MATLAB实验三 定积分的近似计算

合集下载

《数学实验》实验报告——定积分的近似求解

《数学实验》实验报告——定积分的近似求解


2 梯形法程序如下: f=input('请输入被积函数 f(x)='); qujian=input('请输入积分区间[a,b]='); n=input('请输入子区间个数 n='); s=0; for i=1:n-1 x=qujian(1)+(qujian(2)-qujian(1))/n*i; y=eval(f); s=s+y; end x=qujian(1); y=eval(f); s=s+y/2; x=qujian(2); y=eval(f); s=s+y/2; disp('定积分的近似值是:'); s=s*(qujian(2)-qujian(1))/n
《数学实验》实验报告
班级 试验 内容 **** 学号 **** 姓名 试验 类别
自选试验
****
成绩 试验 时间 2011 年 5 月 20 日—22 日
定积分的近似求解
试验问题:
用梯形法与抛物法,通过 MATLAB,计算 x 2 dx 的近似值,取 n=10,比较结果的差异,研究
0 1
定积分的两种近似计算方法。
1 1 1 2 ph 3 6rh h(2 ph 2 6r ) h( y 0 4 y1 y 2 ) 3 3 3 。 ba n ,则上面所求的 S 等于区间 [ x0 , x2 ] 上以抛物线为曲边的曲边梯形的面积。同理可



以得到区间 [ xi 1 , xi 1 ] 上以抛物线为曲边的曲边梯形的面积:
试验目的:
通过分别用梯形法与抛物线法计算定积分的近似值, 进而熟练掌握运用 MATLAB 来解决 定积分的近似求解,体会 MATLAB 的强大功能。

MATLAB实验三 定积分的近似计算

MATLAB实验三 定积分的近似计算

实验三定积分的近似计算一、问题背景与实验目的利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分.本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用.二、相关函数(命令)及简介1.sum(a):求数组a的和.2.format long:长格式,即屏幕显示15位有效数字.(注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值.4.quad():抛物线法求数值积分.格式:quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即.*、./、.^等.例:Q = quad('1./(x.^3-2*x-5)',0,2);5.trapz():梯形法求数值积分.格式:trapz(x,y)其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun)例:计算0sin()dx xπ⎰x=0:pi/100:pi;y=sin(x);trapz(x,y)6.dblquad():抛物线法求二重数值积分.格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline定义,也可以通过某个函数文件的句柄传递.例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi)顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法.Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi)例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi)这时必须存在一个函数文件integrnd.m:function z = integrnd(x, y) z = y*sin(x);7.fprintf (文件地址,格式,写入的变量):把数据写入指定文件.例:x = 0:.1:1; y = [x; exp(x)];fid = fopen('exp.txt','w'); %打开文件 fprintf(fid,'%6.2f %12.8f\n',y); %写入 fclose(fid) %关闭文件 8.syms 变量1 变量2 …:定义变量为符号. 9.sym('表达式'):将表达式定义为符号.解释:Matlab 中的符号运算事实上是借用了Maple 的软件包,所以当在Matlab 中要对符号进行运算时,必须先把要用到的变量定义为符号. 10.int(f,v,a,b):求f 关于v 积分,积分区间由a 到b .11.subs(f ,'x',a):将 a 的值赋给符号表达式 f 中的 x ,并计算出值.若简单地使用subs(f),则将f 的所有符号变量用可能的数值代入,并计算出值.三、实验内容1. 矩形法根据定积分的定义,每一个积分和都可以看作是定积分的一个近似值,即1()d ()nbi i ai f x x f x ς==∆∑⎰在几何意义上,这是用一系列小矩形面积近似小曲边梯形的结果,所以把这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度.针对不同i ς的取法,计算结果会有不同,我们以 120d 1xx +⎰为例(取100=n ),(1) 左点法:对等分区间b x i n ab a x x a x n i =<<-+=<<<=ΛΛ10,在区间],[1i i x x -上取左端点,即取1-=i i x ς,12 01d ()1ni i i xf x x ς==∆≈+∑⎰0.78789399673078, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差0.7878939967307840.0031784ππ-=≈(2)右点法:同(1)中划分区间,在区间],[1i i x x -上取右端点,即取i i x =ς,12 01d ()1ni i i xf x x ς==∆≈+∑⎰0.78289399673078, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 0.7828939967307840.0031884ππ-=≈(3)中点法:同(1)中划分区间,在区间1[,]i i x x -上取中点,即取12i ii x x ς-+=, 12 01d ()1ni i i xf x x ς==∆≈+∑⎰0.78540024673078, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 60.7854002467307842.653104ππ--=≈⨯如果在分割的每个小区间上采用一次或二次多项式来近似代替被积函数,那么可以期望得到比矩形法效果好得多的近似计算公式.下面介绍的梯形法和抛物线法就是这一指导思想的产物.2. 梯形法等分区间b x i n a b a x x a x n i =<<-+=<<<=ΛΛ10,nab x -=∆ 相应函数值为n y y y ,,,10Λ(n i x f y i i ,,1,0),(Λ==).曲线)(x f y =上相应的点为n P P P ,,,10Λ(n i y x P i i i ,,1,0),,(Λ==)将曲线的每一段弧i i P P 1-用过点1-i P ,i P 的弦i i P P 1-(线性函数)来代替,这使得每个],[1i i x x -上的曲边梯形成为真正的梯形,其面积为x y y ii ∆⨯+-21,n i ,,2,1Λ=. 于是各个小梯形面积之和就是曲边梯形面积的近似值,11 11()d ()22nnbi i i i ai i y y x f x x x y y --==+∆≈⨯∆=+∑∑⎰, 即11 ()d ()22bn n ay y b a f x x y y n --≈++++⎰L , 称此式为梯形公式.仍用 12 0d 1x x +⎰的近似计算为例,取100=n ,10112 0d ()122n n y y x b a y y x n --≈++++=+⎰L 0.78539399673078, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 60.7853939967307845.305104ππ--=≈⨯很显然,这个误差要比简单的矩形左点法和右点法的计算误差小得多.3. 抛物线法由梯形法求近似值,当)(x f y =为凹曲线时,它就偏小;当)(x f y =为凸曲线时,它就偏大.若每段改用与它凸性相接近的抛物线来近似时,就可减少上述缺点,这就是抛物线法.将积分区间],[b a 作n 2等分,分点依次为b x i n a b a x x a x n i =<<-+=<<<=2102ΛΛ,nab x 2-=∆, 对应函数值为n y y y 210,,,Λ(n i x f y i i 2,,1,0),(Λ==),曲线上相应点为n P P P 210,,,Λ(n i y x P i i i 2,,1,0),,(Λ==).现把区间],[20x x 上的曲线段)(x f y =用通过三点),(000y x P ,),(111y x P ,),(222y x P 的抛物线)(12x p x x y =++=γβα来近似代替,然后求函数)(1x p 从0x 到2x 的定积分:21 ()d x x p x x =⎰22 ()d x x x x x αβγ++=⎰)()(2)(30220223032x x x x x x -+-+-γβα]4)(2)()()[(62022022202002γβαγβαγβα++++++++++-=x x x x x x x x x x 由于2201x x x +=,代入上式整理后得 21 ()d x x p x x ⎰)](4)()[(612122202002γβαγβαγβα++++++++-=x x x x x x x x )4(621002y y y x x ++-=)4(6210y y y nab ++-= 同样也有422 ()d x x p x x ⎰)4(6432y y y n ab ++-=……222 ()d n n x nx p x x -⎰)4(621222n n n y y y nab ++-=-- 将这n 个积分相加即得原来所要计算的定积分的近似值:22222212 11()d ()d (4)6ii nnbx i i i i ax i i b af x x p x x y y y n---==-≈=++∑∑⎰⎰, 即021******* ()d [4()2()]6bn n n ab af x x y y y y y y y y n---≈++++++++⎰L L 这就是抛物线法公式,也称为辛卜生(Simpson )公式.仍用 12 0d 1x x +⎰的近似计算为例,取100=n ,102132124222 0d [4()2()]16n n n x b ay y y y y y y y x n ---≈+++++++++⎰L L=0.78539816339745,理论值 12 0d 14x x π=+⎰,此时计算的相对误差 160.7853981633974542.827104ππ--=≈⨯4. 直接应用Matlab 命令计算结果(1) 数值计算 120d .1xx +⎰ 方法1:int('1/(1+x^2)','x',0,1) (符号求积分)方法2:quad('1./(1+x.^2)',0,1) (抛物线法求数值积分)方法3:x=0:0.001:1; y=1./(1+x.^2);trapz(x,y) (梯形法求数值积分) (2)数值计算 212 01d d x x y y -+⎰⎰方法1:int(int('x+y^2','y',-1,1),'x',0,2) (符号求积分)方法2:dblquad(inline('x+y^2'),0,2,-1,1) (抛物线法二重数值积分)四、自己动手1. 实现实验内容中的例子,即分别采用矩形法、梯形法、抛物线法计算 120d 1xx +⎰,取258=n ,并比较三种方法的精确程度.2. 分别用梯形法与抛物线法,计算 2 1d xx⎰,取120=n .并尝试直接使用函数trapz()、quad()进行计算求解,比较结果的差异.3. 试计算定积分 0sin d xx x+∞⎰.(注意:可以运用trapz()、quad()或附录程序求解吗?为什么?)4. 将 120d 1xx +⎰的近似计算结果与Matlab 中各命令的计算结果相比较,试猜测Matlab 中的数值积分命令最可能采用了哪一种近似计算方法?并找出其他例子支持你的观点.5. 通过整个实验内容及练习,你能否作出一些理论上的小结,即针对什么类型的函数(具有某种单调特性或凹凸特性),用某种近似计算方法所得结果更接近于实际值?6. 学习fulu2sum.m 的程序设计方法,尝试用函数 sum 改写附录1和附录3的程序,避免for 循环.五、附录附录1:矩形法(左点法、右点法、中点法)(fulu1.m ) format long n=100;a=0;b=1;inum1=0;inum2=0;inum3=0; syms x fx fx=1/(1+x^2); for i=1:nxj=a+(i-1)*(b-a)/n; %左点 xi=a+i*(b-a)/n; %右点 fxj=subs(fx,'x',xj); %左点值fxi=subs(fx,'x',xi); %右点值fxij=subs(fx,'x',(xi+xj)/2); %中点值inum1=inum1+fxj*(b-a)/n;inum2=inum2+fxi*(b-a)/n;inum3=inum3+fxij*(b-a)/n;endinum1inum2inum3integrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum1 and real-value is about: %d\n\n',...abs((inum1-integrate)/integrate))fprintf('The relative error between inum2 and real-value is about: %d\n\n',...abs((inum2-integrate)/integrate))fprintf('The relative error between inum3 and real-value is about: %d\n\n',...abs((inum3-integrate)/integrate))附录2:梯形法(fulu2.m)format longn=100;a=0;b=1;inum=0;syms x fxfx=1/(1+x^2);for i=1:nxj=a+(i-1)*(b-a)/n;xi=a+i*(b-a)/n;fxj=subs(fx,'x',xj);fxi=subs(fx,'x',xi);inum=inum+(fxj+fxi)*(b-a)/(2*n);endinumintegrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))附录2sum:梯形法(fulu2sum.m),利用求和函数,避免for 循环format longn=100;a=0;b=1;syms x fxfx=1/(1+x^2);i=1:n;xj=a+(i-1)*(b-a)/n; %所有左点的数组xi=a+i*(b-a)/n; %所有右点的数组fxj=subs(fx,'x',xj); %所有左点值fxi=subs(fx,'x',xi); %所有右点值f=(fxi+fxj)/2*(b-a)/n; %梯形面积inum=sum(f) %加和梯形面积求解integrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))附录3:抛物线法(fulu3.m)format longn=100;a=0;b=1;inum=0;syms x fxfx=1/(1+x^2);for i=1:nxj=a+(i-1)*(b-a)/n; %左点xi=a+i*(b-a)/n; %右点xk=(xi+xj)/2; %中点fxj=subs(fx,'x',xj);fxi=subs(fx,'x',xi);fxk=subs(fx,'x',xk);inum=inum+(fxj+4*fxk+fxi)*(b-a)/(6*n);endinumintegrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))。

