(完整版)高等数学(上)重要知识点归纳

合集下载

高等数学(上册)重点总结

高等数学(上册)重点总结

第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。

㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。

2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b)㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:A ynn =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限: ⑴当∞→x时,)(x f 的极限:Ax f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim ⑵当0x x →时,)(x f 的极限:A x f xx =→)(lim 0左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件: 定理:A x f x f A x f x x x x xx ==⇔=+-→→→)(lim )(lim )(lim 000㈡无穷大量和无穷小量 1.无穷大量:+∞=)(lim x f称在该变化过程中)(x f 为无穷大量。

大一上学期高数知识点大全

大一上学期高数知识点大全

大一上学期高数知识点大全1. 代数的基本概念1.1. 实数和复数1.2. 整式与分式1.3. 幂与根1.4. 指数与对数2. 函数与极限2.1. 函数的基本概念2.2. 一次函数与二次函数2.3. 指数函数与对数函数2.4. 极限的定义与性质3. 导数与微分3.1. 导数的定义与性质3.2. 常见函数的导数3.3. 高阶导数3.4. 微分的定义与应用4. 积分与不定积分4.1. 不定积分的定义与性质 4.2. 基本积分公式4.3. 定积分的定义与性质4.4. 牛顿-莱布尼茨公式5. 一元函数的应用5.1. 函数的增减性与最值问题 5.2. 函数与导数的几何意义 5.3. 曲线的图像与拐点5.4. 泰勒展开与近似计算6. 二元函数与多元函数6.1. 二元函数的性质与图像 6.2. 多元函数的极值与最值6.3. 偏导数与全微分6.4. 隐函数与参数方程7. 重积分与曲线积分7.1. 二重积分的定义与计算 7.2. 三重积分的定义与计算 7.3. 曲线积分的定义与计算 7.4. 曲面积分的定义与计算8. 空间解析几何8.1. 点、直线和平面的方程 8.2. 空间曲线与曲面8.3. 空间向量与坐标系8.4. 空间几何运算和投影9. 常微分方程9.1. 基本概念与一阶微分方程9.2. 可降阶的一阶微分方程9.3. 二阶线性常微分方程9.4. 高阶常微分方程的初值问题以上是大一上学期高等数学的主要知识点,通过深入学习这些内容,可以为后续学习及应用数学打下坚实的基础。

