1单纯形法

合集下载

单纯形法的基本原理

单纯形法的基本原理

单纯形法的基本原理单纯形法是一种用于线性规划问题求解的数学方法,它的基本原理是通过不断地在可行解空间中移动,寻找到最优解的过程。

在实际应用中,单纯形法被广泛地应用于生产调度、资源分配、运输优化等领域,它的高效性和可靠性使得它成为了解决复杂实际问题的重要工具。

单纯形法的基本原理可以简单地概括为以下几个步骤:1. 初始可行解的构造。

在单纯形法中,首先需要构造一个初始的可行解。

这个可行解需要满足线性规划问题的约束条件,并且需要在可行解空间内。

构造初始可行解的方法有多种,常见的方法包括人工构造、单纯形表法等。

2. 迭代移动。

一旦得到了初始可行解,单纯形法就开始了迭代移动的过程。

在每一步迭代中,单纯形法会根据当前的可行解,寻找一个移动方向,并且沿着这个方向进行移动。

移动的目的是寻找到更优的解,直到找到最优解为止。

3. 优化目标的改善。

在每一步迭代中,单纯形法都会尝试改善优化目标的值。

优化目标通常是线性规划问题的目标函数值,单纯形法的目标是找到一个可行解,使得优化目标的值最小或最大。

4. 终止条件的判断。

单纯形法在迭代移动的过程中,需要不断地判断是否满足终止条件。

终止条件通常包括目标函数值不再改善、可行解空间已经被完全搜索等情况。

通过以上几个基本步骤,单纯形法可以在有限的迭代次数内找到线性规划问题的最优解。

它的高效性和可靠性使得它成为了解决实际问题的重要工具。

在实际应用中,单纯形法还可以通过一些改进的方法来提高求解效率,例如对初始可行解的选择、对移动方向的选择、对终止条件的判断等方面进行优化。

这些改进方法可以使得单纯形法更加适用于复杂的实际问题。

总的来说,单纯形法是一种强大的数学方法,它具有较高的求解效率和可靠性,可以被广泛地应用于各种领域的实际问题求解中。

通过深入理解单纯形法的基本原理,我们可以更好地应用它来解决复杂的实际问题,为各种决策问题提供科学的决策支持。

单纯形法求解过程

单纯形法求解过程

单纯形法求解过程单纯形法是一种经典的线性规划求解方法,它是由乔治·达竞士等人在1947年提出的。

该方法的基本思想是,通过在单纯形空间内不断移动顶点的位置来寻找最优解。

单纯形法是目前广泛应用的线性规划求解方法之一,它求解线性规划问题可大大地简化计算过程。

单纯形法的求解过程包括以下几个步骤:1. 将线性规划问题转化为标准形式线性规划问题的标准形式为:$ \max_{x} \ \ c^T x $$s.t. \ Ax=b$$x\geq 0$其中,$x$是要求解的向量;$b$是一个常数向量;$A$是一个$m\times n$的矩阵;$c$是一个常数向量。

2. 初始化单纯形表因为单纯形法是通过移动顶点来寻找最优解的方法,因此需要初始化单纯形表。

单纯形表是将原始的约束条件表示为不等式形式时形成的。

例如,对于一个带有3个变量的线性规划问题,其单纯形表的形式如下:CB | X1 | X2 | X3 | X4 | RHS----|-----|-----|-----|-----|----0 | a11| a12| a13| 0 | b10 | a21| a22| a23| 0 | b20 | a31| a32| a33| 0 | b31 | z1 | z2 | z3 | 0 | 0其中,CB代表成本系数,X1、X2、X3、X4分别代表变量。