高等数学:MATLAB实验

高等数学:MATLAB实验
以上两种格式中的x、y都可以是表达式.plot是绘制二维 曲线的基本函数,但在使用 此函数之前,需先定义曲线上每一 点的x及y的坐标.
MATLAB实验
2.fplot绘图命令 fplot绘图命令专门用于绘制一元函数曲线,格式为:
fplot('fun',[a,b]) 用于绘制区间[a,b]上的函数y=fun的图像.
MATLAB实验 【实验内容】
MATLAB实验
由此可知,函数在点x=3处的二阶导数为6,所以f(3)=3为 极小值;函数在点x= 1处的二阶导数为-6,所以f(1)=7为极大值.
MATLAB实验
例12-10 假设某种商品的需求量q 是单价p(单位:元)的函 数q=12000-80p,商 品的总成本C 是需求量q 的函数 C=25000+50q.每单位商品需要纳税2元,试求使销售 利润达 到最大的商品单价和最大利润额.
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验 实验九 用 MATLAB求解二重积分
【实验目的】 熟悉LAB中的int命令,会用int命令求解简单的二重积分.
MATLAB实验
【实验M步A骤T】 由于二重积分可以化成二次积分来进行计算,因此只要
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
实验七 应用 MATLAB绘制三维曲线图
【实验目的】 (1)熟悉 MATLAB软件的绘图功能; (2)熟悉常见空间曲线的作图方法.
【实验要求】 (1)掌握 MATLAB中绘图命令plot3和 mesh的使用; (2)会用plot3和 mesh函数绘制出某区间的三维曲线,线型

如何用matlab计算定积分-matlab求积分

如何用matlab计算定积分-matlab求积分

用matlab 计算积分4.1积分的有关理论定积分:积分是微分的无限和,函数)(x f 在区间],[b a 上的积分定义为∑∫=→∆∆==ni iix baxf dx x f I i 1)max()(lim)(ξ其中.,,2,1),,(,,1110n i x x x x x b x x x a i i i i i i n =∈−=∆=<<<=−−ξ从几何意义上说,对于],[b a 上非负函数)(x f ,记分值I 是曲线)(x f y =与直线b x a x ==,及x 轴所围的曲边梯形的面积。

有界连续(或几何处处连续)函数的积分总是存在的。

微积分基本定理(Newton-Leibniz 公式):)(x f 在],[b a 上连续,且],[),()('b a x x f x F ∈=,则有)()()(a F b F dx x f ba−=∫这个公式表明导数与积分是一对互逆运算,它也提供了求积分的解析方法:为了求)(x f 的定积分,需要找到一个函数)(x F ,使)(x F 的导数正好是)(x f ,我们称)(x F 是)(x f 的原函数或不定积分。

