第四章微粒分散体系PPT课件
第四章_微粒分散体系
分子的真溶液则是透射光为主,同样观察不到乳光。
当一束光线在暗室通过胶粒分散系,在其侧面 可看到明显的乳光,即Tyndall现象。丁铎尔 现象是微粒散射光的宏观表现。
低分子溶液—透射光;粗分散体系—反射光;
胶体分散系—散射光。
丁达尔现象
丁达尔现象(Tyndall phenomena)
在暗室中,将一束光通过溶胶时,在侧面可 看到一个发亮的光柱,称为乳光,即丁达尔 (Tyndall)现象。
1、分散性
2、多相性 3、聚结不稳定性
三、在药剂学中的应用
1、有助于提高药物的溶解速度及溶解度,有利 于提高难溶性药物的生物利用度 2、利于提高药物在分散介质中的分散性 3、在体内分布上具有一定的选择性 4、具有缓释作用,减少剂量,降低毒副作用 5、改善药物在体内外的稳定性等
发生的电离、吸附或摩擦等产生的电荷所表现
的性质。
(一)电泳(electrophoresis) 在电场作用下微粒的定向移动叫电泳。 在溶液的电场中,微粒受两种作用力,一种是静电力Fe, 另一种是摩擦力Fs,而且这两种力在恒速运动时大小相 等。 E (4-16) v E 6rv
6r
其中,r—球型微粒半径, σ—表面电荷密度,E—电场强度,v—恒 速运动的速度。
式中,Π—渗透压,c—溶胶的浓度,R—气体常数,
T—绝对温度。
(三)沉降与沉降平衡
在一个分散体系中微粒的密度大于分散介质的密度,就会发生沉降。 如果是粗分散体系,粒子较大,经过一段时间以后,粒子会全部沉降到容器 的底部。如果粒子比较小,由于粒子的布朗运动,一方面受到重力作用而沉 降,另一方面由于沉降使上、下部分的浓度发生变化,引起扩散作用,使浓 度趋向于均匀。当沉降和扩散这两种方向相反的作用力达到平衡时,体系中 的粒子以一定的浓度梯度分步,这种平衡称作沉降平衡。达到沉降平衡后体 系的最下部浓度最大,随高度的上升浓度逐渐减小。
微粒分散体系
I
I0
24 3V 2 ( n 2 n02 ) 2
n 2n 4
2
2
I
I0
24 3V 4
2
( n2 n02 n2 2n02
)2
0
I—散射光强度;I0_ —入射光强度;n —分散相的折射率; n0 — 分散介质的折射率;—入射光波长;V —单个粒子的 体积;ν —单位体积中粒子数目。
17
五、微粒的电学性质
• 微粒带电原因:电离、吸附、摩擦。
(一)电泳(electro phoresis)
• 定义:微粒分散系中的微粒在电场作用 下,向阴极、阳极做定向的移动。
• 微粒受力:静电力、摩擦力
E / 6r
粒子越小,移动越快
18
(二)微粒的双电层结构
•
微粒表面带同种电荷,通过静电引力,使反离
• 1980年已制得热力学稳定的氢氧化铝 溶胶,说明制备热力学稳定的微粒分散系 是可能的。
23
二、动力学稳定性
• 动力稳定性表现在: 布朗运动 沉降 • 粒子的沉降(上浮)速度符合Stokes方程:
V 2r 2 ( 1 2 ) g 9
防止沉降方法 1. 减少粒度(增加均匀性) 2. 增加粘度 3. 降低密度差 4. 防止晶型转变 5. 控制温度变化
力学、光学、电学性质) • 微粒分散系的物理稳定性(动力学、
热力学)进行较深入的讨论。
1
第一节 概述
• *分散体系:一种或几种物质高度分散在某 种介质中所形成的体系。
• 按分散相粒子大小分类: • 微粒分散体系:1nm~100µm • 微粒给药系统: • 微粒分散体系的特点:多相、热力学不稳定、
微粒分散体系-精品医学课件 (2)
药物微粒分散体系
粗 Suspension 分 Sol 散 Emulsion 体 Microcapsule 系 microsphere
粒径 100nm-100μm
nanoemulsion 胶
Liposome
体
nanoparticle 分
Nanocapsule
散 体
Nanomicell
系
粒径 <100nm
临界聚沉浓度
三、 空间稳定理论
(一) 实验规律
相对分子质量大小高分子对微粒保护作用的影响