a11、a12、a13等代表矩阵A中的元素,b1、b2、b3代表矩阵b中的元素。

3. 选择进入变量和离开变量在单纯形表中,规定最后一列为等式右边的常数(RHS),即b。

在单纯形法的求解过程中,首先需要选择一个“进入变量”,即在单纯形表的第一行中,寻找一个系数为正的变量,使得将其加入目标函数后,目标函数值可以上升。

这里以X1为例,X1为进入变量。

接着,需要选择一个“离开变量”,即在单纯形表中,寻找一个使得添加X1变量后,约束条件不改变且取得约束条件中系数最小的一个变量离开。

单纯形法原理 单纯形表

 单纯形法原理 单纯形表

单纯形法原理单纯形表单纯形法原理与单纯形表的详实解析在数学领域中,特别是在线性规划问题的研究中,单纯形法是一种十分重要的求解方法。

它是由美国数学家乔治·丹齐格在1947年提出的一种迭代算法,用于解决具有多个变量和约束条件的优化问题。

本文将围绕单纯形法的原理和单纯形表这两个核心概念进行详细的解析。

一、单纯形法原理单纯形法的基本思想是通过一系列可行解逐步逼近目标函数的最大值或最小值。

这些可行解形成一个点集,称为单纯形。

每次迭代过程中,算法都会选择一个新的顶点作为下一个单纯形的顶点,这个新的顶点应该使目标函数有所改进。

重复这一过程,直到达到最优解或者满足停止准则为止。

单纯形法的步骤如下:1. 构造初始单纯形:首先,需要找到一个包含至少两个可行解的多边形,这就是初始单纯形。

2. 判断是否达到最优解:如果当前顶点的目标函数值已经是全局最优解,那么算法结束。

3. 选择换入变量:如果当前顶点不是最优解,那么需要选择一个非基变量来替换基变量。

这个被选中的非基变量应该是能够使目标函数最大化的变量。

4. 计算换出变量:确定了换入变量后,需要计算相应的换出变量。

这可以通过解一个线性方程组来实现。

5. 更新单纯形:用新选出的变量替换旧的变量,得到新的单纯形。

6. 回到第二步,继续判断是否达到最优解。

二、单纯形表单纯形表是单纯形法的重要工具,它记录了单纯形法每一步的详细信息。

每个列代表一个基变量,而每个行则代表一个约束条件。

表中还包括目标函数的系数、常数项以及松弛变量和剩余变量的系数。

在单纯形表中,每一行代表一个约束条件,包括它的系数、常数项以及松弛变量和剩余变量的系数。

每一列则代表一个基变量,包括它的系数和该变量对应的值。

在每一步迭代过程中,单纯形表都会被更新以反映当前的解状态。

通过观察单纯形表的变化,我们可以清楚地看到迭代过程是如何进行的,以及如何通过调整基变量来改进目标函数的值。

总结来说,单纯形法是一种有效的解决线性规划问题的方法,其核心在于构造并不断更新单纯形表,通过迭代寻找最优解。

运筹学单纯形法

运筹学单纯形法
总结:①在迭代过程中要保持常数列向量非负,这能确保基 可行解旳非负性。最小比值能做到这一点。 ②主元素不能为0。因为行旳初等变换不能把0变成1。 ③主元素不能为负数。因为用行旳初等变换把负数变成1会 把常数列中相应旳常数变成负数。
16
三、其他解旳情况 1、无穷多种解 例2 解LP问题:
min Z x1 2 x2 x3 0 x4 0 x5
xx51
1 2c 5 3c
其中c是满足非负性旳任意常数。
21
再由
x1,
x5
旳非负性,知:
x1 x2
1 2c c
0 0
x5 5 3c 0
解出 0 c 5 3
最优解为:
(2c 1, c,0,0,5 3c)T (其中0 c 5 )
3
最优值为:max S 1.
22
2、无最优解旳两种情况:
相应地,将 X 0代入目的函数得 Z ( X 0 ) 0
从数学角度看,若让非基变量 x1, x2 取值从零增长,
6
min Z 2x1 x2 0x3 0x4 0x5
相应旳目旳函数值Z也将随之降低。所以有可能找到一种 新旳基本可行解,使其目旳函数值有所改善。即进行基变
换,换一种与它相邻旳基。再注意到 x1 前旳系数-2比 x2
x3
6 x1 x1
2x2 x2
x4 x5
xi 0
i 1,,5
15 24 5
目前可行基{ x3, x4 , x5 }所相应旳基本可行解
X 0 (0,0,15,24,5)T
(相应可行域旳 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
意味着该厂不安排生产,所以没有利润。
2