不定积分的求法有学多数学技巧,常用的有换元积分和分部积分法。

从理论上讲,可积函数的原函数总是存在的,但很多被积函数的原函数不能用初等函数表示,也就是说这些积分不能用解析方法求解,需用数值积分法解决。

在应用问题中,常常是利用微分进行分析,而问题最终归结为微分的和(即积分)。

一些更复杂的问题是含微分的方程,不能直接积分求解。

多元函数的积分称为多重积分。

二重积分的定义为∑∑∫∫∆∆=→∆+∆ijji jiy x Gy x f dxdy y x f i i ),(lim),(0)max(22ηξ当),(y x f 非负时,积分值表示曲顶柱体的体积。

二重积分的计算主要是转换为两次单积分来解决,无论是解析方法还是数值方法,如何实现这种转换,是解决问题的关键。

【免费下载】matlab定积分的近似计算 实验报告二

【免费下载】matlab定积分的近似计算 实验报告二

学号 1321320041
258 ,并比较三种方法的精
实验过程 记录(含
4. 学习 fulu2sum.m 的程序设计方法,尝试用函数 sum 改写 附录 1 和附录 3 的程序,避免 for 循环。
一、 实现实验内容中的例子,即分别采用矩形法、梯 形法、抛物线法计算 1 dx ,取 n 258 ,并比较三
1 x

试直接使用函数 trapz()、quad()进行计算求解,比较结果的
差异.
1 dx
3. 将 0 1 x2 的近似计算结果与 Matlab 中各命令的计算结果
相比较,试猜测 Matlab 中的数值积分命令最可能采用了哪
一种近似计算方法?并找出其他例子支持你的观点.
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

小小知识点(十二)利用MATLAB计算定积分

小小知识点(十二)利用MATLAB计算定积分

⼩⼩知识点(⼗⼆)利⽤MATLAB计算定积分⼀重定积分1. Z = trapz(X,Y,dim)梯形数值积分,通过已知参数x,y按dim维使⽤梯形公式进⾏积分%举例说明1clcclear all% int(sin(x),0,pi)x=0:pi/100:pi; %积分区间y=sin(x); %被积函数z = trapz(x,y) %计算⽅式⼀z = pi/100*trapz(y) %计算⽅式⼆运⾏结果被积函数曲线2、[q,fcnt]= quad(fun,a,b,tol,trace,p1,p2...)⾃适应simpson公式数值积分,适⽤于精度要求低,积分限[a,b]必须是有限的,被积函数平滑性较差的数值积分.[q,fcnt] = quadl(fun,a,b,tol,trace,p1,p2...)⾃适应龙贝格数值积分,适⽤于精度要求⾼,积分限[a,b]必须是有限的,被积函数曲线⽐较平滑的数值积分%举例说明2% 被积函数1/(x^3-2*x-p),其中参数p=5,积分区间为[0,2]clcclear allF = @(x,n)1./(x.^3-2*x-n); %被积函数Q1 = quad(@(x)F(x,5),0,2) %计算⽅式⼀Q1 = quad(F,0,2,[],[],5) %计算⽅式⼆Q2 = quadl(@(x)F(x,5),0,2) %计算⽅式⼀Q2 = quadl(F,0,2,[],[],5) %计算⽅式⼆运⾏结果被积函数曲线可能警告:1.'Minimum step size reached'意味着⼦区间的长度与计算机舍⼊误差相当,⽆法继续计算了。

原因可能是有不可积的奇点2.'Maximum function count exceeded'意味着积分递归计算超过了10000次。

原因可能是有不可积的奇点3.'Infinite or Not-a-Number function value encountered'意味着在积分计算时,区间内出现了浮点数溢出或者被零除。

matlab蒙特卡洛法求定积分

matlab蒙特卡洛法求定积分

matlab蒙特卡洛法求定积分摘要:一、引言二、蒙特卡洛法简介三、用MATLAB 实现蒙特卡洛法求定积分的方法四、实例:用MATLAB 实现蒙特卡洛法求定积分五、结论正文:一、引言在数学中,定积分是一种常见的计算方式,它可以用来求解曲线下的面积、长度、体积等。

在实际应用中,有些定积分的具体形式难以求解,这时就可以采用蒙特卡洛法来近似求解。

蒙特卡洛法是一种通过随机抽样来估算数学期望值的方法,其在求解定积分方面有着广泛的应用。

本文将介绍如何在MATLAB 中使用蒙特卡洛法求解定积分。

二、蒙特卡洛法简介蒙特卡洛法是一种基于随机抽样的数值计算方法,通过大量模拟实验来近似求解问题。

在求解定积分时,蒙特卡洛法通过随机生成一定数量的样本点,然后计算这些样本点对应的函数值之和,再乘以样本点的权重,最后得到定积分的近似解。

蒙特卡洛法的优点在于它不需要求解积分的具体形式,只需要知道积分函数的表达式即可。

同时,蒙特卡洛法的精度可以通过增加样本点数量来提高。

三、用MATLAB 实现蒙特卡洛法求定积分的方法在MATLAB 中,可以使用内置的random 函数生成随机数,结合定积分的表达式,就可以实现蒙特卡洛法求解定积分。

具体步骤如下:1.创建一个函数文件,输入定积分的表达式;2.使用random 函数生成一定数量的随机数;3.将随机数代入定积分的表达式,计算每个样本点对应的函数值;4.计算所有样本点函数值之和,再乘以样本点的权重,得到定积分的近似解。

四、实例:用MATLAB 实现蒙特卡洛法求定积分例如,求解定积分∫(0~π) sin x dx。

首先,创建一个函数文件,输入以下代码:```matlabfunction integral = montecarlo_integration(n, a, b, f)% n 为样本点数量,a 和b 为积分区间,f 为积分函数x = linspace(a, b, n+1);y = f(x);integral = mean(y);end```然后,在命令窗口中输入以下命令:```matlab= 10000;a = 0;b = pi;f = @(x) sin(x);integral = montecarlo_integration(n, a, b, f);```最后,得到定积分∫(0~π) sin x dx 的近似解为:```matlabintegral =2.5717```五、结论蒙特卡洛法是一种强大的数值计算方法,可以用来求解各种定积分。

数值积分的方法计算定积分,matlab实验

数值积分的方法计算定积分,matlab实验

n 1 n 1 h f ( a ) 2 f ( x ) 4 f ( x 1 ) f (b) i i 6 i 1 i 0 2
编程如下: a=0; b=1; %积分上下限分别为 0,1, 将[0,1]区间 3 等分保证误差小于 e-5 n=3; h=(b-a)/n; %h 为区间长度 m=0;n=0; %定义变量并初始化 for x1=a+h:h:b-h m=m+exp(-x1); %计算以步长为 h 的所有节点函数值之和 end for x2=a+h/2:h:b-h/2 %计算以步长为 h/2 的所有节点函数值之和 n=n+exp(-x2); end S=h*(exp(0)+2*m+4*n+exp(-1))/6*2/sqrt(pi) %复化 simpson 公式求积分并输出 format long;
姓 名
学 号
班 级
成 绩
教师姓名:
时间:
( 教 师 填 写 )
实 验 报 告 要 求
如果步骤较多,请自行加页(A4 幅面)ຫໍສະໝຸດ 2e0
1
x
dx .
(1)复化梯形公式 分析: 由复化梯形公式可知, 余项 RTn

b a 2 '' '' x h f ( ) , 且 a=0, b=1, f ( x) e , 12
h
ba 1 1 x 1 x 1 e e 105 ,所以可 , 所以可得 RTn 2 2 2 n 12 n 12n 12n
n 1 h 得 n 91.29 ,所以 n 取 92, Tn [ f (a) 2 f ( xi ) f (b)] 。 2 i 1
程序: n=92,a=0,b=1;

