第十六章分式题型总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章分式知识点和典型例习题
【知识网络】
【思想方法】
1.转化思想
转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等.2.建模思想
本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义.
3.类比法
本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.
第一讲分式的运算
【知识要点】1.分式的概念以及基本性质;
2.与分式运算有关的运算法则
3.分式的化简求值(通分与约分)
4.幂的运算法则
【主要公式】1.同分母加减法则:()0b c b c
a a a a
±±=≠
2.异分母加减法则:()0,0b d bc da bc da
a c a c ac ac ac
±±=±=≠≠;
3.分式的乘法与除法:b d bd a c ac •=,b c b d bd
a d a c ac
÷=•=
4.同底数幂的加减运算法则:实际是合并同类项
5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n
6.
积的乘方与幂的乘方:(ab)m =
a m
b n , (a m )
n = a mn
7.负指数幂: a -p =
1p
a a 0=1
8.乘法公式与因式分解:平方差与完全平方式
(a+b)(a-b)= a 2- b 2 ;(a ±b)2= a 2±2ab+b 2
(一)、分式定义及有关题型
题型一:考查分式的定义
【例1】下列代数式中:y x y
x y x y x b
a b a y x x -++-+--1
,
,,21,22π,是分式的有: .
题型二:考查分式有意义的条件
【例2】当x 有何值时,下列分式有意义 (1)
44+-x x (2)232+x x (3)122-x (4)3||6--x x
(5)x
x 11-
(1)
3
||61
-x
(2)
1
)1(32++-x x (3)
x
111+
题型三:考查分式的值为0的条件
【例3】当x 取何值时,下列分式的值为0.
(1)3
1
+-x x
(2)
4
2||2
--x x (3)
6
5322
2----x x x x
2.当x 为何值时,下列分式的值为零:
(1)4
|
1|5+--x x
(2)
5
62522+--x x x
题型四:考查分式的值为正、负的条件
【例4】(1)当x 为何值时,分式
x
-84
为正;
(2)当x 为何值时,分式2
)
1(35-+-x x 为负;
(3)当x 为何值时,分式3
2
+-x x 为非负数. 3.解下列不等式 (1)
01
2
||≤+-x x (2)
03
252
>+++x x x
(二)分式的基本性质及有关题型
1.分式的基本性质:M
B M A M B M A B A ÷÷=⨯⨯= 2.分式的变号法则:
b
a
b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数
【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y
x 4
13132
21+- (2)
b
a b
a +-04.003.02.0
不改变分式的值,把下列分式的分子、分母的系数化为整数.
(1)
y
x y
x 5.008.02.003.0+-
(2)b a b
a 10
141534.0-+
题型二:分数的系数变号
【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)y
x y
x --+- (2)b
a a
---
(3)b
a
---
题型三:化简求值题
【例3】已知:
511=+y x ,求
y
xy x y
xy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出y
x 1
1+. 【例4】已知:21=-x x ,求221x
x +的值.