单纯形法计算步骤

单纯形法计算步骤

单纯形法计算步骤引言单纯形法是一种常用的数学优化方法,主要用于求解线性规划问题。

它的基本思想是通过不断地在可行解集合内移动,逐步靠近最优解,直到找到最优解。

本文将介绍单纯形法的基本步骤,以帮助读者了解如何使用该方法解决线性规划问题。

步骤一:建立线性规划模型在使用单纯形法之前,首先需要建立线性规划模型。

线性规划模型由决策变量、目标函数和约束条件组成。

决策变量是需要在问题中决策的变量,目标函数是需要最大化或最小化的目标,约束条件是限制决策变量取值范围的条件。

步骤二:将线性规划模型转化为标准形式单纯形法只适用于标准形式的线性规划模型。

标准形式要求目标函数为最大化,并且所有的约束条件都是等式形式。

如果初始线性规划模型不符合标准形式,我们可以通过适当的代数操作将其转化为标准形式。

步骤三:构造初始单纯形表初始单纯形表是单纯形法求解线性规划问题的起点。

它由决策变量、松弛变量、人工变量、目标函数系数和约束条件组成。

初始单纯形表的构造方法如下: 1. 将决策变量的系数及其对应的松弛变量、人工变量放在单纯形表的第一行。

2. 将目标函数的系数放在单纯形表的第一列。

3. 将约束条件的系数及其对应的松弛变量、人工变量放在单纯形表的其他行。

步骤四:确定基变量和非基变量基变量是单纯形表中拥有非零系数的变量,非基变量是单纯形表中拥有零系数的变量。

基变量和非基变量的确定方法如下: 1. 将目标函数的系数列中不为零的变量作为基变量。

2. 将约束条件中非零系数列中对应的变量作为基变量。

3. 剩余的变量作为非基变量。

步骤五:计算单纯形表中的系数根据基变量和非基变量的定义,我们可以计算单纯形表中的系数。

计算方法如下: 1. 将基变量的系数列除以对应的基变量系数。

2. 将非基变量的系数列减去对应的基变量系数列乘以非基变量所在行和基变量所在行之间的系数。

步骤六:检查是否达到最优解在每次迭代过程中,都需要检查是否达到最优解。

如果单纯形表中目标函数系数列的所有值都是非负的,表示已经达到最优解;否则,需要进行下一次迭代。

运筹学单纯形法各个步骤详解

运筹学单纯形法各个步骤详解

运筹学单纯形法各个步骤详解1. 引言大家好,今天咱们来聊聊一个听起来有点高深莫测,但其实特别有意思的东西——运筹学的单纯形法。

别看它名字复杂,其实它就是解决线性规划问题的绝招,像一把钥匙,打开了优化的宝藏。

想象一下,如果你有一大堆资源,要把它们分配到不同的地方,听起来就像玩拼图一样。

好了,废话不多说,咱们直接进入正题!2. 单纯形法的基本概念2.1 线性规划的起源首先,线性规划是啥?简单来说,它就是在一系列限制条件下,想要最大化或最小化某个目标函数。

这听起来像是在做一场抉择,你得在各种选择中找到最优解。

有点像在超市里,看到一堆零食,犹豫不决,最后只能选那包最爱吃的,既美味又划算。

2.2 单纯形法的基本思路而单纯形法就是解决这个问题的武器。

它的核心思想很简单,跟追求完美一样,咱们要一步步地朝着最优解迈进。

想象你在爬山,每一步都在找那个最容易走的路,直到你站在山顶,俯瞰整个美景,啊,真是太棒了!3. 单纯形法的步骤3.1 初始化那么,怎么开始呢?首先,咱们得把问题转化为标准形式。