希望对你的学习有所帮助!。

《高等数学》(上)期末复习知识要点

《高等数学》(上)期末复习知识要点

1、 四则运算法则与复合运算法则(换元法);2、 初等函数的连续性(代入法): 00lim ()()x x f x f x →=;3、 两个重要极限:1)0sin lim1x x x→=,【特征:0sin lim 1→=】2)1lim(1)x x e x →∞+=(或1lim(1)n n e n→∞+=,10lim(1)x x x e →+=);【特征:1lim(1)e →∞+= 】4、 存在准则:1)夹逼准则,2)单调有界准则;5、 洛必达法则:未定式00或∞∞(其它类型未定式:000,,,1,0∞⋅∞∞−∞∞必须转化); 6、 等价无穷小量替换:只适用于乘除,加减不适用.(当0x →时,21cos 2x x −∼, sin (tan ,arctan ,arcsin ,1,ln(1)),x x x x x e x x −+∼(1)1a x x α+−∼(α为常数)等等)7、 无穷小的性质:有界量与无穷小的乘积、有限个无穷小的和与乘积均为无穷小等 8、 泰勒公式(麦克劳林公式); 9、 微分中值定理;10、 定积分或导数定义*: 1)*【定积分定义】、设()f x 在[,]a b 上可积,则1lim ()()nb a n i b a b af a i f x dx n n→∞=−−+⋅=∑∫; 2)【导数定义】设()f x 在点a 处可导,则0()()()()lim()lim ()x ah f x f a f a h f a f a f a x a h→→−+−′′==−或.1、 函数()f x 在点0x 处连续000lim ()()lim ()lim ()()x x x x x x f x f x f x f x f x +−→→→⇔=⇔==;2、 间断点:1)第一类间断点:可去,跳跃;2)第二类间断点:无穷,振荡等.3、 连续函数的运算性质:连续函数的加减乘除仍为连续函数;连续函数的复合函数仍为连续函数 4、 初等函数的连续性:一切初等函数在其定义区间内处处连续 5、 闭区间上连续函数的性质:1)有界性;2)最大值最小值定理;3)零点定理【闭上连续两端异号零点在开内】;4)介值定理及其推论一、 极限及其求法:二、 函数的连续性《高等数学》(上)期末复习要点1、 定义: 1)0000000()()()()()limlimx x x f x f x f x x f x f x x x x →∆→−+∆−′==−∆; 2)0000000()()()()()lim lim x x x f x f x f x x f x f x x x x +++→∆→−+∆−′==−∆3)0000000()()()()()lim lim x x x f x f x f x x f x f x x x x−−−→∆→−+∆−′==−∆4)000()()()f x f x A f x A +−′′′==⇔= 2、 求导法则:【必须牢记18个基本导数公式】 1) 显函数()y f x =:I、四则运算法则: ()[()()],[()()],[],[()]()u x u x v x u x v x ku x v x ′′′′±⋅; II、复合函数的求导法则:设(),()y f u u g x ==都可导,则[()]y f g x =的导数为(){[()]}()()[()]()u g x d f g x f u g x f g x g x dx =′′′′=⋅=⋅,或dy dy du dx du dx=⋅ III、反函数的求导法则:1dy dx dxdy= IV、对数求导法则(特别适用于幂指函数):()y f x =,ln ||ln |()|y f x == (化简),y y′⇒= 2) 参数方程:()()x x t y y t =⎧⎨=⎩,()dy dydxg t dtdt dx == ,22()()d y dg t dg t dxdt dtdx dx=== , 其它阶同理可求.3) 隐函数:(,)0F x y =(方程两边对x 求导,注意y 为x 的函数)10x y dyF F dx′′⇒⋅+⋅= 3、 高阶导数:234(4)()234(),(),(),,()n n n d y d y d y d y f x f x f x f x dx dx dx dx′′′′′==== 等4、 微分()dy f x dx ′=5、 关系:可微与可导等价;可导必连续,反之未必.三、 导数与微分1、 曲线的切线与法线方程:00()y y k x x −=−,0()k f x ′=切,01/()k f x ′=−法;2、 微分中值定理:首先必须验证定理的条件是否满足,然后根据定理下结论!1)Rolle 定理:()0()f a b ξξ′=<<;2)Lagrange 中值定理:()()()()()f b f a f b a a b ξξ′−=−<<;估计函数值之差3)Cauchy 中值定理:()()()()()()()f b f a f a bg b g a g ξξξ′−=<<′−;4)Taylor 中值定理:()(1)100000()()()()()()!(1)!k n nkn k f x f f x x x x x x x k n ξξ++==−+−+∑在与之间 3、 洛必达法则:00()()limlim ()()f x f x org x g x ∞∞′′,其它型未定式必须转化 4、 泰勒公式:熟悉5个常见带Peano 型余项的Maclaurin 公式5、 函数的单调性【一阶导符号判定】、极值、最值及其函数图形的凹凸性【二阶导符号判定】、拐点和渐近线 6、 不等式的证明:1)单调性;2)中值定理;3)凹凸性;4)最值 7、 方程根的存在性及唯一性:1)零点定理;2)Rolle 定理;3)单调性;4)极值最值等等 8、 恒等式的证明:若在区间I 上()0f x ′≡,则在区间I 上()f x C ≡2π1、 基本性质:线性,对积分区间的可加性,保号性(特别课后Ex.7:用连续性与不恒等于去等号),定积分中值定理【()()()()baf x dx f b a a b ξξ=−<<∫】,定积分的奇偶对称性、周期性.2、()()f x dx F x C =+∫与Newton-Leibniz 公式:()()bba af x dx F x =∫,(()()F x f x ′=)3、 换元法:1)第一类(凑微分法);2)第二类:三角代换,倒代换等4、 分部积分法:1)三指动,幂不动;2)幂动,反对不动;3)凑同类所求便再现.5、 积分上限函数的导数:()()x a d f t dt f x dx =∫, ()()[()]()g x a d f t dt f g x g x dx′=⋅∫, 其中()f x 连续,()g x 可导,a 为常数,积分中的表达式()f t 必须与x 无关6、 有理函数的积分【假分式用除法化为多项式加真分式,真分式因式分解化为部分分式】以及可化为有理函数的积分【①三角函数有理式的积分:万能代换tan()2xt = ()x ππ−<<;②简单根式:线性函数或分式函数的根式讨厌要换之,开方不同最小公倍数】7、 反常积分:无穷限的反常积分或瑕积分,广义Newton-Leibniz 公式,特别注意瑕点在积分区间内部的瑕积分四、 导数的应用sin n xdx 】五、积分:不定积分,定积分,反常积分【必须牢记24个基本积分公式以及I n =∫1、 平面图形的面积:1) 直角坐标,x y :a、 曲边梯形1{(,)|,0()}D x y a x b y f x =≤≤≤≤:()baA f x dx =∫;b、 上、下型{(,)|,()()}D x y a x b g x y f x =≤≤≤≤:[()()]baA f x g x dx =−∫;c、 左、右型{(,)|,()()}D x y c y d g y x f y =≤≤≤≤:[()()]dcA f y g y dy =−∫;d、 设曲边梯形1D 的曲边由参数方程:(),()x x t y y t ==给出,则()()()b aA f x dx y t x t dt βα′==⋅∫∫【先代公式后换元】2) 极坐标,ρθ(极坐标变换cos ,sin x y ρθρθ==): 设曲边扇形{(,)|,0()}D ρθαθβρρθ=≤≤≤≤,则21()2A d βαρθθ=∫ 2、 体积:CaseA、旋转体的体积:1) X-型或上下型{(,)|,0()}D x y a x b y f x =≤≤≤≤:I、绕x 轴 2()bx aV f x dx π=∫;II、绕y 轴 2()(0)by aV xf x dx a π=≥∫2) Y-型或左右型{(,)|,0()}D x y c y d x g y =≤≤≤≤: I、绕y 轴 2()dy cV g y dy π=∫;II、绕x 轴 2()(0)dx cV yg y dy c π=≥∫CaseB、平行截面面积为已知的立体{(,,)|,(,)}x x y z a x b y z D Ω=≤≤∈,若()x AreaD A x =,则()baV A x dx =∫3、 弧长:由不同方程,代不同公式 1)():()()x x t C t y y t αβ=⎧≤≤⎨=⎩,()s βααβ=<∫;2):(),C y f x a x b =≤≤,()as a b =<∫;3):(),C ρρθαθβ=≤≤,()s βαθαβ=<∫六、 定积分的应用【有公式代就代公式,否则用元素法】 (一) 一阶微分方程:(,,)0F x y y ′=,(,)y f x y ′=或(.)(,)0M x y dx N x y dy +=1、 可分离变量:()()f x dx g y dy =,积分之可得通解2、 齐次:()dy ydx xϕ=,令y u x =,可将原方程化为关于,x u 的可分离变量3、 线性:()()dyP x y Q x dx+=,通解为()()[()]P x dx P x dx y e Q x e dx C −∫∫=+∫;或利用常数变易法或利用积分因之法:()()P x dxx e µ∫=4、 伯努利:()()(0,1)n dyP x y Q x y n dx+=≠,令1n z y −=,可将原方程化为关于,x z 的线性. (二) 可降阶的高阶微分方程: I 、()()n yf x =【右端只含x 】:连续积分之;II 、(,)y f x y ′′′=【不显含y 】:令,y p ′=则dpy dx′′=,可将原方程化为关于,x p 的一阶. III 、(,)y f y y ′′′=【不显含x 】:令y p ′=,则dpy p dy′′=,可将原方程化为关于,y p 的一阶 (三) 概念与理论1、 概念:阶,解(特解,通解),初始条件,初值问题,积分曲线2、 线性微分方程的解的结构:1)齐次:()()0y P x y Q x y ′′′++=,通解:1122()()y C y x C y x =+,其中12(),()y x y x 为该方程线性无关的两个解. 2)非齐次:()()()y P x y Q x y f x ′′′++= 通解:()*()y Y x y x =+,其中()Y x 为对应的齐次方程的通解,*()y x 为原方程的一个特解. 3)设12*(),*()y x y x 分别为1()()()y P x y Q x y f x ′′′++= 与2()()()y P x y Q x y f x ′′′++=的特解,则12**()*()y y x y x =+为12()()()()y P x y Q x y f x f x ′′′++=+的特解.七、 微分方程附录I——基本求导公式:1221(1)()0(2)();(3)();(4)(ln ||);1(5)()ln ;(6)(log );(01)ln (7)(sin )cos ;(8)(cos )sin ;(9)(tan )sec ;(10)(cot )csc ;(11)(sec )sec tan ;(12)x x x x a C C x x e e x xa a a x a a x ax x x x x x x x x x x αααα−′′′′====′′==>≠′′′′==−==−′=,为常数;,为常数常数且(csc )csc cot ;(13)(arcsin )(14)(arccos )(17)(sh )ch ;(18)(ch )sh .x x x x x x x x x ′′=−=′=′′==附录II——基本积分公式:122(1)1(2)1;(3)ln ||;1(4);(5)01;ln (6)sin cos ;(7)cos sin ;(8)sec tan ;(9)csc cot ;(10)sec tan sec x x x xkdx kx C k x x dx C dx x C x a e dx e C a dx C a a a xdx x C xdx x C xdx x C xdx x C x xdx x C αααα+=+=+≠−=++=+=+>≠=−+=+=+=−+=+∫∫∫∫∫∫∫∫∫∫,为常数;,常数,常数且;(11)csccot csc;(12)tan ln |cos |;(13)cot ln |sin |;(14)sec ln |sec tan |;(15)csc ln |csc cot |;(16);(18)x xdx x C xdx x C xdx x C xdx x x C xdx x x C C =−+=−+=+=++=−+∫∫∫∫∫2200;(20)(21)ln(;(22)ln ||;(23)sh ch ;(24)ch sh .1331,2422sin cos n n n C x C x C xdx x C xdx x C n n n nI xdx xdx πππ=+=++=+=+−−⋅⋅⋅⋅⋅⎛⎞−===⎜⎟⎝⎠∫∫∫∫∫ 1342,253n n n n n n ⎧⎪⎪⎨−−⎪⋅⋅⋅⋅⎪−⎩ 为正偶数;为大于1的正奇数.。