(a)较小相对分子量高分子;(b)中等相对分子量高分子;(c)较高相对分子量高分子
敏化作用(sensitization) :高分子在粒子表面覆
盖度q =0.5时絮凝效果最好,微粒聚集下沉
(二) 理论基础 1、两种稳定理论
3
r3( 0)g
在高度为dh的体积内粒子所受的总扩散力:
F扩散 Ad ARTdC
粒子总数为: LCdV LCAdh
每一个粒子所受到的扩散力:F扩散
ARTdC LCAdh
RT LC
dC dh
(二)沉降与沉降平衡
达平衡时,重力与扩散力大小相等、方向相反:
F扩散
1)体积限制效应理论: 两微粒接近时,彼此的吸附层不能互相穿透 2)混合效应理论: 微粒表面上的高分子吸附层可以互相穿透。
四、空缺稳定理论
亦称自由聚合物稳定理论。
五、微粒聚结动力学
快聚结 慢聚结
架桥聚结 聚合物
有效覆盖 微粒表面
小部分覆盖 微粒表面
空间保护作用 架桥聚结
★
Tyndall现象的本质 是粒子对光的散射
第一篇 药物制剂的基本理论 第四章 微粒分散体系
高分子未吸附于微粒表面时,在表面 的浓度低于体系溶液中的浓度,形成负吸 附,使微粒表面形成一种空缺表面层,在 这种体系中使胶体分散体系稳定的理论称 空缺稳定理论。
第三节 微粒分散体系物理稳定性相关理论
五、微粒聚结动力学 微粒>1μm不稳定(聚沉速度相对快) (一)快聚结 ΦT=0时势垒为0 ,一经碰撞就聚结,聚结速 度由碰撞速率决定,碰撞速率由布朗运动决定即 由扩散速度决定。 快聚结速度与微粒大小无关,受温度和介质 黏度影响。
分散体系,在侧面可观察到明显的乳光(散射光的 宏观表现)。本质是粒子对光的散射。低分子溶液 则是以透射光为主,无乳光。
第二节 微粒分散体系的物理化学性质
三、微粒分散体系的电学性质 1.电泳:如将电极插入微粒体系溶液中,通以电 流,则微粒可向阴极或阳极移动,这种在电场作 用下微粒的定向一定成为电泳。微粒大小与移动 速度成反比。
第二节 微粒分散体系的物理化学性质
一、微粒分散体系的动力学性质
1. Brown运动 1827年Brown在显微镜下发现,微粒
( < 100nm以下)在不停地不规则的运 动,将此现象命名为Brown 运动。
爱因斯坦根据分子运动论导出Brown运
动与粒子的半径、介质的黏度、温度有关。
第二节 微粒分散体系的物理化学性质
第三节 微粒分散体系物理稳定性相关理论
三、空间稳定理论 空间稳定效应的存在总势能: ΦT= ΦA +ΦR+ Φs Φs:空间稳定效应产生的排斥能,微粒
很近时趋于无穷大,故第一极小处不可能发 生聚沉,聚结多表现为较远距离上的絮凝。 空间稳定作用受电解质影响小。
第三节 微粒分散体系物理稳定性相关理论
第三节 微粒分散体系物理稳定性相关理论 三、空间稳定理论
药物微粒分散系的基础理论PPT课件【精编】共214页PPT
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
•
30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
【精编】
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
药物微粒分散系的基础理论PPT课件
•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
(完整版)药剂学第四章药物微粒分散体系
第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确的填A,错误的填B)1.药物微粒分散系是热力学稳定体系,动力学不稳定体系。
( )2.药物微粒分散系是动力学稳定体系,热力学不稳定体系。
( )3.药物微粒分散系是热力学不稳定体系,动力学不稳定体系。
( )4.微粒的大小与体内分布无关。
( )5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。