这就像把一个繁杂的图案简化成几何图形,让它看起来更清晰。

要把不等式转换为等式,添加松弛变量,这样就可以把问题整理得干干净净。

3.2 构建初始单纯形表接下来,咱们构建初始单纯形表。

这个表就像一本菜单,上面列出了所有可能的选择和它们的成本。

每个变量都有自己的“价格”,而咱们的目标就是尽量少花钱,最大化收益。

想想你逛街时,总是想着要花最少的钱买到最好的东西,嘿,这就是单纯形法的精神!3.3 寻找基变量和入基变量然后,咱们得找出“基变量”和“入基变量”。

基变量就像在舞台上表演的演员,而入基变量就是准备加入的“新人”。

在这个过程中,咱们得判断哪个新人能让整个表演更精彩。

如果找对了,舞台瞬间就能变得熠熠生辉,若是找错了,哎呀,那可就尴尬了。

3.4 更新单纯形表一旦找到了合适的入基变量,咱们就得更新单纯形表。

这一步就像在调味,添加新的元素,让整体味道更加丰富。

最优化方法Lecture3_单纯形法1

最优化方法Lecture3_单纯形法1

cB 0 0 4
xB x3 x4 x1 T B1b 7 6 3T , xN x2 x5 T 0
f1 cB B1b 12, w cB B1 0 0 4
z2 c2 wP2 c2 4 z5 c5 wP5 c5 4 最大判别数是z2 c2, x2是进基变量。计算
xk
min
bi yik
|
yik
0
br yrk
0
则得新解 x x1, , xr1, 0, xr1, , xm , 0, , xk , 0, , 0T

f x f
x0
zk
ck
br yrk
f
x0
.
旧基为 P1, , Pr , , Pm 新基为 P1, , Pk , , Pm
xr 为离基变量 xk 为进基变量。
2 s.t.
BxB NxN b
xB B1b B1NxN
xB , xN 0
min
3 s.t.
f x cB B1b B1NxN cN xN
xB B1NxN B1b
1 等价于
xB , xN 0
min f x
4
s.t.
0 f x Im xB
B1NxN B1b
f x 0xB cB B1N cN xN cB B1b
y2 B1P2 1 5 1T , 而b B1b 7 6 3T
br yr1
min
b1 y12
,
b2 y22
min
7
1
,
6 5
6 5
b2 y22
x4为离基变量,用P2代替P4得到新基。
1 2 1 0 0
A P1
P2
P3
P4

单纯形法

单纯形法

四、单纯形法的实现——单纯形表
例1:煤电油例 Max Z=7 x1 +12x2 9 x1 +4x2≤360 化为标准型 s.t. 4x1 +5x2 ≤200 3 x1 +10x2 ≤300 x1 , x2≥0 s.t. Max Z=7 x1 +12x2 9 x1 +4x2 +x3 4x1 +5x2 3 x1 +10x2 x1 ,…,x5≥0 +x4 =360 = 200

“≥”型约束,减松弛变量;
练习1.3 请将例1.1的约束化为标准型
Maxz = 7 x1 + 12 x 2 ⎧9 x1 + 4 x 2 ≤ 360 ⎪4 x1 + 5 x 2 ≤ 200 s.t.⎨ 3x1 + 10 x 2 ≤ 300 ⎪x , x ≥ 0 ⎩ 1 2
则约束化为
= 360 ⎧9 x1 + 4 x 2 + x3 ⎪4 x + 5 x 2 + x4 = 200 s.t.⎨ 1 3 x1 + 10 x 2 + x5 = 300 ⎪x , x , x , x , x ≥ 0 ⎩ 1 2 3 4 5
例4 下面为某线性规划的约束
=1 ⎧ x1 + 2 x2 + x3 ⎪ + x4 = 3 ⎨2 x1 − x2 ⎪ x1 , , x4 ≥ 0 ⎩ 请例举出其基矩阵和相应的基向量、基变量。
解:
本例中, A = ⎡1 2 1 0⎤,A中的2阶可逆子阵有 ⎢ 2 − 1 0 1⎥ ⎦ ⎣
问题:本例的A中一共有几个基?—— 6个。
易见,增加的松弛变量的系数恰构成一个单位阵I。
一般地,记松弛变量的向量为 X s,则