高数上册知识点

高数上册知识点

高数上册知识点
1. 极限呐,这可太重要啦!就像你跑步要跑到终点一样,极限就是函数接近的那个值哟。

比如说,1/x 当 x 趋近于无穷大时,它的极限不就是 0 嘛!
2. 导数呀,不就是变化率嘛!就好比汽车的速度,速度快变化就大呀。

像求曲线 y=x^2 的导数,得到 2x,这就能知道它在各个点的变化快慢喽。

3. 连续可不能小瞧哦!可以想想水流,一直不间断就是连续呀。

比如函数 y=sinx 就是连续的嘛。

4. 微分呢,就有点像把一个东西拆得更细致呀。

比如说一个面包,微分就是把它分成很小很小的部分。

像 y=x^2 的微分就是 2xdx 呀。

5. 积分呀,不就是把那些小部分又合起来嘛!类似把面包碎块再拼成一个完整面包哟。

求曲线下的面积不就是用积分嘛。

6. 无穷小和无穷大就像两个极端呀!无穷小接近 0,无穷大就超级大嘛。

想想 1/x,当 x 很大很大时,不就接近无穷小啦。

7. 函数的单调性和极值也很有趣呀!就好像爬山,有上坡有下坡,还有山顶这个极值点。

比如 y=x^3-3x,就能找到它的极值点呐。

我觉得呐,高数上册的这些知识点真的很神奇,能让我们看到数学世界里好多奇妙的现象呢!。

高等数学(上)总结

高等数学(上)总结

高等数学(上)总结.doc高等数学(上)知识点总结第一章:函数、极限与连续性1.1 函数定义:函数是定义域到值域的一种对应关系。

性质:单调性、奇偶性、周期性、有界性等。

1.2 极限定义:极限描述了函数在某一点或无穷远处的行为。

运算法则:加、减、乘、除、复合等。

1.3 无穷小与无穷大无穷小:函数值趋于零的量。

无穷大:函数值趋于无穷的量。

1.4 连续性定义:函数在某一点的极限等于函数值。

性质:连续函数的和、差、积、商(除数不为零)仍然是连续的。

间断点:第一类间断点和第二类间断点。

第二章:导数与微分2.1 导数定义:导数是函数在某一点处的切线斜率。

几何意义:曲线在某点的切线斜率。

物理意义:速度、加速度。

2.2 基本导数公式幂函数、三角函数、指数函数、对数函数的导数。

2.3 高阶导数定义:导数的导数,用于研究函数的凹凸性。

2.4 微分定义:函数在某一点处的线性主部。

几何意义:局部线性逼近。

第三章:积分3.1 不定积分定义:原函数,即导数等于给定函数的函数。

基本积分表:幂函数、三角函数、指数函数、对数函数等。

3.2 定积分定义:在区间上函数平均值的极限。

几何意义:曲线与x轴围成的面积。

3.3 积分技巧分部积分法、换元积分法、有理函数积分等。

第四章:级数4.1 数项级数收敛性:正项级数、交错级数、比值判别法等。

4.2 幂级数泰勒级数:函数在某点的幂级数展开。

4.3 函数项级数一致收敛性:函数序列的极限。

第五章:多元函数微分学5.1 偏导数定义:函数对某一变量的局部变化率。

5.2 全微分定义:函数在多元变量上的微分。

5.3 隐函数微分法定义:隐函数的导数和微分。

5.4 多元函数的极值拉格朗日乘数法:求解多元函数的条件极值。

(完整版)高数上册知识点

(完整版)高数上册知识点

高等数学上册知识点第一章 函数与极限、、、函数1、函数定义及性质(有界性、单调性、奇偶性、周期性);2、反函数、复合函数、函数的运算;3、初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、函数的连续性与间断点;函数在连续)(x f 0x )()(lim 00x f x f x x =→第一类:左右极限均存在。

间断点 可去间断点、跳跃间断点第二类:左右极限、至少有一个不存在。

无穷间断点、振荡间断点5、闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。

、、、极限1、定义1、数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2、函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00、、、左极限: 右极限:)(lim )(00x f x f xx -→-=)(lim )(00x f x f xx +→+=)()( )(lim 000+-→=⇔=x f x f A x f x x 、、2、极限存在准则1、夹逼准则:1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim ax n n =∞→lim 2、单调有界准则:单调有界数列必有极限。