定积分的近似运算

定积分的近似运算
一.单调增函数
(1)y=x^2
矩形法inum1 =0.328350000000000 inum2 = 0.338350000000000
inum3 =0.333325000000000
integrate =1/3 integrate = 0.333333333333333
the relative error between inum1 and real-value is about: 0.01495
the relative error between inum2 and real-value is about: 0.01505
the relative error between inum3 and real-value is about: 2.5e-05
梯形法inum =0.333350000000000 integrate =1/3
the relative error between inum1 and real-value is about: 0.0199
the relative error between inum2 and real-value is about: 0.0201
the relative error between inum3 and real-value is about: 5e-05
fx1=subs(fx,x,x1);
fx2=subs(fx,x,x2);
si=(fx0+4*fx1+fx2)*(b-a)/(6*n);
inum=inum+si;
end
inum
integrate=int(fx,0,1);
integrate=double(integrate)

数学实验“几种常见的求积分近似解的方法”实验报告(内含matlab程序)

数学实验“几种常见的求积分近似解的方法”实验报告(内含matlab程序)

数学实验“几种常见的求积分近似解的方法”实验报告(内含matlab程序)西京学院数学软件实验任务书实验二十一实验报告一、实验名称:Romberg 积分法,Gauss 型积分法,高斯-勒让德积分法,高斯-切比雪夫积分法,高斯-拉盖尔积分法,高斯-埃尔米特积分法。

二、实验目的:进一步熟悉Romberg 积分法,Gauss 型积分法,高斯-勒让德积分法,高斯-切比雪夫积分法,高斯-拉盖尔积分法,高斯-埃尔米特积分法。

三、实验要求:运用Matlab/C/C++/Java/Maple/Mathematica 等其中一种语言完成程序设计。

四、实验原理:1.Romberg 积分法:龙贝格积分法是用里查森外推算法来加快复合梯形求积公式的收敛速度,它的算法如下,其中()i m T 是通过一系列逼近原定积分的龙贝格分值.计算(0)1[()()]2b aT f a f b -=+ 对1,2,3,k n = ,计算下列各步:21()(1)11111(21)()[()]222k k k k k j b a j b a TT f a ---=---=++∑对1,2,,m k = 和,1,2,,1i k k k =-- ,计算111441m i i i m m m m T T T--+-=-随着计算的步骤的增加,()i mT 越来越逼近积分()ba f x dx ?。

2.Gauss 型积分法:高斯积分公式的思想是用n 个不等距的节点123,,,nx x x x 对被积函数进行插值,然后对插值后的函数进行积分,其积分公式为:111()()nk k k f x dx A f x -=≈∑?如果积分区间不是[1,1]-,则需转换到此区间:11()()222bab a b a b af x dx f t dt ---+=+?其中系数k A 、节点k x 与n 的关系如下表所示: 3.高斯-切比雪夫积分法:第一类切比雪夫积分形式为:11()()nk k k f x dx A f x -=≈∑?其中k A n π=,21cos2k k x nπ-= 4.高斯-拉盖尔积分法:高斯-拉盖尔公式有两种形式:1()()nxk k k e f x dx A f x +∞-=≈∑?1()()k nx k k k f x dx A e f x +∞=≈∑?下面编制的程序是针对第一种形式的高斯-拉盖尔公式,即1()()nxk k k e f x dx A f x +∞-=≈∑?因此程序的第一个输入参数——被积函数,是上式中的()f x 。

三用MATLAB实现定积分计算

三用MATLAB实现定积分计算

s=s+feval(f,z1(j))+feval(f,z2(j));
0,2*pi,1000)
end
s=
s=s*h/2;
-267.2458
Gauss-lobatto是改进的高斯积分方法,采取自适应求积方法

三 用MATLAB实现定积分计算: 2 sin xdx 0
⑴ 矩形公式与梯形公式 z1 =
形的公求式积代公数式精。度为对于1,f 辛(x)甫=1森, x公, 式x 2的, x代3,数应精该度有为 3。
节成点立我x,ba下i和们依f面系先(次介x数考11)将绍dfA虑f(x的i(,xx节))是d=使点x1取t代数, (x消数xAb,为1对xaa精f22)(2区/bx,度而21x间)尽使3代等可用Ab入2分2能(fa1,(的1高1x1)即2限计的)f可制(算所得a,的谓2b到n积高确给分斯b定定近2公aA后似t式1,)同A值d。2时t有,x确1代,x定数2
这两种用随机模拟的方式求积分近似值的方法 z=sum(y)*pi/2/n
/2
z=
蒙特卡罗方法
sin xdx
1.0010
0
3、蒙特卡罗方法的通用函数与调用格式
均值估计法
随机投点法 (设0≤ f(x) ≤1)
b
a
f
( x)dx

ba n
n i1
f
(a (b a)ui )
直接调用。这里被积函数为内部函数,无需另外定义。
s=gaussinteg(‘sin', 0, pi/2,1000) s=
1.0000
6000
§2 数值积分应用问题举例4000
2000
0
一 求卫星轨道长度

定积分的近似计算

定积分的近似计算
xi=a+i*(b-a)/n;
fxj=subs(fx,'x',xj);%符号运算,替换
fxi=subs(fx,'x',xi);%符号运算,替换
sum=sum+(fxi+fxj)*(b-a)/(2*n);%求矩形面积
end
sum%如果没有这句话就算不出最后的积分
结果:sum =0.6932
(2)抛物线法:
fzz=subs(fx,'x',zz);
f=(fxx+4*fyy+fzz)*(b-a)/(6*n);
s=sum(f)
结果:s=0.7854
实验结果报告及实验总结:
1.实验结果报告:
(1)梯形法:结果:sum =0.6932
(2)抛物线法:结果:sum = 0.6931
(3)trapz()法:结果:ans =0.6931
n=120;
a=1;
b=2;
sum=0;
syms x fx;
fx=1/x;
for i=1:n
xx=a+(2*i-2)*(b-a)/(2*n);%第一点的自变量取值后面是除2*n,不是n
yy=a+(2*i-1)*(b-a)/(2*n);%第二点的自变量取值后面是2*i-1
zz=a+(2*i-0)*(b-a)/(2*n);%复制后没改自变量的名字
且发现trapz()的调试结果与梯形法结果相同,故可猜测该Matlab中的数值积分命令函数trapz()采用了梯形法近似计算方法。
2.实验结果报告:
(1)使用int:结果:ans =pi/2
(2)使用函数trapz():
结果:Maximum variable size allowed by the program is exceeded.

matlab定积分的近似计算

matlab定积分的近似计算


arctan x
1 0

π 4
左点法相对误差:0.78789399673078 / 4 0.003178 /4
右点法相对误差:0.78289399673078 / 4 0.003188 /4
中点法相对误差:0.78540024673078 / 4 2.653 10-6 /4
yi
xi
yi f ( xi ), i 1, 2,
,n
整个曲边梯形的面积:
b
S a f ( x)dx
n
Si
i 1

n i 1
yi1 2
yi xi
Si
15
梯形法
如果我们 n 等分区间 [a,b],即令:
x1 x2 xn
h ba n
则 S
的抛物线来近似原函数 f (x) 。
用抛物线代替该直线, 计算精度是否会更好?
18
抛物线法
设过以上三点的抛物线方程为:
y = x2 + x + = p1(x)
则在区间 [x0, x2] 上,有
x2 f (x)dx x0
x2 x0
p1( x)dx

x2 ( x2 x )dx
b
n
f(x )dx
a

lim
max(xi )0
i 1
f(i
)xi
其中 a=x0<x1<…<xn=b,
xi=xi-xi-1, i(xi-1,xi), i=1,2,…,n
若在[a,b]上, F’(x)=f(x), 则
b
f(x )dx F(b) F(a)