单纯形法求解过程

单纯形法求解过程

单纯形法求解过程单纯形法是一种用于求解线性规划问题的迭代算法。

它是由美国数学家George Dantzig在1947年提出的。

单纯形法的目标是通过不断地沿着一些方向逼近最优解,最终找到使目标函数取得最大(或最小)值的最优解。

单纯形法的求解过程可以分为以下几个步骤:1.标准化问题:将线性规划问题转化为标准化形式。

标准化的目的是将原问题转化为一个等价问题,使得约束条件全部为等式,且目标函数的系数都为非负数。

2.设置初始解:选择一个初始可行解作为起始点。

起始点可以通过代入法求解出来,或者通过其他启发式算法得到。

初始可行解需要满足所有约束条件,即满足等式以及非负性约束。

3.检验最优性:计算当前解的目标函数值,并检验这个值是否是最优解。

如果当前解是最优解,算法终止;否则,进入下一步。

4.选择进入变量:从目标函数的系数中选择一个可以增大(最大化问题)或减小(最小化问题)目标函数值的变量作为进入变量。

选择进入变量的策略可以有多种,例如最大增益法或者随机选择法。

5.计算离基变量:选择一个出基变量并将其移出基变量集合。

离基变量的选择通常采用最小比率法,即选择使得约束条件最紧张的变量。

6.更新解:通过求解一个新的线性方程组来计算新的解,更新基变量集合和非基变量集合。

由于每次只有一个变量进基,一个变量出基,将保持可行解的性质。

7.转到步骤3:重复步骤3-6,直到找到最优解。

单纯形法的关键在于选择进入变量和离基变量,以及求解线性方程组。

进入变量的选择决定了算法在解空间中的方向,而离基变量的选择决定了算法沿着哪个方向逼近最优解。

在实际应用中,单纯形法往往需要进行大量的迭代计算,因此效率可能不是很高。

为了提高效率,可以采用一些改进的单纯形法,例如双线性法、内点法等。

总结起来,单纯形法是一种基于迭代的算法,通过每次选择一个进入变量和一个离基变量来逐步逼近最优解。

虽然它的计算复杂度较高,但是在实践中仍然是一种很受欢迎的求解线性规划问题的方法。

单纯形法原理

单纯形法原理

单纯形法原理
单纯形法是线性规划中常用的一种方法,用于求解极值问题。

它的基本思想是通过不断迭代的方式,逐渐接近最优解。

单纯形法的基本步骤如下:
1. 将线性规划问题转化为标准型。

标准型的约束条件为≤,目标函数为最大化,且所有变量的取值范围为非负数。

2. 利用人为变量引入的方法,将标准型问题转化为初始单纯形表。

3. 选择合适的初始基变量,并计算出对应的基变量解。

4. 计算单纯形表中的评价函数。

如果所有评价函数中的系数都为非负数,则当前基变量解为最优解,过程结束。

否则,继续进行下一步。

5. 选择进入变量和离开变量。

进入变量是指取值为负的评价函数系数对应的变量,离开变量是指进入变量在当前基变量解中最先达到0的变量。

6. 迭代计算,通过变换基变量,逐渐接近最优解。

具体的计算方式为将进入变量对应列调整为单位向量,同时更新初始单纯形表中其它列的数值。

7. 重复步骤4至步骤6,直至得到最优解为止。

值得注意的是,单纯形法的执行依赖于初始基变量的选择,不同的初始基变量可能会得到不同的最优解。

因此,在实际应用中,需要通过灵活选择初始基变量来提高求解效果。

第4章 单纯形法

第4章 单纯形法
为0,求出了一组基本可行解。试想如果x1或者x2
不为0,是否会带来目标函数值变大? 需要最优性
检验,即如果x1或x2不论取其他任何非负值都不会
带来目标函数值增大,那该基本可行解就是最优解。
管理运筹学
18
§1 单纯形法的基本思路和原理
所谓最优性检验就是判断已求得的基本可行解是否是最优解。 (1) 最优性检验的依据——检验数σ j 一般来说目标函数中既包括基变量,又包括非基变量。现在我们要求 只用非基变量来表示目标函数,或者说目标函数中基变量的系数都为零了。 此时目标函数中所有变量的系数即为各变量的检验数,把变量xi的检验数 记为σ i。显然所有基变量的检验数必为零。在本例题中目标 函数为3x1+5x2。由于初始可行解中x1,x2为非基变量,所以此目标函 数已经用非基变量表示了,不需要再代换出基变量了。这样我们可知 σ 1=3,σ 2=5,σ 3=0,σ 4=0,σ 5=0。 检验数:用非基变量来代换基变量,使得目标函数只用非基变量来表示。
• Z=3x1+5x2 • 非基变量的检验数都大于0,说明增加x1或x2都可以使目标
函数值变大。故非最优解。 • 3、基变换。 通过检验,我们知道这个初始基本可行解不是最优解。下面
介绍如何进行基变换找到一个新的可行基,具体的做法是从
可行基中换一个列向量,得到一个新的可行基,使得求解得
到的新的基本可行解,其目标函数值更优。为了换基就要确
§1 单纯形法的基本思路和原理
由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个
基,令这个基的非基变量(n-m个)为零,再求解这个m元线性方程组就可得 到唯一的解了,这个解我们称之为线性规划的基本解(基解)。
在此例中我们不妨找到了