3、无穷小(大)量1、定义:若则称为无穷小量;若则称为无穷大量。

0lim =α∞=αlim2、无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、阶无穷小k Th1;)(~ααββαo +=⇔Th2 (无穷小代换)αβαβαβββαα''=''''lim lim lim ,~,~、、、、4、求极限的方法1、单调有界准则;2、夹逼准则;3、极限运算准则及函数连续性;4、两个重要极限:a) b)1sin lim 0=→xxx e xx xx xx =+=++∞→→11(lim )1(lim 105、无穷小代换:()0→x a)xx x x x arctan ~arcsin ~tan ~sin ~b)221~cos 1x x -c)()x e x ~1-a x axln ~1-d)()x x ~)1ln(+axx a ln ~)1(log +e)xx αα~1)1(-+第二章 导数与微分、、、导数1、定义:000)()(lim )(0x x x f x f x f x x --='→左导数:00)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数在点可导)(x f 0x )()(00x f x f +-'='⇔2、几何意义:为曲线在点处的切线的斜率。

(完整版)高等数学上册知识点

(完整版)高等数学上册知识点

高等数学上册第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。

间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。

无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。

(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2) 函数极限δδε-<-<∀>∃>∀⇔=→Ax f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f x x +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。

3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。

2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim,~,~存在,则(无穷小代换)4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→xxxb)e xx xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x~1- (a x a xln ~1-)d) x x ~)1ln(+ (a xx a ln ~)1(log +)e)x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。

高数上册知识点

高数上册知识点

1、极限·数列极限: = a , = bx n n lim ∞>-y n n lim ∞>-(1)若 a > b,则 ,当n > N 时有N ∃y x nn >(2)若n > N 时或,则a by x n n ≥y x n n>≥ 注:要看好是 还是 >,必须严格要求≥·函数极限的不等式性质:= A , = B)(lim 0x f x x >-)(lim 0x g x x >-(1)若,则B A >)()(x g x f >(2),则)()(x g x f ≥BA ≥ 注:要看好是 还是 >,必须严格要求≥·保号性质: = A)(lim 0x f x x >-(1)若A > 0,则0)(>x f (2)若,则0)(0)(≥>x f x f 或0≥A ·若数列{}单调上升有上界,则{}收敛x n x n 若数列{}单调下降有下界,则{}收敛x n x n ·极限存在充要条件函数: = A = = A)(lim 0x f x x >-⇔)(lim 0x f x x +>-)(lim 0x f x x ->-数列: = A = = Ax n n lim ∞>-⇔x n n 2lim ∞>-x n n 12lim -∞>-·常见等价无穷小::0→x, x e x ≈-1xx ≈+)1ln(,,,x x ≈arctan x x ≈sin x x ≈tan xx ≈arcsin xx 221cos 1≈-xx x 221)1ln(≈+-xx 222111≈-+a x a xln 1≈-)1,0(≠>a a xx x 361sin ≈-x x x ≈++)1ln(2xx αββα≈-+1)1(xnx n111≈-+ax a ln 1)1(log ≈+)1,0(≠>a a )(ln 11∞>-≈-n n nn n1ln -≈u u )1(→u ·判断函数连续的方法:(1)若是初等函数,则在它的定域区间上处处连续(2)用连续运算法则:①(连续性的四则运算法则)设与都在点)(x f )(x g 处连续,则与在点x x 0=)()(x g x f ±)()(x g x f 处连续,当时在处x x 0=0)(0≠x g )()(x g x f x x 0=也连续。

(完整版)高等数学(上)重要知识点归纳

(完整版)高等数学(上)重要知识点归纳

高等数学(上)重要知识点归纳第一章 函数、极限与连续一、极限的定义与性质 1、定义(以数列为例),,0lim N a x n n ∃>∀⇔=∞→ε当N n >时,ε<-||a x n2、性质(1) )()()(lim 0x A x f A x f xx α+=⇔=→,其中)(x α为某一个无穷小。

(2)(保号性)若0)(lim 0>=→A x f xx ,则,0>∃δ当),(0δx U x o∈时,0)(>x f 。

(3)*无穷小乘以有界函数仍为无穷小。

二、求极限的主要方法与工具 1、*两个重要极限公式 (1)1sin lim=∆∆→∆ (2)e =◊+◊∞→◊)11(lim 2、两个准则 (1) *夹逼准则 (2)单调有界准则 3、*等价无穷小替换法常用替换:当0→∆时(1)∆∆~sin (2)∆∆~tan(3)∆∆~arcsin (4)∆∆~arctan(5)∆∆+~)1ln( (6)∆-∆~1e (7)221~cos 1∆∆- (8)nn ∆-∆+~114、分子或分母有理化法5、分解因式法 6用定积分定义 三、无穷小阶的比较* 高阶、同阶、等价1、连续的定义*)(x f 在a 点连续)()()()()(lim 0lim 0a f a f a f a f x f y ax x ==⇔=⇔=∆⇔-+→→∆2、间断点的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧其他震荡型(来回波动))无穷型(极限为无穷大第二类但不相等)跳跃型(左右极限存在可去型(极限存在)第一类 3、曲线的渐近线*ax x f A y A x f ax x =∞===→∞→则存在渐近线:铅直渐近线:若则存在渐近线:水平渐近线:若,)(lim )2(,)(lim )1(五、闭区间连续函数性质 1、最大值与最小值定理 2、介值定理和零点定理第二章 导数与微分一、导数的概念 1、导数的定义*a f x f a f x a f y dy a f y ax x x a x a x -=-∆+=∆=='='→→∆→∆==)()(lim )()(lim lim |)(|002、左右导数 左导数ax a f x f x y a f a x x --=∆∆='--→→∆-)()(limlim)(0 右导数ax a f x f x y a f a x x --=∆∆='++→→∆+)()(limlim)(03、导数的几何意义*k a f a x f y a x 处的切线斜率在点(曲线))(,)(|='=4、导数的物理意义加速度)速度)则若运动方程:()()()(,)(()()(t a t v t s t v t s t s s ='=''='= 5、可导与连续的关系: 连续,反之不然。