( )6.分子热运动产生的布朗运动和重力产生的沉降,两者降低微粒分散体系的稳定性。
( ) 7.微粒表面具有扩散双电层。
双电层的厚度越大,则相互排斥的作用力就越大,微粒就越稳定。
( )8.微粒表面具有扩散双电层。
双电层的厚度越小,则相互排斥的作用力就越大,微粒就越稳定。
( )9.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为反絮凝。
( )10.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。
( )11.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降。
( )12.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ上升。
( )13.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ降低,会出现反絮凝现象。
( )14.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降,出现絮凝状态。
加入的电解质叫絮凝剂。
( )15.絮凝剂是使微粒表面的ζ降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
( )16.絮凝剂是使微粒表面的ζ升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
( )17.反絮凝剂是使微粒表面的ζ升高,使到排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
第四章微粒分散体系PPT课件
h 第二级小
-
第一级小
--
35
(四)临界聚沉浓度
• 总势能曲线上的势垒的高度随溶液中电解质浓度的加 大而降低,当电解质浓度达到某一数值时,势能曲线 的最高点恰好为零,势垒消失,体系由稳定转为聚沉,
这就是临界聚沉状态,这时的电解质浓度即为该微粒
分散体系的聚沉值。 • 将在第一极小处发生的聚结称为聚沉(coagulation),
小,移动越快。
ζ=σε/r
(二)微粒的双电层结构
在相同的条件下,微 粒越小, ζ电位越
• 在微粒分散系溶液中,微粒表面的离高子。与近表面的反离
子构成吸附层;同时由于扩散作用,反离子在微粒周围
呈现渐远渐稀的梯度分布扩散层,吸附层与扩散层所带
电荷相反,共同构成双电层结构。
--
23
斯特恩吸附扩散双电层
吸附层:微粒表面→切动面
2.重力产生的沉降 使微粒分散体系的物理稳定性下降
--
27
• 絮凝与反絮凝 • DLVO理论 • 空间稳定理论 • 空缺稳定理论 • 微粒聚结动力学
(了解即可)
--
28
一、絮凝与反絮凝
• 微粒表面的电学特性也会影响微粒分散体系的物理稳 定性。
• 扩散双电层的存在,使微粒表面带有同种电荷,在一 定条件下因互相排斥而稳定。双电层厚度越大,微粒 越稳定。
--
18
• 布朗运动是液体分子热运动撞击微粒的结果。 • 布朗运动是微粒扩散的微观基础,而扩散现象又是
布朗运动的宏观表现。 • 布朗运动使很小的微粒具有了动力学稳定性。 • 微粒运动的平均位移Δ可用布朗运动方程表示:
D
RTt
L3 h r
Δ-在t时间内粒子在x轴方向的平均位移
药剂学第四章药物微粒分散体系
第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确的填A,错误的填B)1.药物微粒分散系就是热力学稳定体系,动力学不稳定体系。
( )2.药物微粒分散系就是动力学稳定体系,热力学不稳定体系。
( )3.药物微粒分散系就是热力学不稳定体系,动力学不稳定体系。
( )4.微粒的大小与体内分布无关。
( )5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。
( )6.分子热运动产生的布朗运动与重力产生的沉降,两者降低微粒分散体系的稳定性。