运筹学-单纯形法1课件

运筹学-单纯形法1课件

例2:
cj CB XB 0 x3 0 x4
σj 0 X3 1 x1
σj
maxZ x 1 x 2
s.t.
2x 1 x1
x2 x2
100 50
x1,x2 0
1
1
00
bi x1 x2 x3 x4
100 -2 1
1
0
50 [ 1 ] -1 0 1
11
0
0
200 0 -1 1 2
50 1 -1 0 1
唯一最优解;
• a4<0,a5<0, a6≥0
无穷多最优解;
• a6≥0,a4≤0, a5≤0, a4=0或a5=0
无界;
• a6≥0,a5>0,a2≤0, a3≤0
无可行解;
• a4≤0,a5≤0, x4或x2为人工变量, a6≥0 ;
非最优,继续换基: X3换入,x2换出
• x1为人工变量, a6>0 • a4>0,a4>a5;a6/a1>2→a1>0
0 -M -M
x5 x6 x7 θ
0 0 04 -1 1 0 1
0 0 13
-M 0 0 x2入, x6出
1 -1 0 1 -1 1 0 -
3 -3 1 1
3M -1/2
0 1/2
-4M 0 1/2 -1/2 0 1/3 -1/2 1/6
x1入, x7出 9 3/2
3/2 -M-3/2 -M+1/2 x3入, x1出
28.09.2024
11
练习: 列出初始单纯形表,并求解第2小题 的最优解
P55,2.2(1) 2.
28.09.2024
12
单纯形表

单纯形法

单纯形法

矩阵A表示为: A = ( p1 ,p2 ,…,pn ) , 其中 pj = ( a1j ,a2j ,…,amj )T。若找 到一个可行基,无防设 B = ( p1 ,p2 ,…,pm ) ,则m个基变 量为 x1 , x2 , …, xm,n-m个非基变量 为 xm+1 ,xm+2 ,…,xn 。通过运算, 所有的基变量都可以用非基变量来表 示:
f(x
6 )=3
二、单纯形法的基本思路 要找到线性规划问题的最优解,只要在基本 可行解中寻找就可以了。虽然基本可行解的数 目是有限个(不超过Cnm个),但当m,n较大时, 要用“穷举法”求出所有基本可行解是行不通 的。利用LP问题基本可行解(极点)的方法来 求解较大规模的问题是不可行的。 单纯形法的基本思路是:从线性规划问题的 一个基本可行解开始,沿边界转换到另一个使 目标函数值增大的基本可行解。反复迭代,直 到目标函数值达到最大时,就得到了最优解。



基本解 对于基B,令非基变量为零,求得满足AX=b的解,称 为基B对应的基本解。若得到的基变量的值均非负, 则称为基本可行解,同时称这个基B为可行基。 令非基变量 XN = 0,求得基变量 XB的值称为基本解 即 XB = B1 b XB 是基本解的必要条件为XB 的非零分量个数 m 基本可行解 基本解 XB 的非零分量都 0 时,称为基本可行解, 否则为基本非可行解 基本可行解的非零分量个数 < m 时,称为退化解
2.线性规划的基、基本解与基本可行解
基:设B是A矩阵中的一个非奇异(可逆)的 m×m子矩阵,则称B为线性规划的一个基。 与B中的这些列向量对应的变量称为基变量, m Cm n 个基。 其余变量称为非基变量。最多有
在标准型中,技术系数矩阵有 n×m 列,即 A = ( P1, P2 , … , Pn×m ) A中线性独立的 m 列,构成该标准型的一个基, 即 B = ( P1 , P2 , … , Pm ), | B | 0 P1 , P2 , … , Pm 称为基向量 与基向量对应的变量称为基变量,记为 XB = ( x1 , x2 , … , xm )T,其余的变量称为非基变 量,记为 XN = ( xm+1 , xm+2 , … , xm+n ) T , 故有 X = XB + XN m Cm n 个基 最多有