(完整版)高等数学上册知识点

(完整版)高等数学上册知识点

永不改变年轻时的梦想
10 页 共 19 页 3、 凹凸性及其判断,拐点 1))(xf在区间I上连续,若2)()()2( ,,212121xfxfxxfIxx,则称)(xf在区间I 上的图形是凹的;若2)()()2( ,,212121xfxfxxfIxx,则称)(xf在区间I 上的图形是凸的。 2)判定定理:)(xf在],[ba上连续,在),(ba上有一阶、二阶导数,则 a) 若0)(),,(xfbax,则)(xf在],[ba上的图形是凹的; b) 若0)(),,(xfbax,则)(xf在],[ba上的图形是凸的。 3)拐点:设)(xfy在区间I上连续,0x是)(xf的内点,如果曲线)(xfy经过点))(,(00xfx时,曲线的凹凸性改变了,则称点))(,(00xfx为曲线的拐点。 (五) 不等式证明 1、 利用微分中值定理; 2、 利用函数单调性; 3、 利用极值(最值)。 (六) 方程根的讨论
永不改变年轻时的梦想
7 页 共 19 页 (三) Taylor公式 n阶Taylor公式: 10)1(00)(200000)()!1()()(!)( )(!2)())(()()(nnnnxxnfxxnxfxxxfxxxfxfxf 在0x与x之间. 当00x时,成为n阶麦克劳林公式: 1)1()(2)!1()(!)0(!2)0(!1)0()0()(nnnnxnfxnfxfxffxf 在0与x之间. 常见函数的麦克劳林公式: 1)12)!1(!1!211nnxxnexnxxe
永不改变年轻时的梦想
1 页 共 19 页 高等数学上册 第一章 函数与极限 (一) 函数 1、 函数定义及性质(有界性、单调性、奇偶性、周期性); 2、 反函数、复合函数、函数的运算; 3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点; 函数)(xf在0x连续 )()(lim00xfxfxx 第一类:左右极限均存在。 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。 无穷间断点、振荡间断点 5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。 (二) 极限 1、 定义 1) 数列极限

(完整版)高数一知识点

(完整版)高数一知识点

第一章~~第三章一、极限数列极限lim n n x ->∞函数极限lim ()x f x ->∞,lim ()x f x →+∞,lim ()x f x →-∞lim ()x x f x ->,0lim ()x x f x -->,0lim ()x x f x +->求极限(主要方法):(1)100sin 1lim1,lim(1),lim(1)x xx x x xe x e x x->->∞->=+=+=(2)等价无穷小替换(P76)。

当()0x ϕ→时,代换时要注意,只有乘积因子才可以代换。

(3)洛必达法则(000,,0,,0,1,0∞∞⋅∞∞-∞∞∞),只有0,0∞∞可以直接用罗比达法则。

幂指函数求极限:()lim ()ln ()lim ()v x v x u x u x e =;或,令()()v x y u x =,两边取对数ln ()ln ()y v x u x =,若lim ()ln ()v x u x a =,则()lim ()v x a u x e =。

结合变上限函数求极限。

二、连续 00lim ()()x x f x f x ->=左、右连续 000lim ()(),lim ()()x x x x f x f x f x f x -+->->==函数连续⇔函数既左连续又右连续闭区间上连续函数性质:最值,有界,零点(结合证明题),介值,推论。

三、导数 0000000()()()()'()limlim x x x f x f x f x x f x f x x x x->->-+-==-V V V 左导数 0000000()()()()'()lim lim x x x f x f x f x x f x f x x x x---->->-+-==-V V V右导数 0000000()()()()'()lim lim x x x f x f x f x x f x f x x x x+++->->-+-==-V V V 微分 ()'y A x z dy Adx y dx ο∆=⋅∆+==可导⇒连续 可导⇔可微 可导⇔既左可导又右可导求导数:(1) 复合函数链式法则[]()'[]'()dy dy du y f u u g x f u g x dx du dx====[()]''[()]'()'[()]([()])'y f g x y f g x g x f g x f g x ==≠(2) 隐函数求导法则两边对x 求导,注意y 、y '是x 的函数。

(完整版)高数知识点总结(上册)

(完整版)高数知识点总结(上册)

xfdy)('
)('xfdxdy
xffxf)0()0()(' xnxn111
xxsin(x用弧度) xxtan(x用弧度)
xe12 xx)1ln(
)(xf满足下列条件
(1)在闭区间ba,上连续
(2)在开区间ba,内具有导数
(3)在端点处函数值相等,即)()(bfaf,则在ba,内至少有一点,使0)('f
x处有定义
(2)当
xx时,)(xf的极限)(lim
xfxx存在
(3)极限值等于函数)(xf在点
x处的函数值)(0xf
如果函数)(xf在点
x处连续,由连续定义可知,当0xx时,)(xf的极限一定存在,反
分类:第一类间断点 (左右极限都存在) 第二类间断点(有一个极限不存在)
定理:如果函数)(xf、)(gx在点
如果 (1)ax时,)(xf与)(x都趋于无穷大
(2)在点a的某领域(点a可除外)内,)('xf与)('x都存在且0)('x
(3))()(lim''xxfax存在(或为) ,则则极限)()(limxxfax存在(或为),且)()(limxxfax
)()(lim''xxfax
2、x情形
x处连续,则他们的和、差、积、商(分母不为零)在
x也连续
定理:如果函数)(xfy在某区间上是单调增(或单调减)的连续函数,则它的反函数
(yx
定理:设函数)(xf在闭区间ba,上连续,则函数)(xf在闭区间ba,上必有最大值和最小
推论:如果函数)(xf在闭区间ba,上连续,则)(xf在ba,上有界
结论:如果函数)(xf在某区间上连续,则在这个区间上)(xf必有原函数

高数复习知识点

高数复习知识点

lim sin x 1 x0 x
b)
1
lim(1 x) x
lim (1 1)x e
x0
x
x
5) 无穷小代换:( x 0 )(重点)
a) x ~ sin x ~ tan x ~ arcsin x ~ arctan x
第 2 页 共 12 页
更多学习资源欢迎关注微信公众号:大学资料菌
b)
1 cos x ~
大 3、 可导与连续的关系:
4、 求导的方法
1) 导数定义;(重点)
2) 基本公式;
3) 四则运算;
4) 复合函数求导(链式法则);(重点)
5) 隐函数求导数;(重点)
6) 参数方程求导;(重点)
第 3 页 共 12 页
更多学习资源欢迎关注微信公众号:大学资料菌
7) 对数求导法. (重点)
5、 高阶导数
t t
0
f (x)dx f (x)dx f (x)dx
0
2、 瑕积分:
b
b
f (x)dx lim
a
t a
t
f (x)dx (a 为瑕点)
b
t
a
f (x)dx lim t b
a
f (x)dx (b 为瑕点)
第 8 页 共 12 页
更多学习资源欢迎关注微信公众号:大学资料菌
两个重要的反常积分:
3、 利用极值(最值).
(六) 方程根的讨论
1、 连续函数的介值定理; 2、 Rolle 定理;