( )7.微粒表面具有扩散双电层。
双电层的厚度越大,则相互排斥的作用力就越大,微粒就越稳定。
( )8.微粒表面具有扩散双电层。
双电层的厚度越小,则相互排斥的作用力就越大,微粒就越稳定。
( )9.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为反絮凝。
( )10.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。
( )11.微粒体系中加入某种电解质,中与微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降。
( )12.微粒体系中加入某种电解质,中与微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ上升。
( )13.微粒体系中加入某种电解质,中与微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ降低,会出现反絮凝现象。
( )14.微粒体系中加入某种电解质,中与微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降,出现絮凝状态。
加入的电解质叫絮凝剂。
( )15.絮凝剂就是使微粒表面的ζ降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
( )16.絮凝剂就是使微粒表面的ζ升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
( )17.反絮凝剂就是使微粒表面的ζ升高,使到排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
药剂学第四章药物微粒分散体系
第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确得填A,错误得填B)1.药物微粒分散系就是热力学稳定体系,动力学不稳定体系。
( )2.药物微粒分散系就是动力学稳定体系,热力学不稳定体系。
( )3.药物微粒分散系就是热力学不稳定体系,动力学不稳定体系。
( )4.微粒得大小与体内分布无关。
( )5.布朗运动可以提高微粒分散体系得物理稳定性,而重力产生得沉降降低微粒分散体系得稳定性。
( )6.分子热运动产生得布朗运动与重力产生得沉降,两者降低微粒分散体系得稳定性。
( ) 7.微粒表面具有扩散双电层。
双电层得厚度越大,则相互排斥得作用力就越大,微粒就越稳定。
( )8.微粒表面具有扩散双电层。
双电层得厚度越小,则相互排斥得作用力就越大,微粒就越稳定。
( )9.微粒体系中加入某种电解质使微粒表面得ζ升高,静电排斥力阻碍了微粒之间得碰撞聚集,这个过程称为反絮凝。
( )10.微粒体系中加入某种电解质使微粒表面得ζ升高,静电排斥力阻碍了微粒之间得碰撞聚集,这个过程称为絮凝。
( )11.微粒体系中加入某种电解质,中与微粒表面得电荷,降低双电层得厚度,使微粒间得斥力下降。
( )12.微粒体系中加入某种电解质,中与微粒表面得电荷,降低双电层得厚度,使微粒表面得ζ上升。
( )13.微粒体系中加入某种电解质,中与微粒表面得电荷,降低双电层得厚度,使微粒表面得ζ降低,会出现反絮凝现象。
( )14.微粒体系中加入某种电解质,中与微粒表面得电荷,降低双电层得厚度,使微粒间得斥力下降,出现絮凝状态。
加入得电解质叫絮凝剂。
( )15.絮凝剂就是使微粒表面得ζ降低到引力稍大于排斥力,引起微粒分散体系中得微粒形成絮凝状态得电解质。
( )16.絮凝剂就是使微粒表面得ζ升高,使排斥力大于吸引力,引起微粒分散体系中得微粒形成絮凝状态得电解质。
( )17.反絮凝剂就是使微粒表面得ζ升高,使到排斥力大于吸引力,引起微粒分散体系中得微粒形成絮凝状态得电解质。
微粒分散体系
絮凝剂与反絮凝剂 主要是不同价数的