单纯形法

单纯形法

目录第一章单纯形法的提出……………………………………………………………1.1 单纯形法提出背景……………………………………………………………第二章单纯形法的一般原理………………………………………………………2.1 单纯形法的基本思路…………………………………………………………2.2 确定初始基本可行解…………………………………………………………2.3 最优性检验……………………………………………………………………2.4 基变换…………………………………………………………………………2.5 解的判别定理…………………………………………………………………2.6 单纯形法求解线性规划问题的程序框图……………………………………第三章表格单纯形法………………………………………………………………3.1单纯型表求解…………………………………………………………………3.2 用单纯形法求解线性规划问题的举例………………………………………第四章人工变量及其处理方法……………………………………………………4.1大M法…………………………………………………………………………4.2两阶段法………………………………………………………………………4.3无最优解和无穷多最优解……………………………………………………4.4退化与循环……………………………………………………………………第五章单纯形法的矩阵表示………………………………………………………总结……………………………………………………………………………………参考文献………………………………………………………………………………第一章 单纯形法的提出1.1 单纯形法的提出背景单纯形法是1947年由George Bernard Dantzing(1914-2005)创建的,单纯形法的创建标志着线性规划问题的诞生。

线性规划问题是研究在线性约束条件下,求线性函数的极值问题。

然而,对这类极值问题,经典的极值理论是无能为力的,只有单纯形法才能有效解决这类极值问题的求解。

单纯形法的原理

单纯形法的原理

单纯形法是一种线性规划的求解方法,其基本思想是在线性规划问题的可行域内,通过不断迭代,逐步找到最优解。

单纯形法的原理可以概括为以下几个步骤:1. 确定线性规划问题的可行域:对于一个线性规划问题,首先需要确定其可行域,即所有满足约束条件的解的集合。

可行域通常是一个凸多边形,也可以表示为一个凸锥。

2. 确定初始基:在单纯形法中,我们需要选取一个初始基,即一个初始的可行解,来开始迭代过程。

初始基可以是一个非基变量为零的点,也可以是通过某种启发式算法得到的一个初始可行解。

3. 判断最优解:在得到初始基之后,我们需要判断该基是否是最优解。

如果该基对应的目标函数值已经满足要求,则该基是最优解。

否则,我们需要找到一个非基变量,其对应的系数在约束条件下最小,来继续迭代。

4. 确定换入变量:在找到一个非基变量后,我们需要确定一个换入变量,即需要被替换掉的那个基变量。

通常情况下,我们选择当前基中对应的系数最小的非基变量作为换入变量。

5. 进行迭代:在确定了换入变量之后,我们需要进行迭代,将当前基中的某个基变量替换为非基变量,得到一个新的基。

具体来说,我们可以使用高斯消元法来计算新的基变量的系数,并更新当前基的矩阵表示。

6. 判断收敛:在完成一次迭代后,我们需要判断当前基是否已经收敛到最优解。

如果当前基已经满足精度要求,或者达到了一定的迭代次数上限,我们可以认为已经找到了最优解,停止迭代。

否则,我们需要回到步骤3,继续迭代过程。

单纯形法的原理比较简单,其核心思想是通过不断迭代,逐步逼近最优解。

该方法具有良好的数值稳定性和广泛的应用范围,是求解线性规划问题的一种常用方法之一。

需要注意的是,在实际应用中,单纯形法可能会面临一些问题,例如初始基的选择、系数矩阵的奇异性等问题,需要进行一定的处理和优化。

除了单纯形法外,还有许多其他的线性规划求解方法,例如内点法、外点法、椭球算法等。

这些方法各有优缺点和适用范围,可以根据具体问题的特点进行选择和组合使用。

单纯形法基本原理及实例演示

单纯形法基本原理及实例演示
②找出或构造一个m阶单位矩阵作为初始可行基,建立初始单纯形表。
③计算各非基变量xj的检验数j=Cj-CBPj ′,若所有j≤0,则问题已得
到最优解,停止计算,否则转入下步。
④在大于0的检验数中,若某个k所对应的系数列向量Pk≤0,则此问
题是无界解,停止计算,否则转入下步。
⑤根据max{j|j>0}=k原则,确定xk为换入变量(进基变量),再按 规则计算:=min{bi/aik| aik>0}=bl/ aik 确定xBl为换出变量。建 立新的单纯形表,此时基变量中xk取代了xBl的位置。
⑥以aik为主元素进行迭代,把xk所对应的列向量变为单位列向量,即 aik变为1,同列中其它元素为0,转第③ 步。
线性规划的例子
max z 4x1 3x2 2x1 2x2 1600 5x1 2.5x2 2500 x1 400 x1, x2 0
线性规划--标准化
● 引入变量:s1,s2,s3
检验系数区
Z=CBB-1b
初始单纯形表
迭代 基变 次数 量
CB
x1
x2
s1
s2
s3
50 100 0 0 0
比值
b bi ai 2
1 Zj=CBNj j cj zj
Z=CBB-1b
初始单纯形表