3、 函数的单调性; 4、 极值、最值; 5、 凹凸性.
料 资
学 (七) 渐近线 1、 铅直渐近线: lim f (x) ,则 x a 为一条铅直渐近线;

高数重要知识点汇总

高数重要知识点汇总

高等数学上册重要知识点 第一章 函数与极限一. 函数的概念1 两个无穷小的比拟设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim〔1〕l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x)= 0[)(x g ],称g(x)是比f(x)低阶的无穷小。

〔2〕l ≠0,称f (x )与g (x )是同阶无穷小。

〔3〕l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x )2 常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1−cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x +~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准那么准那么1.单调有界数列极限一定存在准那么2.〔夹逼定理〕设g (x ) ≤f (x ) ≤h (x ) 放缩求极限假设A x h A x g ==)(lim ,)(lim ,那么A x f =)(lim2.两个重要公式 公式11sin lim0=→xxx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法那么定理1 设函数)(x f 、)(x F 满足以下条件:〔1〕0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;〔2〕)(x f 与)(x F 在0x〔3〕)()(lim 0x F x f x x ''→这个定理说明:当)()(lim 0x F x f x x ''→存在时,)(lim 0x F x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达〔H L 'ospital 〕法那么.例1计算极限0e 1lim x x x→-.解该极限属于“00〞型不定式,于是由洛必达法那么,得0e 1lim x x x→-0e lim 11x x →==. 例2计算极限0sin lim sin x axbx →.解该极限属于“0〞型不定式,于是由洛必达法那么,得00sin cos lim lim sin cos x x ax a ax a bx b bx b→→==. 注假设(),()f x g x ''仍满足定理的条件,那么可以继续应用洛必达法那么,即()()()lim lim lim ()()()x a x a x a f x f x f x g x g x g x →→→'''==='''二、∞∞型未定式 定理2 设函数)(x f 、)(x F 满足以下条件: 〔1〕∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;〔2〕)(x f 与)(x F 在0x 的某一去心邻域可导,且0)(≠'x F ;〔3〕)()(lim 0x F x f x x ''→注:上述关于0x x →时未定式∞∞时未定式∞∞型同样适用.例3计算极限lim (0)nx x x n e →+∞>.解所求问题是∞∞型未定式,连续n 次施行洛必达法那么,有lim e n x x x →+∞1lim e n x x nx -→+∞=2(1)lim e n xx n n x -→+∞-= !lim 0e x x n →+∞===. 使用洛必达法那么时必须注意以下几点: 〔1〕洛必达法那么只能适用于“00〞和“∞∞〞型的未定式,其它的未定式须先化简变形成“0〞或“∞∞〞型才能运用该法那么; 〔2〕只要条件具备,可以连续应用洛必达法那么;〔3〕洛必达法那么的条件是充分的,但不必要.因此,在该法那么失效时并不能断定原极限不存在.7.利用导数定义求极限根本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在〕8.利用定积分定义求极限根本格式⎰∑==∞→101)()(1lim dx x f n kf n n k n 〔如果存在〕三.函数的连续点的分类函数的连续点分为两类: (1)第一类连续点设0x 是函数y = f (x )的连续点。

高数重要知识点汇总

高数重要知识点汇总
0
简变形成 “0 ”或“ ”型才能运用该法则 ;
0
(2)只要条件具备 ,可以连续应用洛必达法则 ;
(3)洛必达法则的条件是充分的 ,但不必要 .因此 ,在该法则失效时并不
能断定原极限不存在 .
7 .利用导数定义求极限
参考 .资料
..
..
..
..
基本公式 lim f (x0 x0
x) f (x0) x
6 可微与可导的关系 f (x)在 x0处可微 ? f (x)在 x0 处可导 。
7 求n 阶导数 (n ≥ 2,正整数 )
先求出 y′, y′,…′… ,总结出规律性 , 然后写出 y(n), 最后用归纳法证明 。 有一些
常用的初等函数的 n 阶导数公式
( 1) y e x, y (n) ex
( 2) y a x , y (n) a x (ln a)n
,称为皮亚诺余项 对常用的初等函数如 ex ,sin x,cos x,ln(1+ x)和 (1 x) (α 为实常数 )等的 n阶 泰勒公式都要熟记 。 定理 2(拉格朗日余项的 n 阶泰勒公式 ) 设 f (x)在包含 0 x 的区间 (a,b )内有 n +1 阶导数 ,在 [a,b ]上有 n阶连续导数 ,则对 x
3!
n!
x5 ... ( 1)n x 2n 1
5!
(2n 1)!
o( x2 n 1)
x2 cos x 1
x4
... ( 1)n x 2n
o( x2n)
2! 4!
2 n!
ln(1 x)
x
x2
x3 ...
( 1)n 1 x n
o( xn )
23
n
(1 x) 1 x ( 1) x2 ... ( 1)...( (n 1)) xn o( xn)

