书—数学[人教版]

高三新数学第一轮复习教案(讲座10)—空间中的平行关系

一.课标要求:

1.平面的基本性质与推论

借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理:

◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内;

◆公理2:过不在一条直线上的三点,有且只有一个平面;

◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的

公共直线;

◆公理4:平行于同一条直线的两条直线平行;

◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。

2.空间中的平行关系

以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。通过直观感知、操作确认,归纳出以下判定定理:

◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;

◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;

通过直观感知、操作确认,归纳出以下性质定理,并加以证明:

◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行;

◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行;

◆垂直于同一个平面的两条直线平行

能运用已获得的结论证明一些空间位置关系的简单命题。

二.命题走向

立体几何在高考中占据重要的地位,通过近几年的高考情况分析,考察的重点及难点稳定,高考始终把直线与直线、直线与平面、平面与平面平行的性质和判定作为考察重点。在难度上也始终以中等偏难为主,在新课标教材中将立体几何要求进行了降低,重点在对图形及几何体的认识上,实现平面到空间的转化,示知识深化和拓展的重点,因而在这部分知识点上命题,将是重中之重。

预测2007年高考将以多面体为载体直接考察线面位置关系:

(1)考题将会出现一个选择题、一个填空题和一个解答题;

(2)在考题上的特点为:热点问题为平面的基本性质,考察线线、线面和面面关系的论证,此类题目将以客观题和解答题的第一步为主。

三.要点精讲

1.平面概述

(1)平面的两个特征:①无限延展②平的(没有厚度)

(2)平面的画法:通常画平行四边形来表示平面

(3)平面的表示:用一个小写的希腊字母α、β、γ等表示,如平面α、平面β;用表示平行四边形的两个相对顶点的字母表示,如平面AC。

2.三公理三推论:

公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内:

A l∈,

B l∈,Aα

∈⇒α

∈,Bα

l

公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

公理3:经过不在同一直线上的三点,有且只有一个平面。 推论一:经过一条直线和这条直线外的一点,有且只有一个平面。 推论二:经过两条相交直线,有且只有一个平面。 推论三:经过两条平行直线,有且只有一个平面。 3.空间直线:

(1)空间两条直线的位置关系: 相交直线——有且仅有一个公共点;

平行直线——在同一平面内,没有公共点;

异面直线——不同在任何一个平面内,没有公共点。相交直线和平行直线也称为共面直线。

异面直线的画法常用的有下列三种:

(2)平行直线:

在平面几何中,平行于同一条直线的两条直线互相平行,这个结论在空间也是成立的。即公理4:平行于同一条直线的两条直线互相平行。

(3)异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线。推理模式:,,,A B a B a ααα∉∈⊂∉⇒AB 与a 是异面直线。

4.直线和平面的位置关系

(1)直线在平面内(无数个公共点);

(2)直线和平面相交(有且只有一个公共点);

(3)直线和平面平行(没有公共点)——用两分法进行两次分类。

它们的图形分别可表示为如下,符号分别可表示为a α⊂,a A α=,//a α。 线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。推理模式:,,////a b a b a ααα⊄⊂⇒.

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。推理模式://,,//a a b a b αβα

β⊂=⇒.

5.两个平面的位置关系有两种:两平面相交(有一条公共直线)、两平面平行(没有公共点)

(1)两个平面平行的判定定理:如果一个平面内有两条相交直线都

平行于一个平面,那么这两个平面平行。

定理的模式://////a b a b P a b ββαβαα⊂⎫

⊂⎪⎪

=⇒⎬⎪

⎪⎪⎭

推论:如果一个平面内有两条相交直

线分别平行于

另一个平面内的两条相交直线,那么这两个平面互相平行。

推论模式:,,,,,,//,////a b P a b a b P a b a a b b ααββαβ'''''''=⊂⊂=⊂⊂⇒ (2)两个平面平行的性质(1)如果两个平面平行,那么其中一个平面内的直线平行于另一个平面;(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 四.典例解析

题型1:共线、共点和共面问题

例1.(1)如图所示,平面ABD 平面BCD =直线BD ,M 、N 、P 、Q 分别为线段AB 、BC 、CD 、DA 上的点,四边形MNPQ 是以PN 、QM 为腰的梯形。

试证明三直线BD 、MQ 、NP 共点。

证明:∵ 四边形MNPQ 是梯形,且MQ 、NP 是腰, ∴直线MQ 、NP 必相交于某一点O 。 ∵ O ∈直线MQ ;直线MQ ⊂平面ABD , ∴ O ∈平面ABD 。

相关文档
最新文档