迭代 次数

CB
x1
X2
s1
s2 S3

50 100 0 0 0
比值
b bi ai 2
1 1 1 0 0 300
C向量
max z 50 100 0 0
CB
CN
x1
x2
0•

1 1 1
1 0 0
0 1 0

单纯形法

单纯形法

z z0 j x j
j m 1
n(1.2.21)称 j ( j m 1 ,, n ) 为检验数。
定理1.2.1 设(1.2.17)和(1.2.21)是最大
化线性规划问题关于当前基本可行解x*的两个典式。
若关于非基变量的所有检验数σ j≤0成立,则当前
基本可行解x*就是最优解。 将σ j≤0称为最大化问题的最优性准则。显然, 对于最小化问题最优性准则应是σ j≥0。
30x1 + x3 = 160 - 20x2 5x1 = 15 - x2 - x4 (1.2.6) x1 + x5 = 4 进一步分析,用消元法将(1.2.6)中x1的系数列向量 (30,5,1)T 化成(1.2.3)中x4的系数矩阵(0,1,0)T
的形式。得到:
x3 = 70 - 14x2 + 6x4 x1 = 3 - 1/5x2 - 1/5x4
(b'1, b'2, … , b'm ,0 , …, 0)T是当前基本可行解。若有一个非
基变量xm+t的检验数σ
m+t>0,且xm+t对应的系数列向量
P'm+t=(a'1,m+t,a'2,m+t,„,a'm,m+t)中,所有分量a'i,m+t≤0,则该 线性规划问题具有无界解(或称无最优解)。
1.2.2 单纯形表
x2= 5 - 1/14x3 + 3/7x4
x1 = 2 + 1/70x3 - 2/7x4
(1.2.11)
x5 = 2 - 1/70x3+ 2/7x4
将(1.2.11)代入目标函数式,得到用非基变 量x 3

线性规划单纯形法

线性规划单纯形法

线性规划单纯形法线性规划是一种优化问题求解方法,它通过建立数学模型,来寻找使目标函数达到最优的决策变量取值。

线性规划的主要特点是目标函数和约束条件都是线性的。

单纯形法是线性规划中最常用的求解方法之一,它是由美国数学家Dantzig在1947年提出的。

单纯形法通过迭代计算的方式,逐步优化目标函数的值,直到找到最优解为止。

单纯形法的步骤如下:1. 建立线性规划模型:确定决策变量、目标函数和约束条件,并确定它们的线性关系。

2. 初始可行解:选择一个初始可行解,使得所有的约束条件都得到满足。

一般来说,可以通过将约束条件全部转化为等式约束,从而求解出一个初始可行解。

3. 判断最优解:计算当前可行解对应的目标函数值,判断是否是最优解。

如果是最优解,则终止算法;如果不是最优解,则进入下一步。

4. 寻找进入变量:选择一个进入变量,即目标函数可以通过增加该变量的值而增大。

5. 寻找离开变量:选择一个离开变量,即通过增加进入变量来保持其他约束条件满足的同时,尽可能减小目标函数的值。

6. 更新可行解:根据进入变量和离开变量的取值更新可行解,并转化为下一个迭代的初始可行解。

7. 重复以上步骤,直到找到最优解为止。

单纯形法的优势在于它可以在有限的迭代次数内找到最优解。

然而,单纯形法的缺点也是显著的,它在处理大规模问题时计算复杂度很高,可能需要大量的计算时间。

总结来说,线性规划单纯形法是一种求解线性规划问题的有效方法。

通过迭代计算,单纯形法不断改进可行解,最终找到使目标函数达到最优的决策变量取值。

虽然单纯形法在处理大规模问题时存在一定的局限性,但在许多实际问题中仍然得到广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档