高数上册知识点总结

高数上册知识点总结

高数上册知识点总结高等数学是大多数理工科学生在大学学习的重要课程之一。

高等数学上册主要涵盖了一元函数、极限与连续、导数与微分、微分中值定理、不定积分等内容。

本文将对高等数学上册的主要知识点进行总结与归纳,希望对学习该课程的同学提供一些帮助。

一、一元函数一元函数是高等数学的基础,它是一种将输入的实数映射为输出实数的数学关系。

在高等数学上册中,我们主要关注函数的定义域、值域、奇偶性、周期性、反函数以及函数图像等方面的内容。

在学习一元函数时,需要掌握常见函数的性质和图像,比如幂函数、指数函数、对数函数和三角函数等。

二、极限与连续极限是高等数学的核心概念之一。

在学习极限时,需要了解数列极限与函数极限的定义,熟练掌握极限的计算方法,掌握常用极限的性质和相关定理。

在极限的概念基础上,我们可以进一步学习函数的连续性和间断点的分类,包括可去间断点、跳跃间断点和无穷间断点等。

三、导数与微分导数是描述函数变化率的重要工具,也是微分学的基础。

在学习导数与微分时,需要掌握导数的定义、导数的计算、导数的性质以及常用函数的导数。

此外,需要了解微分的概念和微分中值定理,以及利用导数求函数的单调性、极值和凹凸性等相关内容。

四、微分中值定理微分中值定理是微积分中的重要定理,它是导数与函数的关系的基本结论。

微分中值定理包括拉格朗日中值定理、柯西中值定理和罗尔中值定理等。

在学习微分中值定理时,需要理解定理的假设条件,掌握定理的几何和物理意义,并能熟练运用定理解决相关问题。

五、不定积分不定积分是微积分中的重要内容,它是定积分的逆运算。

在学习不定积分时,需要了解不定积分的定义和性质,熟练掌握不同类型函数的不定积分计算方法,包括基本初等函数的不定积分、换元积分法和分部积分法等。

此外,还需要掌握不定积分求解定积分和求解微分方程等应用。

六、小结高等数学上册涵盖了一元函数、极限与连续、导数与微分、微分中值定理、不定积分等重要内容。

在学习这些知识点时,需要掌握其基本定义和性质,熟练掌握计算方法和相关定理,并能够灵活运用于解决实际问题。

(完整版)高数上册知识点

(完整版)高数上册知识点

高等数学上册知识点第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。

间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。

无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。

(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。

3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。

2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:a) 1sin lim 0=→xx x b)e x x xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x ~1- (a x a x ln ~1-) d) x x ~)1ln(+ (ax x a ln ~)1(log +)e) x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→ 左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+ 函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。

高等数学上册知识点(供参考)(精品文档)

高等数学上册知识点(供参考)(精品文档)

高等数学上册第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。

间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。

无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。

(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2) 函数极限δδε-<-<∀>∃>∀⇔=→Ax f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f x x +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。

3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。

2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim,~,~存在,则(无穷小代换)4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→xxxb)e xx xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x~1- (a x a xln ~1-)d) x x ~)1ln(+ (a xx a ln ~)1(log +)e)x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学(上)重要知识点归纳第一章 函数、极限与连续一、极限的定义与性质 1、定义(以数列为例),,0lim N a x n n ∃>∀⇔=∞→ε当N n >时,ε<-||a x n2、性质(1) )()()(lim 0x A x f A x f xx α+=⇔=→,其中)(x α为某一个无穷小。

(2)(保号性)若0)(lim 0>=→A x f xx ,则,0>∃δ当),(0δx U x o∈时,0)(>x f 。

(3)*无穷小乘以有界函数仍为无穷小。

二、求极限的主要方法与工具 1、*两个重要极限公式 (1)1sin lim=∆∆→∆ (2)e =◊+◊∞→◊)11(lim 2、两个准则 (1) *夹逼准则 (2)单调有界准则 3、*等价无穷小替换法 常用替换:当0→∆时(1)∆∆~sin (2)∆∆~tan (3)∆∆~arcsin (4)∆∆~arctan (5)∆∆+~)1ln( (6)∆-∆~1e (7)221~cos 1∆∆- (8)nn ∆-∆+~114、分子或分母有理化法5、分解因式法 6用定积分定义 三、无穷小阶的比较* 高阶、同阶、等价 四、连续与间断点的分类 1、连续的定义*)(x f 在a 点连续)()()()()(lim 0lim 0a f a f a f a f x f y ax x ==⇔=⇔=∆⇔-+→→∆2、间断点的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧其他震荡型(来回波动))无穷型(极限为无穷大第二类但不相等)跳跃型(左右极限存在可去型(极限存在)第一类 3、曲线的渐近线*ax x f Ay A x f ax x =∞===→∞→则存在渐近线:铅直渐近线:若则存在渐近线:水平渐近线:若,)(lim )2(,)(lim )1(五、闭区间连续函数性质 1、最大值与最小值定理 2、介值定理和零点定理第二章 导数与微分一、导数的概念 1、导数的定义*ax a f x f x a f x a f x y dx dy a f y ax x x a x a x --=∆-∆+=∆∆=='='→→∆→∆==)()(lim)()(lim lim |)(|002、左右导数 左导数ax a f x f x y a f a x x --=∆∆='--→→∆-)()(limlim)(0 右导数ax a f x f x y a f a x x --=∆∆='++→→∆+)()(limlim)(0 3、导数的几何意义*k a f a x f y a x 处的切线斜率在点(曲线))(,)(|='=4、导数的物理意义加速度)速度)则若运动方程:()()()(,)(()()(t a t v t s t v t s t s s ='=''='= 5、可导与连续的关系: 连续,反之不然。