电解质
在微粒分散体系中加 入适量电解质,使ζ 电位降低到一定程度 后,体系中的微粒聚 集形成疏松的絮状物 的过程,称絮凝。 20~mV25
在微粒体系中加入某 种电解质使微粒表面 的ζ电位升高,静电 排斥力增加,阻碍了 微粒之间的碰撞聚集, 称反絮凝
絮凝特点: ➢ 表面带电量降低 ➢ 沉降速度加快 ➢ 振摇后可重新分散
• 如果入射电子撞击样品表面原子外层电子,把它激发出
来,就形成低能量的二次电子,在电场作用下可呈曲线
运动,翻越障碍进入检测器,使表面凸凹的各个部分都 能清晰成像。
• 二次电子和背景散射电子共同用于扫描电镜(SEM)的 成像。
微粒分散体系
微球表面形态
Scanning electron micrography of ADM-GMS ❖ 微球橙红色,形态圆整、均匀,微球表面可见孔隙,部分
微粒分散体系
主要内容
第一节 微粒分散体系的概念及基本特性 第二节 微粒分散体系的物理化学性质 第三节 微粒分散体系物理稳定性相关理论
微粒分散体系
第一节 微粒分散体系的概念及基本特性
一、概念与分类 分散体系:一种或几种物质高度分散在某种介质中
形成的体系
分散相:被分散的物质 分散介质:连续的介质
微球表面有药物或载体材料结晶。
微粒分散体系
2.激光散射法
散射光强度与粒子体积 V 的平方成正比,利用这一特性可 以测定粒子大小及分布。
微粒分散体系
• 对于溶液,散射光强度、散射角大小与溶液的性质、溶 质分子量、分子尺寸及分子形态、入射光的波长等有关, 对于直径很小的微粒,雷利散射公式:
II02434V2
①两个永久偶极之间的相互作用; ②永久偶极与诱导偶极间的相互作用; ③诱导偶极之间的色散相互作用。 除了少数的极性分子,色散相互作用在三类作用中占
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--
8
微粒大小是微粒分散系的重要参数
测定方法:
光学显微镜法: 0.5μm~ 电子显微镜法: 0.001μm~ 激 光散射法: 0.02μm~ 库尔特计数法: 1~600μm Stokes沉降法: 0.5~200μm 吸 附 法 : 0.03~1μm
--
9
1.电子显微镜法
扫描电子显微镜(SEM): 二次电子、背景散射电子共同用 于扫描电镜的成像。
来,就形成低能量的二次电子,在电场作用下可呈曲线
运动,翻越障碍进入检测器,使表面凸凹的各个部分都 能清晰成像。
• 二次电子和背景散射电子共同用于扫描电镜(SEM)的 成像。
--
13
微球表面形态
Scanning electron micrography of ADM-GMS
❖ 微球橙红色,形态圆整、均匀,微球表面可见孔隙,部分 微球表面有药物或载体材料结晶。
--
21
• 丁铎尔效应(Tyndall phenomena)
特点:常用于介质中微粒的研究。如脂质体等。
--
11
--
12
电子显微镜法的测定原理
• 电子束射到样品上,如果能量足够大就能穿过样品而无 相互作用,形成透射电子,用于透射电镜(TEM)的成 像和衍射;
• 当入射电子穿透到离核很近的地方被反射,而没有能量
损失,则在任何方向都有散射,即形成背景散射;
• 如果入射电子撞击样品表面原子外层电子,把它激发出
r愈小,介质粘度愈小,温度愈高,粒子的平均位移愈大,
布朗运动愈明显。
--
19
沉降与沉降平衡
• 粒径较大的微粒受重力作用,静置时会自然沉降,其沉降
速度服从Stoke’s定律:
V 2r2(1 2)g 9h
V-微粒沉降速度;r-微粒半径;
ρ1、ρ2-分别为微粒和分散介质密度; h-分散介质粘度;g-重力加速度常数。
--
3
第一节 微粒分散体系的概念及基本特性
分类(按分散相粒子的直径大小)
10-9m
10-7m
小分子真 溶液
胶体分散体系 微粒分散体系
10-4m 粗分散体系
--
4
微粒大小与体内分布
50nm
骨 髓
100nm 3μm 7μm 12μm 50μm
肝、脾巨 噬细胞
肺
据注射部位,
可被截留于肠