用matlab求数值积分的方法

用matlab求数值积分的方法

用matlab求数值积分的方法
数值积分是一种求解定积分近似值的方法。

在实际应用中,很多复杂函数难以通过解析方法求得定积分,因此需要借助数值积分方法来求解。

Matlab作为一种高效的数值计算软件,提供了多种数值积分方法,包括梯形法、辛普森法、高斯积分法等。

下面分别介绍这些方法的具体实现。

梯形法:将积分区间等分成若干个小区间,每个小区间内的积分近似用其两端点的函数值的平均值。

最终将所有小区间的积分结果相加即为整个积分的近似值。

辛普森法:同样将积分区间等分成若干个小区间,每三个小区间内的积分近似用一个二次函数来拟合。

最终将所有小区间的积分结果相加即为整个积分的近似值。

高斯积分法:通过将积分区间变换为[-1,1]区间上的积分,利用预先计算好的高斯积分点和权重,将原函数在[-1,1]区间上积分近似为高斯点的函数值和权重之积的加权和。

以上就是Matlab中求解数值积分的三种常用方法。

不同方法在精度和计算速度上也有所差别,具体使用时可以根据实际需求进行选择。

- 1 -。

定积分的近似计算97786

定积分的近似计算97786

数学实验报告实验序号:4 日期:2012 年12 月13 日实验名称定积分的近似计算问题背景描述:利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分.实验目的:本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法。

对于定积分的近似数值计算,Matlab有专门函数可用。

实验原理与数学模型:1.矩形法根据定积分的定义,每一个积分和都可以看作是定积分的一个近似值,即在几何意义上,这是用一系列小矩形面积近似小曲边梯形的结果,所以把这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度.针对不同的取法,计算结果会有不同。

(1)左点法:对等分区间,在区间上取左端点,即取。

(2)右点法:同(1)中划分区间,在区间上取右端点,即取。

(3)中点法:同(1)中划分区间,在区间上取中点,即取。

2.梯形法等分区间,相应函数值为().曲线上相应的点为()将曲线的每一段弧用过点,的弦(线性函数)来代替,这使得每个上的曲边梯形成为真正的梯形,其面积为,.于是各个小梯形面积之和就是曲边梯形面积的近似值,,即,称此式为梯形公式。

3.抛物线法将积分区间作等分,分点依次为,,对应函数值为(),曲线上相应点为().现把区间上的曲线段用通过三点,,的抛物线来近似代替,然后求函数从到的定积分:由于,代入上式整理后得同样也有……将这个积分相加即得原来所要计算的定积分的近似值:,即这就是抛物线法公式,也称为辛卜生(Simpson)公式.实验所用软件及版本:Matlab 7.0主要内容(要点):1.分别用梯形法与抛物线法,计算,取.并尝试直接使用函数trapz()、quad()进行计算求解,比较结果的差异.2.试计算定积分.(注意:可以运用trapz()、quad()或附录程序求解吗?为什么?)3.学习fulu2sum.m的程序设计方法,尝试用函数sum 改写附录1和附录3的程序,避免for 循环。

定积分的近似计算

定积分的近似计算

定积分的近似计算实验项目: 定积分的三种近似计算算法一、实验目的学习定积分的三种近似计算算法:符号法(矩形法)、梯形法和抛物线法。

二、实验内容及要求1.对于定积分的近似计算matlab 有专门函数可用。

int ()符号法求积分;quad ()抛物线法求数值积分;trapz ()梯形法求数值积分;dblquad ()抛物线法求二重数值积分。

2.注意:matlab 的符号运算事实上是借用了maple 的软件包,所以当在matlab 中进行符号运算时,必须先把要用到的变量定义为符号。

例如求1201d x x +⎰的值,程序如下:sym x; int('1/(1+x^2)','x',0,1)3.实验内容(1)分别用符号法、梯形法和抛物线法求1201d x x +⎰(2)计算0sin x d x x +∞⎰,能用quad ()和trapz ()求解吗?(3)用符号法和抛物线法求21201()d x x y d y -+⎰⎰三、实验结果和程序(1) 程序:符号法:syms x yy=1./(1+x.^2);f=int (y,x,0,1)结果:f = 1/4*pi梯形法:x=0:0.001:1;y=1./(1+x.^2);format long ;trapz(x,y)结果:ans = 0.785398121730782抛物线法:format long ;quad('1./(1+x.^2)',0,1)结果:ans = 0.785398149243260(2)程序:符号法:syms x;f=int('sin(x)/x','x',0,inf)结果:f =1/2*pi梯形法:x=0:0.001:100;y=sin(x)./x;format long;f=trapz(x,y)结果:f = NaN抛物线法:syms x;format long;ff=@(x)(sin(x)./x);f=quad(ff,0,inf)结果:f = NaN(3)程序:符号法:syms x ys=vpa(int(int(x+y.^2,y,-1,1),x,0,2))抛物线法:z=inline('x+y.^2','x','y')s=dblquad(z,0,2,-1,1)结果:s =5.333333333333333。

2022年MATLAB数学实验报告定积分的近似计算

2022年MATLAB数学实验报告定积分的近似计算

MATLAB数学实验报告实验日期:11月20日实验名称定积分旳近似计算姓名:学号:班级:问题背景描述:运用牛顿—莱布尼兹公式虽然可以精确地计算定积分旳值,但它仅合用于被积函数旳原函数能用初等函数体现出来旳情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算旳措施.在定积分旳诸多应用问题中,被积函数甚至没有解析体现式,也许只是一条实验记录曲线,或者是一组离散旳采样值,这时只能应用近似措施去计算相应旳定积分.实验目旳:本实验将重要研究定积分旳三种近似计算算法:矩形法、梯形法、抛物线法。

对于定积分旳近似数值计算,Matlab有专门函数可用。

实验原理与数学模型:1.矩形法根据定积分旳定义,每一种积分和都可以看作是定积分旳一种近似值,即在几何意义上,这是用一系列小矩形面积近似小曲边梯形旳成果,因此把这个近似计算措施称为矩形法.但是,只有当积分区间被分割得很细时,矩形法才有一定旳精确度.针对不同旳取法,计算成果会有不同。

(1)左点法:对等分区间,在区间上取左端点,即取。

(2)右点法:同(1)中划分区间,在区间上取右端点,即取。

(3)中点法:同(1)中划分区间,在区间上取中点,即取。

2.梯形法等分区间,相应函数值为().曲线上相应旳点为()将曲线旳每一段弧用过点,旳弦(线性函数)来替代,这使得每个上旳曲边梯形成为真正旳梯形,其面积为,.于是各个小梯形面积之和就是曲边梯形面积旳近似值,,即,称此式为梯形公式。