可导→ 二、导数的运算1、四则运算 v u v u '±'='±)( v u v u uv '+'=')( 2)(vv u v u vu'-'=' 2、复合函数求导 设)]([x f y ϕ=,一定条件下xu u y dxdudu dy dx dy ''== 3、反函数求导 设)()(1y f x x f y -==和互为反函数,一定条件下:yx x y '='1 4、求导基本公式*(要熟记)5、隐函数求导* 方法:在0),(=y x F 两端同时对x 求导,其中要注意到:y 是中间变量,然后再解出y '6、参数方程确定函数的求导* ⎩⎨⎧==)()(t y y t x x 设,一定条件下3)()(,t t t t t t ttt x x t t x x x y x y x x y dx y d y x y dx dy y ''''-'''=''''='=''''=='(可以不记) 7、常用的高阶导数公式 (1)...)2,1,0(),2sin(sin )(=+=n n x x n π(2)...)2,1,0(),2cos(cos )(=+=n n x x n π (3)...)12(,)1()!1()1()1(ln 1)(=+--=+-n x n x nn n (4)...)2,1,0(,)1(!)1()11(1=+-=++n x n x n n n (5)(莱布尼茨公式)∑=-=nk k k n k n n v u C uv 0)()()()(三、微分的概念与运算 1、微分定义 *若)(x o x A y ∆+∆=∆,则)(x f y =可微,记Adx x A dy =∆= 2、公式:dx x f x x f dy )()('=∆'= 3、可微与可导的关系* 两者等价4、近似计算 当较小时,||x ∆dy y ≈∆,x x f x x f x f ∆'+∆+≈)()()(第三章 导数的应用一、微分中值定理* 1、柯西中值定理*)()()()()()(),,,0)(3),()()()2(],[)()()1(a g b g a f b f g f b a x g b a x g x f b a x g x f --=''∈∃≠ξξξ使得:(则:)(内可导在、上连续在、当取x x g =)(时,定理演变成: 2、拉格朗日中值定理*))(()()()()()(),,a b f a f b f ab a f b f f b a -'=-⇔--='∈∃ξξξ使得:(当加上条件)()(b f a f =则演变成: 3、罗尔定理* 0)(),,='∈∃ξξf b a 使得:( 4、泰勒中值定理 在一定条件下:)()(!)(...))(()()(00)(000x R x x n x f x x x f x f x f n n n +-++-'+=其中ξξ),)(()()!1()()(010)1(n n n n x x o x x n f x R -=-+=++介于x x 、0之间. 当公式中n=0时,定理演变成拉格朗日定理. 当00=x 时,公式变成:5、麦克劳林公式 )(!)0(...)0()0()()(x R x n f x f f x f n nn +++'+=6、常用麦克劳林展开式(1))(!1...!212n nxx o x n x x e +++++=(2))()!12()1(...!5!3sin 212153n n n x o x n x x x x +--++-=-- (3))()!2()1(...!4!21cos 12242++-++-=n nn x o x n x x x (4))()1(...32)1ln(132n nn x o x nx x x x +-++-=+-二、罗比达法则*记住:法则仅能对∞∞,00型直接用,对于,,0,1,,000∞∞-∞∞⋅∞转化后用. 幂指函数恒等式*f g g e f ln = 三、单调性判别*1、,0↑⇒>'y y ↓⇒<'y y 02、单调区间分界点:驻点和不可导点. 四、极值求法*1、极值点来自:驻点或不可导点(可疑点).2、求出可疑点后再加以判别.3、第一判别法:左右导数要异号,由正变负为极大,由负变正为极小.4、第二判别法:一阶导等于0,二阶导不为0时,是极值点.正为极小,负为极大. 五、闭区间最值求法*找出区间内所有驻点、不可导点、区间端点,比较大小.六、凹凸性与拐点* 1、,0⋃⇒>''y y ⋂⇒<''y y 0 2、拐点:曲线上凹凸分界点),(00y x .横坐标0x 不外乎不存在或)(,0)(00x f x f ''='',找到后再加以判别0x 附近的二阶导数是否变号. 七、曲率与曲率半径 1、曲率公式232)1(||y y K '+''=2、曲率半径KR 1=第四章 不定积分一、不定积分的概念*若在区间I 上,dx x f x dF x f x F )()(),()(=='亦, 则称.)()(的原函数为x f x F称全体原函数F(x)+c 为f(x)的不定积分,记为⎰dx x f )(. 二、微分与积分的互逆关系1、⎰⎰=⇔='dx x f dx x f d x f dx x f )()()(])([2、⎰⎰+=⇔+='c x f x df c x f dx x f )()()()( 三、积分法* 1、凑微分法* 2、第二类换元法3、分部积分法* ⎰⎰-=du v uv udv4、常用的基本积分公式(要熟记).第五章 定积分一、定积分的定义 ∑⎰=→∆∆=ni i i x ba x f dx x f 10)(lim )(ξ 二、可积的必要条件 有界.三、可积的充分条件 连续或只有有限个第一类间断点或单调.四、几何意义 定积分等于面积的代数和.五、主要性质* 1、可加性 ⎰⎰⎰+=ba bc ca2、估值 在[a,b]上,⎰-≤≤-ba ab M dx x f a b m )()()( 3、积分中值定理*当f(x)在[a,b]上连续时:⎰∈-=ba b a a b f dx x f ],[),)(()(ξξ 4、函数平均值:ab dx x f b a-⎰)(六、变上限积分函数*1、)(])([)()(],[)(x f dt t f dt t f x F b a x f xa xa ='=⎰⎰可导,且连续,则在若2、)()]([])([)(],[)(x x f dt t f x b a x f x a ϕϕϕϕ'='⎰)(可导,则:连续,在若七、牛-莱公式*)()(|])([)(],[)(a F b F dx x f dx x f b a x f b ba a-==⎰⎰连续,则在若八、定积分的积分法*1、换元法 牢记:换元同时要换限2、分部积分法 ⎰⎰-=ba baba vdu uv udv |3、特殊积分 (1)⎪⎩⎪⎨⎧=⎰⎰-a aax f dx x f x f dx x f 0)(,)(2)(,0)(为偶函数时当为奇函数时当(2)当f(x)为周期为T 的周期函数时: ⎰⎰++∈=TnTa aZ n dx x f n dx x f 0,)()((3)一定条件下:⎰⎰=πππ00)(sin 2)(sin dx x f dx x xf(4)⎪⎪⎩⎪⎪⎨⎧--==⎰⎰是正偶数时,!是正奇数时,n n n n n n xdx xdx n n 2!!)!1(!!)!1(cos sin 2020πππ(5)⎰⎰=200sin 2sin ππxdx xdx n n九、反常积分* 1、无穷区间上)()(|)()(lim )(a F F x F dt t f dx x f a axax -+∞===∞++∞+∞→⎰⎰ 其他类似 2、p 积分:⎰∞+⎩⎨⎧≤>>app p a dx x 时发散时收敛11:)0(13、瑕积分:若a 为瑕点:则)()(|)()(lim )(+→-===++⎰⎰a F b F x F dt t f dx x f b a b a bxa x 其他类似处理 第六章 定积分应用 一、几何应用 1、面积 (1)dy x x A dx y y A b aba )()(左右下上--⎰⎰==(2)),(,)()(:βα≤≤⎩⎨⎧==t t y y t x x C 则⎰'=βαdt t x t y A |)()(| (3)⎰=≤≤===βαθθρβθαβθαθθρρd C )(围成图形面积,(,与221A )),(: 2、体积*(1)旋转体体积*⎰=ba x dx y V 2π ⎰=dc y dy x V 2π 或⎰=ba y dx xy V π2 (2)截面面积为)(x A A =的立体体积为⎰=ba dx x A V )(113、弧长(1))(12b x a dx y s b a ≤≤'+=⎰(2))(,)()(22βαβα≤≤'+'=⎰t dt t y t x s(3))(,22βθαθρρβα≤≤'+=⎰d s二、物理应用1、变力作功一般地:先求功元素:],[,)(b a x dx x F dw ∈=,再积分⎰=b a dx x F w )( 克服重力作功的功元素dw=体积⨯⨯⨯g ρ位移2、水压力dP=水深⨯面积⨯g ⨯ρ第七章 微分方程一、可分离变量的微分方程 形式:)()(y g x f dxdy = 二、一阶线性微分方程*1、线性齐次:0)(=+'y x p y通解公式*:⎰-=dx x p Ce y )(2、线性非齐次 )()(x q y x p y =+'通解公式*:))([)()(C dx x q e e y dx x p dx x p +=⎰⎰⎰-。

相关文档
最新文档