、肝、肾
--
5
二、微粒分散体系的基本特征
⑤还可以改善药物在体内外的稳定性。
--
7
四、微粒大小与测定方法
单分散体系:微粒大小完全均一的体系;
多分散体系:微粒大小不均一的体系。
绝大多数微粒分散体系为多分散体系。常用平均粒径来 描述粒子大小。
常用的粒径表示方法:几何学粒径、比表面粒径、有效 粒径等。
微粒大小的测定方法:光学显微镜法、电子显微镜法、 激光散射法、库尔特计数法、Stokes沉降法、吸附法等。
--
18
• 布朗运动是液体分子热运动撞击微粒的结果。 • 布朗运动是微粒扩散的微观基础,而扩散现象又是
布朗运动的宏观表现。 • 布朗运动使很小的微粒具有了动力学稳定性。 • 微粒运动的平均位移Δ可用布朗运动方程表示:
D
RTt
L3 h r
Δ-在t时间内粒子在x轴方向的平均位移
t-时间;T-热力学温度; η-介质粘度;r-微粒半径; L-阿伏伽德罗常数
--
14
2.激光散射法
散射光强度与粒子体积 V 的平方成正比,利用这一特性 可以测定粒子大小及分布。
--
15
• 对于溶液,散射光强度、散射角大小与溶液的性质、溶 质分子量、分子尺寸及分子形态、入射光的波长等有关, 对于直径很小的微粒,雷利散射公式:
II02434V2
n2n02 n22n02
2
• I-散射光强度;I0-入射光的强度;n -分散相折射率; n0-分散介质折射率;λ-入射光波长;V-单个粒子体积; υ-单位体积溶液中粒子数目。
--
6
三、微粒分散体系在药剂学中的应用
①由于粒径小,有助于提高药物的溶解速度及溶解度,有 利于提高难溶性药物的生物利用度;
②有利于提高药物微粒在分散介质中的分散性与稳定性;
③具有不同大小的微粒分散体系在体内分布上具有一定的 选择性,如一定大小的微粒给药后容易被单核吞噬细胞 系统吞噬;
④微囊、微球等微粒分散体系一般具有明显的缓释作用, 可以延长药物在体内的作用时间,减少剂量,降低毒副 作用;
• 由上式,散射光强度与粒子体积V的平方成正比,利用 这一特性可测定粒子大小及分布。
--
16
第二节 微粒分散体系的物理化学性质
一、微粒分散体系的动力学性质 Brown运动
• 布朗运动是微粒在不停地无规则移动和转动
的现象。
--
17
布朗运动:粒子永不停息的无规则的直线运动
布朗运动是粒子在每一瞬间受介质分子碰撞的合力方 向不断改变的结果。由于胶粒不停运动,从其周围分 子不断获得动能,从而可抗衡重力作用而不发生聚沉。
特点:立体感强,制样简单,样品的电子损失小等特点。 在观察形态方面效果良好,常用于研究高分子材料 的制剂,如微球等。
--
10
1.电子显微镜法
透射电子显微镜(TME)是把经加速和聚集的电子束投 射到非常薄的样品上,电子与样品中的原子碰撞而改变方 向,从而产生立体角散射。散射角的大小与样品的密度、 厚度相关,因此可以形成明暗不同的影像。放大倍数为几 万~百万倍。
第四章 微粒分散体系
--
1
主要内容
第一节 微粒分散体系的概念及基本特性 第二节 微粒分散体系的物理化学性质 第三节 微粒分散体系物理稳定性相关理论
--
2
第一节 微粒分散体系的概念及基本特性
一、概念与分类
分散体系:一种或几种物质高度分散在某种介质中
形成的体系
分散相:被分散的物质 分散介质:连续的介质
r愈大,微粒和分散介质的密度差愈大,分散介质的粘度愈
小,粒子的沉降速度愈大。
--
20
二、微粒分散体系的光学性质
当一束光照射到微粒分散系时,可以出现光的吸收、
反射和散射等。光的吸收主要由微粒的化学组成与结 构所决定;而光的反射与散射主要取决于微粒的大小。 低分子溶液—透射光;粗分散体系—反射光; 胶体分散系—散射光。
1. 分散性 具有明显的布朗运动、丁铎尔现象、电泳等 2. 多相性 分散相与分散介质之间存在着相界面,因而会
出现大量的表面现象; 3. 聚结不稳定性 随分散相微粒直径的减少,微粒比表面积
显著增大,使微粒具有相对较高的表面自由能,所以它 是热力学不稳定体系,因此,微粒分散体系具有容易絮 凝、聚结、沉降的趋势。