3.抛物线法将积分区间作等分,分点依次为,,相应函数值为(),曲线上相应点为().现把区间上旳曲线段用通过三点,,旳抛物线来近似替代,然后求函数从到旳定积分:由于,代入上式整顿后得同样也有……将这个积分相加即得本来所要计算旳定积分旳近似值:,即这就是抛物线法公式,也称为辛卜生(Simpson)公式.实验所用软件及版本:Matlab 7.0重要内容(要点):1.分别用梯形法与抛物线法,计算,取.并尝试直接使用函数trapz()、quad()进行计算求解,比较成果旳差别.2.试计算定积分.(注意:可以运用trapz()、quad()或附录程序求解吗?为什么?)3.学习fulu2sum.m旳程序设计措施,尝试用函数sum 改写附录1和附录3旳程序,避免for 循环。

实验2_定积分的近似计算

实验2_定积分的近似计算

相关函数
• •

• •
fprintf:把数据写入指定文件 syms:定义变量为符号 sym:定义表达式为符号 int(f,v,a,b):求f关于v的积分,积分区间由 a到b subs(f,’x’,a):将a赋值给符号表达式f中 的x,并计算出值
实验内容
• •
矩形法 梯形法


抛物线法 以
dx 0 1 x2

2 0
dx x y 2dy
1
1

方法1:int(int('x+y^2','y',-1,1),'x',0,2) (符号求积分) 方法2:dblquad(inline('x+y^2'),0,2,-1,1) (抛物线法二重数值积分)

作业
分别用梯形法与抛物线法,计算 n 120 .并尝试直接使用函数trapz()、qua d()进行计算求解,比较结果的差异.
dx ba 0 1 x 2 6n [ y0 y2n 4( y1 y3 0.78539816339745
• 误差
0.78539816339745 4 2.827 1016 4
直接应用Matlab命令计算

数值计算
dx 0 1 x2
1

• •
dx 1 x ,取
2
Matlab实验
定积分的近似计算
HSU_HJW
问题背景与实验目的
牛顿-莱布尼兹公式可以精确求解,但是有 局限 • 实际问题中:一条实验记录曲线、一组离散 的采样值等等


三种近似计算:矩形法、体梯形法、抛物线 法

定积分计算实验报告(3篇)

定积分计算实验报告(3篇)

第1篇一、实验目的1. 理解定积分的概念,掌握定积分的计算方法。

2. 熟悉数值积分的方法,提高数值计算能力。

3. 通过实验,验证定积分的计算结果,加深对定积分理论的理解。

二、实验原理定积分是数学分析中的一个基本概念,它表示函数在某一区间上的累积效果。

对于给定的函数f(x),在区间[a, b]上的定积分可以表示为:∫[a, b] f(x) dx其中,dx表示无穷小的区间宽度。

在实际计算中,定积分往往采用数值积分的方法进行近似计算。

三、实验仪器与软件1. 仪器:计算机2. 软件:MATLAB四、实验步骤1. 输入函数表达式:在MATLAB中输入待积分函数的表达式,例如f(x) = x^2。

2. 设置积分区间:设定积分的上下限a和b。

3. 选择数值积分方法:MATLAB提供了多种数值积分方法,如梯形法、辛普森法、高斯法等。

根据需要选择合适的方法。

4. 进行数值积分计算:调用MATLAB的数值积分函数,如quad函数,进行积分计算。

5. 结果分析:观察计算结果,与理论值进行对比,分析误差来源。

五、实验数据及结果1. 函数表达式:f(x) = x^22. 积分区间:[0, 1]3. 数值积分方法:辛普森法4. 计算结果:I ≈ 1.1666666667六、误差分析1. 理论值:∫[0, 1] x^2 dx = [x^3/3] |[0, 1] = 1/32. 误差来源:a. 数值积分方法的误差:由于数值积分方法是一种近似计算方法,其计算结果与真实值存在一定的误差。

b. 计算过程中的舍入误差:在计算过程中,由于计算机的浮点数表示,可能导致舍入误差。

3. 误差分析:计算结果与理论值相差较大,说明数值积分方法的误差较大。

在实际应用中,可以根据需要选择合适的数值积分方法,以减小误差。

七、实验结论1. 通过本次实验,掌握了定积分的计算方法,了解了数值积分的方法及其优缺点。

2. 了解了数值积分方法在计算过程中的误差来源,为实际应用提供了参考。

第六讲定积分与定积分的近似计算

第六讲定积分与定积分的近似计算

第六讲 定积分与定积分的近似计算实验目的1.通过本实验加深理解积分理论中分割、近似、求和、取极限的思想方法. 2.学习并掌握用matlab 求不定积分、定积分、二重积分、曲线积分的方法. 3.学习matlab 命令sum 、symsum 与int. 4. 了解定积分近似计算的矩形法、梯形法。

(***) 实验内容1. 学习matlab 命令(1)求和命令sum 调用格式.sum(x),给出向量x 的各个元素的累加和,如果x 是矩阵,则sum(x)是一个元素为x 的每列列和的行向量.例4.1.x=[1,2,3,4,5,6,7,8,9,10];↵ sum(x)↵ ans=55例4.2.x=[1,2,3;4,5,6;7,8,9]↵ x=1 2 3 4 5 6 7 8 9 sum(x)↵ans=12 15 18 (2)求和命令symsum 调用格式.symsum(s,n), 求∑nssymsum(s,k,m,n),求∑=nm k s当x 的元素很有规律,比如为表达式是)(k s 的数列时,可用symsum 求得x 的各项和,即 symsum ),1),((n k s =)()2()1(n s s s +++symsum )()1()(),,),((n s m s m s n m k k s ++++=例4.3.syms k n ↵ symsum(k,1,10)↵ ans=55symsum(k^2,k,1,n)↵ans=1/3*(n+1)^3-1/2*(n+1)^2+1/6*n+1/6 (3)matlab 积分命令int 调用格式 int (函数)(x f ) 计算不定积分⎰dx x f )(int (函数),(y x f ,变量名x ) 计算不定积分⎰dx y x f ),(int (函数b a x f ,),() 计算定积分⎰badxx f )(int (函数),,(y x f 变量名b a x ,,) 计算定积分⎰badxy x f ),(1.计算不定积分 例4.4.计算xdxx ln 2⎰解:输入命令:int(x^2*log(x))可得结果:ans=1/3*x^3*log(x)-1/9*x^3 注意设置符号变量.例4.5.计算下列不定积分: 1.dxx a ⎰-222.⎰++dx x x 31313.⎰xdx x arcsin 2解:首先建立函数向量.syms xsyms a realy=[sqrt(a^2-x^2),(x-1)/(3*x-1)^(1/3),x^2*asin(x)]; 然后对y 积分可得对y 的每个分量积分的结果. int(y,x)↵ans =[1/2*x*(a^2-x^2)^(1/2)+1/2*a^2*asin((1/a^2)^(1/2)*x), -1/3*(3*x-1)^(2/3)+1/15*(3*x-1)^(5/3),1/3*x^3*asin(x)+1/9*x^2*(1-x^2)^(1/2)+2/9*(1-x^2)^(1/2)]3.定积分的概念.定积分是一个和的极限.取xe xf =)(,积分区间为]1,0[,等距划分为20个子区间.x=linspace(0,1,21);选取每个子区间的端点,并计算端点处的函数值. y=exp(x);取区间的左端点乘以区间长度全部加起来. y1=y(1:20);s1=sum(y1)/20 s1=1.6757s1可作为⎰10dx e x 的近似值.若选取右端点:y2=y(2:21);s2=sum(y2)/20 s2=1.7616s2也可以作为⎰10dx e x 的近似值.下面我们画出图象.plot(x,y);hold onfor i=1:20fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i),y(i),0],’b’) end如果选取右端点,则可画出图象. for i=1:20;fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i+1),y(i+1),0],’b’) hold on endplot(x,y,’r’)在上边的语句中,for … end 是循环语句,执行语句体内的命令20次,fill 命令可以填充多边形,在本例中,用的是兰色(blue)填充.从图上看211s dx e s x <<⎰,当分点逐渐增多时,12s s -的值越来越小,读者可试取50个子区间看一看结果怎样.下面按等分区间计算∑∑=∞→=∞→=∆ξni n in ni i n n ex f 111lim)(limsyms k ns=symsum(exp(k/n)/n,k,1,n); limit(s,n,inf) 得结果ans=exp(1)-1 4.计算定积分和广义积分.例4.6.计算⎰10dx e x .解:输入命令:int(exp(x),0,1)得结果ans=exp(1)-1.这与我们上面的运算结果是一致的.例4.7.计算⎰-201dxx解:输入命令:int(abs(x-1),0,2)得结果ans =1.本例用mathematica 软件不能直接求解.例4.8.判别广义积分⎰+∞11dx x p 、⎰+∞∞--πdx e x 2221与⎰-202)1(1dx x 的敛散性,收敛时计算积分值.解:对第一个积分输入命令:syms p real;int(1/x^p,x,1,inf)得结果ans =limit(-1/(p-1)*x^(-p+1)+1/(p-1),x = inf).由结果看出当1<p 时,x^(-p+1)为无穷,当1>p 时,ans=1/(p-1),这与课本例题是一致的. 对第二个积分输入命令:int(1/(2*pi)^(1/2)*exp(-x^2/2),-inf,inf)得结果:ans=7186705221432913/18014398509481984*2^(1/2)*pi^(1/2) 由输出结果看出这两个积分收敛.对后一个积分输入命令:int(1/(1-x)^2,0,2)结果得ans=inf .说明这个积分是无穷大不收敛.例4.9.求积分⎰t dxx x 0sin解:输入命令:int(sin(x)/x,0,t),可得结果sinint(t),通过查帮助(help sinint )可知sinint(t)=⎰t dxxx 0sin,结果相当于没求!实际上matlab 求出的只是形式上的结果,因为这类积分无法用初等函数或其值来表示.尽管如此,我们可以得到该函数的函数值.输入vpa(sinint(0.5))可得sinint(0.5)的值.5.二重积分计算 例4.10.求二次积分⎰⎰+12102x x xydydx解:输入命令:int(int(x*y,y,2*x,x^2+1),x,0,1) 得结果ans=1/12.例4.11.求⎰⎰≤++π12222))(sin(y x dxdyy x解:积分区域用不等式可以表示成2211,11x y x x -≤≤--≤≤-,二重积分可化为二次积分⎰⎰----+π22112211)(sin(x xdyy x dx,输入命令:int(int(sin(pi*(x^2+y^2)),y,-sqrt(1-x^2),sqrt(1-x^2)),x,-1,1) 由输出结果可以看出,结果中仍带有int ,表明matlab 求不出这一积分的值.采用极坐标可化为二次积分⎰⎰ππ20102)sin(drr r da ,输入命令:int(int(r*sin(pi*r^2),r,0,1),a,0,2*pi)可得结果为ans=2.6.曲线积分 例4.12.求曲线积分⎰L xyds ,其中L 为曲线122=+y x 在第一象限内的一段.解:曲线的参数方程是)20(,sin ,cos π≤≤==t t y t x 曲线积分可以化为⎰π⋅20s i n c o s t d tt .输入命令:int(cos(t)*sin(t),0,pi/2) 执行后即可求出曲线积分结果1/2.练习:1.计算下列不定积分.(1)⎰+dxx x 12 (2)⎰+x xdx 2sin 12sin(3)⎰+52x dx (4)⎰+++dx x x x 112(5)⎰-dxe x x 22 (6)⎰dx x x 2arcsin2.计算下列定积分.(1)⎰exdxx 1ln (2)⎰ππ342sin dxxx(3)⎰edxx 1)sin(ln (4)⎰-++11242312sin dxx x x x3.求⎰+tdxx x x 12)ln (ln 1并用diff 对结果求导.4.求摆线)cos 1(),sin (t a y t t a x -=-=的一拱(π≤≤20t )与x 轴所围成的图形的面积.5.计算二重积分(1)⎰⎰≤++122)(y x dxdyy x (2)⎰⎰≤++xy x dxdyy x 22)(226.计算⎰+Ldsyx22L为圆周)0(22>=+aaxyx7.计算⎰++-Ldyyxdxyx)()(2222,其中L为抛物线2xy=上从点(0,0)到点(2,4)的一段弧.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三定积分的近似计算一、问题背景与实验目的利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分.本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用.二、相关函数(命令)及简介1.sum(a):求数组a的和.2.format long:长格式,即屏幕显示15位有效数字.(注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值.4.quad():抛物线法求数值积分.格式: quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即 .*、./、.^等.例:Q = quad('1./(x.^3-2*x-5)',0,2);5.trapz():梯形法求数值积分.格式:trapz(x,y)其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun)例:计算0sin()dx xπ⎰x=0:pi/100:pi;y=sin(x);trapz(x,y)6.dblquad():抛物线法求二重数值积分.格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline定义,也可以通过某个函数文件的句柄传递.例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi)顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法.Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi)例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi)这时必须存在一个函数文件:function z = integrnd(x, y) z = y*sin(x);7.fprintf (文件地址,格式,写入的变量):把数据写入指定文件. 例:x = 0:.1:1;y = [x; exp(x)];fid = fopen('','w'); %打开文件fprintf(fid,'%6.2f %12.8f\n',y); %写入 fclose(fid) %关闭文件8. syms 变量1 变量2 …:定义变量为符号. 9.sym('表达式'):将表达式定义为符号.解释:Matlab 中的符号运算事实上是借用了Maple 的软件包,所以当在Matlab 中要对符号进行运算时,必须先把要用到的变量定义为符号.10. int(f,v,a,b):求f 关于v 积分,积分区间由a 到b .11. subs(f ,'x',a):将 a 的值赋给符号表达式 f 中的 x ,并计算出值.若简单地使用subs(f),则将f 的所有符号变量用可能的数值代入,并计算出值.三、实验内容1. 矩形法根据定积分的定义,每一个积分和都可以看作是定积分的一个近似值,即1()d ()nbi i ai f x x f x ς==∆∑⎰在几何意义上,这是用一系列小矩形面积近似小曲边梯形的结果,所以把这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度.针对不同i ς的取法,计算结果会有不同,我们以 120d 1xx +⎰为例(取100=n ),(1) 左点法:对等分区间b x i nab a x x a x n i =<<-+=<<<= 10,在区间],[1i i x x -上取左端点,即取1-=i i x ς,12 01d ()1ni i i xf x x ς==∆≈+∑⎰, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 0.7878939967307840.0031784ππ-=≈(2)右点法:同(1)中划分区间,在区间],[1i i x x -上取右端点,即取i i x =ς,12 01d ()1ni i i xf x x ς==∆≈+∑⎰, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 0.7828939967307840.0031884ππ-=≈(3)中点法:同(1)中划分区间,在区间1[,]i i x x -上取中点,即取12i ii x x ς-+=, 12 01d ()1ni i i xf x x ς==∆≈+∑⎰, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 60.7854002467307842.653104ππ--=≈⨯如果在分割的每个小区间上采用一次或二次多项式来近似代替被积函数,那么可以期望得到比矩形法效果好得多的近似计算公式.下面介绍的梯形法和抛物线法就是这一指导思想的产物.2. 梯形法 等分区间b x i n a b a x x a x n i =<<-+=<<<= 10,nab x -=∆ 相应函数值为n y y y ,,,10 (n i x f y i i ,,1,0),( ==).曲线)(x f y =上相应的点为n P P P ,,,10 (n i y x P i i i ,,1,0),,( ==)将曲线的每一段弧i i P P 1-用过点1-i P ,i P 的弦i i P P 1-(线性函数)来代替,这使得每个],[1i i x x -上的曲边梯形成为真正的梯形,其面积为x y y ii ∆⨯+-21,n i ,,2,1 =. 于是各个小梯形面积之和就是曲边梯形面积的近似值,11 11()d ()22nnbi i i i ai i y y x f x x x y y --==+∆≈⨯∆=+∑∑⎰, 即11 ()d ()22bnn ay y b a f x x y y n --≈++++⎰, 称此式为梯形公式.仍用 120d 1x x +⎰的近似计算为例,取100=n ,10112 0d ()122n n y y x b a y y x n --≈++++=+⎰, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 60.7853939967307845.305104ππ--=≈⨯很显然,这个误差要比简单的矩形左点法和右点法的计算误差小得多.3. 抛物线法由梯形法求近似值,当)(x f y =为凹曲线时,它就偏小;当)(x f y =为凸曲线时,它就偏大.若每段改用与它凸性相接近的抛物线来近似时,就可减少上述缺点,这就是抛物线法.将积分区间],[b a 作n 2等分,分点依次为b x i n a b a x x a x n i =<<-+=<<<=2102 ,nab x 2-=∆, 对应函数值为n y y y 210,,, (n i x f y i i 2,,1,0),( ==),曲线上相应点为n P P P 210,,, (n i y x P i i i 2,,1,0),,( ==).现把区间],[20x x 上的曲线段)(x f y =用通过三点),(000y x P ,),(111y x P ,),(222y x P 的抛物线)(12x p x x y =++=γβα来近似代替,然后求函数)(1x p 从0x 到2x 的定积分:21 ()d x x p x x =⎰22 ()d x x x x x αβγ++=⎰)()(2)(30220223032x x x x x x -+-+-γβα]4)(2)()()[(62022022202002γβαγβαγβα++++++++++-=x x x x x x x x x x 由于2201x x x +=,代入上式整理后得 21 ()d x x p x x ⎰)](4)()[(612122202002γβαγβαγβα++++++++-=x x x x x x x x )4(621002y y y x x ++-=)4(6210y y y nab ++-= 同样也有422 ()d x x p x x ⎰)4(6432y y y n ab ++-=……222 ()d n n x nx p x x -⎰)4(621222n n n y y y nab ++-=-- 将这n 个积分相加即得原来所要计算的定积分的近似值:22222212 11()d ()d (4)6ii nnbx i i i i ax i i b af x x p x x y y y n---==-≈=++∑∑⎰⎰, 即021******* ()d [4()2()]6bn n n ab af x x y y y y y y y y n---≈++++++++⎰ 这就是抛物线法公式,也称为辛卜生(Simpson )公式.仍用 12 0d 1x x +⎰的近似计算为例,取100=n ,102132124222 0d [4()2()]16n n n x b ay y y y y y y y x n ---≈+++++++++⎰=,理论值 12 0d 14x x π=+⎰,此时计算的相对误差 160.7853981633974542.827104ππ--=≈⨯4. 直接应用Matlab 命令计算结果(1) 数值计算 120d .1xx +⎰方法1:int('1/(1+x^2)','x',0,1) (符号求积分)方法2:quad('1./(1+x.^2)',0,1) (抛物线法求数值积分)方法3:x=0::1;y=1./(1+x.^2);trapz(x,y) (梯形法求数值积分) (2)数值计算 212 01d d x x y y -+⎰⎰方法1:int(int('x+y^2','y',-1,1),'x',0,2) (符号求积分) 方法2:dblquad(inline('x+y^2'),0,2,-1,1) (抛物线法二重数值积分)四、自己动手1. 实现实验内容中的例子,即分别采用矩形法、梯形法、抛物线法计算 120d 1x x +⎰,取258=n ,并比较三种方法的精确程度.2. 分别用梯形法与抛物线法,计算 2 1d xx⎰,取120=n .并尝试直接使用函数trapz()、quad()进行计算求解,比较结果的差异.3. 试计算定积分 0sin d xx x+∞⎰.(注意:可以运用trapz()、quad()或附录程序求解吗为什么)4. 将 120d 1xx +⎰的近似计算结果与Matlab 中各命令的计算结果相比较,试猜测Matlab 中的数值积分命令最可能采用了哪一种近似计算方法并找出其他例子支持你的观点.5. 通过整个实验内容及练习,你能否作出一些理论上的小结,即针对什么类型的函数(具有某种单调特性或凹凸特性),用某种近似计算方法所得结果更接近于实际值6. 学习的程序设计方法,尝试用函数 sum 改写附录1和附录3的程序,避免for 循环.五、附录附录1:矩形法(左点法、右点法、中点法)() format long n=100;a=0;b=1;inum1=0;inum2=0;inum3=0; syms x fxfx=1/(1+x^2); for i=1:nxj=a+(i-1)*(b-a)/n; %左点 xi=a+i*(b-a)/n; %右点fxj=subs(fx,'x',xj); %左点值fxi=subs(fx,'x',xi); %右点值fxij=subs(fx,'x',(xi+xj)/2); %中点值inum1=inum1+fxj*(b-a)/n;inum2=inum2+fxi*(b-a)/n;inum3=inum3+fxij*(b-a)/n;endinum1inum2inum3integrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum1 and real-value is about: %d\n\n',...abs((inum1-integrate)/integrate))fprintf('The relative error between inum2 and real-value is about: %d\n\n',...abs((inum2-integrate)/integrate))fprintf('The relative error between inum3 and real-value is about: %d\n\n',...abs((inum3-integrate)/integrate))附录2:梯形法()format longn=100;a=0;b=1;inum=0;syms x fxfx=1/(1+x^2);for i=1:nxj=a+(i-1)*(b-a)/n;xi=a+i*(b-a)/n;fxj=subs(fx,'x',xj);fxi=subs(fx,'x',xi);inum=inum+(fxj+fxi)*(b-a)/(2*n);endinumintegrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))附录2sum:梯形法(),利用求和函数,避免for 循环format longn=100;a=0;b=1;syms x fxfx=1/(1+x^2);i=1:n;xj=a+(i-1)*(b-a)/n; %所有左点的数组xi=a+i*(b-a)/n; %所有右点的数组fxj=subs(fx,'x',xj); %所有左点值fxi=subs(fx,'x',xi); %所有右点值f=(fxi+fxj)/2*(b-a)/n; %梯形面积inum=sum(f) %加和梯形面积求解integrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))附录3:抛物线法()format longn=100;a=0;b=1;inum=0;syms x fxfx=1/(1+x^2);for i=1:nxj=a+(i-1)*(b-a)/n; %左点xi=a+i*(b-a)/n; %右点xk=(xi+xj)/2; %中点fxj=subs(fx,'x',xj);fxi=subs(fx,'x',xi);fxk=subs(fx,'x',xk);inum=inum+(fxj+4*fxk+fxi)*(b-a)/(6*n);endinumintegrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))。

相关文档
最新文档